N mesm]m:
e ras University of Nebraska at Omaha

Omaha Digital Commons@UNO

Student Work

Using Semantic Templates to Study Vulnerabilities
Recorded in Large Software Repositories

Yan Wu
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

b Part of the Computer Sciences Commons

Recommended Citation

Wu, Yan, "Using Semantic Templates to Study Vulnerabilities Recorded in Large Software Repositories” (2011). Student Work. 2869.
https://digitalcommons.unomaha.edu/studentwork /2869

This Thesis is brought to you for free and open access by
Digital Commons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of Digital Commons@UNO. For

and Mabel L.

¢RISS LIB

P 1)
J
)

more information, please contact unodigitalcommons@unomaha.edu.

1Ty

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2869&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2869&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2869?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2869&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2869&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2869&utm_medium=PDF&utm_campaign=PDFCoverPages

Using Semantic Templates to Study Vulnerabilities

Recorded in Large Software Repositories

By
Yan Wu
A DISSERTATION
presented to the Faculty of
The Graduate College at the University of Nebraska
In Partial Fulfillment of Requirements
For the Degree of Doctor of Philosophy
Major: Information Technology
Under the Supervision of Dr. Harvey Siy and Dr. Robin A.
Gandhi
Omaha, Nebraska
October, 2011

Supervisory Committee:
Dr. Parvathi Chundi, Department of Computer Science
Dr. Zhenyuan Wang, Department of Mathematics

Dr. Mansour Zand, Department of Computer Science

UMI Number: 3482674

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

Dissertation Publishing

UMI 3482674
Copyright 2011 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106 - 1346

Using Semantic Templates to Study Vulnerabilities

Recorded in Large Software Repositories

Yan Wu, Ph.D.
University of Nebraska, 2011

Advisors: Dr. Harvey Siy and Dr. Robin A. Gandhi

Software vulnerabilities allow an attacker to reduce a system's Confidentiality,
Availability, and Integrity by exposing information, executing malicious code, and
undermine system functionalities that contribute to the overall system purpose and
need. With new vulnerabilities discovered everyday in a variety of applications and
user environments, a systematic study of their characteristics is a subject of
immediate need for the following reasons:

o The high rate in which information about past and new vulnerabilities are

accumulated makes it difficult to absorb and comprehend.

o Rather than learning from past mistakes, similar types of vulnerabilities are
observed repeatedly.

o As the scale and complexity of current software grows, better mental models
will be required for developers to sense the possibility for the occurrence of
vulnerabilities.

While the software development community has put a significant effort to capture

the artifacts related to a discovered vulnerability in organized repositories, much of

this information is not amenable to meaningful analysis and requires a deep and
manual inspection. In the software assurance community a body of knowledge that
provides an enumeration of common weaknesses has been developed, but it is
complicated and not readily usable for the study of vulnerabilities in specific projects
and user environments. Also the discovered vulnerabilities from different projects are
collected in various databases with general metadata such as dates, person, and
natural language descriptions but without the links to other relevant knowledge, they
are hard to be utilized for the purpose of understanding vulnerabilities.

This research combines the information sources from these communities in a way
that facilitates the study of vulnerabilities recorded in large software repositories. We
introduce the notion of Semantic Template to integrate the scattered information
relevant to understand and discover vulnerabilities. We evaluate the use of semantic
templates by applying it to analyze and annotate vulnerabilities recorded in software
repositories from the Apache Web Server project. We refer to software repositories in
a general sense that includes source code, version control data, bug reports,
developer mailing lists and project development websites. We derive semantic
templates from community standards such as the Common Weaknesses Enumeration
(CWE) and Common Vulnerabilities and Exposures (CVE). We rely on standards in
order to facilitate the adoption, sharing and interoperability of semantic templates.

This research contributes a novel theory and corresponding mechanisms for the
study of vulnerabilities in large software projects. To support these claims, we discuss

our experiences and present our findings from the Apache Web Server project.

Keywords

Annotation, CWE, CVE, CAPEC, Vulnerability, Apache Web Server project, Change
History Repository, Ontology, Classification, Prediction, Trend Analysis, Vulnerability

Patterns, Semantic Template

Acknowledgement

First, I would like to thank Dr. Harvey Siy, whom I have worked with for over 5
years. He helped broaden my views, kept me on track and pushed me at times when I
got discouraged. I also thank Dr. Robin A. Gandhi, whose collaboration brought fresh
knowledge into our small team. He always can enlighten me with new concepts and
ideas and provide assistance when I lose track. At the same time, I learned a lot of
editing and presentation skills from him. [am lucky to have them as my dissertation
co-advisors. I sincerely appreciate all their support and patience, and look forward to
continuing to work with them on future research.

In addition, I would like to thank Dr. William Mahoney and the Nebraska
University Center for Information Assurance (NUCIA) for sponsoring my research.

Also, I especially want to thank my husband, Li Fan, for managing the household
and family needs while I spent nights and weekends working on my dissertation. And
the encouragement I received from my parents and friends was the power driving me
forward. Especially in the period my parents visited me, they took care of everything
so that I can focus on my dissertation work. I would also like to thank the members of
my Dissertation committee, Dr. Parvathi Chundi, Dr. Mansour Zand, and Dr.
Zhenyuan Wang, for taking the time to review my work and provide much needed

critique to help improve my dissertation.

Table of Contents

T INEFOAUCTION ..ttt b sttt es e s eb et e sebe i 1
1.1 Problem Statement and BackgroUund..................ccuineveneineieiieineeis st 1
1.2 ReSArch HYPOINESEScueuiveiiiiiiieecieeeet et ettt 5

2. Theoretical Background/Literature REVIEWccoooueiniiiiinenincinecseneeese e 7
2.1 Organizing Software REePOSITOIIES............coouueireeninieeinteietetese sttt st seier e 7
2.2 Applying Ontologies in Software ENgiNEeringconeveeeneensincieeese e 8
2.3 Information Extraction and Semantic ANNOtation...............c.ccccueveeecinnenninceneesennenen, 9
2.4 TEXE MINUNG ...eovveiieiise sttt ettt et st et st eb e e 10
2.5 Vulnerability Classification and Categorizationc.ccoeeeinncneninceneeennns 11
2.6 BUQG FiX PAEINIS.......ccoveeeiieeise sttt sttt ettt et s s 13
2.7 Timeline Analysis and Social Network ANalysiscccccneveeeennenennceneee e 14

3. Objectives of the Research WOrk ... e 16

4. Research MethOdolOgycociveeiein ittt ettt e s 18
4.1 Semantic Infrastructure for Vulnerability Analysis.............cccccconevevvccnninninecieecncnnns 18

4.1.1 Analysis of Project VUINErabilitiesooeovevnniinecnenniceneee s 19
4.1.2 Development of Semantic Templates............ocoueceeveienneseciesreeeeeeeee e 19
4.1.3 Ontology Construction and QUEIYINGc.euvecerniineenennieiieene e ens 20
4.1.4 Interactive VISUAIIZALION ...ttt 21
4.2 EMPIrical Valid@tionccoueoueieinineie ettt st ettt s st eae s se e s 22
4.3 Tool-Supported Classification and Annotation of Repository Entries......................... 22

5. Semantic Template CONSIIUCHIONcoooiiiiiee e e 25
5.1 Analysis of Apache Web Server Vulnerabilities.................c.cccoeoninncnnineinecennen, 25
5.2 Process for Building a Semantic Templatecccoooeveenineieiieinesncieeee e 27
5.3 Using the Semantic Template to Study Vulnerabilities................ccccvvennniincncnnnne. 36
5.4 Other SEMANtiC TEMPIGLESc..ceviriiieieieieeeee ettt ettt et et s 38
5.5 Ontology Representation of the Semantic Template...............cccoviveveevenieneneecesiennnns 44

6. Empirical Validation of the Effectiveness of Semantic Template to Study Vulnerabilities

... 46
6.1 EXDEIMENT [38] ...ttt et sttt s re e st 46
6.1.1 EXperimental DESIGNcccoueireiniiiiieeere sttt st 47
6.1.2 PrE-EEST ...ttt e e ettt er e 48
6.1.3 Settings and MaLErialscveoiiineeeiineeeese e e 50
6.1.4 VAFIADIES ...t ettt et et e st n e 52
6.1.5 Preparation and Conduct of EXperiment..............coeeeveiveroecenescenesnceenenn 53

6.1.6 IRESUIES ...ttt ettt sttt e ettt e e e s st e e sae s ennnas 54

6.1.7 Analysis of Open-ended QUESHIONScooeireniniinecsesnceeene e 65
6.1.8 THreats to VAlidity ...ttt s 71
6.1.9 DUSCUSSION ...ttt ettt et st e s sttt ens s e 72

6.2 EXPEIT SUIVBY ..ottt sttt sttt et st bttt eb st 73
7. Semi-automatic Annotation of Vulnerabilities............c..ccociiiniinnincec e 75
7.1 Classifying CVES to Weakness Categoriesccuwrenriniineeiesneninerese e 76
7.2 Classifying CVEs to Semantic Template CONCEPLScccooreveneveneerniineeesieeenes 80
7.2.1 Documents QUErY @S VECIOIS.........cocevveiniiiieise sttt 82
7.2.2 Documents Match based on TF-IDFccconiininnnincneee e 85
7.2.3 K-NN Classification of CVES 0 CONCEPLSccuvereeeeeceiesriieneeseeeeeees 87

7.3 Concept ClasSification RESUILSccccooueicieieiieeieieee et 89

8. CONCIUSION......eiieie ettt et e sttt eb et et e st e e eaeste st ntene e e seenesensensesnens 96
8.7 CONIIIDULIONS ...ttt ettt ettt a et et st ese e stesbe st e e eaesaesrnens 97
9. Ongoing and Future RESEarch.........cccoiiinic e 100
9.1 Incorporating Social NetwWork Data..............c.ccveceviiineeniiineeneeetst st 100
9.2 Identifying and Cataloguing FiX PAtternsuvrineeenseineseesneeee s 101
9.3 Ontology Reasoning on VUINEIabilities.................ccwvevneineeenineinessnnee s 101
9.4 Semantic Templates for Education and Training.............c.cccuevevneceneineennceieeenennns 102
9.5 Domain Specific Semantic TeMPIatescccoovvereieeiiiiiieineee et 102
T0. REFEIENCES ...ttt ettt ettt sttt ettt e s sttt es et et e st e e eb e eneseese e e enes 105

Y o] o= g o | OO TSR PRRPPR 109

List of Figures

Figure 1 - Identification of Orthogonal Conceptual Units tangled in Natural

Language CWE desCription.........ceevuureriieeiieeniee et cesiiee st 4
Figure 2 - CWE collaborations and contributions [http://cwe.mitre.org/]........... 13
Figure 3 - Occurrences of various vulnerability categories over time................. 27
Figure 4 - Visualization of Buffer Overflow-related CWE entries...................... 31
Figure 5 - Buffer Overflow-related CWEs Extracted in the Preparation and

ColleCtion Phase..........oouuiiiiiiiiiei et e 32
Figure 6 - Buffer Overflow Semantic Template............ccceeveeeriiennieeniienneeene. 36
Figure 7 - Annotated CVE-2004-0492 by Buffer Overflow Semantic Template. 38
Figure 8 - Injection Semantic Template...........cccceeveieriiiriniieniiiie e 40
Figure 9 - Annotated CVE-2007-5000 by Injection Semantic Template............. 42
Figure 10 — Information Exposure Semantic Templatecccocveeriienneennne. 43
Figure 11 - Modeling and Visualization of CAN-2004-0492 using Ontological

Engineering TOOL.....c...uiiiiiiie e e 45
Figure 12 - Time to completion (minutes) per vulnerability............ccccocuereeeennne. 56
Figure 13 - Difference of Average Time for subjects of two groups from round 1

to round 2 (W = 179.5, p-value = 0.002667)......c..cceveeririreeerrreeerree e, 58
Figure 14 - Question 1 answer precision per vulnerability.............ccccevveeiennnn.n. 60
Figure 15 - Average Question 1 precision for two groups from round 1 to round 2

(), W=76, p-value = 0.00978)ccccvirriiiriiiiietiie et 61
Figure 16 - Question 1 answer recall per vulnerabilityccccccveveveiieeiennnn.n. 62
Figure 17 - Average Question 1 recall for two groups from round 1 to round 2 (W

=52, p-value = 0.000080)cocerriiiriiriiiie et 64
Figure 18 - Accuracy of Q2 per vulnerabilityccceeeeeeviieniieiniieeriien e 66
Figure 19 - Accuracy of Q3 per vulnerabilitycceeeeeeeviieniienniieensien e 67
Figure 20 - Question 2 and 3 Answer Term Usage per Vulnerability.................. 70
Figure 21 — Machine 1earning ProCeSS.......ccuuieeeerueeeeeiuriereeriieeeesereveesnreeeseeneneens 76
Figure 22 - Classification by RapidMiner..........cccccccoevviiiiciieeieeiie e 78
Figure 23 — Concept classification ProCess........c.eevuveeereeeeruieenerensiieensiien e 80
Figure 24 - Cosine Similarity of Document Vectors..........ccceevvverneieeniveneeeenne. 85
Figure 25 - tf-1df SImilaritycccoeveeeriieiiieieieee e e 87
Figure 26 - Weighted Voting Result for CVE-2004-0492...........coovveiiieneeennnne. 95

Figure 27 — Technology Groups and Business Domainsccccceevvereeenn. 104

List of Tables

Table 1 - W and p-values of Shapiro—Wilk test for Pre-test data 50
Table 2 - W and p-values of Shapiro—Wilk test for Timec.ccccceerveerieeennne. 55
Table 3 - W and p-values of Wilcoxon signed-rank test (alternative hypothesis is

groupl value is greater than group2 value) for average Time data.............. 57
Table 4 — EXPErt Oracleooeiiviiiieeiciieieieciie ettt e 59
Table 5 - W and p-values of Wilcoxon signed-rank test for Question 1 answer

PreCiSION AAtA......c..eeiieeiieieciiie ettt 61
Table 6 - W and p-values of Wilcoxon signed-rank test for Question 1 answer

TECALL AALA. ..ot e e 63
Table 7 — Top Five Results of Students Experiment...........cccccceevevviienciinecennnnnn. 65
Table 8 - Inter-rater Reliability for Q2 and Q3 ANSWer.........ccceeevveieecveeeeennnnnnn. 66
Table 9 - W and p-values of Wilcoxon signed-rank test (alternative hypothesis is

groupl value is less than group2 value) for Question 2 answer 67
Table 10 - W and p-values of Wilcoxon signed-rank test (alternative hypothesis is

groupl value is less than group2 value) for Question 3 answer 67
Table 11 - Effects of experimental factors on Fault Identification Accuracy 68
Table 12 - Effects of experimental factors on Description Accuracy.................. 69
Table 13 - Inter-rater reliability for term USagecccecvevecivveeeeeiiiieeciie e 69
Table 14 - Precision and Recall for Classification Model Validation.................. 79
Table 15 - Precision and Recall for Classification of Buffer Overflow CVEs by

the Trained MOdel..........cceeiiiiiiiiiie e e e 80
Table 16 — Top Five Results of Annotation Methodsccccceevevviieicineinnnnn.n. 89
Table 17 — Voting Results for the Four K-NN Annotation Algorithms 91
Table 18 — Voting Results for all the three Annotation Algorithms (Documents

Match based on TF-IDF, Query as Vectors and K-NN)cccocvvveivennennn. 92
Table 19 — Max Positioning Resultscccooeeviiiiiciiiii e 93

Table 20 - Mapping between Research activities and the Hypotheses................ 99

1. Introduction
1.1 Problem Statement and Background

Software development is a highly error-prone process, which introduces a
significant number of weaknesses into a system. Weakness is defined as a type of
mistake in software that, in proper conditions, could contribute to the introduction of
vulnerabilities within that software [42]. This term applies to mistakes regardless of
whether they occur in implementation, design, or other phases of the SDLC.
Weaknesses in software products present opportunities for malicious attacks that
compromise the integrity of the software, availability of its functionality and security
of its data, due to validation errors, domain errors, and serialization/aliasing errors
[24]. Vulnerability is an occurrence of a weakness (or multiple weaknesses) within
software, in which the weakness can be used by a party to cause the software to modify
or access unintended data, interrupt proper execution, or perform incorrect actions that
were not specifically granted to the party who uses the weakness [44]. The two
important concepts are related but different. Weakness is a static presence that
existing in software systems. Weakness might stay in software and never cause any
problems until it is exploited by an attacker, and when the attacker find out the
weakness (es) and exploit it (them), the vulnerability of this software is exposed. Most
software development projects dedicate some effort to document, track and study
reported vulnerabilities. This information is recorded in existing project repositories
such as change logs in version control systems, entries in bug tracking systems and

communication threads in mailing lists. As these repositories were created for

different purposes, it is not straightforward to extract useful vulnerability-related
information. In large projects, these repositories store vast amounts of data, and as a
result, the relevant information is buried in a mass of other data. Natural language text
descriptions and discussions do not facilitate mechanisms to aggregate vulnerability
artifacts from multiple sources or pinpoint the actual software fault and affected
software elements. While a significant body of knowledge exists for classifying and
categorizing software weaknesses, it is hardly applied in the context of a software
project. Little or no effort has been made to improve the mental model of the software
developer to sense the possibility of vulnerability in the face of growing software
complexity.

We are faced with two problems: information overload in software repositories
and, paradoxically, lack of information or security know how among project
stakeholders. The large volume of data in software repositories and other project
information sources make it difficult to locate the artifacts needed to identify, track
and study previously recorded vulnerabilities. This condition is compounded by the
fact that the complete record of information is scattered over several separate systems
with different information schemas and natural language descriptions. Even if the
information is found, a significant amount of work is needed to reconstruct the trail of
artifacts that help understand the actual vulnerability. Thus, the information within
software project repositories is not in a representation that can be easily extracted and
analyzed for vulnerability-related questions.

We propose organizing the information in project repositories around semantic

templates. We define semantic templates to be generalized patterns of relationship
between software elements and faults, and their association with known higher level
phenomena in the security domain. Semantic templates enhance the existing software
project repositories by keeping track of relevant details and relating the information
back to public vulnerability databases. In this approach, semantic templates for major
vulnerability types are abstracted from information in the Common Weakness
Enumeration dictionary [8]. Next, known vulnerabilities, related concepts in the
project repository and descriptions of the corresponding fixes are tagged with
concepts from the template. Based on the characteristics of the resources affected by
these vulnerabilities, other similar resources in the software can be identified for
closer inspection and verification.

The Common Weakness Enumeration (CWE) is a community developed
dictionary of software weakness types. However, the CWE is large, abstract, contains
multiple views and some imprecise and overlapping descriptions. This presents a huge
cognitive overload for understanding a weakness, its preceding software faults,
resources/locations that it occurs in, and following consequences. As shown in Figure
1, even the natural language descriptions contain tangled concerns representing
different aspects of a single vulnerability. These concerns are also repeated in closely

related CWE entries (examine the overlapping concerns in Figure 1).

* CWE-119:

— The

LEGEND
Software Fault

— Certainlanguages allow direct addressing of
memory locations and do not autamatically ensure
that these locations are valid for the memory buffer

thatis being referenced. Thiscan
Consequence

Asa result, an attacker may be able to execute
arbitrary code, alter the intended control flow, read
sensitive information, or cause the system to crash.

* CWE-120: Buffer Copy without Checking Size of
Input ('Classic "
— The program copiesan input fer to an output

without verifying that the size of the input

LEGEND = :
fferis less than the size of the output buffer,

Software Fault

leadingto a 5
- A condition exists when a program
attemptsto put moredata in a bufferthan it can

hold, or when a program attemptsto putdataina
outside of the boundariesofa
often can be used to execute

Consequence

arbitrarycode...
generally lead to crashes

Figure 1 - Identification of Orthogonal Conceptual Units tangled in
Natural Language CWE description

Closely related to the CWE, Common Vulnerability and Exposures (CVE) [40] is
collecting known vulnerabilities from software development organizations,
coordination centers and individuals, facilitating review by experts and assigning a
unique identifier to each. Efforts exist to link the most recent CVE entries to
corresponding CWE entries, but the links are weak and scarce. To build a richer
context around existing vulnerability information, compensate for the missing
information in vulnerability databases, and facilitate linking to known weakness

classifications, we mine software repositories from open source projects. Software

repositories also provide information about fixes, who discovered the vulnerability,

who fixed it, etc., which compliment current vulnerability knowledge sources.

1.2 Research Hypotheses

This research is guided by the following study questions and corresponding
hypotheses, which will be investigated.
1. How can semantic templates improve the ability of stakeholders in the
software development life cycle (SDLC) to study software vulnerabilities?
a. Semantic templates improve the ability to understand and discover
vulnerabilities from scattered sources.
i. Semantic templates improve the annotation and integration of
vulnerability information in scattered sources.
ii. Semantic templates improve the presentation and navigation of
related vulnerability information.
b. Semantic templates improve the ability to evaluate possible fixes to an
occurrence of vulnerability.
i. Semantic templates enable the categorization and cataloguing
of past fixes to vulnerabilities.
ii. Semantic templates help retrieve fixes from closely related
vulnerabilities.
c. Semantic templates improve the measurement of secure coding
practices.

i. Semantic templates facilitate development of metrics for

assessing project and/or developer capability in producing
secure code.
2. Does the creation of semantic templates improve the quality of existing
standards and enumerations describing vulnerability content?
a. Semantic templates improve the ability to review existing standards
and enumerations.
b. Semantic templates reduce inconsistent or redundant information in

existing standards.

2. Theoretical Background/Literature Review
2.1 Organizing Software Repositories

Software project repositories provide rich insights into the development history of
a software product. Examples include version control systems, Integrated
Development Environment (IDEs), issue and bug tracking systems, and mailing lists
[36]. Version control systems store the history of modifications done to the source
code. In addition to storing the actual code changes, these also record who made the
change, when it was made, what files were changed, and why the change was made.
Version control data provide information about how an occurrence of vulnerability
was fixed and the related social network information. Issue and bug tracking systems
record requests to fix a bug or enhance some functionality. The information typically
includes who submitted the bug or change request, when it was submitted and
resolved, the resolution selected. Mailing list between developers and stakeholders is
another rich source of vulnerabilities. In emails, the developers discuss how the bugs
were found, the technique to fix them, the aftermath of fixation, the plans and so on.

To make sense of this large quantity of data stored within such systems, many
efforts for organizing software repositories have been suggested. The semantics of
repository data is determined by the diverse and complex interrelationships between
various software entities, e.g., classes, functions, files, bugs, versions, etc. Hence,
most proposals provide different ways of combining these pieces of data to identify
related bug data or related change data, connect bug data to change data, connect

email data to change data, and so on. The augmented information is then used to

provide useful inferences such as bug prediction, change impact assessment,
identification of co-changed entities, identification of developer expertise, change
effort estimation, etc. [36]. Given the usefulness of augmenting the raw repository
data with these semantic relationships, it makes sense to store this augmented
information in some form of enhanced repository. Examples of such systems are
Kenyon [4] and TA-RE [22]. These systems ease the fact extraction process by
providing a repository that combines multiple sources of information, particularly
from version control data and information extracted from parsing individual source
code versions, but for software evolution purpose and focus on the configuration

aspect, not targeting at vulnerabilities.
2.2 Applying Ontologies in Software Engineering

Many research efforts have focused on modeling software repository data using
ontologies. Ontology is a formal explicit specification of a shared conceptualization
[13]. They provide a way of organizing and encoding the collected knowledge for a
given domain. Ontology languages such as the Web Ontology Language (OWL) [45]
enable the description of relationships that are constrained via description logic
axioms, making it possible to formally qualify when two entries are related. Most
ontologies also provide built-in inference tools for ease of querying for related
information. One such example is EvoOnt [21], an OWL-based ontology that includes
representations for software entities (e.g., classes, functions, variables, etc.), version
control data and bug information. We also described how to utilize ontology to assess

software engineering experiment designs [31] based on modeling and reasoning

mechanisms provided by the ontology editor Protégé [12]. Each of these ontologies
provides an infrastructure that makes it possible to execute higher level queries by
reducing the incidental and effort-intensive task of data extraction. In concept, the
proposed semantic templates take these approaches one step further by narrowing the
possible queries under consideration down to one domain (security) and augmenting

the information with higher level, domain-specific data.

2.3 Information Extraction and Semantic Annotation

Information Extraction deals with identifying and extracting a subsequence from
a given sequence of instances that represents information we are interested in. The
extracted data are annotated with specific information on the basis of some
pre-defined metadata. Three state-of-the-art methods for information extraction are
introduced in [30]: rule learning, classification and sequential labeling.

Content annotation for semantic web is also related to this research. Most
research in this area focuses on semantic web construction. [28] introduces a
methodology to partially annotate text content in web resources by an automatic and
unsupervised way. The authors discover the relevant entities in text and associate
them to classes of a seed ontology by using several learning techniques and heuristics,
which inspire methods for content annotation using semantic structures but applied in
a different domain. Our research is focused on the vulnerability domain which is more
specific and need more expert guidance compared with the semantic web’s general
content. Similar research was conducted by D. Embley et al. [9]. They focused on

converting regular web pages into semantic web pages so that ordinary users can

10

utilize the free-form, textual queries to locate information they need with better
efficiency and accuracy. It is also one of our objectives to improve the query

mechanisms for developers to easily find relevant vulnerability information.
2.4 Text Mining

Text mining is a subfield of data mining. Data mining is an interdisciplinary field
with its roots in databases, machine learning and statistics [16]. Generally, data
mining has two major goals: prediction and description. Prediction aims to predict
unknown or future values of other interest to using existed data set. Description is to
uncover the hidden patterns within the data that can be useful to humans. The
techniques to achieve these two goals are as follows [14][20]:

1. Classification: a process to discover the functions that classifies data objects into
predefined classes.

2. Clustering: a process to identify a limited set of groups or clusters to describe the
data.

3. Regression: a process to discover the functions that describe the relationships
between data objects.

4. Summarization: a process to discover methods to describe the specific data set
compactly and knowledgeably.

5. Dependency Modeling: a process to discover models that describe important
dependencies between data objects in the data sets.

6. Change and Deviation Detection: processes to identify the significant changes in

the data set.

11

As a branch of data mining, text mining discovers knowledge in unstructured data
sets, such as text. This concept is first mentioned by R. Feldman et al. [10]. It exploits
the techniques from information retrieval, information extraction and natural language
processing (NLP) and connects them by the algorithms and methods of data mining.
Our previous work [37] utilized clustering and classification techniques in text mining
to group software engineering research papers. We apply similar text mining

techniques in classifying vulnerabilities based on their natural language descriptions.

2.5 Vulnerability Classification and Categorization

Safety and security engineers can learn a lot from past incidents. However, given
the volume and rapid rate at which new security vulnerabilities are discovered, it was
recognized fairly early in the security community that some sort of classification and
categorization would be required to generate useful insights [1] [5]. The software
flaw taxonomy [24] was one of the early efforts to classify vulnerabilities by asking
three basic questions: 1) How did it enter the system; 2) When did it enter the system
and 3) Where in the system is it manifest. This classification being primarily
top-down, details about a specific technology, platform or implementation language
was to be inferred from the examples of vulnerabilities classified under each concept.
Over a period of time several other refinements and ways to classify vulnerabilities
were introduced [6] [2] [37]. More recently vulnerability categorizations have been
developed as enumerations of weaknesses [7], ranked lists based on frequency of
occurrence [43], domain-specific lists [44], or based on experience of security

practitioners [17] [36].

12

To consolidate these efforts, The Common Weaknesses Enumeration is a
community driven and continuously evolving taxonomy of software weaknesses that
range from abstract categories to technology and language dependent categories. The
CWE vision is to enable a more effective discussion, description, selection, and use of
software security tools and services that can find weaknesses in source code and
operational systems as well as better understanding and management of software
weaknesses related to architecture and design [8]. However, the CWE is often
compared to a “Kitchen Sink”, although in a good way, as it aggregates many
different taxonomies, software technologies and products, and categorization
perspectives, as shown in Figure 2. While it provides a comprehensive record of
software weaknesses and their categorization, it can be a daunting task for
stakeholders in the SDLC to untangle and trace the complex web of interdependencies
that exist among software weaknesses captured in the CWE. The expression of
weakness classes and categories in the CWE often mix the characteristics of a
weakness, its preceding software faults, resources/locations that the weakness occurs
in, and the consequences that may follow from the weakness.

Closely related to the CWE, the Common Vulnerability Enumeration (CVE) is a
growing compilation of known information security vulnerabilities and exposures as
reported by software development organizations, coordination centers, developers and
individuals at large. It provides a common standard identifier for each discovered
vulnerability to enable data exchange between security products and provide a

baseline for evaluating coverage of tools and services [40]. With the CWE coming

13

into existence, new CVE entries are manually tagged with corresponding CWE

concepts in National Vulnerability Database (NVD) [http://nvd.nist.gov].

Building CWE & Consensus VT

1BM James Madisen
W University MUY

KDM Analytics Cenzic

Publicy lable: Sec
Research, and Checklists

- Preliminary . Other Work " 7" ™S core Security NSAKCTC
¢ B : Available jn VERACODE St
CVE-based Security Tax- .

Cigital owase 3 Preliminary Previous LY ‘a Coverity SEi - CERT €C

Gary McGraw, Top Ton - List %fl Vulnerability ;::dc:‘r:r}t‘:z;.nde- 2 T«K;r.l.'\%lcolu

et Vulnerability Tanonomy . ology

lists =

E!wck is

ecurity T:

Examples for reh
Risagchisc Researc Farasoft

(PLOVER) / Unisys Purdue
[ue Security MIT Lincoln Labis
Borkeley Liniversity Univ. of
Y\, Nerth Carslina State farylind
University (NCSUE oy
™ ¥ GMU
———
National |
Vulnerability | : SEI CCE:J
Database - ecure ing
tabese Siam Col
Comman i l -
— UINncrabilities W E v SANS
and Ex ras o . | Mats 1
v BHS Rl
Software Skills
tabali] Assessment
> Common
; Body of -
| Knowledge |
5 DHS
. Build Security
Object In
Management . 4 : Wb Site
Group (] B |
Software .
Assurance SIG Lopan et 3 e
Agplkalloﬂ il DHS and NIST 1 X
ecurity
Software Ass
Gohct, | Web Appiication CWE Metrics and Tool J NSA and CTC CAMP]
Curity e :
sl Compatibility | cvaluation (samare)
(WASC) ”
fe—re = | | Test Repositories

 EE——

Figure 2 - CWE collaborations and contributions [http://cwe.mitre.org/]

2.6 Bug Fix Patterns

Identifying relevant fixes to vulnerabilities from a catalogue of reviewed and
tested fix patterns provide a reliable guide for fixing a newly reported vulnerability
with minimal side effects. To systematically identify relevant fixes, it is necessary to
precisely understand the wvulnerability at hand and its root causes. A fixed
vulnerability reported in the change history does not mean the mechanism behind the
vulnerability was really understood and the relevant part of the source code that led to

the vulnerability was located. In [27], bug fix patterns in multiple Java projects have

14

been catalogued examining only source code changes but not higher level information
collected from different repositories and the weakness databases. The same group of
authors also worked on helping locate bugs with the help of a bug finding algorithm
based on the project-specific bug and fix knowledge base developed by analyzing the
history of bug fixes [23]. The authors discovered certain fix patterns but just utilize
them on finding bugs in specific projects, and also, this piece of work is still working
on the low level source code only, without higher level knowledge adopted.
Sudhakrishnan, et al. [32] provided a category of 25 bug fix patterns by analyzing the
bug fix history of four hardware projects written in Verilog, which is an interesting
work although based on certain hardware programming language and also in a source

code level.
2.7 Timeline Analysis and Social Network Analysis

Every project has different technology, business objectives, organizational
policies, processes and culture, and developer groups. Software repositories provide a
richer temporal and social context for prioritization, measurement and attribution of
vulnerability sources. There are several lines of investigation dealing with detecting
temporal trends. The research described in [30] performs trend analysis in order to
find hot topics through controlled vocabulary terms based on the nature of news that
smaller units could be used to identify breaking news topics within short period such
as one day. Temporal Text Mining (TTM) described in [26] is used to discover and
summarize the evolutionary patterns of themes in a text stream over time. Based on

the discoveries in characteristic path, authors of [15] collected the paper titles from

15

DBLP XML files to track the most popular terms used throughout time. Then they
listed the emerging popular terms for each year by deleting terms that appeared in the
previous two years and by this way they explained the previous discoveries.

Social Network Analysis in software projects helps identify relationships between
developers and can provide better coordination between development teams and
individuals, which was clearly validated by the survey conducted in [3]. The authors
developed a tool named Codebook, which discovers transitive relationships between
people, code, bugs, test cases, specifications, and other related artifacts by mining
software repositories. It extensively supports multiple information needs with one

data structure (a directed graph) and one algorithm.

16

3. Objectives of the Research Work

The central objectives of this dissertation research work include:

Integrating vulnerability related information from large software repositories and
the vulnerability research community, then organize them in such a way that
semantic relationships between various elements are recorded;

Applying this information to identify, semi-automatically annotate and discover
vulnerabilities in existing and future software systems;

Conducting an empirical study by using our approach to study vulnerabilities
recorded in large open source software repositories and validating the
effectiveness and efficiency of this approach.

This research work is distinguished from the previous research in the following

aspects:

1.

We use a top-down (semantic templates) and bottom-up (repository mining)
approach to organize vulnerability related concepts, properties, relationships and
instances instead of a loose list of related information without real structure [7].
(maps to sections 2.1, 2.3, 2.5)

Rather than generic and often superficial tools, we focus on a single domain
related to security vulnerabilities for deeper, more meaningful guidance in
identifying and fixing vulnerabilities. (maps to sections 2.1, 2.2, 2.6, 2.7)

We expect to improve the developer ability to identify effective project specific
fixes by examining past vulnerability information. This guidance relies on

semantic relationships in addition to specific code level descriptions of possible

17

fixes. (maps to section 2.6). We expect to make the existing weakness
enumerations more usable during the software development lifecycle and project
management. (maps to section 2.5)

The vulnerability related information considered for this research is collected from
structured as well as unstructured sources in software repositories. Most existing
works in vulnerability mining from software repositories rely on one or two
information sources such as source code [4] and bug reports. (maps to sections 2.1,
22,2.3,24)

Timeline-based vulnerability trend analysis, visualization and social network
analysis will provide unique insights to understand and discover novel aspects of

vulnerabilities. (maps to section 2.7)

18

4. Research Methodology

The research work performed for this dissertation can be divided into three parts.
First is the development of a semantic infrastructure for vulnerability analysis. For
each category of vulnerabilities, a semantic template was constructed to organize the
four most important concepts: Software fault, Weakness, Resource/Location and
Consequence. This includes a project-specific set of studies of vulnerabilities carried
out on the Apache Web Server repositories, which provides an illustration of how the
application of the semantic infrastructure facilitates and enables more sophisticated
analysis of the available repository information. Second is an empirical validation to
assess how well semantic templates enable the comprehension of the vulnerability
information retrieved from software repositories. Finally, we investigate a machine
learning approach, for semi-automatic annotation of CVE descriptions using concepts

in the semantic templates.
4.1 Semantic Infrastructure for Vulnerability Analysis

In this stage there are five sets of activities described as following:
® Analysis of known vulnerabilities in Apache Web Server project to
identify most common vulnerability types.
® Constructing semantic templates for different types of vulnerabilities to
show the knowledge structure in vulnerability area as an organized
structure from both the Weakness research community and the software

repository knowledge.

19

® Use semantic templates to annotate vulnerability instances from Apache
Web Server project, and further realize the semi-automatic process to
help annotation works for human experts;

® Ontology Construction to help represent and maintain the concepts,
relationships and properties contained in the vulnerability-related
semantic templates;

® Visualization of the vulnerability concepts structure. GraphViz is used to
represent the concepts as nodes and relationships as arcs to provide a

high level structure in certain category.

4.1.1 Analysis of Project Vulnerabilities

The purpose of trend analysis is to identify the distribution of different categories
of vulnerabilities, software faults, weaknesses, resources, consequences and their
trends with respect to time. This analysis guides the selection, prioritization,
evaluation, and adjustment of granularity of concepts in semantic templates. The
methodology as outlined in Chapter 5 to construct semantic templates covers the most

common types of vulnerabilities in the Apache Web Server occurring over time.

4.1.2 Development of Semantic Templates

We define semantic templates to be generalized patterns of relationship between
software elements and faults, and their association with known higher level
phenomena in the security domain. Semantic templates enhance the existing software

project repositories by keeping track of relevant details and relating the information

20

back to public vulnerability databases. In this approach, semantic templates for major
vulnerability types are abstracted from information in the CWE. Next, known
vulnerabilities, related concepts in the project repository and descriptions of the
corresponding fixes are tagged with concepts from the template. Based on the
characteristics of the resources affected by these vulnerabilities, other similar
resources in the software can be identified for closer inspection and verification.
Semantic templates provide a meaningful context for understanding entire
categories of vulnerabilities. With the help of software repository information such as
log of changes, code differences before and after the fix, the vulnerabilities that
occurred in Apache Web Server project can be analyzed with much more
understanding. Annotate the vulnerability instances in Apache Web Server project by

the corresponding semantic template to help better understanding.

4.1.3 Ontology Construction and Querying

The ontology construction process identifies concepts and relationships which
between concepts, properties and instances in a given domain based on certain
purpose, and then integrates them into a meaningful structure that facilitates further
inferences. In this research, the domain is based on categories of vulnerabilities in
Apache Web Server project. Protégé is used as the ontology editor because of its
powerful and extensive functionalities for representing and inferring knowledge. The
most important resource included in this ontology construction process is the
corresponding semantic template. The nodes in the semantic template are treated as

concepts in ontology, and the relationships between nodes are modeled as

21

relationships in ontology. Additional information includes CWE entry names and
descriptions, which can hint at properties and constraints in the ontology. The
ontology as constructed provides a framework to describe the knowledge structure in
this domain, and to understand specific instances of vulnerabilities.

The descriptive logic based reasoning capability offered by ontologies facilitates
further analysis activities of related vulnerability data. This makes it possible to ask,
for example, if a resource was involved in multiple vulnerability occurrences.
Furthermore, the combination of ontological information and data from project
repositories can enable the discovery of previously undetected or unreported
vulnerabilities, e.g., in related components that share a vulnerable resource.
Additional queries can be developed to provide preliminary answers to hypotheses
concerning causes leading to vulnerabilities, relationships between faults and
vulnerabilities, or relationships between vulnerability types, etc. Analysis of
occurrences of individual concepts in the semantic template with respect to time can

also be formulated.

4.1.4 Interactive Visualization

Interactive visualization of large amounts of information provides one way of
dealing with the information overload. As most of the information here is relational in
nature, they lend themselves to graph or network visualization tools which can be
used to depict direct and indirect relationships between different nodes. Most of such
tools provide the capability to layout the graph automatically, pan and zoom the graph,

highlight sets of interesting nodes, filter out uninteresting ones and dynamically adjust

22

the layouts. An approach for visualizing the CWE hierarchy using GraphViz has been
developed and further discussed in chapter 5. This visualization will continue to be
modified and refined to assist in the comprehension of existing structures. GraphViz
is limited in that it does not provide a way to dynamically filter or change the layout
once it is rendered. Other graph visualization tools will also be explored to investigate

their dynamic capabilities.

4.2 Empirical Validation

An experiment on software engineering students is carried out to assess the
feasibility and effectiveness of semantic templates for reviewing and understanding
vulnerabilities. Participants are asked to study vulnerabilities reported by the Apache
Web Server project and answer a set of questions afterwards. The students will be
randomly assigned to two groups, one group is given semantic templates and the other
group is not. The time spent and the accuracy of answers for the two groups is used to
evaluate the effectiveness of semantic templates in understanding certain classes of

vulnerabilities.

4.3 Tool-Supported Classification and Annotation of

Repository Entries

Annotation refers to the labeling or mapping of repository and vulnerability
information elements to the appropriate concept elements in the semantic template.
Previously, this annotation process was manually performed. While manual

annotation is useful for recording new vulnerabilities as they are detected, to relate a

23

large number of past vulnerabilities with the templates requires automation. The
appropriate semantic template, and the most fitting concepts within that template,
needs to be identified. Using a machine learning approach, we develop classifiers to
accomplish both tasks: a high level weakness category classifier for selecting the most
likely weakness category and its corresponding semantic template (for example, is it a
buffer overflow or injection?), and a concept classifier for selecting the most likely
concepts within that semantic template. The classification results can then be used to
annotate vulnerabilities with corresponding security concepts. As a by-product,
previously unreported vulnerabilities may also be identified.

In this machine learning approach, weakness category classification consists of
training a classifier to recognize vulnerability reports whose categories are known.
Concept classification uses CWE entries as a training set to classify version repository
logs and CVE descriptions into applicable semantic template concepts. As will be
shown in Chapter 7, natural language descriptions, source code fixes are mapped to
elements in specific categories (Software Fault, Weakness, Resource, and
Consequence). In effect, the annotation process will populate the semantic templates
with instance information gleaned from repository and vulnerability information. Text
mining techniques will be employed to analyze textual information in version logs
and CVE and CAPEC entries to identify relevant information elements.

It is expected that mapping a collection of CVE vulnerabilities to specific
weakness categories will reveal recurring error patterns and provide project specific

measures for identifying the most prominent weaknesses for which developers need

24

awareness and training. Mapping of the semantic template to CAPECs helps develop
and prioritize test cases for the most exploited software flaws revealed from past

CVEs.

25

5. Semantic Template Construction

We are faced with two problems in vulnerability research works: information
overload in weakness enumerations and categorization; at the same time,
paradoxically, lack of information or security know-how among SDLC (Software
Development Life Cycle) stakeholders to avoid the weakness. For the former problem
we outline a stepwise and repeatable process [11] to extract a set of weaknesses, from
abstract to more specific, from the CWE pertaining to a class of weakness. For the
latter problem, we systematically “isolate” the conceptual units previously combined
in a CWE entry and explicate the relationships among these conceptual units to form a
coherent semantic template. Constructing the semantic templates for different types of
vulnerabilities is an iterative and exploratory process. We first describe the Apache
Web Server vulnerability analysis which drove the development of semantic templates,

followed by a detailed description of the construction process itself.
5.1 Analysis of Apache Web Server Vulnerabilities

Before semantic templates are constructed, Apache Web Server vulnerabilities are
analyzed to identify recurring vulnerabilities, which will be used to select, prioritize,
evaluate, and adjust granularity of concepts in semantic templates.

We performed a timeline analysis of reported vulnerabilities, which is based on
the manual classification of Apache Web Server vulnerabilities by different experts
and statistical processing over time, with the period of every year from 1998 to 2010.

Since vulnerabilities recorded in the National Vulnerability Database (NVD)

26

[http://nvd.nist.gov] are generally under review for a long time, we relied on the dates

in the change history and mailing lists to ascribe a time stamp to each occurrence of

vulnerability. The results are shown in Figure 3. The categories identified are:

Injection

Injection in the form of cross-site scripting (inj/xss), which forms a large
subclass of injection

Information exposure

Denial of service (dos)

Resource exhaustion leading to denial of service (dos/resource)

Buffer overflow

We can draw several observations here. For example, as shown in Figure 3, it is

clear that exposure, denial of service and injection are recurring vulnerabilities which

almost span every year, but buffer overflow vulnerabilities occurred mostly from

2002-2005. Given more information, it would be interesting to uncover what

happened in this period that led to a large number of Buffer Overflow vulnerabilities.

With the same process, annotated Apache Web Server vulnerabilities can be analyzed

by other dimensions as software faults, weaknesses, resources and consequences so

that the distribution and trend on those dimensions can be examined, e.g. during a

certain period, heap-based buffer overflow may present very intensively so that

indicating a period with more usage of heap-based buffer in programming.

27

20

15

10

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Figure 3 - Occurrences of various vulnerability categories over time

Based on Figure 3, if we subsume cross-site scripting and resource exhaustion
under their respective classes, the most commonly occurring vulnerabilities are

injection, information exposure, and denial of service and buffer overflow.
5.2 Process for Building a Semantic Template

This process began with selecting a proper vulnerability category. Of the four
categories identified in the trend analysis, we started with Buffer Overflow. The
reasons for choosing Buffer Overflow vulnerabilities include that first, buffer
management is a usual part that developers can easily make mistakes and second,

Buffer Overflow vulnerabilities are most widely occurring and have been around for

28

much longer than the others. So Buffer Overflow was chosen as the example in this
dissertation. The second chosen vulnerability category is injection, which is receiving
a lot of attention more recently. With the experiences from constructing the buffer
overflow semantic template, the process to produce semantic template for injection
vulnerabilities is more complete and efficient compared with others. Finally,
information exposure was the third constructed semantic template.

For each major class of weakness, such as “buffer overflow” or “injection” in the
Apache Web Server a large number of CWE entries can be identified. In addition, a
significant amount of work is needed to reconstruct the trail of CWE entries such that
the chain of events that lead to a vulnerability listed in the CVE can be reconstructed.
The conceptual units contained in the semantic template are extracted by asking these
simple but important security questions for each CWE entry extracted for a class of
weakness: 1) What software faults, i.e. concrete manifestations of flaws in the
software program and design related to omission, commission or operational, can
precede the weakness? 2) What is the core defining characteristic of the weakness? 3)
What are the resources and locations where the weakness commonly occurs in? 4)
What consequences, i.e. failure conditions that violate security properties, the
weakness can precede? The creation of a semantic template can be viewed as a
process of untangling the relevant information to certain groups of CWE entries into
different aspects that can be later weaved on-demand to explain phenomena behind an
occurrence of vulnerability.

We now describe the semantic template construction process. Here the

29

preparation and collection phase of this approach is described.
A. Preparation and collection phase:
A.1 Selection of content:
The CWE is a continuously evolving effort. Distinct milestones in the CWE
are assigned versions. Therefore, the first task is identifying a baseline CWE
version to be used for the semantic template. The current effort of this
research is based on CWE v1.6 specification [8]. The CWE specification
used “views” to organize and examine its contents of entries, and then
different slices of structure can be utilized in different environment. Based on
the research purposes of this dissertation, the Research (CWE-1000) and
Development (CWE-699) graph views were chosen to identify relationships
between CWE entries.
A.2 Extraction of relevant weaknesses:

The next step is to identify the specific CWE entry that indicates the
characteristics of weakness of interest at the most abstract level. For the
“Buffer Overflow” weakness category, CWE — 119 “Failure to Constrain
Operations within the Bounds of a Memory Buffer” is such an entry. It is
called the root entry for this specific vulnerability category. Starting with the
root entry, four strategies were adopted to gather weaknesses related to it in
both of the CWE research and development views. The four strategies to
identify related weakness entries are:

a. Navigating hierarchical structure of the root entry (specializations

30

and generalizations) by the ParentOf and ChildOf relationships.

b. Navigating non-taxonomical relationships such as “Can Precede”,
“Can Follow”, “Peer-of” in the CWE hyperlinked document [8].

c. Keyword search on the CWE hyperlinked document [8] for
weaknesses that include the important keywords in the primary or
extended description, e.g. “overflow” or “off-by-one” for Buffer
Overflow vulnerability category. Keyword search is followed by
exploration of parent, sibling and child categories of the discovered
CWE, for relevance to the root entry.

d. Visualization of the CWE XML specification [8] by using Graphviz
[18] visualization utilities so that the whole picture could be grasped
at the mean time of detailed researching. Figure 4 showed the Buffer
Overflow related graph resulted by the four strategies.

The strategies a and b are basically executed automatically by running
script analyzer on the CWE hyperlinked document so that all the CWE
concepts having a path linked with the root entry directly or indirectly are
identified. While applying each strategy, use of heuristics and some degree
of judgment is required on part of the subject matter expert to include a
CWE entry into the pool of relevant entries. For example, if keyword search
surfaces a CWE entry that belong to a different category then only that entry
and its parent category are added to the relevant set. In other cases the

complete trail between the discovered CWE and the root entry may be added.

31

To mitigate subjective opinions as much as possible in selection, multiple
experts (in this case the author and two of the committee members)
independently apply the strategies. Later the results from all experts are
consolidated in a group workshop. The output of this phase is a set of

weaknesses closely related to the root entry.

PN i Bird’s eye visual

- £ Relationships added

N
<= | by the Research view |
Root CWE entry : ; —

N
LN

Variant CWEs

Relationships in the
Development view

Class
CWEs

Figure 4 - Visualization of Buffer Overflow-related CWE entries

Figure 5 speaks volumes about the complexity of the “mental model” that
developers need to be aware of to understand the possible faults and
consequences of their design and coding decisions by organizing the CWE
entries that have direct or indirect relationships with the root entry CWE-119.
Although hyperlinked, navigating the CWE documentation and various
graphical representations is a tedious and non-intuitive work. While different

CWE views help to accommodate multiple perspectives, it adds an additional

32

layer of complexity to understand certain vulnerability The CWE is

comprehensive; however the current nested structure and tangled contents are

————— CWE-221: X
<7 cweses: S INFORMATION CWE-199: CWE-19: DATA LEGEND
(INCORRECT LOSS OR INFORMATION Hanone /| m i m > €mmmmm
4 MGMT. ERRORS - <€
. = = O LROINTER SCALING,, OMMISSION CAN PRECEED PEER OF
27 cwete2 N _—— k= a (RESEARCH VIEW) (RESEARCHVIEW)
1 INTEGER ~ \ - == .- ~q
\ COERCION < CWE-467: USE OF \ CWE-118 IMPROPER ACCESS ¢ CWE-789 1Y v >
. ERROR (SIZEOF() ON A OF INDEXABLE RESOURCE CWE-20 IMPROPER \ UNCONTROLLED CAN PRECEED
S == ~ POINTERTYPE 7/ (‘RANGE ERROR') INPUT VALIDATION MEMORY ALLOCATION »~ (DEVELOPMENT VIEW) CATEGORY
- Sama " S =-A (DEVELOPMENT VIEW)
7/ CWE-194: P it > e
UNEXPECTED N - CHILD OF - ~
(SIGN N ~ =" S~.) (RESEARCH VIEW) ’ \
\ EXTENSION / CWE-682 WE-130: IMPROPER N 7 CWE-680 N > Seo -7
S~=- INCORRECT HANDLING OF [INTEGER OVERFLOW \ CHILD OF CATEGORY
— CALCULATION LENGTH ANAN TO BUFFER ! (DEVELOPMENTVIEW) (RESEARCH VIEW)
e iy PARAMETER NS OVERFLOW _ » \
cwe-190 > A A N\ === INCONSISTENCY ~S——— - e
{ pEeeR \ < cWE-191 INTEGER‘ \ ™, - = VA DeROUE HNGT >
OVERFLOWOR - \ . v~ ~ i ~ _DANDEROUS FUNCTIONS _ #
 wraparounp |/ (UNDERFLOW(WRAPOR '~ ’ ~ P T e e =
~ < « WRAPAROUND) A | CWE-120IMPROPER ~ \ + | _ ==~ P
_— - - \ L ~ VALIDATION OF ARRAY r TWE- 227 7 owe2st N
. N ’ \ INDEX , N API N—I STRING MGMT. |
- [VN CWE-119: FAILURE TO . S o - I ABUSE N\ misuse o
¢ owemorr N_ L\ T = em CONSTRAIN OPERATIONS SN S == " - S~
\ BYONEERROR /= '~V = = ~. WITHIN THE BOUNDS OF A - L - m =~ I e ——
< L (T =2 MEMORY BUFFER ~ TCWE-466 RETURNOF ~ +* =7 oweats S
T==r CWE- 131 - (POINTER VALUE ! .7 _USEAFTERFREE _ 7
CA%%?_':?E)%TOF _____ OUTSIDE OF EXPECTED A —~_—_——_———
~ RANGE -
BUFFER SIZE S e - " e _
- . - PO A - =~
- S mr = § o Sae T owe-srsoousi ~
/ CWE-195 N CWE-123 WRITE- s :—,~ - fREE__ -~ 4
SIGNED TO 1 CWE-788 ACCESS OF WHAT-WHERE =~ J€===== T_- ——————
l UNSIGNED MEMORY LOCATION CONDITION sl e—_mTm T = -
\ CONVERSION / AFTER END OF CWE- 786 ACCESS OF ' N4 CWE- 456 N
. FERROR BUFFER MEMORY LOCATION A — f) -7~ MSSINGINTALZATION,
~._-" BEFORE START OF —_——— Wl T T mm-
BUFFER C e ===
CWE-134 Ay < TCWE-231 IMPROPER .~ ~
UNCONTROLLED . .~ HANDELINGOFEXTRA
CWE-787 OUT- . FORMAT STRING _ / Te VALUES
Smm-- - x4 S~ - -
CWE-127 BUFFER / == ——
- CWE-196 =~
_ - = UNSIGNED TO SIGNED
< CONVERSIONERROR_ ~

OF-BOUNDS
UNDER-READ

WRITE

e mm == -
e CWE- 170 IMPROPER \
~ NULL TERMINATION .

.~ -

CWE-121 STACK-
BASED BUFFER
OVERFLOW

CWE- 120 BUFFER COPY
WITHOUT CHECKING SIZE
OF INPUT ('CLASSIC

BUFFER OVERFLOW')

CWE- 126 BUFFER
OVER-READ

CWE-124 BUFFER
UNDERWRITE
(‘BUFFER

UNDERFLOW)

CWE- 122 HEAP-
BASED BUFFER
OVERFLOW

WE-
USE OF PATH MANIPULATION
FUNCTION WITHOUT MAX-SIZE
BUFFER

Figure 5 - Buffer Overflow-related CWEs Extracted in the Preparation and
Collection Phase

B. Concept isolation and template structuring:

B.1 Separation of tangled conceptual units in CWE entries:

In this phase the set of CWE entries from the previous phase are carefully
analyzed to identify distinct conceptual units as Software Faults, Weakness,

Resource/Location and Consequences. For example, the conceptual units in

CWE — 119 “Failure to Constrain Operations within the Bounds of a Memory
Buffer” can be systematically identified as:

Software fault:
“Failure to Constrain Operations within the Bounds of a Memory Buffer”

33

Weakness:
“...read from or write to a memory location that is outside of the intended
boundary...”

Resource/Location: “Memory buffer”

Consequences:
“...execute arbitrary code...”, “...alter the intended control flow...”, “...read
sensitive information...”, ““...cause the system to crash...”,

B.2 Filtering entries and introducing abstractions:

The CWE entries are specified as class, base or variant weakness, with
class weakness being the most general. Class weaknesses are described in a
very abstract fashion, typically independent of any specific language or
technology. Base weakness is also described in an abstract fashion, but with
sufficient details to infer specific methods for detection and prevention of
themselves. Variants on the other hand are described at a very low level of
detail, typically limited to a specific language or technology.

With the original intent of the semantic template to make weakness more
understandable, the primary concepts of Software Fault and Weakness
conceptual units in the template are derived from the more general class and
base weaknesses, while preserving traceability to more specific variants
using their CWE identifies. This design decision was primarily taken to avoid
missing the forest for the trees. Hopefully it can make it easier for developers

to remember a more generic model of the weakness rather than a detailed one.

34

However, it is not uncommon to extract concepts in the template from variant
weaknesses in the case of Resources/Locations conceptual unit. For the
Consequences conceptual unit, Observation was made that the concepts
extracted from consequences listed for class and base weaknesses in the
CWE provide comprehensive coverage of consequences identified from more
specific weaknesses.

B.3 Template structuring and representation:

The concepts identified in each of the four conceptual units of the
template are structured and related to each other based on the relationships
between their corresponding CWE entries. From this effort a highly
structured collection of interdependent Buffer Overflow concepts emerges as
shown in Figure 7. Each concept in the semantic template of Figure 7 is
traceable to corresponding CWE categories the first phase. The semantic
templates are also represented in an OWL ontology format using Protégé [12].
The description logic based reasoning capability offered by Protégé
facilitates further analysis activities of related weaknesses.

B.4 Template refinement and tailoring:

By mapping specific vulnerabilities (CVE [40]) to the semantic template,
it is further refined and checked for obvious omissions. Such mapping in the
context of the vulnerability CVE-2004-0492 in the Apache Web Server is
described in the following section. It is also expected that the semantic

templates can be tailored for a specific project, product or organization.

35

At the end of this detailed process, the Buffer Overflow semantic template was
constructed as shown in Figure 6. The Buffer Overflow Semantic Template contains
four groups of important concepts organized as software fault, weakness,
resource/location and consequence between which “can precede” and “occurs in”
relationship exist. The software fault contains groups of possible design or source
code faults that may lead to buffer overflow. CWE-682 “Incorrect Calculation” is the
root of the most condensed software fault tree, in which the infamous “off-by-one”
error, “Integer Overflow”, “Sign Error” etc., as the more specific instances of
incorrect calculation, are included as its children. Other than this incorrect calculation
tree, there are several other possible software faults that can lead to buffer overflow,
such as the “Improper Input Validation”, “API Abuse” and “Missing Initialization”.
The presence of buffer overflow weaknesses is always “Improper Access of
Index-able Resource” which represents the typical and abstract appearance of a buffer
overflow in software. Resource component has a relatively simple structure with the
“buffer” as the root resource which is part of the “indexable resource” and has child
named as “memory buffer” and grandchildren “stack-based buffer”, “static buffer”
and “heap-based buffer”. The most popular consequence of buffer overflow is
“Write-what-where Condition” which means that the attacker has the ability to write
an arbitrary value to an arbitrary location. The “Uncontrolled Memory Allocation”
and “Information Loss or Omission” are also possible consequences of buffer

overflow weakness.

36

_— (6Z1# ¥3DALNI ™~
99v# ¥ILINIOd))

" zeseslE
4 NOISSININO \ T -
0SSO) - eI)
" NOLVINOANI - { NOLLIANOD) 30303d"NVO
T — — _ J¥IHM-LVHWILEM
P o8L# ~) \
(NOILYOO TV y T
: AHOWIW Y
Q3 TIOHINOONN S3IONINDIASNOD
P — gL /u_o-._.m<n_\ ~ oLl ~.
{ 304N0S3Y - / ,
,/.m.‘_m«.xmo‘z_ 7 N /zm_u&um\ 7
%n_o.._.me.n_ Herw_

¥3ddng
-AYON3IN

\
A\ 8L1#30¥NOSIY-ITavXIANI /

~ =40-SS30JV-¥3dOUd I J/

e 6LL#

/ RERENE /
(AMOW3W V 40 SANNOS |
JHL NIHLIM SNOILV¥3dO

NIVMLSNOD OL FuNIIV4 \

WY(\;&
V-SI V-SI

/

X3aanr J —ASON=A -
— \ v-sI NI-S¥N220 R
s s e N Conh iz
— - < > -
e 44 N \ T (1ZL# J { mhﬂﬁ Mmpgzwmhmo) \ ‘9zL# ‘STL# AVIY |
aasvedvaH /| Olvls \ . _g3SVEsOvIS \ -1n0 GNy wwmoo< / _ saNnog-io-Lno
— — // . _GNvsSs30oY
ZO_._.<OO|=m0m_DOmmw_ - -
30303¥4d-NVD SSANMVIM
3d303¥d-NVI
— TTT— L — _— — - —
_— o0zL# T~ “e8L# 6ZLE ~ e o€l # N S z80% ~ e
/" (MOT4¥3IA0 ¥344n4 DISSV1D.) / XJaNIAVHNY) AONILSISNOONI) —{ NOLLVINOTVO /v 7 NOILYAIVA
ﬂ/ LNdNI 40 3ZIS ONIMOIHD /' doNouvariva) . HILEAWVHVAHIONIT1 - y.g) “LOIHHOONI_ \ -1ndNI V
—__ LNOHLIM AdOD ¥3ddn8 . _¥3do¥diNl__~ ~~-d0 ONIANVH ¥3dO¥dIW] ﬁ T~ . _-43dONdNI
— = - - - - —) —coavee -
S - _ ~ v-SI —
T oS T ou /gov# Lov# L LeL#
(avowawazznd /zo_Ez_sEmp\) (xmwmw__ww ﬁnﬁw__%mmwm N ,,, NOLLY-INoTvO
~ 4o 3snyadoddwl —~ _— — NN ¥3dO¥dNIl—~__——— ——) -3Z1S-4344ng
— - Ruu - - 99v# //\ N _dvam S ,, //.Emmmooz_
T m ‘/ﬁ, ___3snavidv. \p , J9NVY 03103dX3 <.w_ T S
- [- , 40 3QISLNO INTVA v-sI L
{ SNOLLONN4 v-SI N \._¥3LNIOd 40 N¥NLIY \\ PPN v-si o796k N
~~_snoy3anva d03sn — A — — ~"(" mo1augann) v (seuveLE
— _STH vELH S8L # . \ez# - HIOILNI o~ . sWowwa
o osh# T~ / asnav Idv e SINTVA VHLXT = _ L\ goL \ S Nois S
i NOLVZITVILINI) ' LNIWIOVNVIN N 10 ONITIANYH ‘ -~ osomoek# ./ dow¥3 A _@No)
S~ ONISSIN //Ew\ S wadoddwi . MOT4¥3N0 x _ NOIO¥F0D | ~JAS-d40 -
‘ ‘ - N ¥I9AINI ¥393INI_ S 11NV4-3-HVMLA0S
H3OAN i

Figure 6 - Buffer Overflow Semantic Template

5.3 Using the Semantic Template to Study Vulnerabilities

To wvalidate the power of buffer overflow semantic templates to help

understanding real world vulnerabilities, we manually annotated several instances of

37

Apache Web Server vulnerabilities from the buffer overflow category, by collecting
the CVE descriptions from Apache Website, NVD entries, and the development
repositories concerning specified vulnerabilities. By reviewing the existing
vulnerabilities in the Apache Web Server project, several buffer overflow
vulnerabilities were identified and the CAN-2004-0492 was chosen as the example
for manual annotation which is shown in figure 7. The NVD description for
CAN-2004-0492 mentioned: “...possibly execute arbitrary code via a negative
Content-Length HTTP header field”, the Apache Website description mentioned that
“buffer overflow...can be triggered by receiving an invalid Content-Length header”
and the fix of this vulnerability is to add a validation criteria to avoid a negative input,
so for the software fault component, it is obvious that the fault belongs to CWE-20
“Improper Input Validation” and the CWE-130 “Improper Handling of Length
Parameter Inconsistency”. Similarly, the description in NVD about “allows remote
attackers to cause a denial of service (process crash) and possibly execute arbitrary
code” and “cause the Apache child processing the request to crash. This issue may
lead to remote arbitrary code execution on some BSD platforms” in Apache Website
tell us that the consequence of this vulnerability belongs to CWE-123

“Write-What-Where Condition”.

38

e Sliope/d gsg ewos uo
uojinoexe apoo AIBJIqJE 8}0Wel 0} pes| A e
enss| s|y| "'yseso o} jsenbe. ey} bujssecold NOILIANOD WEPRNENYS 81L# 30UN0SIY-ITEVXIANI
pl1yo eyoedy ey} esnes :e)sqep syoedy FHIHM-LYHM-2LIEM ~40-68300V-HIJOHdIWI
apoo AieljjqiE ejnoaxe
Algissod pue (yseso sseoo.d) eojales o |B|uep
B @sneo Ol 818%0B)je 8jowsl smo|je **:IAD S3IONINDISNO2D
o,
GLL#
Jodnos3y ¥344n8
: “suuoje|d
as§g swos uo
BLL# uojnoaxa apoo Alelj|qle
v-si H3ddng sjowal o} pea| Aew anss)
< As S|y :eysqem eyoedy
NFS¥N200 “pojdod
LATN VWL 9(0} BjEP jO jUNOLUIE
— is ALMMEANNOE-40 obie| B sesnE0 ""1gAD
7 <o = ~LNO ONV §§300V
TSV N
NOILY201/324N0S3y
©pO0 JBjE| U] MO|HeA0
Jeyng *:Aioys|H ebueyo eyoedy SSINNVIM
“* Axoid "pow ‘s|npoL 039S NYD

r Axoid syoedy ay: U| punoj sem
MOLeN0 JBlNg Y :8lisqem eyoedy
TLEEL

0] 62'¢’ eyoedy u| Axoid pouws

Joj '[N~ Axoud uj mojpeAo

0L #

O ONITANVH ¥3d

AONILSISNOONI
HALINVHVL HLONIT

oz#
NOILYQITVA
OYdA

i

Jayng peseq-desH “:3AD

}(0 > usj<-2) 4
1ndu
aApebau p|oAB 0} BUSILO UOJIERI[BA PEPPY :9P0D 82IN0S
‘1epesy Yjbustjusiuon pjjeAu| ue Bujrssal
Aq peisBBu) aq ueo ' 'MO|HBAD JBLN] :B)Sqap BYoBRdY
*'pley Jepeey d1 | H yibue-jusjuod

LINv4-3¥4VYMLI0S

7 - Annotated CVE-2004-0492 by Buffer Overflow Semantic

igure

F

Template

5.4 Other Semantic Templates

By following the same procedure indicated in previous section, the semantic

39

template for Injection vulnerabilities is also constructed as shown in figure 8 and 9.
Based on the Injection semantic template, the main group of software faults that can
precede the injection weakness has the center fault named as “Failure to Sanitize User
input of Syntax that has implications in a Different Plane”, which was extracted from
the root entry CWE-74 and shared with CWE-74, CWE-94, CWE-99 and CWE-138.
As the more specific software faults, the CWE-75 to CWE-91 and several other CWE
entries were summarized into seven children software faults of this center fault, with
the “is-a” links. In this tree-like software fault concept group, all of the concept nodes
share the element of “failure to preserve/sanitize” certain structures. At the same time,
one of the child node has its own children, and this center fault node “Failure to
Sanitize User input of Syntax that has implications in a Different Plane” is the child of

3

another two concepts “improper enforcement of message or data structure” and
“improper input validation” (also is a software fault in buffer overflow semantic
template as a general fault) with the “is-a” relationship. Comparatively the weakness
concept structure is simple, with only one element “Elements of User-controlled Data
Have Implications in a different plane”. The consequence panel is also relatively
simple, with only one tree rooted in the element “Execution of Arbitrary
User-Controlled Data”, with six children as the specific consequences. The most

complicated part is the resource. With the root of “User-controlled input Data”, the

injection weakness occurs in various resources at different levels and locations.

40

— T -
ve#vit 7w
N — | SNOILOV)
| NOILVOILNIHLAY oz N N
' _4070u1N0D \ " nsvain w0 NG A
o — — (saounosauo —— Q
R S —— NOILWNSNOD o D18 08 B~ z
([VIvalndNI e Ve co LL# vLH // 3AISS30X3 \\ /, z%wﬂmwmmwm \ %
| aanouNod ONILIIM NV / \ daHLENd VWA
- -¥asn O . Tvozd viva) Vsl o
AR vl /amNEo:.5<z: e Vsl \ ONv viva 4o m
B S ZIHOR.S v-g1 - FUNSOTISIA~ o
vk vsi { N a7 < - i
/ - ONRILS V Vi V6# LL# VL# OTH
N _ 1vIW¥O4 /" Mo - -/~ vivaaa11oMINGD //,
P - S~ — | ss300dd L7\ -¥3Sn AuvaLigwy J
. — L TR R — FONVHY __4ONOILND3X3 e o
RN vsi| ;v N | anvitnoo S5 oo = $3DNINDISNOD
() / ST NoIss3udxa
\§aM00 ! ,/ omhﬂ_mwwmo N dvinom
L e /
~ e / h
S i RO e \aavinoaia 30303drN
\\ - — P Sy 8am / su3EINAAl | o &,A\<.w_ T
og# \/ N 3 | \.30un0S3Y_~ TaHst)
/wmm_u__“zmm_ / 3 T y 7 op#t \ SANVAWOD T vi# N
_ . / | & |, teowizes VS vl A¥Eno -~ S0~ / INVTd INIu341a A
- lst e Blo TN saww)/ N _dval [VNISNOLLVOITdWI 3AVH |
€84 284 08# 2 = / FnaviEvA A Ve AT \ V1vad a3T104.NOD /
SALNAINLLY B 5 2 { A¥3ND) ISH 68H NI-SdNJ20 . -¥43ISNJO0SINIWITI -
¢l 2 N o .
/ SQ1314 N3AAH n ._0._ S6# cm* , W/._s_x ,, Adan —_
‘SATA NN ~pgy " | SINLOTAI) ~Jos _
T —— (wn - vy SSANMVIM
7 sk — \\2;3% \) o, ~
[3ovd { s¥3avaH) (evott , >Mwmﬂx ,
_dowda dLH HLvdX Hanox NOILvD01/324N0S3y 303934d-NVD
— — — T — Ny -
T VL N / RN , 7 veskoz# 7 e oo N .
(NOLLVZITVOINONYD aNY) NOLLYZIVILINE) NOILYQITVA FOvSea do StmotoNg) { HOS¥ND
N._ ONISNVI1D ¥3dONdNI 7 A onissiv _ -LNdNIF3dONdINI " - 3svav.iva aaso1d
T~ v-si — — o— HAdoddWI ~__ AT43JO¥dWI
) T e~ _ SE— e — A0 ——
/vl R N - v-si v-si \ ﬁ
Py /7 sAWWN - . - o o
“L8L# 08L# 6LI#~ “ e9L > _— ~ : oLi# ~
HLlvd 40 P 8C1# 66# V6# V.L# ~
\\ ONRELTH YO\ \ ONISIY1109 \,\ -ovL s2# geL# \ vesi /7 3NVId INT¥IAAA Y NI vl Vo z69# ZVbE ~ A 1nd1Nn0 40 SNIdvOs3 ™,
ONIZITYOINONYD | v N 0 siNawzna | SLL# 18-6L# - A0 ONIGOIN3 \
/ REEE[}E [SNOILVOITdINI SVH LVHL \ HIdOudII
_ 3Jyod3gviva / B —— , wvidoads 40 \ XVLNAS 40 LNdNI ¥3sn Y, { FANLONYLS FOVd | == —
~~_ONLLVAITVA /[w-sl poL# / NOILVZILINVS JZILINVS OL F¥uNTIvd - \ €3IM @31VH3NTO /
- 1smioviE) N _¥3dOUdWI \ 2T — IS o
/ v-si \ 3173dINOONI / \ \ < sl 0L 3univd z
— < oot v-si —— — 3
~ ~ \ . —
_58LE SR 8l \ Iy mm_u_._.zmn_ /, — \ —— " EYO # ZSO# Tyv# VOSH L6-L8H — >
y ISIELHM /{ 3ounosay 204 LZo8 - (JUNLONYLS AHIND QALVHINTD) m
NOISS3¥dX3) . S . o
(Mavanomu)\ InssIeEd /| a3ivuanas 86#96-V6# \ / TuNLONYLS - JA¥3sIWdoLIunIve a
"\ _LOTFNHOONI - - 7 vsi VSl [\ 104INOD FHUNLONYLS e\ A L/ m
A0 oL mms.__ﬁ y 3009 Il Ivw¥od | vZo# a8 8L R] m
= o - GALVHINTD | gavdaANTD ' 3uNLONYLS
L eumest - 94 T /m>mmmmzﬂ_ / '\ 3Au3sIud ' GNVAWOO G3LVHINID Y
(_ _saoNanoasdwd) (SINIW3T3 VIO3dS INFTVAIND) NOL NIV oL 3uNnTve” ~~ SndEsud oL JWMIvVY -~
~~ 3ZILINVS OL 3dNIVd — __ 40 NOILVZILINVS ¥3dO¥dNI _ — - — o i 11NV4-34VMLI0S

Template

Figure 8 - Injection Semantic
The injection semantic template was put to work to help study the artifacts

available for the reported cross-site scripting vulnerability CVE-2007-5000 [40] in

41

the Apache Web Server project, which are scattered across multiple repository sources.
These sources include the NVD CVE database; Apache Website; Apache change
history in the SVN software repository; source code versions; and related CAPECs.
The semantic template allows researchers or practitioners to parameterize the natural
language vulnerability description, change history, source code changes and other
artifacts so as to fit the developer mental model of a certain injection weakness. In
addition, the semantic template allows extrapolating the missing information, if there
is any, from the vulnerability artifacts. Figure 8 showed clearly how to neatly classify
the information from different sources which including NVD, apache website and
source code changes. From description pieces of relevant vulnerabilities and source
code, we located the software fault-related information pieces ‘“negative
content-length header”, which leads to remote arbitrary code execution or large
amount of data to be copied, as weaknesses existing in the software system, and this
vulnerability occurs in the “heap-based” buffer, then its consequence could be “denial
of service” or “remote arbitrary code execution”. To annotate each occurrence of
vulnerability, experts’ manual searching and comprehension are necessary, not only
for the natural language descriptions from all repository sources, but also the source
code differences before and after the fix. In the following section, a semi-automatic
annotation methodology will be introduced to alleviate the labor for experts on this
manual work.

The semantic template provides intuitive visualization capabilities for the

collected vulnerability artifacts. In Figure 9, the vulnerability artifacts related to

42

CVE-2007-5000 “trigger” and help “navigate” the concepts in the injection semantic
template by relevant information pieces. Such an annotated semantic template allows
developers to reason about the vulnerability, possible attack vectors (CAPECs), and
the adequacy of performed fixes. It allows stakeholders in the SDLC to consume

technical details with relative ease and guided explanation.

e N
Apache Website CVE-2007-5000 :

....a cross-site scripting attack is

possible....
NVD CVE-2007-5000: a Cross-site - — —
scripting (XSS) vulnerability in the Source Code Repository per fix

....mod_imap module....ensure that a charset parameter is sent in the content-type ...

Source Code Repository Source Code Repository Code Difference:

developer fix documentation: Fix File: mod_imagemap.c
cross-site-scripting issue by escaping the URI... Line 482 modified to contain an explicit character set:
ap_set_content_type (r, "text/html;charset=ISO-8859-1");
Source Code Repository Code . i i
Difference: B B CAPEC-43: Exploiting Multiple Input Interpretation Layers: ~
File: mod imagemap.c . (Experimentation) Determine which character i are by the
Line 485 and 490 modified to application/system:

escape html in URT:
ap_escape_html (r->pool, r->uri)

(Exploit) Perform XSS attacks

FAILURE TO

. . PRESERVE -
CAPEC-63: Simple Script GENERATED WEB FAILURE TO SANITIZE
Injection: PAGE STRUCTURE USER INPUT OF SYNTAX
B #7987 #113 THAT HAS IMPLICATIONS p
(Experimentation) Use a list of XSS probe #442 #692 #644 IN A DIFFERENT PLANE

strings to inject script into resources
accessed by the application

(Exploit) Develop ici ipt that MPROPER
is |njecteq through vectors identified during ENFORCEMENT OF MESSAGE
\the Experiment Phase

OR DATA STRUCTURE
CAN-PRE! CEDE\V

WEAKNESS

#74 #94 #99 #138

IMPROPER-INPUT-
VALIDATION
#20 #554

Apache Website CVE-2007-) Source Code Repository developer fix

RESOURCE/| documentation: Fi site-scripting issue by
5000 :a cross-site scripting L X Fix cross-site-scripting issue by
attack is possible.... escaping the URI...

VD CVE-2007-5000 : allows Source Code Repository Code Difference:
remote attackers to inject J File: mod_imagemap.c

Line 485 and 490 modified to to escape
html in URI:
OCCURS-IN ap_escape_html (r->pool, r->uri)

ELEMENTS OF USER-
CONTROLLED DATA
HAVE IMPLICATIONS IN A
DIFFERENT PLANE
#74

NN-PRECEDE ' (o Ve
J |

EXECUTION OF
ARBITRARY USER-
CONTROLLED DATA
#20 #74 #77 #94.

CONSEQUENCES 1S-A

WEB
RESOURCES
#442

IS-A

NVD CVE-2007-5000 :
..... allows remote attackers
to inject arbitrary web

script or HTML....

UNAUTHORIZED'
DATA RECALL
AND WRITING

HTAHTT #93 #94

NVD CVSS CVE-2007-
5000 impact type : Allows

unauthorized modification

USER-
CONTROLLED
INPUT DATA
#74

Figure 9 - Annotated CVE-2007-5000 by Injection Semantic Template

43

SOFTWARE-FAULT

FAILURE TO

PUTTING SENSITIVE TMPROPER ACCESS OR
LISTING OR EXPOSURE
OF FILES AND
DIRECTORIES
#378 #412 #538 #708

782

INCORRECT PERMISSION
OR ACCESS CONTROL
£266 #269 £276 #284
#285 #286 648 4689

oF
INFORMATION
#313-318

FAILURE TO

FAILURE TO CLEAR
HEAP MEMORY
#244

FAILURE TO FOLLOW
SAFE PROGRAMMING

PRACTICES
#8 #485 #488 #492
#495 #198 #4199 #618
#7149 #766 #767

WPROPER USE 01

IMPROPER
CLEANSING OF

SENSITIVE
DATA #212

ERROR
MESSAGE

TO INFERENCE OR
DISCREPANCY
£202, #203

RESOURCE TO WRONG

214 IS-A
SPHERE #102, #610, @ @ %
£668, #669, #6T;
OCCPRSY I % -

I
e CAN-PRECEDE CAN-PRECEDE (
WEAKNESS
RESOURCE/LOCATION USER CREDENTIALS INTERNA
EXPOSURE 0T PROCESS 1\1-«7;3:)«: ToN 4255 G
SENSITIVE INVOCATION - 1S-A SERVLET #385
INFORMATION DUE TUPOSURE OF \TS ST i

#536

EXPOSE SENSITIVE
INFORMATION #200

SERVER
ERROR
@ % MESSAGE
#550
% w sySML 15
A
10 IS-A
’ 1S} INDICES
{

&N 612

\ I3-A &
CAN-PRECEDE
18-} TRECTOR
w LISTING
SENSITIVE IS-A" ISA P
INFORMATION A
EXPOSURE TO 37 15
UNAUTHORIZE FILE AND —
DIRECTORY
il Is—.r\

CAN-PRECEDE
8
Z
5
=
=
w2

D PARTIES
#200

Figure 10 — Information Exposure Semantic Template

A draft version of the Information Exposure semantic template is also completed
as shown in Figure 10. We leave the construction of the semantic template for the
remaining vulnerability category identified in the trend analysis, Denial of Service, as
future work.

Comparing the three semantic templates constructed thus far reveals some
distinct characteristics among the respective categories. Concepts in the buffer
overflow vulnerabilities are concentrated on software faults, indicating many coding
errors which lead to accesses and writes outside of permitted buffer boundaries.
Injection vulnerabilities are concentrated on software faults and resources, indicating
interactions between faults and specific types of resources resulting in different
variations of this vulnerability. Exposure vulnerabilities are concentrated on resources,

indicating the variety of resources whose data can be inadvertently disclosed. We

44

suspect that Denial of Service could help to observe vulnerabilities from another
perspective: Consequences. This category of vulnerabilities can be preceded by
different types of software faults and presented as different weaknesses in software
system, but they share the same consequence as their tag: Denial of Service or crash

of certain process.

5.5 Ontology Representation of the Semantic Template

From the Buffer Overflow semantic template, we constructed an ontology using
the semantic template concepts as ontology concepts. Figure 11 shows vulnerability
CAN-2004-0492 as a set of instances stored in the Buffer Overflow ontology. As
showed in the picture, it is clear that this buffer overflow vulnerability is caused by an
invalid or negative length content header, which is annotated as an improper input
validation described in CWE-20. The weakness for this vulnerability is that large
amount of data was copied, which is annotated by three layers of concepts, bottom up
as access and out-of-bounds write, failure to constrain operations within the bounds of
a memory buffer and improper access of indexable resource. The resource in which
this vulnerability occurred is a heap in proxy util.c for mod proxy, which is
annotated as a heap-based buffer and finally annotated buffer in the high level. The
consequences mentioned in this vulnerability include denial of service and remote
code execution, which is annotated as a write-what-where condition in this ontology.
By this ontology-based view, the natural language description and source code of
vulnerability instances is converted into a semantic-based structure with hierarchy and

more meaning, providing a clearer understanding for stakeholders.

45

@ Software_Fault

O CWE-20_Improgei_ nput_Validation
@ CAN-2004-0492_Invalid_or_Negaiive_Conlent_Header_Lengin
@ Wesknass D @ Resource
‘(.W;A;;_Buﬁer

O ONE-118_Improper_Accgss_Of_Indexable_Resource
@ CWE-119_Failure_to_Caonstrain_Operatighs_within_the_Bounds_of_a_Memory_Buffer (CWE-119_femory_Buffer

@ CWE-124_787_785_Accays_and_Ot-of-bourkds_Write @CWE-122Heap_Based

QCAN-EDM-U&QE_Lalgq_ mount_of_Data_Copied "CAN—E004—0WE_Hem_Bawd_Eune&Overﬂuw_in _proxy_util.c_for_mod_proxy

@ Consequance

@ CWE-123_Wrie-Whal-where_Condition

4 CAN-2004-0492_Den ial___qE:S'e"nr ':; ;meﬁim]te_co ge_Execution

Figure 11 - Modeling and Visualization of CAN-2004-0492 using Ontological
Engineering Tool

46

6. Empirical Validation of the Effectiveness of

Semantic Template to Study Vulnerabilities

Semantic templates provide a mental model for designers, developers and
stakeholders from all the stages of software development lifecycle to study and
understand security vulnerabilities. Once designed, several questions still remain
unanswered regarding the ability of semantic templates to fulfill this promise.
Questions such as: How effective are semantic templates to study vulnerabilities?
Does its use reduce the time required to evaluate the weaknesses that led to the
vulnerabilities? Does its use improve the accuracy of such an evaluation? We expect
to answer these questions by conducting a controlled experiment in a lab
environment.

In addition to lessons learned from a controlled experiment, we have also
collected feedback comments from CWE editors, industry software assurance
professionals, and software developers regarding the value of semantic templates in
research, education and practice. Such feedback was collected at a forum where

semantic templates were discussed in a working conference session.

6.1 Experiment [38]

To evaluate the effectiveness of semantic templates to sense the nature and
possibility of an occurrence of vulnerability, we conducted an experiment. The
premise is that, in large software development efforts, there are expert developers and

there are novices. (Analogously in open source software development, there are core

47

developers and there are occasional contributors.) While focused on understanding the
domain and the primary functionalities of a software system, novices tend to ignore
“secondary” issues such as security. Often out of ignorance or inability to perceive
possible security weaknesses, novice developers may make similar categories of
mistakes that lead to same vulnerabilities. In this research work we are interested in
measuring how much effort it takes to study a reported vulnerability and to assess
whether a relative newcomer to a project can quickly absorb the available information
to make a meaningful assessment of the nature of a reported vulnerability with or

without the relevant Semantic Templates, comparably, in time and accuracy.

6.1.1 Experimental Design

We designed an experiment to evaluate the ability of subjects to study a set of
reported vulnerabilities with and without the corresponding semantic templates. Our
null hypotheses are as follows:

Hlo: There is no reduction in completion time for subjects who use semantic
templates compared to those who do not.

H2y: There is no improvement in accuracy of understanding of vulnerabilities for
subjects who use semantic templates compared to those who do not.

And the corresponding alternative hypotheses are as follows:

Hl1,: Subjects who use semantic templates spend less time for studying vulnerability
reports compared to those who do not.

H2,: Subjects who use semantic templates achieve better accuracy of understanding

48

of vulnerabilities compared to those who do not.

The experiment was conducted with 30 Computer Science students from a
senior-level undergraduate Software Engineering course. The range of the subjects’
real-world software development experience varied from none to more than 5 years.
The students had no prior knowledge of or experience with semantic templates.

We employed a pre-post randomized two-group design [19]. In essence, there
were 2 rounds of experiments. In Round 1, all subjects reviewed the
vulnerability-related material with no additional aid. In Round 2, subjects in Group 2

were provided with semantic templates to assist in their study of vulnerabilities.

6.1.2 Pre-test

The subjects were randomly divided into 2 groups, and to reach a division as
balanced as possible, the students were asked to review the CWE 1.6 specification
with simple instructions only, and a pre-test sheet which includes demographic
questions (as showed in Appendix A) was sent to the students one week before the
experiment.

The pre-test questions are listed as below:

Please record the time you spent on this pre-test.

PQIl. Answer the following demographic questions on a scale of 0 — 10

(10 being the highest):
a. How would you rate your programming skill level?
b. How would you rate your experience in reading research/technical

papers?

49

c. How would you rate your experience in writing research/technical
papers?
PQ2. From the Research and Development Views of the CWE, how many
entries are Buffer Overflow-related?
a. List their Ids.
b. List the different kinds of relationships between these entries.
PQ3. Determine if there is a relationship between the following pairs of
CWE entries by tracing the relationships in the CWE 1.6 specification:
a. Is there any relationship between CWE-122 and CWE-20?
b. Is there any relationship between CWE-170 and CWE-682?
c. Is there any relationship between CWE-119 and CWE-101?
(If answer is yes, write down the relationship chain.)
PQ4. From the answer to question 2a, list the CWE entries that can precede
the Buffer Overflow weaknesses.
PQs. After answering questions 2-4, how would you rate your understanding
of the Buffer Overflow weaknesses? (On a scale of 0—10.)
PQeo. Discuss your understanding of a “fault”.
PQ7. Approximately, how long did this entire pre-test take?
Questions regarding programming skills, reading and writing technical papers,
the students’ ability to review and understand the vulnerability description and source
code was evaluated. Simple questions concerning CWE entries were used to

understand the student effort in reading and understanding the CWE specification.

50

After collecting and analyzing the answers to the pre-test questions, a profile of the
students’ knowledge and skill set and their degree of understanding the CWE
specification was formed. Using these profiles, a randomized division of two groups
was formed with the consideration of balancing knowledge, skills and the familiarity
of CWE specifications between the two groups. As showed in Table 1, the results to
PQla, PQIlb, PQlc and PQS5 were tested by Shapiro—Wilk test [29] to verify the

normal distribution of data.

Table 1 - W and p-values of Shapiro—Wilk test for Pre-test data

PQla | PQIb | PQIc | PQ5
W | 09214 | 09211 | 09214 | 0.9344
p-value | 0.0292 | 0.0286 | 0.0292 | 0.0645

Based on the W value and p-value, except for the answers to PQS5, other pre-test
data is not normally distributed, so instead of t-test, we test this pre-test answer data

set by the Wilcoxon test in which dataset are not required to be normally distributed.

6.1.3 Settings and Materials

The experimental objects to be studied consisted of selected buffer overflow
vulnerabilities reported in the Apache Web Server project. We selected the buffer
overflow vulnerability for this experiment because it was relatively well known
(paradoxically, it also occurs the most often). This was reinforced by the results of
pre-test for the subjects who indicated that most of them have certain basic
understanding of buffer overflow. From the 14 vulnerability reports that were
unanimously voted as buffer overflow weaknesses by the investigators (Dissertation

Committee Co-Chairs and myself), 6 (3 vulnerability reports to study for each round)

51

were selected for this empirical study. The 6 reports were carefully chosen to account
for the limited time that subjects had to examine the materials in each round of the
experiment. To keep the time, difficulty and a balanced work load between the two
rounds of experiment, statistical data such as the number of source code files relevant
to each vulnerability report, word count of natural language description, and number
of lines of source code in the revisions to the vulnerabilities were collected. Using this
data two sets of vulnerability for the two experiment rounds were formed. The
resulting 2 sets of three vulnerability reports were such that they can be easily
reviewed and analyzed in the allotted 60 minutes for each round.

The materials given to the subjects for each vulnerability report used in the
experiment include:

1. Vulnerability ID (a standard CVE identifier)

2. Descriptions from both the Apache website and the National Vulnerability

Database (NVD)
3. Change description logs from the Apache Subversion repository, and

4. The source code differences before and after the vulnerability was fixed.

9]

. A hyperlinked CWE .pdf document.
For each vulnerability report identified by a CVE number, the subjects marked
their start and end time points, and answered the following questions:
Question 1. List the related CWE entries for the CVE investigated.
Question 2. What faults may have led to the CVE?

Question 3. How does the fault lead to failure? (For example, what makes the

52

software vulnerable? What data or data structures get corrupted? What failure

conditions arise?)

Question 4. How can we train developers to avoid this problem?

These questions are primarily geared towards the investigation of a vulnerability

and thus, as neutral as possible to limit the extent to which students can sense the

research questions from them.

6.1.4 Variables

The experiment manipulated these three independent variables:

Group - refers to the group assigned (1 or 2, group 2 was given Buffer Overflow
Semantic Template in the second round).

Round - refers to the experiment round (1 or 2).

Vulnerability ID - the ID of those vulnerabilities under study (1-1, 1-2, 1-3, 2-1,
2-2,2-3). 1-1: CVE-2004-0492, 1-2: CVE-2004-0493, 1-3: CVE-2010-0010, 2-1:
CVE-2009-0023, 2-2: CVE-2005-1268, 2-3: CVE-2009-2412.

These self-reported subject variables were collected (1-10 scale) from pre-test:
Programming skill level (based on the answer to PQ1a)

Reading comprehension and writing skill levels - ability to read and write
technical English documents. (based on the answers to PQ1b and PQIc)

These dependent variables were collected for each vulnerability report from each

subject:

Time to complete - time (in minutes) to study and complete answering the

questions about the corresponding vulnerability.

53

2. CWE identification accuracy — CWE entries correctly identified as related to
the vulnerability (measured by precision and recall).

3. Fault description accuracy - a score (scale of 1-5) on the accuracy of the
identification of the software fault that led to the vulnerability.

4. Failure description accuracy - a score (scale of 1-5) on the accuracy of the
description of the nature of the vulnerability (the manifested problem, the
resources impacted and the consequences).

Time to complete is used to test H1, while CWE identification accuracy is used to
test H2, then the other two, fault description accuracy and failure description accuracy
are also collected to give us an additional insight of subjects’ understanding of
vulnerabilities. The set of relevant CWEs entries for each vulnerability report
(answers to Question 1) was determined by consensus among the three experts (the
Dissertation Committee Co-Chairs and myself) prior to the experiment. To achieve
reliability of the evaluation scores for the last two measures (answers to Question 2
and Question 3), each expert independently provides a score, which would allow for
assessment of inter-rater reliability. Hence, the subject’s accuracy of understanding
vulnerabilities is measured using 3 different metrics: CWE identification accuracy,

fault identification accuracy and description accuracy.

6.1.5 Preparation and Conduct of Experiment

To prepare for this experiment, all subjects were given a tutorial on software
vulnerabilities, CVE and CWE relevant knowledge. They took part in an exercise to

practice navigating the CWE specification by their relationships (e.g. parent of, peer

54

of, etc.) to look for the relevant weaknesses. Additionally, a demonstration was
performed to walk them through the process of analyzing a CVE vulnerability report
by examining its related information from the relevant project repository.

Rounds 1 and 2 were conducted on 11/29/2010 and 12/01/2010, respectively. The
experiment was conducted in a supervised laboratory environment with no Internet
access. Each subject was initially given the question sheet, related documents and
information for the first vulnerability report. Upon finish answering all the questions
for that vulnerability, the subject submitted the completed question sheet, with the
time marked, and then the subject proceeded to the next vulnerability. In this way, we
ensured that all times reported are accurate to the minute.

For Round 2, Group 2 was assigned to use semantic templates. A brief 15-minute
tutorial on the use of semantic templates was provided to Group 2 immediately before
Round 2 in a separate lab. The short tutorial time was chosen to accommodate the
experiment within a class period of 75 minutes and to simulate a brief training

available to a newcomer assigned to a project.

6.1.6 Results

Based on the fact that part of the experiment results are subjective, the raw data
was tested by the Shapiro—Wilk test [29] before any further analysis, which is
designed to test the null hypothesis that a sample xi, ..., X, came from a normally

distributed population. The results for the “Completion Time” are shown in Table 2.

55

Table 2 - W and p-values of Shapiro—Wilk test for Time

Round 1 W (1-1) 0.8099 (1-2) 0.9338 (1-3) 0.8624
p-value (2-1) 0.0001 (1-2)0.0618 (1-3)0.0011

Round 2 w (2-1) 0.8645 (2-2) 0.8872 (2-3) 0.8945
p-value (2-1) 0.0013 (2-2)0.0041 (2-3)0.0062

The results showed that except for the completion time for vulnerability 1-2 in
round 1, other time data sets are not normally distributed. Based on this result, the
t-test will not be effective for our data, so the Wilcoxon signed-rank test was chosen
to test our experiment null hypothesis Hl,.

Before presenting the individual results, a post-test (multiple linear regression)
was executed to evaluate the level of contribution from the pre-test variables to the
experiment results, so that the randomized splitting of two groups can be verified
partially. There were no significant contributions discovered from the pre-test results

to the experiment results.

6.1.6.17 Time to Completion

Although the student subjects worked on the same tasks, it still took widely
different time intervals for them to analyze the vulnerability reports and answer
experiment questions. By observation, different students hold different characteristics
and preferred strategies: some liked to spend more time searching CWE documents;
some preferred spending more time reading vulnerability descriptions; some preferred
starting by scrutinizing the initial tasks, then finish the later instances much faster and
some almost evenly distribute their time on the three vulnerability instances. The

completion time for one vulnerability report by different students ranged from 3

56

minutes to 55 minutes.

The box-plots in Figure 12 depict the time it took for each subject from both
groups to analyze each vulnerability report during the two rounds, presenting the
lowest, highest and the median. The top row shows the comparisons between the two
groups for Round 1 when neither group used semantic templates. The similar medians
in all three reports suggest that originally the two groups were comparable in their
capability to understand and analyze the vulnerability instances when measured by

completion time.

o | o | o]
= _ < =
1
1
1
1
o 1 o o
o (sp) o
(o]
.
-_T -_T
o <o H ! < !
N N | 1 N 1
1
' I
[l —_r
1 D — 1
o | o | o 4 | |
S | o o ,
—_ H T —_ I_,_,
—_— —_— —_—
o - o — o -
T T T T T T
1 2 1 2 1 2
1-1 1-2 1-3
o | o <
3 < 3
o _| o o _| o _|
[sp) [sp) o
(o]
.
1
o T o o 1 le)
N N N 1
-
1
1
o _| H o _| —_r o _|
S S S
== ' — —
—_—
1
—_—
o - (=2 (=2

Figure 12 - Time to completion (minutes) per vulnerability

The bottom row in Figure 12 shows the comparisons with Group 2 using
semantic templates. The noticeably lower medians for group 2 in the bottom row
suggests that Buffer Overflow semantic template has a noticeable effect on shortening

the time to complete understanding and analyzing every vulnerability report. Based on

57

the fact that time data was not normally distributed, the t-test cannot be performed to
determine the significance of this difference in time data (as determined by the
Shapiro-Wilk [29] test for normality shown in Table 3). The differences of time spent
between two groups in both rounds were statistically verified by the Wilcoxon
signed-rank test. The W and p-values are shown in Table 3 (The values with p < 0.05
are in boldface). It is obvious that in all the vulnerability reports in round 2 and round
1 question 3, the critical values are less than .05 and rejected the HO: 6 = 0, which
means that in 1-3, 2-1, 2-2 and 2-3, the students of group 1 spent significantly more
time on their answers compared with group 2. (1-3 p-value is very near to the .05
threshold, as a not very critical value)

The results manifest that for Round 1, there was no difference in time
performance between the two groups. Comparing Group 1’s performance across the
two rounds also shows no significant difference. Thus the results point to the use of

semantic templates as the key factor leading to a decrease in time to completion.

Table 3 - W and p-values of Wilcoxon signed-rank test (alternative hypothesis is
groupl value is greater than group2 value) for average Time data

Round 1 W (1-1) 114.5 (1-2) 107 (1-3) 152.5
p-value (1-1) 0.4668 (1-2)0.5907 (1-3)0.0473

Round 2 W (2-1) 203 (2-2) 176.5 (2-3) 190
p-value (2-1)7.847¢-05 (2-2)0.0037 (2-3)0.0006

To confirm the result, we also calculated the average time spent for each subject
of both groups in the two rounds and drew the boxplot for the average time difference
for all the subjects as t2-tl (average time spent in three reports of round 2 minus

average time spent in three reports of round 1), measured as the improvement for each

58

student from round 1 to round 2. The resulted boxplot in Figure 13 shows that group 2
had a greater time reduction (improvement) compared with group 1. To further prove
it, a Wilcoxon signed-rank test was conducted suggesting that the average time
difference (as a negative value) for group 1 is greater than the average time difference
for group 2, it also means that group 2 has a greater time reduction from round 1 to

round 2. Thus the null hypothesis H1j is rejected and Hla is accepted.

» T
|
2 |
=} 1
£ © :
S l
N [}
)]
O
c 0 _] T
o ! !
(O]
= l
|
S o] L
] |
(@) A I
© |
o |
(O] I
> |
< To) PR
—
I [I
G1 G2

Figure 13 - Difference of Average Time for subjects of two groups from
round 1 to round 2 (W =179.5, p-value = 0.002667)

6.1.6.2 CWE Identification Accuracy

The CWE identification accuracy estimates how well the subjects identified the
correct set of CWEs that are relevant to a certain CVE entry. This variable depends on
the answer to Question 1 for each vulnerability report. The accuracy was measured
using precision and recall metrics (as defined in Appendix A), against expert

identified standard answer sets. The expert answers, as the experiment oracle, are

59

listed in Table 4. The rows correspond to the concept groups in the semantic templates

and the columns correspond to the vulnerability IDs used in the experiment.

Table 4 — Expert Oracle

2004-0492 | 2004-0493 2005-126 | 2009-0023 2009-241 | 2010-001
8 2 0
Fault 20, 130 129-789, 193,682 | 20, 128, 20, 128, 128,
131, 191, 192, 190-680, | 190-680,
194-195-19 194-195-19 | 682 192, 682
6, 682 6, 682
Weakness 118, 119, 118, 119, 118, 119, | 118, 119, 118, 119, | 118, 119,
124, 787, 124, 787, 124,787, | 124,787, 124, 787, | 124, 787,
788 788 788 788 788 788
Resource 118, 119, 118, 119, 118, 119, | 118, 119, 118, 119, | 118, 119,
122 122, 129 121 122 122 122
Consequence | 123 123, 789 123 123 123 123

The Shapiro-Wilk tests indicated that both precision and recall values were not

normally distributed, hence t-tests cannot be used, so we used the Wilcoxon

signed-rank test to test whether there is any improvement for Group 2. The box-plots

in Figure 14 depict the precision of Question 1 answer for each subject from both

groups for each vulnerability report during the two rounds, presenting the lowest,

highest and the median. The top row shows the comparisons between the two groups

for Round 1 when neither group used semantic templates, which indicated that

originally students from group 2 underperformed compared with groupl in the first

two vulnerability reports and share a similar precision in the third vulnerability report.

But in the bottom row, it appears that the usage of semantic templates did not have

any significant impact on precision. However, in Round 2 using semantic templates,

group 2 performed at par with group 1, making up for the difference in Round 1.

60

o o o
< < —_ —_ < —_ —_
1 1 1 1
1 1 1 1
1 1 1 1
© © ! ! © | |
S S 1 1 S] 1 1
1 1 1 1
1 1 1 1
1 1 1 1
© | © | ' 1 © | 1 1
IS] IS] ! IS] ! !
1 1
1 1
1] !
1
= ! | o o
o ! | o o
1 H
1
1
N] 1 N _] N
o | =] =]
1
1
=E — S- S -
T T T T T T
1 2 1 2 1 2
1-1 1-2 1-3
< <] <]
- - -
© @ _] ©]
IS] IS] IS]
© ©] ©] !
[S] [S] ! [S] :
T 1
1 T 1 T
s | | 3 - | | 3 - |
e | | e | | e |
1 1 1 1 1
1 1 1 1 1
o i i N i i o i
© | | © | | © |
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
s —~— st —/— — sl —/— 29
T T T T T T
1 2 1 2 1 2
21 2-2 2-3

Figure 14 - Question 1 answer precision per vulnerability

The difference of precision on Question 1 answer between two groups was
statistically verified by the Wilcoxon signed-rank test with the alternative hypothesis
that group 1 precision is less than group 2 precision. The W and p-values are shown in
Table 5. It is obvious that none of the p value is significant, which means and
Question 1 answer precision of group 1 is not less than that of group 2 considering the

individual reports.

61

Table 5 - W and p-values of Wilcoxon signed-rank test for Question 1 answer
precision data

Round 1 | W | (1-1)140.5 |(1-2)137.5 | (1-3)127.5
p-value | (1-1)0.897 | (1-2)0.8693 | (1-3)0.7555
Round2 | W | (2-1)90 (2-2) 120.5 | (2-3)99.5
p-value | (2-1)0.1685 | (2-2) 0.6538 | (2-3) 0.2966

We also calculated the average precision for each subject of both groups in the
two rounds and drew the boxplot for the average precision difference for all the
students as p2-pl, measured as the improvement for each student from round 1 to
round 2. The resulted plot in Figure 15 showed that group2 had a greater
improvement on their precision of Question 1 answers with a higher median and
higher boundary, compared with group 1. To further prove it, a Wilcoxon signed-rank
test was conducted and with a p-value < 0.05, it showed that the null hypothesis was
rejected and the average precision difference for group 1 is less than the average
precision difference for group 2, it also means that group 2 has a greater precision

improvement from round 1 to round 2.

~ _] JR—
~ |
]
]]
(D]
(&)]
c © - :
+ — 1
% o | 4
= B l
=) :
o N _
o
©
(O] — T
> 1 1
]
< o L |
Q@ l
' PR S
[[
G1 G2

Figure 15 - Average Question 1 precision for two groups from round 1 to
round 2 (), W =76, p-value = 0.06978)

62

The box-plots in Figure 16 depicts the recall of Question 1 answer for each
subject from both groups for each vulnerability report during the two rounds,
presenting the lowest, highest and the median. The top row shows the comparisons
between the two groups for Round 1 when neither group used semantic templates,
which indicated that originally there were no significant differences between the two
groups. But in the bottom row, it seemed that group 2 performed much better than

group 1, indicating that the usage of semantic templates have significant impact on

recall.
e e e
) © ©
ISl o 7] o 7
© © ©
o o S S
< < <
IS IS IS
_ _
| [e] |
| —_— I
N o N ~
_
T |
o - o_:g o |
IS IS IS
T T T T T T
1 2 1 2 1 2
1-1 1-2 1-3
e e e
© ©)
o 7] o 7] o 7]
_
© © © I
[Sha [Sh c |
1
—_ i
< 1 <] < L
IS | IS IS
L _ o
|
~ | i ~ | ! ~ T
o| | o o
; . I
ol __ i o | i - o | i -
IS IS IS
T T T T T T
1 2 1 2 1 2
2-1 2-2 2-3

Figure 16 - Question 1 answer recall per vulnerability

63

The difference of recall on Question 1 answer between two groups was
statistically verified by the Wilcoxon signed-rank test with the alternative hypothesis
that group 1 recall is less than group 2 recall. The W and p-values are shown in Table
6 (significant p-value are boldface). It is obvious that in round 1, none of the p value
is significant, while in round 2 all the p values are significant, which means that in
round 2, the null hypothesis can be rejected, and the recall of question 1 answer is

significantly less than that of group?2.

Table 6 - W and p-values of Wilcoxon signed-rank test for Question 1 answer
recall data

Round 1 W [(1-1)81.5 | (1-2)119.5 | (1-3)104.5
p-value | (1-1)0.0733 | (1-2)0.6392 | (1-3)0.3803

Round 2 W 21675 | (22)62 (2-3) 47
p-value | (2-1)0.0308 | (2-2)0.0162 | (2-3)0.0030

We also calculated the average recall for each subject of both groups in the two
rounds and drew the boxplot for the average recall difference for all the students as
r2-rl, measured as the improvement for each student from round 1 to round 2. The
resulted plot in Figure 17 showed that group 2 had a greater improvement on their
recall of Question 1 answers with the higher median and both boundaries, compared
with group 1. To further prove it, a Wilcoxon signed-rank test was conducted and with
a p-value < 0.01, it showed that the null hypothesis was rejected and the average
recall difference for group 1 is less than the average recall difference for group 2, it

also means that group 2 has a greater recall improvement from round 1 to round 2.

64

—
o |
o O |
o
o
o N
g 57 O
A @)
_
5 S |
Q) i
2
< o | :
o ! |
: 1
PR S
[[
G1 G2

Figure 17 - Average Question 1 recall for two groups from round 1 to round
2 (W =52, p-value = 0.006686)

These initial results indicate that semantic templates help in identifying the
correct CWEs. Although the precision difference of CWE identification between two
groups in round 2 is not significant, the improvement of group 2 is significantly
greater than that of group 1. And in the recall of question 1 answer, group2 performed
better compared with groupl in round 2, also the improvement of recall of group?2 is
greater than that of groupl. Thus H2, can be rejected with respect to CWE
identification accuracy and H2, is accepted.

Other than the individual precision and recall, we also collected the top five
selected CWE entries from students and compared with expert annotation. The results
are encouraging. Although we did not give students the instruction about including all
the root nodes when selecting certain nodes, the precision relatively is rather high, and

the recall is medium, as shown in Table 7.

65

Table 7 — Top Five Results of Students Experiment

(&l on [o2e) on (@\] [«

(@) (@) \O o — —

< < S = < =

[« [« — (e} (@\| (e}

< < Ve o o'\ =)

S S S S S —

S S S S S S

(@\| (@\| (@\| (@\| (@\| (@\|
1 130 122 193 124 122 122/190/681
2 122 400 121 122 119/190 | 189
3 118 119 119 787 20 20
4 240 20/399/401 | 682 196 118 119/120/680
5 20/120 | 120/633/730 | 118/170 | 119 130 192/131/136

/197/704

Precision | 66.7% | 22.2% 833% | 100% |833% | 38.4%
Recall 44.4% | 143% 556% | 333% |41.7% | 41.7%

6.1.7 Analysis of Open-ended Questions

In addition to test the hypotheses, we also ask the subjects questions about

descriptions of the fault and failure. The answers to the open-ended questions Q2 and

Q3 were rated to gauge how well the subjects understood the root cause and nature,

respectively, of each occurrence of vulnerability. The answers were rated on an

ordinal scale of 1-5 according to the following rubric:

Wrong or unexpected answer

Too vague to be considered right or wrong

Answer consistent with vulnerability description

AlWIND|—

Answer consistent with vulnerability description and provides insightful
description

5 | Detailed correct answer (reference to CWEs, Code sections identified, chain
of events)

As Q2 and Q3 were subjective, all three researchers independently rated each

answer. The inter-rater reliability was computed using Cronbach's alpha. The

inter-rater reliability (see Table 8) was generally good for Q2 but less so for Q3 (alpha

values above 0.7 indicate acceptable inter-rater reliability).

66

Table 8 - Inter-rater Reliability for Q2 and Q3 Answer

D Q2 Q3
1-1 0.8423978 0.616875
12 0.7636008 0.7623291
1-3 0.8241820 0.4148707
2-1 0.7558455 0.8198917
22 0.7347231 0.5561038
2-3 0.5586861 0.6509174

The modes of the three researchers' ratings were used as the values of the two

dependent variables, Fault Identification Accuracy and Description Accuracy. The

per-vulnerability comparison of the performance of the two groups indicate no

significant differences in either round, as shown in Figures 18, 19 and Tables 9, 10.

Based on these initial results, the effect of semantic templates was not large enough to

be significant.

2-1

2-2

2-3

Figure 18 - Accuracy of Q2 per vulnerability

67

Table 9 - W and p-values of Wilcoxon signed-rank test (alternative hypothesis is
groupl value is less than group2 value) for Question 2 answer

Round 1 W[1-1)122 (1-2) 102.5 (1-3) 120.5
p-value | (1-1)0.6721 | (1-2)0.353 (1-3) 0.6485

Round 2 W 2-1) 127 (2-2) 1635 |[(2-3) 133
p-value | (2-1) 0.7427 |(2-2) 09854 |(2-3) 0.8164

2-1 2-2 2-3

Figure 19 - Accuracy of Q3 per vulnerability

Table 10 - W and p-values of Wilcoxon signed-rank test (alternative hypothesis is
groupl value is less than group2 value) for Question 3 answer

Round1 | W [(1-1) 1305 (1-2) 108.5 (1-3) 109
p-value |(1-1) 0.788 | (1-2) 0.4497 (1-3) 04575

Round2 | W |[(2-1) 97 (2-2) 134 (2-3) 129
p-value | 2-1) 02721 |(2-2) 0.8292 (2-3) 0.7684

6.1.7.1 Analysis of Variance

To understand these results, analysis of variance was performed to determine if

other variables had a stronger effect. Because both dependent variables were ordinal

68

scales, most statistical models, e.g., Gaussian, Poisson, etc., did not fit well. Instead,
we transformed them into binary variables ("true" if variable >= 3 and "false" if
variable < 3), and used logistic regression to compute the analysis of variance. We
tested the effect of semantic template usage, round, and time to complete and found
no significant contributions to either dependent variable. Interestingly, when we also
account for precision and recall of CWE identification accuracy, recall is a significant
contributor (see Tables 11 and 12). This indicates that participants who have relatively
high CWE recall have higher probability of also scoring well on the accuracy
questions. On the other hand, CWE precision had a significant though negative effect.
Generally, participants achieve higher precision by identifying fewer CWEs and these
CWE:s turn out to be the valid ones. The negative result for precision indicates that
recall is more important, that is, it is more important to identify the complete set of
valid CWEs in order to satisfactorily answer the accuracy questions. Lastly, the
presence of semantic templates did not positively contribute to higher probability of
scoring well. In fact, for fault identification accuracy, it had a significant negative

effect, though the contribution was not as strong as CWE recall.

Table 11 - Effects of experimental factors on Fault Identification Accuracy

Estimate Std. Error z value Pr(>|z])
(Intercept) 1.371e-01 6.734e-01 0.204 0.838664
Round 2.982e-01 4.070e-01 0.733 0.463781
ST -1.144 5.329¢-01 -2.146 0.031841 *
Precision -9.408e-01 5.091e-01 -1.848 0.064600
Recall 5.160 1.522 3.390 0.000698 ***
Time 5.841e-06 2.272e-02 2.57e-04 0.999795

69

Table 12 - Effects of experimental factors on Description Accuracy

Estimate Std. Error z value Pr(>|z])

(Intercept) 1.65139 0.70258 2.350 0.0188 *
Round -0.37776 0.39836 -0.948 0.3430
ST 0.43819 0.54717 0.801 0.4232

Precision -1.10611 0.52308 -2.115 0.0345 *

Recall 3.56442 1.58974 2.242 0.0250 *
Time -0.01717 0.02273 -0.755 0.4501

6.1.7.2 Impact on Terminology Usage

We also conjecture that if semantic templates can provide suitable mental models
for understanding vulnerabilities, then we ought to see more usage of standard CWE
language in describing faults and failures. With this in mind, we re-examined the
open-ended answers in Round 2 to see if participants who used semantic templates
ended up using the related terminologies. The answers were rated on an ordinal scale

of 1-3 according to the following rubric:

1 | No Standard terminology used

2 | Some use of standard terminology

3 | Consistent/Significant use of standard terminology

As before, the inter-rater reliability was computed using Cronbach's alpha. The

inter-rater reliability for Q2 is acceptable while Q3 is borderline (see Table 13)

Table 13 - Inter-rater reliability for term usage

Q2 Q3

2-1 0.7954545 0.6941106
2-2 0.8538117 0.674821
2-3 0.7226174 0.8056013

The boxplots in Figure 20 show that Group 2 tended to have a higher median than

Group 1, but the difference (Wilcoxon-Mann-Whitney) is not statistically significant.

70

o o o
o] o 7 _:_ o
I
1
o | —_ —_
0 | o | i ! 0 | !
N N H \ o \
o —_ ! —_ 1
i ! | i
1 ! | |
o | o | | o | !
N N 1 N I
i .
0 | v _| v |
e | e e |
Nl T T a T T Nl T T
1 2 1 2 1 2
Q2 21 Q2 2-2 Q22-3
o o o
« 7] «] © 7]
—_ —_
0 ! 0 ! 0
S : S : S
o : : o —_—
I I 1
o ! o ! o !
~ ~ o | ~ o
i
[te) ! [te) [te) !
<] ! < < !
1 1
o | e e
- T T - T T - T T
1 2 1 2 1 2
Q3 21 Q3 2-2 Q3 2-3

Figure 20 - Question 2 and 3 Answer Term Usage per Vulnerability

In summary, semantic templates did not improve the fault identification or
description accuracy of the experiment participants. Though semantic templates did
improve CWE recall and participants with higher CWE recall have higher probability
of scoring better on the open-ended questions, this secondary effect was not enough
for semantic templates to improve the accuracy scores. And while there is some
improvement in usage of terminologies, the improvement is not statistically
significant.

In hindsight, discovering faults and failures requires time and experience with the

71

code. Semantic templates by themselves are not a root cause investigation tool,
though experts can document known vulnerabilities and their root cause by annotating

the templates as illustrated in the previous chapter.

6.1.8 Threats to Validity

The experiment was designed to mitigate as more threats to validity as possible.

They will be introduced in the following sub-sections.

6.1.8.1 Threats to internal validity

Selection threats were mitigated by random assignment of subjects to groups. We
also checked that the self-reported subject variables did not have any statistically
significant contribution to the dependent variables measured. The two rounds of the
experiment were conducted on two days with only one day between them diminished
the history and maturation threats to a certain degree. Learning effects cannot be
eliminated in this experiment, so two rounds and two sets of different vulnerabilities
were used to avoid the learning effect by comparing the learning effects for each
group. In the second round, the two groups of students were separated as much as
possible (due to the limitation of laboratory seats, half of the treatment group was still
in the same lab with the control group but with a line of computers as separation) to
avoid the diffusion effect. To avoid the experimenter bias threats, each of the students
was given a random ID by one of the experimenter who does not know any of the

students.

72

6.1.8.2 Threats to external validity

As with other classroom experiments conducted with student subjects,
generalization of results is an issue. First of all, students are not professionals and they
are not familiar with the Apache product. We argue that this is not a big drawback as
they would be close to the profile for a novice developer who requires more effective
training. Second, a real industrial setting would be very different from the laboratory
environment. We tried to mitigate this somewhat by using a real-world project with

real reported vulnerabilities.

6.1.9 Discussion

We have presented some preliminary results on an experiment on studying
software vulnerabilities. Using semantic templates reduced the time to study reported
vulnerabilities and was instrumental in improving precision and recall of relevant
CWEs. Further insights into accuracy of understanding will be gained once we
analyze the fault identification and description data.

These initial results suggest that semantic templates provide a useful
approximation of the mental model to study software vulnerabilities. Furthermore,
though the experiment was carried out over relatively localized vulnerabilities, which
do not require extensive code analysis, we believe that the difference in effects will be
magnified with more complex vulnerabilities. Finally, most subjects in our study were
familiar with the concept of a buffer overflow; we expect the semantic templates to

perform even better when a user has little knowledge about a particular class of

73

weakness.

6.2 Expert Survey

Although semantic template were validated to be effective in improving the
review time and CWE identification recall by the student experiment, it still needs the
recognition and acceptance from the software engineering and software assurance
communities for its value in research, education and practice.

The author attended International Conference on Software Engineering (ICSE)
2011 and presented the empirical study section as a research paper and poster.
Feedback from the audience at this highly respected research venue was positive and
valuable. During the 45-minute poster session, several professionals from industry,
researchers and students showed interest in this research work. The questions most
asked include the completeness and correctness of semantic template, the use of
semantic templates for training, and the problem motivation. Researchers from the
software assurance community liked the way semantic templates organize weakness
knowledge, while the industry practitioners are interested in the possibility for
semantic template to train novice developers and test engineers.

Committee chair Dr. Gandhi conducted a survey among the software assurance
professionals in attendance at the 2011 Software Assurance Forum. He also presented
the semantic template research at this forum. The survey feedback is listed in
Appendix B. The overall feedback is encouraging, with four out of five respondents
perceiving that semantic templates are very useful in studying weaknesses. They also

stressed the need for more semantic templates in the future and a central repository to

74

store and access the templates. The respondents also expressed what they liked and
hated about semantic templates, which are the source of our improvements. They
generally liked the clarity and separation of concepts, and the potential to training
developers. The potential shortcoming pointed out includes the potentially high
training overload, the possible instability of CWE as foundation, and the challenge in
automatically annotating vulnerability data with concepts in the semantic template.
We address the challenge of automatic annotation of vulnerability data in the next
chapter. Finally, three of the five respondents showed interests in future collaboration

on this research.

75

7. Semi-automatic Annotation of Vulnerabilities

Manual comprehension and annotation by experts is a series of time-consuming
work which includes tedious collecting, reading, comprehension and matching. In this
research, annotation is the process of identifying the concept units in the
corresponding semantic templates that can be matched to the designated vulnerability
information pieces, so that the software fault, weakness, resource and consequence,
even the fix pattern, can be recognized and given a tag for this vulnerability.

To reduce the manual labor required for the vulnerability understanding, analyzing,
identification and prediction, automatic or semi-automatic assistance is required. To
annotate a specified vulnerability, first we need to know the category it belongs to,
which indicates the semantic template that will be used as its concept structure. So as
a prerequisite of the semi-automatic annotation effort, one goal of this research is to
identify certain categories (Buffer Overflow, Information Exposure, Injection, etc.) for
the vulnerabilities reported in the vulnerability database, so that the appropriate
semantic template can be selected to annotate a vulnerability report. The classification
work and results will be described in section 7.1.

Section 7.2 will elaborate our efforts on semi-automating the vulnerability report
annotation with the aid of a related semantic template. As the effects of natural
language characteristics on the results of natural language processing and relevant
technologies are unknown, we apply different methods of classification to our data set
to compare their effectiveness and efficiency. We investigate three methods:

Documents query as vectors; Documents match based on tf-idf values and selected

76

classification models.

7.1 Classifying CVEs to Weakness Categories

The objective of category classification is to identify the most likely weakness

category for a particular vulnerability. In this section, we present our results

investigating the efficacy of a machine learning solution to category classification,

taking information from CWEs whose categories are known in order to train a

classifier to identify a weakness category for vulnerabilities. For simplicity, we used a

binary classification approach where we classify vulnerabilities as buffer overflow or

not. The buffer overflow category was chosen in this investigation to maintain

continuity with the previous chapter.

CWE
Classification

CWE
Information

Process CWE
Documents

CVE Query

Process CVE
Query

Figure 21 — Machine learning process

CWE Document
Vector Matrix

Training

Trained
Classifier

CVE Query
Vector

\

Apply
Classifier

CVE
Classification

The machine learning approach is illustrated in Figure 21. In this dataflow

diagram, we took a sample of buffer overflow-related CWEs identified in the buffer

77

overflow semantic template and collected their associated information from the CWE
(including name, summary, descriptions, consequences, examples, known CVEs,
related CAPEC entries, etc.) into a comprehensive document, one document for each
CWE. The documents are processed, which involves tokenization, removal of stop
words, and stemming, and finally conversion into a document vector matrix,
consisting of D rows, where D is the number of CWEs, and T columns, where 7 is the
number of distinct terms in the documents. For each CWE d, V,(d) is a measure of
frequency of term ¢ in document d. Frequency has three commonly used measures:

1. term occurrence — number of times a term occurred in a document

2. term frequency — term occurrence / number of terms in document

3. term frequency-inverse document frequency (tf-idf) — term frequency /

number of documents the term appears in

The matrix is passed on to the trainer along with the learned answer (buffer
overflow/not buffer overflow) producing a trained model. The information concerning
an actual vulnerability is also transformed into another document vector which is
passed to the classifier which uses the trained model to classify the vulnerability.

The number of CWE entries that were collected and represented in our Buffer
Overflow Semantic Template was 44, including the software fault, weakness,
resources and consequences related. So, another 44 non-Buffer Overflow CWE
entries were randomly selected and their relevant natural language descriptions were
collected.

We used a popular data mining tool, RapidMiner, to conduct the study.

78

RapidMiner was chosen because it already has implementations for a large number of

classifiers.
&% Buffer Overflow Classificati RapidMiner@Y LAPTCP lE.E
File Edit Erocess Tools View Help
VdEY > bllR YTD
P Overiew « Process E ¥ML .
o | @ - - & Hirrocess » @~ H E & |, 58Faramstars
S nme X B~
& Process Documents from Files
h-HN -
s qm o mep we b directories | O EvitList ..
3 Raposiaries P U)) g - B Q
& Operalors a file pattern *
¢ i [-e » ¥ (o] exivact bexi only
#- [2) Reposilory Access (20
B L Import (25 /| use file extension as type
&® j Et;?ort (|g; Process Docu... & BEs L
Zﬁj::::;aﬁlr"r,‘agnts?rg:;lallon mi1 (] wer a'.: —— - |_|HTH1EM .
; .__] :.‘ulfiizllr:c:?eoiz:u::_:l?;]) 2 E - . E (] create word vecior
@ () Clustering and Segrm wi g mee
(2] Associalion and 5] wectar creation | TF- -
e s |
© 3 Wode Apteaton (12 @ compatoihylee
@) Meta Learning (4)
& (] Evalualion (31) | Comment
B G TextProcessing (36) © Help
@ () Tokentzation (1
&] Exiraction mt } B A
@) Fitierng (8 —
=@ ?‘l_am_r;wma_(_r‘) , {4, Problams & Log 2% Documents
® "-j U;:;;;mdﬂu”(: W MNoErors from Files)
w Process Documents f Message Fixes Lecation
=] Croate Cocumen: B9 -)
G D ol o -
e
Figure 22 - Classification by RapidMiner
Figure 22 shows how the classification process was realized in RapidMiner. The
two “Process Documents” operators transform CWE and vulnerability information

into tf-idf document vector matrices. The “Classify” operator performs the training

and the “Apply” operator classifies the vulnerabilities into the most likely category.

We experimented on four simple and well-known classification algorithms

(Default Model, K-Nearest Neighbor, Naive Bayes and Naive Bayes (Kernel)) that

have been realized as operators in RapidMiner.

To verify the trained classification model, it was first applied back to the original

training set. Table 14 shows that the resulting precision and recall values from the four

79

different classification algorithms are rather high, giving confidence on this trained
classification model although other concerns such as the different level of description
and quality of CWE entries compared with the real world vulnerability reports might
affect the application of CWE-trained classification model on the vulnerability

instances.

Table 14 - Precision and Recall for Classification Model Validation

CWE Validation Precision Recall

K-NN Algorithm K=1 100% 100%
K=2 84.6% 100%

K=3 93.5% 97.7%

K=4 89.8% 100%

K=5 91.5% 97.7%

Naive Bayes 100% 100%

Naive Bayes (Kernel) 97.7% 100%

After the validation of this classification model, it was applied on a set of CVE
natural language descriptions (including the descriptions both from NVD and Apache
Website). Similar to the CWE training set, seven Buffer Overflow CVE instances
were combined with seven randomly selected non-Buffer Overflow CVE instances,
and this set was classified by the trained model. The resulting precision and recall are
shown as in Table 15. Except for the recall for K-NN (K=1, 2) and Naive Bayes
(Kernel), other values are relatively low, which can be partly explained by the
different vocabularies used by the CWE authors versus the vulnerability recorders. As
a general knowledge base for weaknesses, the CWE descriptions tend to use more
abstract terms while the real world vulnerability descriptions are concerned about
concrete files and faults. To improve the precision and recall, CVE instances whose

categories are known can be incrementally added to the training set.

80

Table 15 - Precision and Recall for Classification of Buffer Overflow CVEs by

the Trained Model

CWE Validation Precision Recall

K-NN Algorithm K=1 16.9% 71.4%
K=2 15.3% 92.9%

K=3 50% 7.1%

K=4 22.2% 57.1%

K=5 20% 14.3%

Naive Bayes 8.3% 14.3%
Naive Bayes (Kernel) 16.9% 71.4%

7.2 Classifying CVEs to Semantic Template Concepts

The objective of concept classification is, given that we know which weakness
category a vulnerability falls into, to identify the most applicable semantic template
concepts within that category. The aim is to map vulnerabilities to at least one concept
in each of the four aspects (software faults, weakness, resource/location,
consequences) of a semantic template. This provides a semi-automated process for
annotating an occurrence of vulnerability by associating it with corresponding
concepts in the semantic template, which in turn would facilitate learning of the
vulnerability.

ST Concept Documents Vector Matrix \

Compute Similarity
Document Query as Vector
Document Match by TF-IDF
K-NN Classification

Process CVE CVE Query /Top Matching
ORI Vector ST Concepts

Figure 23 — Concept classification process

The concept classification techniques studied here use several variations of the

81

process depicted in Figure 23. We employ three techniques which differ in how the
similarity is computed:
1. Document query as vector — similarity is computed as the cosine similarity
between pairs of concept and CVE document vectors
2. Document match based on tf-idf — similarity is computed by summing up the
applicable tf-idf measures in the CWE document vector matrix
3. Classification — similarity is computed based on the probability values
calculated in the process of performing machine learning and classification;
Due to the limited scope of this dissertation research work, and to keep the
simplicity of narration, only the Buffer Overflow “Software Fault” component was
chosen as an example to show the different semi-automatic annotation technologies.
This component includes 21 concept nodes which totally contain 29 CWE entries.
The test set includes six previously annotated buffer overflow CVE entries (expert
manually annotated buffer overflow CVE instances, which were used in the
experiment in Chapter 6), eight other buffer overflow CVEs, six cross-site scripting
CVEs and one information leak CVE, explicitly identified by CVE authors as such.
To keep the most meaningful contents of each CWE entry when annotating, other than
the title, summary, description, we also collected the alternate terms, common
consequences, demonstrated examples (source code deleted), observed examples
(CVEs that have been identified to be relevant to this CWE entry, with only title and
descriptions) and the related attack patterns (CAPEC id and titles). Each CWE node in

software fault component may contain more than one CWE entry, and in this case the

82

content of those CWE entries will be combined in one text document. The CVE
information contains the CVE descriptions from both the Apache website and the
NVD summary.

As the benchmark of this exploratory work, the experts’ annotation results are as

follows:

Vulnerability Software Fault Concepts in Semantic Template

CVE-2004-0492 | Improper-Input-Validation and Improper Handling of Length
Parameter Inconsistency;

CVE-2004-0493 | Improper Validation of array Index,
Incorrect-Buffer-Size-Calculation, Sign Errors and
Incorrect-Calculation;

CVE-2005-1268 | Off-by-One and Incorrect-Calculation;

CVE-2009-0023 | Improper-Input-Validation, Wrap-Around Error, Integer
Underflow, Integer Coercion Error, Sign Errors and
Incorrect-Calculation;

CVE-2009-2412 | Improper-Input-Validation, Wrap-Around Error, Integer Overflow
and Incorrect-Calculation;

CVE-2010-0010 | Wrap-Around Error, Integer Coercion Error, Integer Overflow and
Incorrect-Calculation.

7.2.1 Documents Query as Vectors

As one of the basic algorithms for search engine to query among large quantity of
documents based on users’ query terms, the document query as vectors method treats
documents as a vector space and each document as a vector. The representation of a
set of documents as vectors in a common vector space is known as the vector space
model and is fundamental to a host of information retrieval operations ranging from
scoring documents on a query, document classification and document clustering [24].

In the document query as vectors technology [41], each document will be
represented by a vector I7(d), with one component in the vector for each dictionary

term. Unless otherwise specified, it is assumed that the components are computed by

83

the tf-idf weighting scheme, to represent the weight of each term in this specific
document set. But based on the fact that our annotation work is a dynamic job which
can include more documents in the future, the term occurrence was utilized to
evaluate the weight of each term, so that the effect of document set number and
quality could be ignored. The set of documents in a collection then may be viewed as
a set of vectors in a multi-dimension vector space, in which there is one axis for each
term. This representation weighs the importance of each term with losing the relative
ordering of the terms in each document.

How do we quantify the similarity between two documents in this vector space?
A first attempt might consider the magnitude of the vector difference between two
document vectors. This measure suffers from a drawback: two documents with very
similar content can have a significant vector difference simply because one is much
longer than the other. Thus the relative distributions of terms may be identical in the
two documents, but the absolute term frequencies of one may be far larger. To
compensate for the effect of document length, the standard way of quantifying the
similarity between two documents d; and d, is to compute the cosine similarity of

their vector representations I7(d1) and I7(d2)

V(dy)-V(d
sim(dy, dy) = M
[V (d)|[V(d2)]
where the numerator represents the dot product (also known as the inner product) of
the vectors I7(d1) and I7(d2), while the denominator is the product of their Euclidean

lengths. Let 4 (d) denote the document vector for d, with M components

V,(d) - Vy(d). The dot product V(d,)-V(d,) of two vectors is defined as

84

M Vi(d,)Vi(dy). The Euclidean length of d is defined to be /Z?’/Iﬂ V;(d)?.

The effect of the denominator of the previous equation is thus to length-normalize
the vectors I7(d1) and V(dz) to unit vectors ¥(d;) = V(dl)/ |I7(d1)| and v(dy) = I7(d2)
/ |I7(d2)|. We can then rewrite the previous formula as :

sim (di, do) = v(d1) - v(da)

As a query algorithm, the basic idea of cosine similarity is to calculating the
cosine value of the angle between the query term (query document) and the objective
document. So based on this similarity calculation formula, the term occurrence matrix
for the natural language descriptions of 21 buffer overflow software fault CWE nodes
and the corresponding CVE was calculated by Rapidminer. For each CVE, the cosine
similarity between it and every CWE node concerning buffer overflow software fault
was calculated and compared, and the CWE node holding the highest cosine
similarity value was treated as the most possible result of this certain query. The top
three CWE nodes with the highest cosine similarity value would be selected as the
semi-automatic annotation results.

To validate this annotation method, all the cosine similarity values are collected
and showed in Figure 24. The green bars showed the buffer overflow CVEs and the
empty bars non-buffer overflow, and the cosine similarity difference between the two
groups of CVEs was tested by the wilcoxon test. With the W =35875.5 and p value <
2.2e-16, it can be confirmed that the buffer overflow CVEs hold the greater similarity

value with the buffer overflow CWEs compared with the non-buffer overflow CVEs.

85

¥€¥0-0L02-3ND
6€6¢-8002-3N0
G000-8002-3AD
12¥9-2002-3N0
88€9-2002-3N0
0005-2002-3A0
§0¢1-0002-3A0
0100-0L02-3ND
¢l¥¢-6002-3N0
€200-6002-3N0
16¥¢-G002-3N0
89¢1-G002-3N0
¢¥60-¥002-3N0
0v60-¥002-3N0
Lv10-¥002-3N0
€6¥0-¥00¢-3N0
¢6¥0-¥002-3N0
8870-¥00¢-3N0
¢¥50-€002-3N0
G¥20-€00¢-3AD
€¥80-¢002-3A0

larity of Document Vectors

1mi

Figure 24 - Cosine S

7.2.2 Documents Match based on TF-IDF

Different from term occurrence, the tf-idf values evaluate the importance of

certain dictionary term in a document with the consideration of the whole document

set. With the calculation of term frequency divided by Inverse document frequency

for certain term in certain document, its value will be higher for the terms appear

more times in the specified document and seldom appear in other documents in the

same document set, so that the “uniqueness” and “representativeness” of those

dictionary terms can be identified to reflect the characteristics of the document it

belongs to.

86

In this research work, all the CWE concepts within software fault component and
each object CVE description will be fed into Rapidminer, by the operators: “Process
Documents from Files” (“Tokenize”, “Filter Stopwords” then “stem”) and “Write csv”.
The only difference is that the CWE document set will be analyzed by tf-idf vector
creation method but the CVE document will be analyzed by the binary occurrence.
The output are two .csv document with one tf-idf matrix for this CWE document set,
in which each line represents one document, each column represents one dictionary
term appeared in this document set and the cross-grid represents the tf-idf value for
each term in the corresponding document; and another binary term occurrence matrix
for the CVE document. A java program was designed by the author to separately read
the CWE tf-idf matrix and the CVE binary term occurrence matrix, then compare the
two matrixes, when the same dictionary term with a non-zero value appears in both of
the CVE and CWE document, it would be recorded with the corresponding tf-idf
value in the CWE document. The Sum of all the tf-idf value in one CWE document
that matched with the CVE would be treated as the indication of how well the two
documents are matched. Then the top five matched CWE entries were selected and
recorded.

To validate this annotation method, all the tf-idf similarity values are collected
and showed in Figure 25. The green bars showed the buffer overflow CVEs and the
empty bars non-buffer overflow, and the tf-idf similarity difference between the two
groups of CVEs was tested by the wilcoxon test. With the W =24787.5 and p value =

0.005885, it can be confirmed that the buffer overflow CVEs hold the greater tf-idf

87

similarity value with the buffer overflow CWEs compared with the non-buffer

overflow CVEs.
(o)

0 _

N_

N

N_

N H

o |

< 7 ' .
_| : ° 1

[Te) OT | '

— 1

T : ° | T -
— 1 [

N] - T ! -

-4 - T o ! '

- P ! |
J T oy 1 o !

o | o b : T+ ° o

S - P S
— . l|'|

= ! | o

S v

o] b ! i
— [[:

N ! i o A R R -

o | ' [[T N N | T
IIII"-IIIII_I_III-I—II [

o - - - e N e N R N -4 L - L
T T T T T T T T T T T T T T T T T T T
22§89 35Yy338358°5258588588¢8
8683335889 38385 38383333
o O O o O O O - O O O O OO O @ —
o O O O O O O O O O O O O O O o O o o o o
§ § § § § § § § § § §§§§§q§g§gggQ
Ly g g oy gL Yy ey Yy gy
O O O O O O O O L L Lo oL b o o o o o o

Figure 25 - tf-idf Similarity

7.2.3 K-NN Classification of CVEs to Concepts

Rapidminer, as an open source system for data mining, incorporated most of the
known data mining algorithms and wrapped them into individual operators which can
be flexibly combined to reach specific goals for researchers and industry practitioners.
Classification, as a typical data mining task, was implemented by Rapidminer as a set
of modeling operators. Also to keep the simplicity and the scope of this research in
consideration, only the K-nearest neighbor (K=5) algorithm with four different

measures was selected, they are: Euclidean Distance, Cosine Similarity, Jaccard

88

Similarity and the Overlap Similarity. The first two are numerical similarity measures
while the last two are set-based measures.

The reason for selecting the four measures is to obtain certain diversity so that the
results from different measures could be representative. The Euclidean distance is the
"ordinary" distance between two points that one would measure with a ruler. By using
this formula as distance, Euclidean space (or even any inner product space) becomes a
metric space. Cosine similarity is a measure of similarity between two vectors by
measuring the cosine of the angle between them. The result of the Cosine function is
equal to 1 when the angle is 0, and it is less than 1 when the angle is of any other
value. Calculating the cosine of the angle between two vectors thus determines
whether two vectors are pointing in roughly the same direction. The Jaccard index,
also known as the Jaccard similarity coefficient (Wikipedia), is a statistic used for
comparing the similarity and diversity of sample sets. The Jaccard coefficient measures
similarity between sample sets, and is defined as the size of the intersection divided by

the size of the union of the sample sets:

_|An B

The overlap coefficient is a similarity measure related to the Jaccard index that

computes the overlap between two sets which is defined as follows:

X NY]|

overlap(X,Y) = min (| X|,|Y])

If set X is a subset of Y or the converse then the overlap coefficient is equal to 1.

The four K-NN algorithms worked on the same set of data and produced different

89

annotation results based on different calculation and different data type.

7.3 Concept Classification Results

The top five classification results for each technology are listed in Table 16. By
comparing with the expert annotation results, all the matched CWE nodes were
highlighted by underline. By observation, most of them contain one or two overlaps
with the expert annotation results, and among the different algorithms, the CWE tf-idf
CVE binary algorithm shared the most overlaps with the query as vector algorithm on
their top five results for all the CVE annotations. The Jaccard and Overlap
measurements also share around 60% of their top five results, which is not surprising

based on the fact that both of them depend on the set calculation.

Table 16 — Top Five Results of Annotation Methods

N o o0 on (@\] (@]

(@) (@) O o — —

< < (@] S <t S

[« O — [« (@] (e

< < Vv o'\ A)

S S S S S —

oS oS oS oS (e (e

(@\| (@\| (@\| (@\| (@\| (@\|
Documen | 130 130 193 130 190-680 130

ts Match | 131 131 130 131 130 190-680
based on | 120 193 170 193 20 131
TF-IDF 193 190-680 131 20 193 193
190-680 | 129-789 120 190-680 120 120

Precision | 16.7% 42.9% 20% 16.7% 50% 33.3%
Recall 50% 42.9% 50% 12.5% 60% 40%
Query as | 130 129-789 | 193 131 190-680 131
Vectors 131 193 131 130 131 130

120 130 120 20 120 190-680
193 20 190-680 193 130 120
190-680 | 131 130 129-789 193 193

Precision | 16.7% 50% 16.7% 16.7% 33.3% 33.3%
Recall 50% 42.9% 50% 12.5% 40% 40%

90

Euclidean | 5, 129-789 | 227 227 227 132'195 ;
415-416 % 192 415-416 | 415-416 | 192
20 415416 | 415416 | 242 242 415-416
194-195-
oc 192 242 20 192 242
194-195- 194-195-
227 227 oc 192 oc 227
Cosine 194-195-
130 129-789 | 193 20 190-680 | o
129-789 |20 170 190-680 | 20 130
190-680 % 190-680 | 130 227 190-680
20 193 227 191 129789 | 120
120 190-680 | 129-789 | 227 120 467-468
Jaccard 193 120 682 131 20 120
120 190-680 | 191 20 242 467-468
129-789 % 190-680 | 130 129-789 | 190-680
190-680 | 193 193 190-680 | 456 130
130 129-789 | 170 191 190-680 132'195)
Overlap | 191 193 170 27 242 190-680
190-680 | 128 131 131 129789 | 467-468
194-195-
oc 242 120 20 120 242
129-789 | 129-789 | 190-680 | 130 20 13‘6"195 i
130 % 193 190-680 | 190-680 | 192

There are overlaps and differences among all the similarity calculation among the

four K-Nearest Neighbor annotation algorithms, so a weighted voting is executed to

select the top five ST concepts that could be representative for K-NN to annotate the

corresponding CVEs. Basically, for the results from the four different algorithms, the

91

first place voting are given a weight as 1, second as 0.8, third as 0.6, fourth as 0.4 and
the fifth as 0.2. And to mitigate the bias, the ST concepts that appear only once are

rejected. Table 17 shows the voted ranking results (keep the top five) for the four

K-NN algorithms.

Table 17 — Voting Results for the Four K-NN Annotation Algorithms

N o (] on (@\l (e
(o)) (=) O ()] — —
< < (@\ S <t S
(e} (e} — S (@ [}
< < Y oN oN =
S S S S S —
S S S S S [}
N N N N N N
1 130/ 129-789 | 227 131 227/ 190-680
129-789/ 242
190-680
2 |20 193 170 227 20 120
194-195
-196/
120
3 194-195 | 193/ 20 129-789 194-195
-196 190-680 -196
4 190-680 130 190-680 130/
467-468
5 190-680 120 192/
242
Precision | 20% 25% 20% 16.7% 37.5% 27.3%
Recall 100% 28.6% 50% 12.5% 60% 60%

Then, with the expert annotation as benchmark, precision and recall values for all
the results from the three algorithms (CWE tf-idf CVE Binary, Query as Vector,
K-NN) were calculated and shown in Table 18. From the voting results, the

observation is the recall is relatively high.

92

Table 18 — Voting Results for all the three Annotation Algorithms (Documents
Match based on TF-IDF, Query as Vectors and K-NN)

o (ag) o] on (@\| (e}
N N O o — —
< < (@] S <t S
(e} (e} — () [\ (e}
it it b X) g
() () S S S —
S S S S S S
(@] (@] (@] (@] [@\| (@]

1 130 130 1935682 | 131682 | 190-680 | 190-680

>128 >128/13
12682
2 1312682 | 1935682 | 170 130 20 130
/129-789
3 120 131 131 20 130 120
4 190-680 | 190-680 | 130 193 120 193
>128 >128
5 193 190-680 | 190-680 | 193->682
>128 >128
Precision | 12.5% | 44.4% 25% 37.5% 62.5% 50%
Recall 50% 57.1% 100% 37.5% 100% 80%

The weighted voting can reflect the overall ranking among the different

annotation algorithms but the cover-all approach and the average calculation might

lose certain important ranking information, to keep the original ranking information,

we used another method named max positioning to summarize the top five results,

which first collect all the first placed nodes from all the four annotation algorithms,

delete the repeated ones, put in the first place of results, then repeat this process on the

second, to fifth places, and delete the nodes if they appeared in the previous places,

the final results are shown in Table 19. To keep the completeness, the root nodes are

inserted into the results other than the original results.

93

Table 19 — Max Positioning Results

2\ N 8 Q g 2
< < = S S g
= = 8 3 2 2
S S S S S S
1 130/ 130/ 1935682/ | 130/ 190-680~> | 130/
129-789/ 129-78 | 227 1315682 | 128-682/ | 1315682/
190-680>12 | 9 227/ 190-680~>
8 >682 242 128
2 131/ 131-6 | 130/ 227 130/ 120
20/194-195 | 82/193 | 131/ 131/
-196/ 170 20
120
3 194-19 | 120/ 193/ 120/ 194-195-
3-196 | 190-680> | 20 129-789 | 196
128
4 193 190-68 190-680> | 193 193/
0->128/ 128/ 467-468
20 129-789
5 192/
242
Precision | 14% 53.8% | 20% 18.2% 38.5% 33.3%
Recall 100% 100% | 100% 25% 100% 100%
Only Top Results
Precision | 14% 66.7% | 66.7% 33.3% 66.7% 66.7%
Recall 50% 28.6% | 100% 12.5% 80% 80%

Based on the precision and recall calculation,

we conducted a pairwise

comparison of the performance of the three annotation approaches using paired,

one-tailed Wilcoxon tests. The results are as follows:

Precision:

e There are no statistically significant differences between the precision of K-NN,

TF-IDF and cosine similarity.

e Max positioning is statistically better than K-NN, TF-IDF or cosine similarity.

e Max positioning is statistically better than voting.

94

Recall:

e There are no statistically significant differences between the recall of K-NN,

TF-IDF and cosine similarity.

e Voting is statistically better than TF-IDF or cosine similarity but not statistically
different from K-NN

e Max positioning is not statistically different from K-NN, TF-IDF or cosine
similarity

e Voting is statistically better than max positioning

In this chapter we described the integration of multiple machine learning
techniques to develop features (distinguishing keywords in CWE descriptions) for
each semantic template concept. These results are then used for the semi-automatic
annotation of natural language vulnerability descriptions in software repositories.

To further summarize and evaluate the annotation results, the top five results from
tf-idf, documents as vector from Table 16, and the K-NN voting Table 17 for
CVE-2004-0492 are gathered and voted with the same weighted voting rule as used
for Table 17. For this time, the weighted ranking results are listed as percentages for
each selected node in Figure 26, and the root nodes inherit the maximum ranking
results from all of their children. As the weighted voting results, this visualization
reflects the probabilities for each selected semantic template node to be the “correct
tag” to annotate CVE-2004-0492. The second half of Figure 26 was a segment of
description from CWE specification 1.6, for CWE-130, which listed CVE-2004-0492

(marked by red circle) as one of the observed examples, and also CWE-130 was in the

95

expert identified relevant CWE entries for CVE-2004-0492. This visualization

enhanced our confidence on this set of semi-automatic annotation techniques.

CVE 2004-0493

I15-A NGER

A

7% " & 60%

[}
—_ 63%
i % TPROPER HANDLING O IMPROFER BUFFER COPY WITHOUT
INCORRECT- 15-A LENGTH PARAMETER VALIDATICN OF CHECKING SZE OF INPUT
CALCULATION INCONSISTENCY ARRAY INDEX {'CLASSIC BUFFER OVERFLOW)
roxz #130 #120 #788 #120

CWE-130: Improper Handling of Length Parameter

Inconsistency

Weakness ID: 130 (Weakness Base) Status: Incomplete
Description
Summary
The software does not handle or incorrectly handles incoming data that contains a length or size
field that is inconsistent with the actual length of the associated data.
Extended Description
If an attacker can manipulate the length parameter associated with an input such that it is
inconsistent with the actual length of the input, this can be leveraged to cause the target
application to behave in unexpected, and possibly, malicious ways. One of the possible motives
for doing so is to pass in arbitrarily large input to the application. Another possible motivation is
the modification of application state by including invalid data for subsequent properties of the
application. Such weaknesses commonly lead to attacks such as buffer overflows and execution
of arbitrary code.
Alternate Terms
length manipulation
length tampering
Time of Introduction
* Architecture and Design
* Implementation
Applicable Platforms
Languages
* C (Sometimes)
v C++ (Sometimes)

« All
Observed Examples
Reference Description

CVE-2000-D655

CWVE-2001-D181

CVE-2001-0825

CVE-2001-11868

CVE-2002-1235 length field of a request not verified
CVE-2002-1357

CWVE-2003-D327

CWVE-2003-D348

CWVE-20032-D428

CWVE-2003-0825 can overlap zero-length issues
CVE-2004-D085

CWVE-2004-D201

CWVE-2004-D412 leads to memery consumption, integer overflow, and heap overflow
CVE-2004.0420

CVE-2004-0462

Figure 26 - Weighted Voting Result for CVE-2004-0492

96

8. Conclusion

The goal of this work was to develop a conceptual framework for the study of
software vulnerabilities, and examine its effectiveness in practice for use by
stakeholders in the SDLC. To this end, we have outlined a process for the construction
of semantic templates, annotation of vulnerability artifacts using the semantic
templates manually as well as semi-automatically, and evaluating the effectiveness of
semantic templates through a controlled experiment. Vulnerability artifacts and trends
from a large-scale open source software development project provided units of
analysis throughout this work. Our experiences demonstrate feasibility of constructing
semantic templates for various weakness types from existing body of knowledge for
software weaknesses. Our findings indicate that semantic templates do improve the
effectiveness of novice programmers to study software vulnerabilities, in addition to
providing semantic guidance to machine learning techniques used for
semi-automatically annotating natural language vulnerability descriptions in software
repositories. Our results are also geared towards improving the adoption of software
assurance standards, thus, the contributions of this work are far-reaching and of
immediate relevance to a body of security/software engineering researchers and
practitioners.

As an organized conceptual model to study and avoid software vulnerabilities,
semantic templates hold the potential application for improving current education and
training practices in software development. With the observation of the improvement

of students’ performance in the experiment, semantic templates help novice

97

developers to spend less time on understanding vulnerabilities, while achieving higher
recall on identification of relevant weakness concepts. Also, semantic templates
complement current knowledge bases for weaknesses such as the CWE and CVE.
Software repositories are rich sources of information about vulnerabilities that
occur during a product’s lifecycle. Although available, such information is scattered
across numerous databases. Furthermore, in large software repositories, a single
vulnerability may span across multiple components and have multidimensional
interactions with other vulnerabilities. Thus, identifying the patterns of vulnerability
occurrence in a larger context of software development continues to be an open
problem. Semantic templates embody and integrate scattered patterns of vulnerability
occurrences and provide a handle on the information overload problem that
developers face during the study of software vulnerabilities. The organized structure
of semantic templates offers a repeatable and intuitive schema for the representation
and management of vulnerability information. Such information provide actionable
metrics and measures to guide programmer training, authoring descriptions and
organization of standard weakness enumerations, automated tool development, secure
coding guidance, as well as allocation of resources towards secure software

development efforts.

8.1 Contributions

As described in this dissertation, contributions of this research work include:

® Developed a process for constructing semantic templates to study

98

software vulnerabilities by analyzing and aggregating CWE weaknesses.
B Demonstrated the use of this process to design the Buffer Overflow,
Injection, and Information Exposure semantic templates
B Implemented a representation of semantic templates using the Web
Ontology Language (OWL) as well as motivated the development of
queries based on concepts in the semantic template to retrieve
corresponding vulnerability information recorded in a semantic web
repository.
® Demonstrated the use of the semantic templates by manually annotating
publicly reported software vulnerabilities from a large project. This
effort improved the understanding of the vulnerabilities as well helped
refine/verify the template structure.
® Empirically validated the efficiency and effectiveness of semantic
templates using a controlled experiment. In addition, expert surveys
indicate wide applicability and usefulness of semantic templates for
other research and development efforts for software vulnerabilities.
® Integrated multiple machine learning techniques to develop features
(distinguishing keywords in CWE descriptions) for each semantic
template concept, which is used for semi-automatic annotation of natural
language vulnerability descriptions in large software repositories.
Table 20 maps the research activities described in this dissertation to the study

hypotheses.

99

Table 20 - Mapping between Research activities and the Hypotheses

Study Hypotheses

‘AouepuUNPal J0 AOUISISUOIUL 20NPAY 'q'T

"SUOIIBIOWINUS PUB MITAJI SpIEpuUe)s paroidw] "e'g

SOLIOW JO JuowIdo[oAdp BIIOR,] 10|

SONI[IqRIOUINA PI)B[OI WOIJ SOXIJ ALY 'TI'q' |

sax1J Jo Sun3ore)ed 29 uoNeZLI03ed d[qeuy 1°q'[

uonegiaeu 29 uonejudsard pasoxdwy ‘e’ |

uoneI3auI 29 uoreIouUe paAoIdwy Te|

Research activities

100

9. Ongoing and Future Research

The work presented in this dissertation represents initial steps towards a larger

research plan. We outline future work making use of semantic templates.

9.1 Incorporating Social Network Data

Semantic templates provide a framework for organizing vulnerability-related
information from software project repositories and vulnerability categorizations and
databases. The analysis of project repository information has thus far been limited to
change history data. Incorporating additional data gleaned from the project repository
can enable more sophisticated analysis and queries.

Social network data refers to individual and relationship information of the
project stakeholders of the SDLC. This includes user profiles and data gathered from
recorded discussions and conversations. The Apache project repository includes a
richer set of data including discussions in development mailing lists and bug
databases. This information can provide additional insights into understanding how
the vulnerability was discovered. Certain patterns of vulnerability appearance can be
identified based on Social network analysis. For instance, a reported bug may not be
immediately recognized as a vulnerability issue until further discussions with
experienced developers. Additional insights can also be gained in assessing the quality
of fixes. For example, a fix may set off a long thread of discussions regarding its

merits and limitations, and may itself be further patched, indicating incompleteness.

101

9.2 Identifying and Cataloguing Fix Patterns

Relevant information about fixes to vulnerabilities will be collected, analyzed and
grouped based on vulnerability categorization. In this process, abstract patterns of
similar fixes will be extracted from the commonalities among the source code changes
associated with the fix using the following proposed process:

® Manually inspect description and source code changes of fixes to identify the

core intents and activities of them

® (Generalize and develop categories of the identified fixes

® Investigate if there are relationships between fix categories and change logs

(do certain keywords show up?)
® [nvestigate similarities and relationships between vulnerabilities categories

and fix categories (do certain vulnerabilities get fixed a certain way?)
9.3 Ontology Reasoning on Vulnerabilities

We have implemented semantic templates by constructing a rudimentary
ontology of software weaknesses. The semantic templates were manually constructed
and we have shown how instances of vulnerabilities can be classified through manual
or semi-automatic annotation. The ontology’s schema currently consists of basic taxonomical
relationships between semantic template concepts. Additional properties (e.g. possible fix
pattern for a certain category of weakness), axioms, constraints can be added in order to
construct a working knowledge base. The future work on ontology development would be
collecting such additional properties, constraints to complete the weakness knowledge base so

that more advanced functionalities such as reasoning and inference would be feasible.

102

® Based on the source code comparison before and after fixes, develop fix
categorizations and report their frequencies with respect to different
weaknesses;

® Social network analysis to look for the patterns of vulnerability appearance;

® By reasoning in the vulnerability knowledge base, a developer could link to

information such as “other possible vulnerabilities” or “possible solutions”

9.4 Semantic Templates for Education and Training

Although weaknesses are inevitable in software systems, an experienced
developer or testing engineering generally could discover possible vulnerabilities
faster and more accurate than novice counterparts. Developing this ability to sense an
occurrence of vulnerability is generally nurtured by time and experience.

Semantic templates were designed to help developers easily follow the lifecycle
of certain categories of vulnerabilities, including the origin (software faults),
appearance (weakness), location (resource) and the results (consequences). With the
additional CAPEC and fix patterns information, this knowledge structure can be the
basis for teaching materials for developers, especially novices, to learn the nature and

solutions of vulnerabilities.
9.5 Domain Specific Semantic Templates

Current semantic templates are based on weakness categories (such as buffer
overflow, injection etc.), which is how we divide and conquer the vast number of

weaknesses in the CWE. Using other perspectives, the scope of existing semantic

103

templates can be further tailored. Several semantic templates representing different
categories of weaknesses could share certain concept units. For example, improper
input validation (CWE-20) is the shared software fault for both buffer overflow and
injection. Also, as a consequence-based category of weaknesses, the denial of service
semantic template that we planned is expected to share several consequence concept
units with other semantic template. Based on this situation, a more abstract or specific
collection of semantic template concepts could be used to organize a group of other
relevant semantic templates.

While from a domain specific perspective, even current categories of weaknesses,
such as injection, which span several domains and technology groups, may contain
irrelevant concepts that add noise to the mental model of developers. Domain specific
view helps us tailor existing semantic templates to improve developer understanding
of vulnerabilities. Common Weakness Scoring System (CWSS), as a common
framework for prioritizing weaknesses that are discovered in software applications, in
conjunction with the Common Weakness Risk Analysis Framework (CWRAF), can be
used by consumers to identify the most important weaknesses for their business
domains, in order to inform their acquisition and protection activities as one part of
the larger process of achieving software assurance. Figure 27 shows the business
domains and technology groups identified as part of the CWRAF. Domain specific
semantic templates may be tailored from the CWEs at the intersection of business

domains and technology groups (referred to as vignettes) in Figure 27.

104

Contro!
Systems
End-Point
Computing
Devices

Database &

identity Mngt
Systems

Enterprise
Sys Apps

Cloud
Computing

Qommon Vignette for Technology Group

Mneﬂe for Technology Group

___._
Common Vignette for Domain

/--‘

h\“‘-ﬂ
iz
g

Figure 27 — Technology Groups and Business Domains

105

10. References

[1] R.P. Abbott, J. S. Chin, J.. E. Donnelley, W. L. Konigsford, S. Tokubo, and D.
A. Webb. The RISOS Project: Security Analysis and Enhancements of Computer
Operating Systems. Lawrence Livermore Laboratory TR NBSIR-76-1041, April
1976.

[2] T. Aslam. A Taxonomy of Security Faults in the UNIX Operating System.
Purdue University, August 1995.

[3] K. Y. Begel, Phang and T. Zimmermann. Codebook: Discovering and Exploiting
Relationships in Software Repositories. /CSE ’10, May 2-8 2010, Cape Town,
South Africa

[4] J. Bevan, E. J. Whitehead, S. Kim, M. Godfrey. Facilitating Software Evolution
Research with Kenyon. Proc. of 13th Foundations of Software Eng. Sept. 2005.

[5] R. Bisbey and D. Hollingworth. Protection Analysis: Final Report. Information
Sciences Institute, University of Southern California, ARPA ORDER NO. 2223,
ISI/SR-78-13 May 1978.

[6] M. Bishop. A Taxonomy of UNIX System and Network Vulnerabilities.
Department of Computer Science University of California at Davis, CSE-95-10,
May 1995.

[7] S. M. Christey. The Preliminary List of Vulnerability Examples for Researchers
(PLOVER). NIST Workshop Defining the State of the Art of Software Security
Tools, Gaithersburg, MD, August 2005.

[8] S. M. Christey, C. O. Harris, J. E. Kenderdine, B. Miles, and R. Martin. CWE
Version 1.6. CWE - Common Weakness Enumeration. 29 Oct. 2009. The MITRE
Corporation. <http://cwe.mitre.org/>.

[9] D. W. Embley, Y. Ding, S. W. Liddle and M. Vickers. Automatic Creation and
Simplified Querying Of Semantic Web Content. /n Proceedings of First Asian
Semantic Conference (ASWC), Beijing China (2006).

[10] R. Feldman, and I. Dagan,. Knowledge discovery in textual databases (kdt). In
Proceedings of the First International Conference on Knowledge Discovery and
Data Mining (KDD-95), pages 112—-117. AAAI Press, 1995.

[11] R.A. Gandhi, H. Siy, Y. Wu, Studying Security Vulnerabilities, CrossTalk, The
Journal of Defense Software Engineering, Sept/Oct issue 2010.

[12] J. H. Gennari, A. M. Mark, et al. The Evolution of Protégé-2000: An
Environment for Knowledge-based Systems Development. Proc. of
Human-Computer Studies. 1st ed. Vol. 58. 2003. Print.

[13] T. Gruber. A Translation Approach to Portable Ontologies. Knowledge
Acquisition 5, 2, 199-299, 1993.

[14] J. Han, M. Kamber. Data Mining: Concepts and Techniques. San Francisco, CA:
Morgan Kaufmann, 2006. Print.

106

[15] E. Hassan, R. C. Holt. The small world of software reverse engineering,
Proceedings of the 11th Working Conference on Reverse Engineering
(WCRE04).

[16] A. Hotho, A. N urnberger, and G. Paass. A brief survey of text mining. LDV
Forum,20(1):19-62, 2005.

[17] M. Howard, D. LeBlanc, J. Viega. 19 Deadly Sins of Software Security
Programming Flaws and How to Fix Them. McGraw-Hill Osborne Media. ISBN:
0-07-226085-8, July 2005.

[18] E.John, E. Gansner, E. Koutsofios, S. North and G. Woodhull. Graphviz and
Dynagraph - Static and Dynamic Drawing Tools. Graph Drawing Software
(2003): 127-48. Print.

[19] C. M. Judd, R. S. Eliot, and H. K. Louise. Research Methods in Social
Relations. Fort Worth: Holt, Rinehart, and Winston, 1991. Print.

[20] M. Kantardzic. Data Mining: Concepts, Models, Methods and Algorithms. New
York: Wiley-Interscience, 2002. Print.

[21] C. Kiefer, A. Bernstein, J. Tappolet. Mining software repositories using
iISPARQL and a software evolution ontology. 4th Int’l Workshop on Mining Soft.
2007.

[22] S. Kim, et al. TA-RE: an Exchange Language for Mining Software Repositories.
3rd Int’l Workshop on Mining Soft. 2006.

[23] S. Kim, K. Pan and E. J. Whitehead. Memories of bug Fixes.
SIGSOFT'06/FSE-14, November 5-11, 2006, Portland, Oregon, USA.

[24]C. E. Landwehr, A. R. Bull, J. P. Mcdermott, AND W. S. Choi. A Taxonomy of
Computer Program Security Flaws with Examples. Information Technology
Division, Code 5542, Naval Research Laboratory, Washington, D.C. 20375-5337
in ACM Computing Surveys 26, 3 (Sept., 1994)

[25] D. Manning, P. Raghavan and H. Schiitze. Introduction to Information
Retrieval. New York: Cambridge UP, 2008. Print.

[26] Q. Mei, C. Zhai. Discovering evolutionary theme patterns from text — an
exploration of temporal text mining, KDD 05, 21-24 August 2005, Chicago,
Illinois, USA.

[27] K. Pan, S. Kim, E. J. Whitehead. “Toward an understanding of bug fix patterns.”
Empirical Software Engineering 14:286-315, 2009.

[28] D. Sanchez, D. Isern and M. Millan. Content annotation for the semantic web:
an automatic web-based approach. Knowledge and Information System. DOI
10.1007/s10115-010-0302-3. 2010.

[29] Shapiro, S. S., and M. B. Wilk. "An Analysis of Variance Test for Normality
(Complete Samples)." Biometrika 52.3/4 (1965): 591. Print.

[30] M. Shewhart, M. Wasson. Monitoring a newsfeed for hot topics, Proceedings of
KDD-99 San Diego CA USA, 1999.

107

[31] H. Siy, Y. Wu. An Ontology to Support Empirical Studies in Software
Engineering. Proceedings of the International Conference on Computing in
Engineering, Science and Informatics (ICC2009), Fullerton, California, April
2009.

[32] S. Sudhakrishnan, J. T. Madhavan and E. J. Whitehead. Understanding Bug Fix
Patterns in Verilog. MSR’08, 10-11 May 2008, Leipzig, Germany.

[33] J. Tang, M. Hong, D. Zhang, B. Liang, and J. Li. "Information Extraction:
Methodologies and Applications." Emerging Technologies of Text Mining:
Techniques and Applications. Hershey, PA: Information Science, 2007. Web.

[34] K. Tsipenyuk, B. Chess, G. McGraw. Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors. NIST Workshop on Software Security
Assurance Tools, Techniques, and Metrics, Long Beach, CA, November 2005.

[35] S. Weber, P. A. Karger, A. Paradkar. A Software Flaw Taxonomy: Aiming
Tools at Security. IBM Research Division, Software Engineering at Secure
Systems - Building Trustworthy Applications (SESS'05). St. Louis, Missouri, June
2005.

[36] Y. Wu, R. A. Gandhi and H. Siy. Using Semantic Templates to Study
Vulnerabilities Recorded in Large Software Repositories. Proc. of The 6th
International Workshop on Software Engineering for Secure Systems (SESS'10)
at the 32nd International Conference on Software Engineering (ICSE 2010),
South Africa, Cape Town. 1-8 May 2010.

[37] Y. Wu, H. Siy, L. Fan. Discovering Meaningful Clusters from Mining Software
Engineering Literature. Proceedings of the 20th International Conference on
Software Engineering and Knowledge Engineering (SEKE '08), Redwood City,
California, July 2008.

[38] Y. Wu, H. Siy and R.A. Gandhi, NIER: Empirical Results on the Study of
Software Vulnerabilities. NIER at the 33rd International Conference on Software
Engineering (ICSE 2011), Honolulu, Hawaii. May 2011

[39] CAPEC - Common Attack Pattern Enumeration and Classification (CAPEC).
Web. 28 Oct. 201 1. <http://capec.mitre.org/>.

[40] CVE -Common Vulnerabilities and Exposures (CVE). Web. 28 Oct. 2011.
<http://www.cve.mitre.org>.

[41] "Queries as Vectors.” The Stanford NLP (Natural Language Processing) Group.
Web. 28 Oct. 2011.
<http://nlp.stanford.edu/IR-book/html/htmledition/queries-as-vectors-1.html>.

[42] "CWE - CWE Glossary.” CWE -Common Weakness Enumeration. Web. 28 Oct.
2011. <http://cwe.mitre.org/documents/glossary/index.html>.

[43] The Ten Most Critical Web Application Security Vulnerabilities. The Open
Web Application Security Project (OWASP), January 2004.

[44] The Web Security Threat Classification. Web Application Security Consortium,
November 2005.

108

[45] World Wide Web Consortium (W3C). OWL Web Ontology Language reference.
Web. 28 Oct. 2011. <http://www.w3.org/TR/owl-ref/>.

109

11. Appendix

A. Glossary
Attacker: an actor who attempts to gain access to behaviors or resources that are
outside of the software's intended control sphere for that actor. [42]
Can-Precede: this is a binary relationship that indicates causal connects between two
software faults, software fault and weakness, or weakness and consequence.
Consequence: failure conditions that violate security properties. [42]
Occurs-In: this is a binary relationship that indicates the presents of a weakness in a
context of the resource.
Precision: In the field of information retrieval, precision is the fraction of retrieved

documents that are relevant to the search and is computed as:

|{relevant documents}n{retrieved documents}|

|{retrieved documents}|

Recall: Recall in information retrieval is the fraction of the documents that are

relevant to the query that are successfully retrieved and is computed as:

|{relevant documents}n{retrieved documents}|

|{relevant documents}|

Resource: an object or entity that is accessed or modified within the operation of the
software, such as memory, CPU, files, or sockets. Resources can be system-level
(memory or CPU), code-level (function or variable), or application-level (cookie
or message). [42]

Semantic Template: the generalized patterns of relationship between software
elements and faults, and their association with known higher level phenomena in

the security domain. This is not related to various uses of the term “semantic

110

template” in other literature, such as semantic web, website design and natural
language processing.

Software Fault: An incorrect step, process, or data definition in a computer program.
[IEEE Standard Glossary of Software Engineering Terminology].

TF-IDF: The tf-idf weight (term frequency—inverse document frequency) is a weight
often used in information retrieval and text mining. This weight is a statistical
measure used to evaluate how important a word is to a document in a collection or
corpus. The importance increases proportionally to the number of times a word
appears in the document but is offset by the frequency of the word in the corpus.
Variations of the tf-idf weighting scheme are often used by search engines as a
central tool in scoring and ranking a document's relevance given a user query.
[Wikipedia]

Vulnerability: an occurrence of a weakness (or multiple weaknesses) within software,
in which the weakness can be used by a party to cause the software to modify or
access unintended data, interrupt proper execution, or perform incorrect actions
that were not specifically granted to the party who uses the weakness. [42]

Weakness: a type of mistake in software that, in proper conditions, could contribute to
the introduction of vulnerabilities within that software. This term applies to
mistakes regardless of whether they occur in implementation, design, or other

phases of the SDLC. [42]

111

B. Expert Survey Results

Semantic Templates Feedback Form

Do Semantic Templates seem to have the potential to be useful for the study of
weaknesses? Rate below
N
1 2 3 L) 5
Not Useful B Will be a Hit!

Would you like to see more Semantic Templates developed using a larger
community input?

A Yes ___No

Should there be a central repository for Semantic Templates?
IL’_/YL'.-; ___No

What do you like the most about Semantic Templates?

_ﬁu C lm-»ia.\ ol Ea N o Q ‘Jiku (55 U?S

What do you hate the most about SLmautu. Templates?
‘f{w Poh’r\\ﬂft»@ -(:(-ﬁ \ \fw.rzt} Pf’f {Eu.f(/j a5
o o<](HM/, " = \’]Lf)[(rgg,ﬁ,«, ‘{—/C‘J

—

-
<J

/{).’imjuas,e 5{(.\[,5, 4
Would you like to collaborate with the UNO team?
[f yes, please provide your information.

1_‘ Lﬁllt‘\ l[\(/-‘ L‘;'A_&_ "/{N:‘,:'" jlfff,\-'\. !FL 'r-'ot(L‘\(ll!{.,r-{_
f -
v Hae C‘wftu\“)“\t’r\-t 77 5o [1EC YT 1

3.5 A "u
An zharnce a‘{ S ed | M(u fo e Ll L

112

Semantic Templates Feedback Form

Do Semantic Templates seem to have the potential to he useful for the study of
weaknesses? Rate below
1 2 @ 5

Not Useful Will be a Hit!

fad

Would you like to see more Semantic Templates developed using a larger
community input?

_J{;‘r'es ___No

Should there be a central repository for Semantic Templates?
K Yes No

What do vou like the mest about Semantic Templates?

Used 4 troin dlevelopers

Whar do you hate the most about Semantic Templates?

. Based ea a ma»ﬁ“ﬂj 'ltwgu‘ Clu'ywrﬂ—sf f-'-f"""-'ﬂ"jf)y,
evelo fu’c.q?h'on of LW metans
A ;\?an Hat CwC (s cowprehes /¢ (Heere “"-J‘V"/{""“Lﬁ
. 559"‘, ‘ e L'_ s e O fdg“s)‘jc/(‘“f{m
As tioa teat Co relatiaaships @ x[it
. ’w“fl-ioa relakionsh: 5/ hiereschs 1S ba on mor Haam mtorhe
Bk a to bg leal o et
Would you ije Lo collaborate with the UNO team?
If ves, please provide your information. Z’m ww’kr‘ on O frojrafd‘ .
¢ iy Compamemt Mocldlizy
auide o ey 1o
[ok will P02 enbiiors
C.a.[i“lﬂ‘j"' spcﬂl 'z,.a(no madte™
Hook oAl map T2 <
| i¥s a¥)

ek VLSO

Ves!

113

Semantic Templates Feedback Form

Do Semantic Templates seem to have the potential to be useful for the study of
weaknesses? Rate below

i i k_ Z 3 4 5
Not Useful B Will be a Hit!

Would you like Lo see more Semantic Templal.e> developed using a larger

R @uegﬁm s -,g.-; wi;(ﬁL iF b es //m@ 72“7
_Yes g Woabobror bAdlc 4,
Should there be a cent:l:/;%%ﬁ #Ramantic Tegp éjlzgs? il

_ Yes) No %ﬁa

What do you like the most about Semantic Templates?
' A y ;.
5X¢?'f‘7/f/t’5 ﬂ"/C-/(/é‘?"é’/’_?}ényﬁd At
CW/E

What do you hate the most about Semantic Templates?

CVE Mww&/ Y/ =
WM%%MM ngfé?éz Z CLF s aNe e
ol Bt £ ot gt
i gy A a5 e

Would you like to collaborate with the UNO team?
If yes, please provide your information.

114

Semantic Templates Feedback Form

Do Semantic Templates seem to have the potential to be uscful for the study of
weaknesses? Rate below

1 2 3 5

Not Useful will b;: a Hit!

Would you like to see more Semantic Templates developed using a larger
community input?

X Yes __No

Should there be a central repository for Semantic Templates?
X Yes ___No

Whatc‘ioyou likelthe mostaboutSemantic'l‘emplates? 5 l 'J) A
Thowiny wldimihps thaony Fanend (WEE e : _[t‘ \)ﬁ“
wef 1o ergmit A [argt Aot of dola "““&"“
\QCJI\ 'k"o Lw-\ami\'l\\b"\ 0'{‘ Vﬂqi‘\j d_ga-ﬂi, '{h\" Ly &Pl
F\n\lryl.v-\j] }'\{(Pi“c‘“ﬁ

What do you hate the most about Semantic Templates?

Jo Wk Fhem mek) 5‘
k\w-\]ﬂ e LL‘\IUh&L —1\ p‘h‘]tom-\[:\\“]

y Fophlk'h -j“‘d" A
.\Uﬁp\ﬁr\. \J\)\\r\ a\';:\t

If yes, please provide your information. . Ej‘ru' oy hu‘
‘. I] ihoy
"i’;\A.\M,?f ab i dhnlc ST gent by

luhLKJrL

Would you like to collaborate with the UNO team? 0of Sr' U\ "H\L
> ool qorded yr
I

115

Semantic Templates Feedback Form

Do Semantic Templates seem to have the potential to be useful for the study of
weaknesses? Rate below

1 2 3 @ 5

Not Useful Will be a Hit!

Would you like to see more Semantic Templates developed using a larger
community input?

J

Yes __No
Should there be a central repository for Semantic Templates?
J Yes —_No

What do you like the most about Semantic Templates?
Th w{:dq\'gﬂ & ;c.lhmn‘l'/wﬂ;l tifoomaton will be very Mﬁl‘
Kfoc the Commnity .

What do you hate the most about Semantic Templates?

I'n conemed crehpers mihe have 4o spd evtin 4ine | and miht fe
inclved fo ot dp 5.

T 'm conemee) avamhon might M5 pelevant wformonin when dm-"u_n,
‘Gﬂ'\ l\nlf]'h‘P]g Gouice s,

Would you like to collaborate with the UNO team?
[f yes, please provide your information.

	University of Nebraska at Omaha
	DigitalCommons@UNO
	10-2011

	Using Semantic Templates to Study Vulnerabilities Recorded in Large Software Repositories
	Yan Wu
	Recommended Citation

	3482674.pdf

		2011-12-05T15:40:54-0500
	Preflight Ticket Signature

