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ABSTRACT

A TYPE ANALYSIS OF REWRITE STRATEGIES

Azamat Mametjanov

University of Nebraska at Omaha, 2010

Advisor: Dr. Victor Winter

Rewrite strategies provide an algorithmic rewriting of terms using strategic composi-

tions of rewrite rules. Due to the programmability of rewrites, errors are often made

due to incorrect compositions of rewrites or incorrect application of rewrites to a term

within a strategic rewriting program. In practical applications of strategic rewriting,

testing and debugging becomes substantially time-intensive for large programs ap-

plied to large inputs derived from large term grammars. In essence, determining

which rewrite in what position in a term did or did not fire comes down to logging,

tracing and/or diff-like comparison of inputs to outputs. In this thesis, we explore

type-enabled analysis of strategic rewriting programs to detect errors statically. In

particular, we introduce high-precision types to closely approximate the dynamic be-

havior of rewriting. We also use union types to track sets of types due to presence of

strategic compositions. In this framework of high-precision strategic typing, we de-

velop and implement an expressive type system for a representative strategic rewriting

language TL. The results of this research are sufficiently broad to be adapted to other

strategic rewriting languages. In particular, the type-inferencing algorithm does not

require explicit type annotations for minimal impact on an existing language. Based

on our experience with the implementation, the type system significantly reduces the

time and effort to program correct rewrite strategies while performing the analysis

on the order of thousands of source lines of code per second.
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Chapter 1

Introduction

Program transformation is a mechanized manipulation of programs in order to im-

prove them relative to a variety of criteria such as clarity, efficiency, simplicity,

functionality, translation and computation. Classic program transformation is an

equational reasoning framework of replacing equals by equals in all contexts of a

program [12]. In practice, program transformation is not restricted to preserving

the original meaning of programs and can alter the semantics in such application

areas as program maintenance and evolution [80][59][13][66][16] [24][22][64][20][62]

[48][27][19][7][78] [77]. Other application areas go further and translate programs

from one language to another as in the development of programs by transforming

formal specifications into executable code [70][68][73][74][32]. The primary motiva-

tion in all areas of program transformation is to automate programming tasks to free

a programmer from manually modifying the code and instead reason about it at a

higher level of abstraction.

There is a variety of tools that automate program transformation. The majority

of the tools are specialized and can be classified according to the language of ma-

nipulated programs, the goal of a transformation or other factors of the environment

within which a tool is intended to execute: e.g. compilers, refactoring tools and IDE
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plug-ins. While such tools may be efficient at a particular task, their implementations

are notorious for being hard to comprehend, adapt and reuse. In contrast, program

transformation systems provide dedicated constructs for traversal and rewriting of

arbitrary structured entities. This enables transformation of programs of any struc-

tured language and allows one to reuse common transformations from one language

to another or from one transformational goal to another with minimal changes. As a

result, program transformation systems can provide (multi-)language infrastructures

or domains that support a wide range of programming tasks from program refinement

to compilation and refactoring.

One of the natural abstractions for expressing transformation is rewrite rules.

They specify rewriting with input and output term patterns. Application of a rule to a

term proceeds by matching the input term to the input pattern and building an output

term by replacing all variables within the output pattern by the bindings produced

from the input term matching. Classic term rewriting systems use rewrite rules to

specify declarative rewrite relations to exhaustively apply rewrite rules everywhere in

a given term [6][34][35][15]. Such systems are well-equipped to formally reason about

programs in such areas as theorem-proving applications. Program transformation

systems also use rewrite rules to specify the goal of rewriting, but they also provide

the means for algorithmic specification of rewrite steps including what to do if a

(conditional) rewrite rule fails to apply to a term[75]. This allows a programmer to

specify rewrite relations that are not necessarily confluent or terminating and to build

strategies for controlling the order of rule applications.

At the core of control over rewriting is conditional and sequential composition

operators that define the subsequent behavior when a rule fails to apply to a term.

Sequential composition succeeds when all rules of its ordered sequence successfully

apply with individual rules applied on the outcome of a previous rule in the sequence.

Conditional composition succeeds when one of the rules of the composition success-
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fully applies to the input term with individual rules tried on the term in sequence

until the first successful application. Using these constructs a programmer can define

an arbitrary order of rule applications and handle failures in a strategic manner. For

example, rewrite rules can be composed such that if the first three rules do not apply

to the input term, then the next two rules should be attempted; and if all of them fail,

then the input term should be left unchanged with an identity rewrite (or, instead of

an identity rewrite, an exception could be raised at the point of failure).

A strategic program – a strategic composition of rewrite rules – like any other

program can ‘go wrong’. Programs go wrong if they do not solve the problems

programmers want them to solve. In the context of controlled or strategic rewriting, a

program may go wrong if it fails to modify its input term or if it modifies it incorrectly.

For example, rewrite rules may be sequentially composed with a rule that always fails

causing the entire program to always fail on any input term. As another example, a

rule, due to its position in a strategic composition (or strategy for short), may never

be reached during execution causing the rule to never be attempted on an input

term: e.g. a rule that acts on specific terms may occur after a rule that acts on more

general terms in a conditional sequence. Such scenarios cause a strategic program

to not behave as intended by the programmer leading to time-intensive testing and

debugging.

An effective technique for identifying if a program is behaving as expected is to

understand its flow of execution [52][82]. The flow of execution in strategic rewriting

can quickly become hard to analyze manually. This is due to the binary outcome of

a rule application – a new term or a failure. If n number of rules are conditionally

composed and applied to a term, then there are n + 1 possible execution paths: n

possible new terms and 1 failure if all rules fail. On the other hand, if n number of

rules are sequentially composed, then there are n possible failures and 1 success if all

rules succeed.
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The combination of conditional and sequential composition leads to multiplicative,

instead of additive, growth of possible execution paths. If one conditional composition

with n possible paths is sequentially composed with another conditional composition

with m possible paths, then there are n ∗m possible execution paths in the resulting

strategy. In the worst case, this leads to exponential growth of execution paths as

the number of such compositions grows.

In addition, the number of rule applications grows especially fast in deep rewrites

– traversals of a term’s structure and rewriting of all sub-terms. Since most practical

transformations contain hundreds, if not thousands, of rule applications at run-time,

manual control flow analysis of strategic programs becomes infeasible and automated

analysis becomes a necessity.

One of most popular automated analysis methods for detection of programs that

‘go wrong’ is type systems. Here, a program’s elements are abstracted and classified

according to the kinds of values they compute. Then, a type system checks if an

operation applied to some argument is defined for the argument’s type. If it is, then

a conservative approximation is made that the operation will succeed at run-time.

While the operation may still fail at certain argument values within a type (e.g.

division by zero), type checks are known to eliminate a large number of errors.

Type systems can aid the analysis of strategic rewriting by classifying the rewrite

rules based on their input and output pattern types. Then, the type of a composition

of rules can be computed based on the type of its constituent rules. Armed with this

information, the type system can perform automated checks of whether a program

can modify its inputs and if so, whether the modification produces outputs that are

valid from the perspective of type abstractions.

Type analysis of strategic rewriting is substantially different from classic type

analysis[60]. First, classic type analysis raises an error as soon as an operation is

applied on an undefined type. Type analysis of strategies should only raise an error
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if none of a strategy’s constituent rules, of which there could be many, is defined

on an input term’s type. Second, classic type analysis ignores unreachable program

elements as long as such elements conform to the constraints of a language: e.g. one

of the branches of a conditional may be unreachable, which is ignored as long as both

branches produce terms of the same type. Type analysis of strategies is expected to

identify unreachable elements of a strategy and flag them as errors.

A final notable distinction among others is that classic type analysis deals with

values and types of relatively flat structure: e.g. basic types bool and int, function

types and record types, whose elements are in turn either flat or have few layers of

structure. In contrast, type analysis of strategies needs to deal with terms, whose

structure is defined by the grammar of the term language. For most practical term

languages, derivations from the root symbol of a term to the term’s string involves

multiple non-linear (or branching) expansions, which implies that terms are typically

highly structured both in terms of breadth and depth. This adds an additional

dimension of complexity, because an expressive type analysis needs to account for the

terms’ structures and deal with type abstractions that are as complex as the values

themselves.

1.1 Contributions

The primary contributions of this research are as follows:

High-precision types Applicability of a rewrite rule to an input term depends on

structural compatibility of the input term and the rule’s input pattern. Previous

approaches to the type analysis of term rewriting strategies have utilized sorts

to assign types to rewrite rules [40]. This substantially scales down the capa-

bilities of type-based analysis by allowing rule applications, which are statically

known to always fail during execution. For example, application of a rule that
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acts on one constructor of a sort to a term derived from a different constructor

of the same sort is well-typed, but will always fail. We enrich the analysis by

including the term’s structure into the term’s type. Since terms may use dif-

ferent constructors to derive distinct strings, a term’s type is now, in essence,

dependent on the term’s derivations. This enrichment improves expressivity by

detecting at the level of types rule applications that always fail: e.g. applica-

tion of a rule with an input pattern of expr that derives x to a term rooted

in expr that derives y will always fail during execution and is now statically

flagged as ill-typed. In other words, static analysis closely approximates, and

under- or conservatively approximates when necessary, the dynamic behavior of

rewriting. Consequently, automated static detection of failing rule applications

allows programmers to build better rewrites or rewrites that can succeed.

Strategy types Rewrite strategies may conditionally compose rules that act on het-

erogeneous terms (different constructors and/or different sorts) such that if one

rule fails to apply to an input term, then the next rule in the composition’s

sequence is attempted on the term. Thus, depending on the type of an input

term, application of a conditional strategy may produce heterogeneous outputs.

Application of a single rewrite rule to a term may produce a new term upon

success or failure otherwise, which is another source of heterogeneity. To han-

dle heterogeneity in rewrite strategies, we introduce union types, which are

un-tagged variant types [60]. Strategic application that produces an empty

union type statically indicates application failure of all constituent rules in the

strategy during execution. Thus, the enriched type analysis helps programmers

build strategies that can succeed.

Detailed traversal analysis Generic term traversal is a hallmark of term rewriting

strategies. Having built rich term types that retain term structure and strategy
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types that retain types of constituent rewrite rules, it becomes possible to lift

the notion of type error to term traversal strategies, which apply a strategy

to sub-terms of a term. In particular, it is a type error if traversal of a term

with a strategy fails for all sub-terms. Hence, the enriched type analysis helps

programmers build traversal strategies that can succeed.

Among previous contributions, Lammel’s work on typed generic traversals [40] is

the closest related work directly addressing types within rewrite strategies. There,

system S – the core of program transformation system Stratego [69] – is extended

with new syntax and semantics to support types. Our contributions advance the

previous work by improving the expressivity of type analysis. In other words, we can

assign types and distinguish among a greater number of expressions. This in turn

allows us to detect and report a greater number of errors. The importance of early

detection of errors has been highlighted in [42].

The expressivity of the analysis is improved along three main directions.

1. First, our analysis uses high-precision types instead of simple types as outlined

in the first contribution above.

2. Second, rewrite rules in conditional composition were previously restricted to

be of the same type. This allowed one to assign a single type to the composi-

tion because the types of its operands were the same. We lift this restriction

and allow the types of the composition’s operands to be drawn from distinct

types, which occurs commonly in practice. In particular, the type a conditional

composition is now a union type as outlined in the second contribution above.

Thus, our analysis allows us to assign types and check conditional compositions

with heterogeneously typed rewrite rules, which were previously viewed as type

errors.

3. Third, term traversals were previously assigned one of two type schemes: TP
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(or type-preserving) for traversals that modify a term but preserve its type and

TU(T ) (or type-unifying for some type T ) for traversals that extract information

from a term or summarize it into a single value of type T . We assign types to

term traversals that depend on the type of its argument strategy. This enables

detection of application of a term traversal to a term that does not have a

sub-term applicable for the argument strategy. Thus, our analysis can detect a

greater number of errors.

A final notable distinction is that we analyze programs of strategic rewriting

language TL that is fundamentally different from that of system S. In particular,

handling of application failure in TL is refined by leaving the input term unchanged

instead of raising a run-time exception. This results a substantially different semantic

behavior that requires a richer static view of application results.

Structure The presentation of type analysis is structured as follows. In the re-

mainder of this chapter we present several motivating examples and summarize the

kinds of errors that commonly occur in rewrite strategies. In Chapter 2, we sum-

marize type systems as a syntax-directed method of proving absence of undesirable

run-time errors and present two examples of type analysis of small object languages.

Chapter 3 presents an overview of transformation language TL that is a represen-

tative transformation language supporting all of the primary abstractions of rewrite

strategies. Chapter 3 concludes with the discussion of related transformation systems

and languages including their analysis capabilities. Chapters 4 and 5 present the

main contributions of this research. In Chapter 4, we formally define the core aspects

of type analysis including the definition of types, typing contexts, typing relation

and analysis of the standard rewrite strategy features such as patterns, matching,

rewrite rules and combinators. Chapter 5 presents extensions of the core system by

incorporating analysis of non-standard features of TL such as invocation of functional
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programming from within a conditional rewrite rule as well as higher-order rules and

compositions. Chapter 5 concludes with the current summary of the analysis of term

traversals, whose full analysis remains as future work. Throughout all of the pre-

sentation of type analysis, we provide fully type-checked examples to demonstrate

the concrete results of type analysis. Chapter 6 presents the aspects of an ML-based

implementation of the declarative type analysis presented in the previous two chap-

ters. The goal of this chapter is to highlight key components of the implementation.

Finally, Chapter 7 concludes and presents the limitations and aspects of type analysis

that remain as future work.

1.2 Motivating examples

To observe common pitfalls and errors in the programming of rewrite strategies in

concrete terms, let us discuss several examples of program transformation. A type

system capable of static detection of such errors can substantially improve validation

of rewrite strategies.

Strategy Name Purpose

tx meta- or schema variable ranges over all derivations from t

tJt1t2. . .tnK pattern expression specifies terms rooted in t

ti → to rewrite rule input-output pattern pair
id identity strategy applies to and leaves any term unchanged
s1 <+ s2 conditional composition apply s2 if s1 fails
s1 <∗ s2 (strict) sequential composition apply s2 if s1 succeeds
s1 <; s2 non-strict seq. composition apply s2 to any output of s1
map(s) immediate sub-term traversal apply s to all immediate sub-terms

Figure 1.1: Representative strategic rewriting constructs

Preliminaries Let us adopt the constructs of Figure 1.1 as a representative nota-

tion for expressing strategic rewriting. A meta-variable ranging over all derivations

from t is denoted by tx with an alphanumeric subscript x. To denote a pattern in

the concrete syntax of the term language, we use tJt1 t2 . . . tnK, which describes
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a tree, where t is the root symbol of the term and ti’s are tree leaves that repre-

sent meta-variables or concrete tokens. Rewrite rules map input patterns to output

patterns: ti → to. The strategy id is a polymorphic strategy that applies to any

term and leaves it unchanged. Combinators determine the outcome of a composition

if the first strategy of the composition fails: conditional combinator ( <+ ) returns

the outcome of the second strategy, sequential combinator ( <∗ ) returns the failure,

and non-strict sequential combinator ( <; ) applies the second strategy on the out-

come of the first strategy whether it succeeded or not. Finally, to enable traversal

of sub-terms, combinator map applies its argument to all immediate sub-terms of an

input term.

Failure of a rule and in general a strategy to apply to a term can be viewed from at

least two different perspectives. In the first perspective, which we call exception-based,

failure creates a run-time exception, which terminates the execution, or it creates a

distinguished meta-term (e.g. ↑). In the second identity-based perspective, failure is

treated in a more refined manner by treating the results of an application as a tuple

of an output term and a boolean constant indicating the result of an application[79].

Thus, if f is a strategy that always fails and t is an input term, then the result of

application f t, in the exception-based framework is error or ↑, and in the identity-

based framework is 〈t, false〉.

While failure to apply is more directly observable in exception-based frameworks,

identity-based behavior is at times built-in as a primitive abstraction: e.g. try(s),

which is the same as s <+ id. However, such approximations do not produce the

same behavior, because try(f) <+ s in an exception-based framework will always

succeed and leave the input term unchanged, while f <+ s in an identity-based frame-

work will return the results of s. We adopt the refined approach and view application

failure from the identity-based perspective.

The small set of strategic constructs summarized in Figure 1.1 combined with
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recursion can be used not only to control rewriting but also to define deep traversal

and rewriting of terms. For example, to rewrite every node in a term’s tree we could

define the following top-down traversal

topdown(s) = s <; map(topdown(s))

where strategy s is applied to the root node before the recursive descent into its

sub-terms.

Repetitive application of a strategy to a term to compute its normal form can be

expressed by the following combination of the primitive constructs:

repeat(s) = s <∗ (repeat(s) <+ id)

where strategy s is recursively applied to a term until the first failed application,

which stops the recursion by invoking id on the normalized term.

1.2.1 Boolean expressions

Consider the language of simple boolean expressions consisting of the boolean con-

stants and an ‘if-then-else’ conditional. Figure 1.2 summarizes the grammar of the

language and its evaluation steps[60].

Syntax

t ::= terms:
v value
if t then t else t conditional

v ::= values:
true true
false false

Evaluation

if true then t2 else t3 → t2 (E-IfTrue)

if false then t2 else t3 → t3 (E-IfFalse)

t1 → t′1
if t1 then t2 else t3 →
if t′1 then t2 else t3

(E-If)

Figure 1.2: Booleans

Suppose the expressions of this language need to be simplified using rewrite strate-
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gies.1 The evaluation steps given in Figure 1.2 in the form of declarative inference

rules can be directly encoded as rewrite rules:

ifTrue = tJif true then t2 else t3K → t2

ifFalse = tJif false then t2 else t3K → t3

ifCongruence = tJif t1 then t2 else t3K →

tJif step(t1) then t2 else t3K

Note that the congruent evaluation rule (E-If) declares an intermediate compu-

tation of t′1, which is obtained by (possibly recursive) application of the three rules.

This is captured by step(t1) in rule ifCongruence, which produces t′1 in the rule’s

output pattern. Since rewrite strategies need to algorithmically specify the order of

application of rewrite rules, our goal is to program the strategy step, which defines

the composition and recursion of the three basic rewrite rules.

Suppose a first attempt toward a solution is a sequential composition of the rules:

e.g.

step’ = ifTrue <∗ ifFalse

However, during testing this composition would actually fail to apply to simple terms

like if true then true else false, which can clearly be rewritten to true in one

step. This would occur because sequential composition implies that the input term

of the second strategy must be compatible with the output term of the first strategy.

Therefore, meta-variable t2 of ifTrue would become bound to the input term of

1Appendix A provides the implementation of the rewriting of booleans in TL.
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ifFalse and the actual pattern of ifTrue would become

tJ if true then

if false then t2′ else t3′

else t3K

In effect, we determined the most general term structure to which the strategy ifTrue

<∗ ifFalse could be applied.

Note that it is not necessary to execute the composition on actual inputs to

observe how the composition affects the patterns of constituent rewrite rules. This

is where a type system can intervene and compute the types of the patterns, rules

and strategies. For every application in a program, the type system can check if the

input type of an operation is compatible with the type of the operation’s argument.

Such incompatibilities can be detected statically and fixed by a programmer prior to

execution. At a minimum, the type system can act as a programmer’s assistant in

computing types of strategies. A programmer can then compare the computed type

of a strategy against the intended type and make any necessary code changes, if the

two types do not match.

In the example above, the calculated type of the strategy is

tJif true then if false then t2′ else t3′ else t3K → t3′

Since ifTrue <∗ ifFalse is only applicable to terms that are instances of or more

specific than either one of the constituent rule’s inputs, it clearly does not capture the

intent of simplifying both kinds of possible terms. A more appropriate composition

of these rules is the conditional composition. Together with the congruent rewrite
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rule, the correct strategy is

step = ifTrue <+ ifFalse <+ ifCongruence

This composition encodes a one-step reduction. To extend it to a multi-step

exhaustive reduction, the strategy is wrapped inside a normalizing loop:

main = repeat(step)

1.2.2 Arithmetic expressions

Suppose the language of boolean expressions is extended with natural numbers and

their operations. Figure 1.3 summarizes the new parts of this extension[60].

New syntactic forms

t ::= . . . terms:
succ t successor
pred t predecessor
iszero t zero test

v ::= . . . values:
nv numerical value

nv ::= numerical values:
0 zero value

New evaluation rules

t1 → t′1
succ t1 → succ t′1

(E-Succ)

pred 0→ 0 (E-PredZero)

pred succ t1 → t1 (E-PredSucc)

t1 → t′1
pred t1 → pred t′1

(E-Pred)

iszero 0→ true (E-IsZeroZero)

iszero succ t1 → false (E-IsZeroSucc)

t1 → t′1
iszero t1 → iszero t′1

(E-IsZero)

Figure 1.3: Arithmetic expressions

Similar to rewrite strategies for boolean expressions, the evaluation rules of arith-
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metic expressions could be directly encoded into rewrite rules as follows:2

predZero’ = tJpred 0K → vJ0K

predSucc = tJpred (succ t1)K → t1

isZeroZero’ = tJiszero 0K → vJtrueK

isZeroSucc’ = tJiszero (succ t1)K → vJfalseK

succCongr = tJsucc t1K → tJsucc step(t1)K

predCongr = tJpred t1K → tJpred step(t1)K

isZeroCongr = tJiszero t1K → tJiszero step(t1)K

step = ifTrue <+ ifFalse <+ ifCongruence <+

predZero <+ predSucc <+ isZeroZero <+ isZeroSucc <+

succCongr <+ predCongr <+ isZeroCongr

However, during testing the program would fail to completely simplify some terms:

e.g. iszero pred 0. This would occur because some of the rewrite rules change the

type of the root term: e.g. predZero’ rewrites terms derived from t to terms derived

from v. Because of this, congruent rules would fail to simplify the sub-terms, which

would leave the input term unchanged or incompletely simplified.

A type system could detect that some rules in the composition are type-changing

and raise a warning to the programmer.

2Appendix B provides the implementation of the rewriting of arithmetic expressions in TL.
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The failure-causing rewrite rules can be corrected as follows:

predZero = tJpred 0K → tJ0K

isZeroZero = tJiszero 0K → tJtrueK

isZeroSucc = tJiszero (succ t1)K → tJfalseK

1.2.3 Lambda calculus

Consider the language of lambda-calculus, which is at the core of computation in

functional programming languages. Suppose the evaluation of expressions in this

language needs to be accomplished using rewrite strategies.3 Figure 1.4 lists the

grammar and declarative evaluation rules of the language[60].

Syntax

t ::= terms:
x variable
v value
t t application

v ::= values:
λx. t abstraction value

Evaluation

t1 → t′1
t1 t2 → t′1 t2

(E-App1)

t2 → t′2
v1 t2 → v1 t

′
2

(E-App2)

λx. t1 v2 → [x 7→ v2] t1 (E-AppAbs)

Figure 1.4: Lambda calculus

Note that evaluation rules are mutually exclusive by ensuring that function appli-

cation or beta-reduction takes place only if both terms of an application are reduced to

values (rules (E-App1) and (E-App2)). If so, all occurrences of a lambda-bound vari-

able x are replaced by the argument v2 everywhere in the body t1 (rule (E-AppAbs)).

In addition, we are simplifying and ignoring possible variable name conflicts: i.e.

alpha-conversion to avoid variable capture.

3Appendix C provides the implementation of the rewriting of lambda expressions in TL.
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A direct translation of evaluation rules to rewrite rules produces the following

rewrite strategies:

app1’ = tJt1 t2K → tJstep’(t1) t2K

app2’ = tJv1 t2K → tJv1 step’(t2)K

appAbs = tJλ x1. t1 v1K → topdown(x1 → v1) t1

step’ = app1’ <+ app2’ <+ appAbs

However, during testing this would actually fail to modify any input term. This is due

to an incorrect ordering of rewrite rules in conditional composition. The rule app1’

has an input pattern that is actually more general than the other two rules’s patterns,

because symbol t derives symbol v and thus pattern tJt1 t2K is more general than

the other patterns. This will cause the first rule of the composition step’ to always

apply and never modify an input term.

For example, suppose the input term is λa.a λb.b, which is supposed to be

evaluated to just λb.b. During program execution, the first rule of the conditional

composition – app1’ – will be attempted on the input, which will lead to the invo-

cation step’(λa.a). This will fail because none of the other rule’s input patterns

match the argument, which will leave the argument unchanged at λa.a. The result

will be placed in the output pattern and the rule app’ will succeed and produce λa.a

λb.b, which is the same as the original input term. Hence, the program will fail to

modify this input term and in fact any other input term.

As another example, consider the strategy id <+ s. This strategy always succeeds

with an identity rewrite because the first strategy is applicable to any input term

causing the other strategy s to never have a chance of applying to a term. Such

composition is clearly also an error.

In general, a conditional sequence of strategies should be ordered such that more
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generic strategies (i.e. strategies with input patterns that are more generic) should be

ordered after less generic strategies to allow every strategy in the sequence a chance

of rewriting an input term.

A type system can aid the programmer in the correct ordering of strategies by

calculating the types of constituent rewrite rules. If a situation is detected where a

more generic strategy occurs before a less generic strategy in a conditional sequence,

in other words it is overshadowed, then a type error can be raised to prompt a

programmer to re-order the sequence or perform other corrections.

Overshadowing

A strategy, whose constituent rule is unreachable because it is

overshadowed by rules earlier in the strategy’s sequence, is an error.

In the example, a possible correction is to re-order the strategies in the following

sequence:

step = appAbs <+ app2’ <+ app1’

Another variant of a correction is to make all input patterns mutually exclusive: e.g.

app1 = tJ(t11 t12) t2K → tJstep(t11 t12) t2K

app2 = tJv1 (t21 t22)K → tJv1 step(t21 t22)K

Then, when both terms are completely simplified to values and the pattern of appli-

cation becomes tJv1 v2K, the base case expressed by rule appAbs will be applied on

the term to perform the actual function application or beta-reduction.
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1.3 Summary of errors and other issues

The examples above illustrate both the strategic rewriting approach to program trans-

formation as well as the errors that can occur even in small transformational tasks. A

type system geared toward analysis of strategic programs can not only act as a pro-

grammer’s assistant in the computation of strategy types and raise warnings when

undesirable conditions are detected, but also catch errors that can occur in strategic

compositions of rewrite steps. An example of one kind of error is overshadowing,

where a strategy is unreachable due to its position in a conditional sequence. There

are several other commonly occurring kinds of errors in programming of strategies

and we summarize them next.

Incorrect composition Composition of strategies needs to satisfy the semantics of

combinators used in the composition. In strict sequential composition ( <∗ ), output

of the first strategy needs to be compatible with the input of the second strategy. For

example, the following composition

badSequence = tJpred 0K → tJ0K <∗ tJpred succ t1K → t1

has no chance of succeeding because the second strategy will never apply to the output

of the first. This is clearly an error.

Infeasible sequence A strict sequential composition, where one of the

strategies always fails.

Related to the category of errors due to incorrect composition is a conditional

composition strategy, which given an input term, is not defined for the term’s type.

In other words, all constituent strategies fail to apply to the term, which may occur

if a programmer did not account for some of the possible input term kinds. If none of

the enclosing strategies can handle the input term, then a global application failure
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occurs and the input term is left unchanged. For example, the following application

badChoiceApp = (idJxK → idJyK <+ idJyK → idJzK) idJzK

will always fail at run-time because none of the constituent rewrites in the conditional

composition are prepared to apply to the input term.

Infeasible conditional strategy application

Application of a conditional composition that always fails.

A type system can statically determine such errors allowing a programmer to fix

them prior to execution and testing.

Match equations Rewrite strategies often use pattern match equations to either

bind variables to values or to compare values bound to variables: tJt1 t2...tnK ==

s. For a match equation to succeed, the terms on both sides of the equation need to

be compatible. While some errors are easy to detect

t1 == vJtrueK

where the roots of the two terms are not the same, other errors are not so obvious

t1 == <long and complex strategy>

because there may be multiple potential match candidates.

Infeasible pattern match

Pattern match of terms, which cannot succeed.

A type system can aid the programmer in determining compatibility of patterns

in match equations.
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Term traversals In deep rewrites of a term using term traversals, it is possible

for a strategy to always fail because the input term does not have any sub-terms

compatible with the strategy. For example, if symbol expr does not derive symbol

stmt then traversal of a term rooted in expr with a strategy, whose input pattern is

rooted in stmt has no chance of succeeding and is clearly an error:

badTraversal = topdown(stmt1 → stmt1) expr1

Unviable traversals

Traversal of a term with a strategy, which cannot succeed for any sub-term

of the term.

A type system can inspect the structure of an input term and determine if the

input pattern of a traversal strategy is among the possible sub-terms of the input

term.

Free variables Rewrite rules and strategies typically cannot reference unbound or

free variables. A variable occurs free if it is not bound by either an input pattern or

other match equations within a rule or a strategy. For example, variable t1 occurs

free below

freeVariable = tJif true then t2 elset3K → t1

In practice, free variables are often the result of typographical errors: e.g. they occur

often in program maintenance, when existing code is modified, and with less frequency

in regular program development. A type system can automatically analyze program

variables and flag those occurring free.



22

Program maintenance A type system can be an invaluable tool in program main-

tenance. For example, if a programmer wants to change or refactor the grammar of

the term language, he will not need to search by hand all the places in a large strate-

gic program where the code involving this grammar change needs to be fixed. All of

these sites become type-inconsistent and can be enumerated simply by running the

type-checker and examining the points of type analysis failure.

Equational Reasoning Equational reasoning can be used to refactor strategic pro-

grams, where strategies of one form are replaced with behaviorally equivalent strate-

gies of another form. Refactoring could be used to increase readability or efficiency

of strategic programs. For example, consider the following strategies

r1 = stmtJx = expr1; K→ stmtJ. . .K

r2 = stmtJy = expr1; K→ stmtJ. . .K

s1 = r1 <; r2

s2 = r1 <+ r2

Strategy s2 is equivalent to s1 because given a term only one of the rules r1 and r2

has a chance of succeeding since an input term cannot match both x and y within

assignment statements at the same time. Since conditional composition carries fewer

constraints (less control-flow information) than sequential composition and because

it is more readable and efficient, conditional composition is the preferred choice when

the two kinds of composition are equivalent. A type system can analyze strategies and

suggest a more optimized re-factoring of the strategies using equational reasoning.

Language-specific errors A transformation language used to program rewrite

strategies can have certain conditions, which can be statically checked by a type
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system. For example, a language might not allow duplicate strategy declarations

s = ...

. . .

s = ...

Since type systems perform name analysis as part of their standard analysis routine,

duplicate strategies can easily be checked and flagged.

As another example, a language may require existence of a distinguished strategy

declaration, which drives the entire execution: e.g. main. A type system can flag

programs that do not define a main strategy. These and other language-specific

conditions can be performed by a type system during the standard type analysis

routine.
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Chapter 2

Type Systems

Type system is one of the most popular and well-established formal methods for

detection of errors:

A type system is a tractable syntactic method for proving absence of cer-

tain program behaviors by classifying phrases according to the kinds of

values they compute [60].

Type systems use a collection of syntax-directed rules for computing types of program

phrases or terms based on the types of constituent elements. If a rule can be applied

on term t to calculate its type T , then the term is said to be well-typed, which is

denoted as t : T . If no rule can be applied to a term, then the term is ill-typed and

flagged as an error.

The classic notation for describing the typing rules is the inference rule notation

(also known as Gentzen’s notation), where a rule’s premises and its conclusion are

separated by a horizontal bar. If there are no premises, then the rule has an empty

or no bar. For example, the inference rule

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
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states that for a conditional term to be well-typed, the guard of a conditional must

have a boolean type and that both branches of the conditional must have the same

type T . Other terms that do not fit these conditions are ill-typed: e.g.

• if 0 then 0 else 1, because the conditional’s guard is not a boolean term,

• if true then 1 else false, because the conditional’s branches’ types are

not the same.

One of the desirable properties of a type system is its soundness or that well-typed

terms should not “go wrong” during execution. In other words, if a type system

classifies a term to be well-typed, then the evaluation of the term at run-time should

not produce any type-related errors. The rules of what it means to go wrong or in

other words the definition of a run-time error vary from one language to another. The

classic notion of a run-time error is a “stuck state”, where no further evaluation rule

applies to the term (i.e. it is in normal form), yet the term is not a valid value. For

example, in a language that does not allow addition with booleans, term 5 + true is

in normal form, yet it is neither a boolean value nor an integer value. A sound type

system will not assign a type to this term.

Soundness of a type system is typically established by progress and preservation

theorems [60]:

Progress A well-typed term is not stuck: either it is a valid value or

it is reducible according to the evaluation rules.

Preservation A well-typed and reducible term, when evaluated, produces another

well-typed term.

If both of these theorems hold, then a terminating evaluation of a well-typed term

is guaranteed to produce a valid value. As a result, a sound type system can eliminate

all run-time errors detectable at the abstraction of types.
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A property that is dual to soundness is completeness, where a type system does

not reject as ill-typed any valid term. Toward this end, type systems typically err on

the side of caution to remain tractable/efficient, which leads to conservativeness in

the type analysis. For example, terms like

if <long and complex test> then 5 else <type error>

are typically rejected by type systems as ill-typed even if the conditional’s guard will

always evaluate to true, because precise type analysis of the guard may be intractable.

To provide an intuition for the soundness and completeness of a type system,

suppose set C represents programs that are correct and set T represents programs

that are well-typed. Then, there are four possible relations between the two sets (also

known as the Venn’s diagrams):

1. C ∈ T : In this case the type system is complete, but not sound

2. T ∈ C: The type system is sound, but not complete

3. C ∩ T = A,A 6= C,A 6= T : The type system is neither sound nor complete

4. C = T : The type system is both sound and complete.

Cases 2 and 4 are the most desirable properties that a type system can have with

case 4 being the ideal, but hard to attain due to tractability reasons.

The tradeoff between tractability/conservativeness and precision/expressivity is

inherent in the design of any type system. Improvement of the precision of type-based

analysis is one of the main goals of type systems research. For example, dependent

types have been recently proposed to detect array accesses beyond array bounds,

which is not detectable using simple types. As the computing power and type systems

research innovations grow, type systems are expected to become not only sound but

also more complete.
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2.1 Type Analysis using Rewrite Strategies

To observe the calculation of types and type-checking by a type system, let us discuss

the implementations of a type system for two languages: arithmetic expressions and

lambda-calculus. In both cases, the implementations use rewrite strategies to analyze

a term and rewrite the term to the term’s type. The result of type analysis is the

term’s type, if it is well-typed, or term Abort otherwise. The goal of these examples

is not to discuss potential sources of errors in programming rewrite strategies, but to

illustrate the type analysis in operation.

2.1.1 Typed arithmetic expressions

Consider the language of arithmetic expressions summarized in Figure 1.3. Figure

2.1 defines the typing rules of this language [60].

New syntactic forms

T ::= types:
Bool booleans
Nat nat. numbers

New typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

New typing rules (cont’d)

0 : Nat (T-Zero)

t1 : Nat

succ t1 : Nat
(T-Succ)

t1 : Nat

pred t1 : Nat
(T-Pred)

t1 : Nat

iszero t1 : Bool
(T-IsZero)

Figure 2.1: Typing rules for arithmetic expressions

Rewrite strategies with their inherent pattern-matching capabilities are well-e-

quipped for type analysis of arithmetic expressions.1 To support the rewriting of

terms to types, we extend the term language to include the terms Bool and Nat to

represent the types of well-typed terms and Abort to represent the terms that contain

1Appendix D provides the implementation of type-checking of arithmetic expressions in TL.
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type errors:

t ::= . . . terms:

ty type of a term

ty ::= types:

Bool type of booleans

Nat type of naturals

Abort type of ill-typed terms

The encoding of typing rules into rewrite strategies is similar to the encoding of

evaluation rules as discussed in Section 1.2.2. In particular, the choice of a rewrite

rule to apply to the input term depends on the syntactic structure of the term and

the premises of inference rules are checked by (possibly recursive) rewriting of sub-

terms. Figure 2.2 summarizes the rewrite strategies that implement the type analysis.

Some of the rewrite rules contain additional constraints in the body of an if-block.

These constraints either bind local variables (=) or perform a comparison of two

ground terms (==). A rule with an if-block succeeds if the boolean composition of

all constraints within the block succeeds.

Note that the main strategy contains a post-processing step that checks if the

normalized term t1 is a valid type, otherwise term Abort is produced. This enables

the type-checker to signal a type error if all of the rules in the conditional composition

step fail to apply. Therefore, type analysis of well-typed terms produces either Bool

or Nat and analysis of ill-typed terms produces Abort.

2.1.2 Simply typed lambda calculus

Let us now consider the lambda calculus, whose type analysis is more involved due

to the presence of term variables bound by lambda abstractions. Figure 2.3 defines
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tTrue = tJtrueK → tJBoolK
tFalse = tJfalseK → tJBoolK

tIf = tJif t1 then t2 else t3K → tthen
if {tJBoolK == step(t1) and

tthen = step(t2) and

telse = step(t3) and

tthen == telse
}

tZero = tJ0K → tJNatK
tSucc = tJsucc t1K → tJNatK if { tJNatK == step(t1)}
tPred = tJpred t1K → tJNatK if { tJNatK == step(t1)}

tIsZero = tJiszero t1K → tJBoolK if { tJNatK == step(t1)}

step = tTrue <+ tFalse <+ tIf <+
tZero <+ tSucc <+ tPred <+ tIsZero

main = tin → tout
if { t1 = ((repeat step) tin) and

(((t1 == tJBoolK or t1 == tJNatK) and tout = t1)
or tout = tJAbortK)

}

Figure 2.2: Type analysis of arithmetic expressions using rewrite strategies

the typing rules of the language [60].

Due to the need to remember the type of an abstraction’s variable in the analysis

of the abstraction’s body, the typing relation now changes from a binary to a ternary

relation Γ ` t : T , where Γ is the typing context or environment that holds a set of

bindings of variables and their types. Thus, to determine the type of an abstraction,

rule (T-Abs) extends the typing context with a type binding for the abstraction’s

variable prior to the calculation of the type of the abstraction’s body. Application of

term t1 to term t2 is well-typed if term t1 has a function type, whose input type is

the same as the type of term t2 as expressed by rule (T-App).

Despite the addition of typing contexts to the typing relation to remember a vari-

able’s type binding, rewrite strategies can perform type analysis of lambda expres-
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New syntactic forms

v ::= values:
λx : T. t abstraction value

T ::= types:
T → T type of functions
A base types

Γ ::= contexts:
∅ empty context
Γ, x : T variable binding

Typing rules

x : T ∈ Γ

Γ ` x : T
(T-Var)

Γ, x : T ` t2 : T2

Γ ` λx : T1. t2 : T1 → T2
(T-Abs)

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

Figure 2.3: Simply typed lambda calculus

sions.2 For this purpose, analysis of an abstraction’s body is preceded by distribution

of type information in the body through rewriting of all occurrences of the variable

by its type. Then, the pre-processed term can be examined on its own without any

outside references to typing contexts. Figure 2.4 summarizes this implementation.

As before, the term language is extended with terms that represent types:

t ::= . . . terms:

ty type of a term

ty ::= types:

ty → ty type of functions

A base types

Abort type of ill-typed terms

Note that rule tAbs in Figure 2.4 performs a top-down traversal of an abstraction’s

body t2 to rewrite all occurrences of x1 by its type ty1. This allows the implemen-

tation to inline the inference rule (T-Var) and the extension of the typing context

in the inference rule (T-Abs). The remaining elements of the implementation follow

directly from the typing rules.

2Appendix E provides the implementation of type-checking of lambda calculus expressions in TL.
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tAbs = tJλ x1: ty1. t2K → tJty1 → ty2K
if {t3 = (topdown(x1 → ty1) t2) and

tJty2K = step(t3) and

}

tApp = tJt1 t2K → tJty2K
if {tJty1 → ty2K = step(t1) and

ty1 == step(t2)

}

step = tAbs <+ tApp

main = tin → tout
if { t1 = ((repeat step) tin) and

((t1 == tin and tout = tJAbortK) or tout = t1)

}

Figure 2.4: Type analysis of lambda calculus expressions using rewrite strategies
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Chapter 3

Overview of Transformation

Language TL

Type systems, which were discussed in the previous chapter, are typically oriented to-

wards detection of run-time errors of a particular programming language. Therefore,

before being able to concretely discuss the type system for program transformations,

we need to review the key abstractions of a program transformation language, which

are typically represented by:

Patterns that specify the object of interest in a transformational task. Patterns

can be denoted in the concrete syntax of the object language or its abstract

representation as terms. Patterns may contain meta- or schema variables, which

range over terms and all sub-terms that can be derived from them.

Rewrite rules that specify a basic rewrite step in terms of input and output pat-

terns. Application of a rewrite rule to a term proceeds by matching the term

with the input pattern and applying the resulting meta-variable bindings to

the output pattern in case of a successful match or returning failure otherwise.

Rewrite rules may have optional conditions consisting of additional matches

and other constraints that need to succeed for a rule to succeed. Such rules are
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also known as conditional rewrite rules.

Combinators that compose rewrite rules to build larger, more complex and strategic

rewrites. The set of standard combinators includes sequential and conditional

combinators. The sequential combinator requires both of its operands to suc-

ceed, while the conditional combinator allows a programmer to deal with an

application failure strategically such that if the first operand fails, the second

operand is attempted on an input term.

Iterators that from an operational perspective extend the application of a rewrite

rule to a sequence of terms by enabling recursive invocation of a rule on a term

and its sub-terms. Typical iterators are fixed point operators that exhaustively

apply a strategy to the input term to compute its normal form and traversals

that descend into the term’s structure and apply a strategy to its sub-terms.

TL is a representative program transformation language in that it supports all

of these transformational abstractions. Figure 3.1 summarizes the syntax of the

language. In addition to the standard constructs, TL provides (1) higher-order rewrite

rules, (2) transient strategies that are self-modifying during iterative applications,

(3) a suite of operators for observing a strategy’s application and a strategy’s self-

reduction, and (4) access to functional programming in Standard ML. The focus of

the present discussion will be on standard transformational abstractions, but the

non-standard features will also be discussed for a greater insight into the scope of the

type analysis problem. The chapter concludes with an overview of related program

transformation languages.

3.1 Patterns

Transformation languages are typically parametric with respect to the object lan-

guage, whose terms are manipulated by a transformation program. The standard
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p ::= patterns:
t terminal symbols
tx schema variable
tJp+K parse expression

m ::= matching:
true | false match constants
p = s match equation
m andalso m conjunction
m orelse m disjunction
not m negation
sml.id(p∗) function calls

r ::= rewrite rules:
p → s [if {m}] rule
ID identity
SKIP no-op

d ::= declarations:
id: s rewrite abstraction
def id+ = s iterator abstraction

s ::= strategies:
p pattern
r rewrite rule
s t strategy application
uc s unary composition
s ⊕ s binary composition
fold ⊕ s higher-order comp.

⊕ ::= binary combinators:
<; | ;> | <∗ | ∗> sequencing comb.
<+ | +> | <+> choice-based comb.

uc ::= unary combinators:
FIX fixed-point iterator
mapL | mapR | mapB one-layer traversals
hide | lift strategic application
transient | opaque | raise strategic reduction

prg ::= TL programs:
d+ declarations

Figure 3.1: TL’s syntax

means of specifying the syntax of an object language is a Context-Free Grammar

(CFG) [28] in (Extended-) Backus-Naur Form (BNF) or abstract syntax notation

[1][3]. The grammar with corresponding lexing and pretty-printing rules enables au-

tomatic construction of parsers and pretty-printers to convert object (language’s)

programs from text to trees and vice versa.

TL accepts CFGs in Extended-BNF (EBNF) notation and allows a programmer

to use ML-Lex specification syntax for denoting lexing rules [4]. TL manipulates

parse trees, which enables the preservation of as much of the input term’s structure

as possible. Pretty-printing rules use BNF grammar productions to specify proper

formatting of parse trees. Additional details about the parsing and pretty-printing

specifications together with examples can be found in [76].

Patterns in TL consist of terminal symbols, schema variables and parse expres-

sions. Schema variables, denoted by tx with an alphanumeric subscript x, range over

the domain of all legal phrases α that can be derived from non-terminal symbol t:

i.e. reflexive transitive closure of grammar derivations t
∗⇒ α. A parse expression,

denoted by tJα′K, specifies a phrase in the concrete syntax of the object language; it is

an instance of the transitive closure of grammar derivation t
+⇒ α′, where α′ consists

of terminal symbols and schema variables.
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%LEFT ASSOC “+” “L1” .
%LEFT ASSOC “*” “L2” .

expr list ::= expr [ expr list ] .
expr ::= expr “+” expr %PREC “L1” .
expr ::= expr “*” expr %PREC “L2” .
expr ::= boolean | integer | real | string | id | “(” expr “)” .
id ::= idLex .
boolean ::= boolLex .
integer ::= intLex .
real ::= realLex .
string ::= stringLex .

Figure 3.2: Language Expr

Sample EBNF grammar To observe specification of TL patterns consider the

language defined by the EBNF grammar in Figure 3.2. Operator %LEFT ASSOC

specifies left-associative tokens. Tokens defined earlier in the lexical order have lower

precedence than tokens defined later. Productions that use operator %PREC use the

precedence of the operator’s argument. Thus, because production expr ::= expr

"*" expr is annotated with the precedence of L2, this production has a higher prece-

dence level than all productions annotated with L1. If there is a choice between two

or more productions in the expansion of a non-terminal symbol, the productions with

the lowest precedence are chosen first. This allows expressions like 3 * 4 + 5 + 6

to be parsed as ((3 * 4) + 5) + 6 as opposed to 3 * ((4 + 5) + 6) or 3 * (4

+ (5 + 6)). Symbols that are not defined by the grammar are lexer-level syntactic

categories (e.g. idLex), literal values are surrounded by string delimiters (e.g. “(”),

and optional symbols are delimited by square brackets (e.g. [ expr list ]).

Example The following are some examples of specifying patterns in the concrete

syntax of the object language Expr :

• expr1 – any term with the root expr

• exprJx + yK – a term with root expr and leaves x, +, and y
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• exprJx + id1K – a term with a sub-term rooted in id

• exprJexpr1 + expr1K – a term with identical sub-terms.

�

3.2 Matching

A pattern is a formalism for specifying a set of terms. Membership in this set is

determined by a matching algorithm, which can optionally support various equational

theories such as associativity, commutativity and others [6][14]. TL uses syntactic

matching (i.e. with the empty equational theory). Matching is performed by a match

equation tl = tr, where tr is a ground term (a term where all variables are bound to

concrete values) and tl is a pattern that may contain free variables. If a substitution

σ can be constructed such that both sides of an equation are syntactically identical

σ(tl) ≡ tr, then a match equation evaluates to 〈true, σ〉, and 〈false,∅〉 otherwise.

A TL match expression is a boolean composition of match equations connected

using andalso, orelse, not. A match expression succeeds producing 〈true, σ〉 if all

constituent equations succeed using the standard boolean semantics and evaluation

rules in Figure 3.3. To express the evaluation, we use the standard inference rule

notation and evaluation semantics notation expr ⇓ 〈value, bindings〉.

∃σ.σ(tl) ≡ tr
tl = tr ⇓ 〈true, σ〉

(MatchEq+)

6 ∃σ.σ(tl) ≡ tr
tl = tr ⇓ 〈false,∅〉

(MatchEq−)

e1 ⇓ 〈v1, σ〉 σ(e2) ⇓ 〈v2, σ′〉
e1 andalso e2 ⇓ 〈v1 ∧ v2, σ′〉

(MatchConj)

e1 ⇓ 〈v1, σ〉 σ(e2) ⇓ 〈v2, σ′〉
e1 orelse e2 ⇓ 〈v1 ∨ v2, σ′〉

(MatchDisj)

e ⇓ 〈v, σ〉
not e ⇓ 〈¬v, σ〉

(MatchNeg)

Figure 3.3: Matching
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Example Match expression

expr1 = exprJ1 + 1K andalso expr2 = exprJ2K

evaluates to true based on a substitution

σ = {(expr1 7→ exprJ1 + 1K), (expr2 7→ exprJ2K)}

The boolean-valued match expression not(exprJ1 + 1K = exprJ2K) also succeeds be-

cause the inner match equation fails with an empty substitution. �

3.3 Rewrite rules

Transformation is accomplished through the application of rewrite rules to terms. A

rewrite rule

r : p→ e [if { m }]

is a (labeled) abstraction with a pattern (or rule premise) p on the left-hand side, a

strategy expression (or rule body) e on the right-hand side that may include other

rules in case of higher-order rules, and match expression m in the optional condition.

A rule r can be applied to a term t, denoted by r t, to rewrite it into e′ if the shape of

the argument term t matches the rule’s premise p and match expression m succeeds,

in which case the resulting substitution is applied to the right-hand side to produce

e′. If the pattern match(es) fail, then rule application fails. Application failure is

manifested differently in transformation languages classifying them into identity-based

and failure-based languages. In an identity-based language, application failure leaves

the input term unchanged, but propagates the boolean-valued failure to the enclosing

context. In a failure-based language, application failure produces a distinguished

meta-term (e.g. ‘↑’) or throws an exception, which is observed and handled by the
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enclosing context. TL uses identity-based semantics [79].

Rewrite rules represent scoped contexts. An occurrence of term variable tx in

pattern p or match expression m is bound when it occurs in the body of a rule e.

An occurrence of tx is free if it appears in a position, where it is not bound by an

enclosing rewrite rule. An expression with no free variables is said to be closed. In

typical languages including TL, a valid rewrite rule is closed.

Two rewrite abstractions are built-in as primitives. Abstraction SKIP is a no-op

that never applies to a term. Abstraction ID is an identity function that always

applies to a term, but leaves it unchanged.

Example Application of rule

expr1 → expr2 if {exprJexpr2 + 0K = expr1}

to exprJx+ 0K succeeds with the substitution

σ = {(expr1 7→ exprJx+ 0K), (expr2 7→ exprJxK)}

and produces output term exprJxK. On the other hand, if the rule is applied to term

exprJx + 1K, then the match expression fails leading to application failure, which in

TL would leave the input term unchanged. �

3.4 Combinators

Rewrite rules can be composed using combinators to build strategies and more com-

plex transforms. The set of binary combinators in TL consists of left-biased non-strict

sequence <; , strict sequence <∗ , and choice <+ , along with the right-biased coun-

terparts ;> , ∗> , +> , and non-deterministic choice <+> . The bias indicates which
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operand is applied to an input term first.

Composition r1<;r2 is a strategy that, when invoked on a term t, applies r2 to

the result of (r1 t). To observe the output term in all four possible applications of

constituent rules to the input term, suppose s, s1 and s2 are rules that always succeed

and produce ts, ts1 , ts2 respectively, and f is a rule that always fails and leaves the

term unchanged. Then, the behavior of the left non-strict sequence is defined by the

following:

(s1<;s2) t = s2 ts1 = ts2 (f<;f) t = t (s<;f) t = (f<;s) t = s t = ts

Alternatively, we can choose abstract strategies s, s1, s2 to be the concrete strate-

gic constant ID and f to be the concrete strategic constant SKIP . In this case, the

output term of both ID t and SKIP t is t, which makes t the result of all three

equations.

Strict sequential composition r1<∗ r2 computes (r2 (r1 t)) only if both applications

succeed, and leaves the input term unchanged otherwise: in other words

(s1<∗ s2) t = s2 ts1 = ts2 (f<∗ s) t = (s<∗ f) t = (f<∗ f) t = t

Conditional composition r1<+r2 returns (r1 t) if the first application succeeds, and

(r2 t) otherwise:

(s1<+s2) t = (s1<+f) t = s1 t = ts1 (f<+s) t = s t = ts (f<+f) t = t

Finally, composition r1<+>r2 applies either of its operands to a term non-determini-

stically. Behavior of right-biased combinators is similar to the above with the differ-

ence of first attempting the right operand on the input term.
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Example The following composition encodes the axioms of distributivity of multi-

plication over addition

exprJexpr0 ∗ (expr1 + expr2)K → exprJexpr0 ∗ (expr1) + expr0 ∗ (expr2)K

<+>

exprJ(expr0 + expr1) ∗ expr2K → exprJ(expr0) ∗ expr2 + (expr1) ∗ expr2K

Here, the composition encodes simplification for both cases of the multiplicand oc-

curring to the left and to the right of a sum. In either case, it is distributed to both

operands of the sum. The sum’s operands are parenthesized so that if the operands

are also sums, then the distribution can be applied again while preserving the meaning

of the original input term. �

3.5 Iterators

Iterative application of a strategy to terms and sub-terms is controlled by iterators.

Exhaustive application of a strategy to a term to compute the term’s normal form

can be performed using iterator FIX. The expression

FIX s

repetitively applies argument strategy s to an input term until successive applications

no longer produce a syntactically distinct term.

To apply a strategy to sub-terms, TL provides one-layer, generic, primitive iterator

mapL, which when combined with a strategy

mapL s
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applies its argument strategy to all immediate sub-terms of a term from left to right.

In other words, given term t = f(t1, t2, . . . , tn), (mapL s) t produces f(t′1, t
′
2, . . . , t

′
n).

If the input term does not have immediate sub-terms, then the iterators leaves the

term unchanged.

Combinators, iterators and recursion can be combined to build full term iterators.

For example, iterator definition

def TDL s = s<;mapL(TDL s)

defines a traversal scheme TDL that applies its argument strategy s to the root of a

term and recursively applies itself to all immediate sub-terms. Recursion stops when

no further sub-terms are found. This enables rewriting of all sub-terms within a term.

Different iterators can be defined by re-arranging the order of application or by using

a different combinator. For example, bottom-up traversal scheme can be defined with

the following declaration

def BUL s = mapL(BUL s)<;s

where application of argument strategy s to a term is preceded by a recursive descent

into sub-terms. If success or failure of argument strategy in the application to sub-

terms is important, then the definition can employ conditional combinators. For

example, the following traversal scheme stops recursion into sub-terms after the first

successful application to a sub-term:

def first TDL s = s<+mapL(first TDL s)
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Example The following strategy will remove all additions with 0 by iterative top-

down traversal of a term until no further such additions remain in the term:

FIX (TDL (exprJexprx + 0K→ exprx))

�

3.6 Non-standard strategic controls

In addition to the standard strategic controls outlined above, TL provides a collection

of features to allow programmers greater flexibility in programming transformations.

This includes higher-order rules [83], transient strategies, operators for shielding the

observability of application and reduction of strategies, and support for functional

programming. We discuss these features next.

3.6.1 Higher-order rules and operators

A higher-order rule is a rule that can produce a new rule upon successful application

to a term:

p1 → p2 → . . .→ pn

Since higher-order rules may produce new higher-order rules, it is useful to dis-

tinguish them based on their order[65], which is inductively defined as follows:

• pattern p is a strategy of order 0 denoted by s0;

• s0 → sn is a strategy of order n+ 1.

One of the primary benefits of higher-order rules is to capture contextual infor-

mation in a rewrite[79][11][72][51]. Contextual information is often needed because
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rewrite rules only have access to the term being rewritten, yet many transforma-

tion tasks require access to terms elsewhere in a program’s tree: e.g. ancestor term

higher-up in the tree or sibling term to a common ancestor term. Conceptually, if a

rewrite of a term of interest requires the knowledge of term a, then the rewrite can

be lifted to a higher-order rule, whose outer premise represents the term a. Then, the

higher-order rule

pa → pb → pc

can applied to term a in one part of a tree to produce rule pb → pc, which has access

to pa bound by the application and which can then be used to perform the rewrite of

interest in another part of a tree.

Compositions of higher-order rules need to account for composition of new dy-

namic rules generated by application. This is accomplished by operator fold, which

folds newly generated dynamic rules into a dynamic strategy using its argument com-

binator:

fold ⊕ s

Example The following strategy extracts type information from declaration state-

ments of an object language and (with proper traversals) rewrites references to the

declared identifiers into their types (e.g. for further type-checking):

fold <; (

stmtJint idx; K→ idx → idJintTyK)

<+>

stmtJdouble idy; K→ idy → idJdoubleTyK

)

Here, upon encounter of a term rooted in stmt a new dynamic rule will be generated
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if the shape of the input term fits one of the premises of the two higher-order rules. If

two dynamic rules are generated during a traversal, then the rules will be composed

using non-strict sequential combinator <; . �

To iterate over sub-terms with higher-order rules, we can define higher-order full-

term traversals. For example, the following declaration defines a top-down traversal

that composes dynamic rules using the choice combinator:

def lcond tdl s = fold<+(s<;mapL(lcond tdl s))

In other words, the main difference between first-order and higher-order traversal

definitions is the addition of operator fold.

Example The following strategy collects dynamic rules in the first pass through a

program and rewrites identifiers into their types in the second pass:

progin →BUL ( lcond tdl (

stmtJint id1K→ id1 → idJintTyK<+>

stmtJdouble id2K→ id2 → idJdoubleTyK

) progin

) progin

�

3.6.2 Transient strategies

A transient strategy is a self-modifying strategy that reduces to no-op SKIP after the

first successful application:

transient s
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Transient strategies enable specification of higher-order rules that generate dynamic

rules that can apply only once. This behavior is useful in a variety of transformation

tasks, where only one successful rewrite is required [79]. In addition, combinator

transient together with one-layer iterator mapL can be used to choose to apply a

strategy only to the first sub-term:

mapL(transient s)

where after the first successful application, strategy s reduces to no-op SKIP , which

will leave remaining sub-terms unchanged. This is a generalization of iterator one in

transformation system Stratego [69] and related systems.

Since strategies are reducible in iterative applications, TL extends the behavior of

one-layer iterator mapL with iterators mapR and mapB. One-layer iterator mapR

applies its arguments strategy to sub-terms of an input term in the right-to-left order

as opposed to the left-to-right order used by mapL. This behavior can be used to

choose to apply a strategy only to the last sub-term of an input term:

mapR(transient s)

One-layer iterator mapB iterates over sub-terms using a copy of its argument strategy.

This allows a programmer to ensure that reduction of a strategy applied to one sub-

term is not observable in application to other sub-terms. Thus, if r is a rewrite rule,

the following equalities demonstrate the behavioral difference of mapB from other

one-layer iterators:

mapB(transient r) = mapL r = mapR r

which in other words states that application of the three expressions to an input term
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will produce identical output terms.

For additional flexibility in controlling the conditions under which a (dynamic)

strategy reduces to SKIP , TL provides combinators opaque and raise. Combinator

opaque hides successful application of its argument strategy from a lexically enclosing

transient. In other words, if s is a strategy that always succeeds, then iterative

application of the following strategy will not reduce to SKIP :

transient(opaque s)

On the other hand, combinator raise enables propagation of a successful application

beyond a lexically enclosing opaque and application of the following strategy to a

term will always reduce the strategy to SKIP :

transient(opaque(raise s))

TL provides two additional combinators that modify the application, instead of a

reduction, of a (dynamic) strategy. Combinator hide prevents the lexically enclosing

combinators from observing the successful application of its argument strategy. If s

is a strategy that always succeeds, then the following equality holds

(hide s)<+s = s<;s

Combinator lift propagates successful application of its argument strategy beyond a

lexically enclosing hide. If s always succeeds and f always fails, then

hide(lift ID)<+s = ID hide(lift f)<+s = s

For further details and examples on transient strategies and corresponding com-
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binators see [79] and [81].

3.6.3 Functional programming

TL provides access to functional programming by allowing a programmer to invoke

functions written in Standard ML (SML) from within a rewrite rule condition’s body:

sml.id()

For example, given a function output that prints its argument to the console, the

following rule

exprJexpr1 + 0K→ expr1 if {sml.output(“simplified an addition with zero”)}

will log a console statement upon successful application of the rule.

Access to SML functions provides further flexibility by enabling access to all capa-

bilities of a general-purpose language, which includes interaction with the operating

system’s environment and state. For details on the specification of SML functions for

access by TL programs see [76].

3.7 TL programs

A TL program consists of a list of strategy declarations: both non-recursive abstrac-

tions of the form id : s, where id serves as a shorthand identifier for strategy s, and

recursive abstractions of the form def id args = s, where strategy s may refer to

formal arguments args and id.

A distinguished main rule must be defined to drive transformation by rewriting a

term rooted in the start symbol of the object language’s grammar. Elaboration of a

TL program is initiated by applying the main rewrite rule, which may invoke other
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strategies on the input term. If the result of elaboration is not a term or if an error

is raised during elaboration, the computation terminates abnormally. Otherwise, the

result is a new term in case of successful application of main or else it is the unchanged

input term. Figure 3.1 summarizes the syntactic constructs of TL discussed above.

3.8 Related work

Besides TL, there are a number of other program transformation systems. Some

examples are ELAN, ASF+SDF, Stratego, Strafunski, DMS, and CT. We review

each of them below and discuss their error detection and analysis capabilities.

ELAN [10][58] is a system that provides a first-order rewrite specification language

that is similar to the algebraic specification formalisms of traditional rewrite systems

such as Maude [15]. The syntax of the object/term language is defined through

modularized sort definitions. Rewrite rules follow the form:

〈rule〉 ::= “[” 〈label〉? “]” 〈term〉 “=>” 〈term〉 〈localeval〉∗

〈localeval〉 ::= “if” 〈boolean term〉

| “where” 〈variable〉 “:=” “(” 〈strategy〉? “)” 〈term〉

| “where” 〈term〉 “:=” “(” 〈strategy〉? “)” 〈term〉

| “choose” (“try” 〈localeval〉+)+ “end”

where “quoted” symbols denote terminal tokens, parentheses are used to group sym-

bols, ∗ denotes zero or more repetitions, + denotes one or more repetitions, and ?

denotes zero or one occurrence of a symbol.

Unlabeled rewrite rules are used by the system to reduce the input term to a nor-

mal form using a fixed “leftmost-innermost” evaluation strategy (i.e. a BUL traversal

in TL). Labeled rewrite rules can be invoked by a user to be applied to a term that

has already been normalized by unlabeled rewrite rules. Similar to TL, rules can have

conditions or local evaluations that capture
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1. evaluations yielding a boolean outcome,

2. local assignment, where a local variable can store intermediate results of strategy

application,

3. local matching, where variables within a term can be matched against results

of strategy application or

4. composition of local evaluations, which chooses the first successful evaluation.

ELAN supports several equational matching theories such as associative and com-

mutative theories, which it uses to enumerate all matching results. Application of

a strategy to a term produces a set of terms. This, coupled with a backtracking

capability, allows this system to enumerate all possible results similar to Prolog. Un-

like TL, failure of a strategy to apply to a term is indicated by an empty result set.

In addition to conditional rewrite rules, ELAN provides the following combinators,

which can compose rules to form strategies:

1. sequence s1; s2, which is similar to s1<∗ s2 in TL ,

2. non-strict sequence (dont know choose) dk(s1, . . . , sn), which is similar to

s1<; . . . <;sn in TL ,

3. non-deterministic choice (dont care choose) dc(s1, . . . , sn), which is equivalent

to s1<+> . . . <+>sn in TL ,

4. left-biased choice first(s1, . . . , sn), which is equivalent to s1<+ . . . <+sn in TL ,

5. singleton selector one that returns a non-deterministically chosen element from

a set of results,

6. identity rewrite id, which is equivalent to ID in TL ,

7. failing rewrite fail that always fails,
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8. iterators repeat∗(s) and iterate∗(s), which are similar to FIX (s) in TL .

Unlike other transformation systems, ELAN does not support generic traversals [40].

Analysis and error detection capabilities in ELAN are limited to well-formed syn-

tax checks performed by the ELAN program parser. We are not aware of a static

(type) system to detect errors in strategies.

ASF+SDF [67] is a transformation system that uses the Syntax Definition For-

malism (SDF) to specify object/term languages and the Algebraic Specification For-

malism (ASF) to specify rewrite rules. Rewrite rules follow the form:

〈rule〉 ::= “[” 〈label〉 “]” 〈term〉 “=” 〈term〉 (“when” 〈condition〉)?

〈condition〉 ::= 〈term〉 “:=” 〈term〉

| 〈term〉 “!:=” 〈term〉

| 〈term〉 “==” 〈term〉

| 〈term〉 “!=” 〈term〉

The optional conditional part of rewrite rules allows match (:=) and non-match

(!:=) conditions that perform syntactic first-order matching as in TL and equality

(==) and inequality (!=) conditions that perform syntactic identity checks. In either

case, terms are reduced to normal forms before matching and equality conditions are

evaluated. The textual order of rewrite rules in an ASF module defines the order

of rules in the sequential composition. The default evaluation strategy is “leftmost-

innermost” similar to ELAN. The input term is normalized using rewrite rules until

no further reductions are possible. However, the system does not check for conflu-

ence and termination, which implies that the user must perform these checks. In

ASF+SDF, failure of a rule to apply to a term is handled similar to TL such that

the resulting term of application failure is the input term. In addition to the default

evaluation strategy, programmers can define new traversals using three constructs of

transformers, accumulators and accumulating transformers. Transformer traversals
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modify a term directly, whereas accumulators collect information about a term dur-

ing traversal of the term. Accumulating transformer combines the transformation

and accumulation. New traversals need to account for each term signature that is

involved in transformation or accumulation. Therefore, new and custom traversals

are not generic and may involve a substantial programming effort in a setting where

many term signatures need to be accounted for.

Similar to ELAN, error-detection capabilities in ASF+SDF are limited to parser-

enforced well-formed syntax checks.

Stratego [69][11] uses the SDF notation to specify the syntax of object/term lan-

guages. However, unlike ASF+SDF, it provides a richer set of strategic control con-

structs. In particular, Stratego provides lower-level primitive operations to match a

pattern (?p) and to use the resulting substitution to build a ground term from a pat-

tern (!p). Thus, rewrite rules can be defined in terms of the sequential composition

of these primitives: ?lhs; !rhs. The syntax of rewrite rules follows the form

〈rule〉 ::= 〈label〉 “:” 〈term〉 “->” 〈term〉 (“where” 〈strategy〉)?

The “where” clause can contain any strategy and the outcome of the clause is

a boolean value to indicate success or failure of the strategy. There is no implicit

evaluations like in ASF+SDF or ELAN and the evaluation is entirely user-controlled

as in TL. Sequential “;” and choice “ <+ ” combinators can be used to control strategy

composition. The built-in strategy id behaves similar to ID in TL; fail is a strategy

that always fails. In Stratego, application failure produces a distinguished meta-term

↑, which can be handled by an enclosing choice combinator. To avoid ill-formed

terms during application, a primitive try is provided to leave the input term, on

which a strategy failed, unchanged: i.e. try(s)<+id. Generic traversal operators

all and one can be used to build term traversals to apply an argument strategy to

either all sub-terms or the first sub-term from the left. Thus, the suite of strategic
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control combinators and generic traversals provide very flexible means of strategic

programming.

We are not aware of static analysis tools for Stratego that would assist program-

mers in static error detection.

DMS [9][2] is a commercial, software re-engineering toolkit maintained by Semantic

Designs, Inc. DMS is implemented in PARLANSE (PARallel LANguage for Symbolic

Execution) [8] that is a C-based rewriting language. DMS has been used in pro-

gram transformations of over 20 languages ranging from general-purpose languages

like C, C++ and Java[26][47][29] to domain-specific languages like SQL. A Unicode-

supporting lexer with a GLR-based parser create efficient abstract syntax trees (AST),

stored internally as hyper-graphs. The ASTs are subjected to three kinds of rewriting

operations:

1. encoding of semantic actions (procedures) within a grammar in the style of

YACC grammar production actions,

2. analysis of programs (analyzers) using attribute grammars, where a node has

several attributes providing additional information that can be either inherited

or synthesized and stored in a symbol table,

3. rewriting of terms (transforms) in DMS’s Rule Specification Language (RSL),

which supports Associative-Commutative matching.

Rewrite rules follow the form:

〈rule〉 ::= “rule” 〈id〉 “(”〈id〉“:” 〈type〉“)” “:” 〈type〉 “->” 〈type〉 “=”

〈term〉 “rewrites to” 〈term〉 [“if” 〈predicate〉]

Transformation results can be pretty-printed in either a default mode, where for-

matting rules, specified in the object grammar, are used to produce appropriate spac-

ing, or fidelity mode that reproduces original text verbatim. Generic traversals within
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DMS are implemented using bi-directional edges that connect neighboring nodes in

an AST’s hyper-graph. While there are no pre-defined abstractions of strategic com-

binators, the control over rewriting is expressed by imperative procedures. Studies

show that DMS has taken 50 person-years to develop and has been applied to trans-

formation problems with over 4000 files and over 2.5 MSLOC (millions of source lines

of code) [2].

We are not aware of any static analysis tools to detect errors in program transfor-

mations written in PARLANSE beyond C-based static analysis tools such as lint.

CT [37][5] is a logic-based Conditional T ransformation system. Terms of an ob-

ject language are represented by a propositional fact base. For example, the term

class(2, 1, ‘MyClass’) represents a class node in the Abstract Syntax Tree of an

object program with identifier 2, parent identifier 1 and label MyClass. The parent-

child relationships that are implicit in parse trees or typical AST’s are represented

by explicit references to node identifiers. Terms are represented by a logic predicate

exists that is quantified over all facts. So, the node above is represented in logic as

exists(class(2, 1, ‘MyClass’)). Having represented a program as a fact base, a pro-

grammer can build patterns using logic variables: e.g. exists(class(X,Y,‘MyClass’)).

Rewriting is accomplished by predicates add(fact), remove(fact), and their sequential

composition. Rewrite rules in this framework follow the form similar to the following:

〈rule〉 ::= 〈id〉 “=” 〈cond〉 “|” 〈instance〉 “->” 〈transform〉

〈cond〉 ::= “exists(” 〈fact〉 “)” | 〈cond〉 “and” 〈cond〉

| 〈cond〉 “or” 〈cond〉 | “not” 〈cond〉

〈instance〉 ::= “new id(” 〈id〉 “)” | 〈instance〉 “,” 〈instance〉

〈transform〉 ::= “add(” 〈fact〉 “)” | “remove(” 〈fact〉 “)”

| 〈transform〉 “,” 〈transform〉

Operationally, evaluation proceeds by a pattern match in a rule’s condition, in-
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stantiation of all remaining free variables by the new id(X) function and a global

state change by adding or removing facts into the initial fact base. Individual rewrite

rules can be combined into larger transformations with AND- and OR-sequences using

“and-seq(rule, rules)” and “or-seq(rule, rules)”.

Due to the logic-based framework, CT represents a non-traditional approach to

rewriting [54] [53] [39]. The primary advantage of this approach is that traversals are

not needed because all terms are available in a flat fact base. However, it appears

that the responsibility for maintaining integrity of parent-child links between nodes

is delegated to the programmer instead of being enforced by a parser as in other

systems.

We are not aware of any static analysis tools to detect errors in program trans-

formations within CT.

Strafunski [44][43] is different from the other transformation systems in that in-

stead of providing a dedicated specification language for encoding of strategies it

leverages generic functional programming[45][38] and encodes strategies in the Haskell

language. In particular, it uses Haskell functions to encode rewrite rules and provides

a library of functions for strategic combinators and generic traversals. A typical

transformation scenario in this framework consists of the following steps:

1. convert an object/term language grammar into an algebraic data type specifi-

cation so that a term’s parse tree can be viewed as an algebraic data structure,

2. define Haskell-based functional strategies,

3. apply the resulting program on the data structure, and

4. pretty-print the resulting data structure into term language text.

As part of a research program related to Strafunski, Lämmel and colleagues have

identified the importance of error detection in strategic program as a major research
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problem [42]. For example, in [40], a somewhat conservative type system for rewrite

strategies, including traversal strategies, was developed. More specifically, system

S—the core of program transformation system Stratego [69]—is extended with new

syntax and semantics to support types. Our contributions advance this work by

improving the expressivity of type analysis. Most notably, instead of using sorts to

assign types to rewrite rules, we incorporate constructors into types. This improves

the analytical precision because application of a rule, which acts on one constructor

of a sort, to a term derived from a different constructor of the same sort, while being

well-typed under the previous approach, will always fail, which is statically detected

under our approach.

An extended strategic rewriting core language that includes one-layer traversals

over a single-sorted term language of natural numbers has been recently formalized in

an Isabelle/HOL-based model [33]. There, success and failure behavior of strategies

has been analyzed from the perspective of infallibility : i.e., does a given strategy

always succeed? Our analysis takes a dual view on this issue from the perspective

of successfulness: i.e., can a given strategy succeed? Both approaches approximate

correctness: in the first case by flagging over-specified strategies, and in the second

case by flagging under-specified strategies.

XSLT Among the related work on transformations of tree-structured data are the

W3C standards on XPath, XQuery and XSLT [71]. In particular, an XSLT style-sheet

uses XPath and/or XQuery expressions to select elements within an XML document

and uses templates to transform the elements. In other words, selection criteria could

be viewed as pattern matches and templates as rewrite rules among many other cross-

domain similarities [41, 18]. In this domain, an important type-checking question is

whether the result of an XSLT transformation conforms to an intended type. This

is due to the asymmetry arising from parser-based validation on inputs, but none
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on outputs. To cope with this problem, regular expression types [28] have been

proposed to validate XML transformations [30] along with efficient type-checking

implementations [23]. Other related type-checking questions are whether selection

criteria return an empty set of nodes leading to a template that can never fire and

whether one template is subsumed by another.
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Chapter 4

Type Analysis of Rewrite

Strategies

In the two previous chapters, we reviewed type systems and the transformation lan-

guage whose programs are the intended targets of type analysis. In this chapter

we turn to the main contribution of this research – type analysis of term rewriting

strategies.

We begin the discussion with the definitions of types T , the relation between

strategies and their types s : T and the typing environment Γ, which is used to

store and retrieve type bindings. Next, we develop a type system that calculates

types of strategies. The type system is presented in the form of typing rules for the

syntactic constructs of the language: starting from the patterns and pattern matching

up through strategies, strategy definitions and programs. Following the definition of

typing rules, we provide concrete examples and their type-checked results to ground

the analysis in action.

Note that the focus of this chapter is on the core features of the type system –

analysis of rewrite rules and their strategic compositions. Analysis of iterators and

non-standard features of the transformation language such as higher-order rules and
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compositions will be discussed in the following chapters as extensions of the core

system.

4.1 Motivation

In order to set the stage for the discussion of the analysis, let us first compare the

analysis performed by Standard ML’s type system to the analysis needed for rewrite

strategies.

The main distinction between functions and rewrite rules is that functions in ML

are required to be total in that given f : I → O it is required that ∀x ∈ I. f(x) ∈ O

or in other words @x ∈ I. f(x) 6∈ O. A function may be defined using patterns

pi ∈ I such that each pi is mapped to value vi ∈ O. In contrast, rewrite rules are

at a lower level of abstraction such that a rule is single mapping between input

and output patterns and is inherently non-total. A function can be defined using a

set of conditionally composed rewrites. Because of this abstraction shift, functions

can be viewed as rewrites of domains, whereas rules are rewrites of terms within a

domain. The primary implication is an impedance mismatch between problem-specific

rewriting needs and language-enforced rewriting requirements.1 In other words, if a

problem requires rewriting of a few selected terms of interest, a functional language

may not be the best choice.

As a concrete example, consider the task of simplifying arithmetic expressions

defined by the following ML data type:

1Impedance mismatch refers to conceptual and technical difficulties encountered while working
with tools that are not well-suited for a problem at hand. E.g. object-relational impedance mismatch
occurs while reading/writing object-oriented data from/to relational databases.
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datatype Arith = mult of Arith * Arith

| plus of Arith * Arith

| num of int

| var of Id

datatype Id = X | Y | Z

To distribute multiplication over addition, we could define the following function

fun distributeF(mult(a, plus(b,c)) = plus(mult(a,b), mult(a,c))

| distributeF(mult(plus(a,b),c)) = plus(mult(a,c), mult(b,c))

The same functionality encoded using strategies employs conditional composition

of two identity-based rewrite rules:

distributeS:

ArithJmult(Aritha, plus(Arithb,Arithc))K →

ArithJplus(mult(Aritha, Arithb), mult(Aritha, Arithc))K

<+

ArithJmult(plus(Aritha,Arithb), Arithc)K →

ArithJplus(mult(Aritha,Arithc), mult(Arithb, Arithc))K

Note that strategic combinator <+ is similar to functional operator | with respect to

the choice and ordering of pattern mappings.

Now, suppose we extend the algebraic simplification to include the multiplication

of a sum with the absorbing element 0 defined by a new function:

fun multZeroF(mult(num(0), plus(a,b))) = num(0)

| multZeroF(mult(plus(a,b), num(0))) = num(0)

and compose the new function with the existing function such that if neither function

applies, then the input term is left unchanged:

fun compF t = distributeF t handle Match =>
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multZeroF t handle Match => t

fun fixedP t= let val t’ = compF t

in if t = t’ then t’ else fixedP t’

end

Note that the composition of functions is strategic with respect to application failure

(in this case runtime exception Match) such that if the first function fails to apply,

then the second one is attempted.

The same extension encoded using strategies defines a new strategy for the exten-

sion and conditionally composes it with the existing strategy distributeS:

multZeroS:

ArithJmult(num(0), plus(Aritha, Arithb)K → ArithJnum(0)K

<+

ArithJmult(plus(Aritha, Arithb), num(0)K → ArithJnum(0)K

compS: FIX(distributeS <+ multZeroS)

Having considered the similarities, let us now analyze the behavior of the composed

functions. In particular, consider the following invocation:

fixedP(mult(num(0), plus(var(X), var(Y)))) =

plus(mult(num(0),var(X)),mult(num(0),var(Y)))

In other words, the composition failed to simplify the term to num(0) as we would nor-

mally expect. The culprit is the incorrect strategic ordering of functions such that ap-

plication of one function makes the other function unreachable: pattern mult(a,. . .)

is more generic than the pattern mult(num(0),. . .). This can be fixed by re-ordering

of the functions:

fun compF’ t = multZeroF t handle Match =>

distributeF t handle Match => t
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Note that the (Standard) ML’s type system does not perform sufficiently detailed

analysis of strategic compositions (expressions of the form expr handle p => expr)

to detect the unreachable functions.

While it may be possible to combine the patterns of the two functions into a single

function, which can then be analyzed by the SML’s type system for the non-exhaustive

and/or redundant pattern matches[65], the problem presented in this example does

not go away. For example, conditional compositions of rewrite rules allow rules to be

drawn from heterogeneous types, whereas all patterns of a function must come from

a single type. Thus, if patterns of functions distributeF and multZeroF were to

come from two distinct types, then the functions could not be combined to employ

SML’s analysis of patterns.

As another example, consider ML function composition operator · ◦ ·, whose coun-

terpart in strategic rewriting is the sequential combinator · <∗ ·. Suppose we were to

compose the aforementioned functions sequentially. In other words:

val seqF = multZeroF o distributeF

Note that ML’s type system allows this, even if it is clear that the composition

will always fail for all inputs. Even if the first function (distributeF) does apply,

it produces a term that cannot be handled by the second function (multZeroF). On

the other hand, strategic composition

seqS: distributeS <∗ multZeroS

will be flagged as a type error because none of the output patters of the first strategy

fit the input patterns of the second.

The type system for strategies presented here goes much further than ML’s type

system in the analysis of compositions. It performs analysis at the level of individual

rewrites, instead of (data) type rewrites, and allows patterns to have an arbitrarily
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deep and wide (recursive) structure. This enables detection of unreachable and other

kinds of erroneous strategies (as summarized in Chapter 1).

4.2 Types, contexts and the typing relation

Terms of an object language in TL are tree-structured entities with leaves belonging

to the domain of terminal symbols and interior nodes belonging to the domain of

non-terminal symbols of the object language’s grammar: in other words

t = c(t1, . . . , tn), n ≥ 0

c = M ∪N

whereM denotes the set of terminal symbols andN is the set of non-terminal symbols.

Thus, integer(0) is a term with 0 as a sub-term, which does not have any of its own

sub-terms.

The classic approach of assigning types to terms is to assign a term the type of

its root symbol [40][33]. Using such an approach, the type of term exprJtrueK is

expr and the type of term integerJ3K is integer, thus simplifying the type analysis

by abstracting away from the types of sub-terms. The classic approach is useful for

structurally simple values, but is overly conservative in a domain, where the grammar

of a language can define more than one production for a non-terminal symbol. For

example, symbol expr in Figure 3.2 can derive substantially different strings making

terms like exprJtrueK and exprJ3K receive the same type expr under this approach.

The implication of the classic approach is a substantial conservativeness in the

resulting type analysis. The root symbol of a term on its own does not provide

sufficient information about the kinds of sub-terms the term contains. For example,

if all that a type system can tell about rewrite rule exprJidx + 0K → exprJxK is

that it is of type expr → expr, then application of the rule to term exprJtrueK is



63

valid from such typing perspective, when in fact we can statically determine that the

application has no chance of succeeding at run-time. Further, a strategy may traverse

over sub-terms of an input term. Presence or absence of certain kinds of sub-terms is

a prerequisite information in determining whether application of a traversal strategy

to a term is valid. So, if all that a type system can tell about an input term exprJtrueK

is that it is of type expr, then application of a traversal strategy TDL (idJxK→ idJyK)

to such term cannot be analyzed to determine if it has a chance of succeeding. This is

because the most that a type system can determine from the input term’s type expr

is that it can potentially derive a term of type id. However, it is possible to statically

determine that term exprJtrueK does not contain a sub-term of type id. These kinds

of type errors cannot be detected by the classic typing approach.

To enable detailed type analysis of rewrite strategies, we adopt a richer model of

types, where a term’s tree structure itself is the type of the term. Further, the type

of a term depends not only on the structure of the term, but also on the leaves of a

term making our types similar in spirit to dependent types, where types depend on

arbitrary values[84]. Thus, taking the grammar G of term language L as a parameter

such that t ∈ {N ∪M}, where N is the set of non-terminal symbols and M is the set

of terminal symbols, a term’s structure and its type can be generically represented

by a product of a root symbol t and a list of sub-term types. Therefore, a term type

is defined by the following

T ::= t × T list

Patterns may contain schema or term variables, which do not have a structure.

Schema variables become bound at run-time during evaluation. To enable analysis of

unbound structures, the type system supports type variables denoted by ‘x. Other

kinds of type constructs are summarized in Figure 4.1.

A typing context (or environment) Γ is a set of bindings tx : T mapping term vari-

ables to their types. In addition, contexts track bound type variables so that whenever
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a fresh type variable is required it is chosen to be distinct from all previously bound

type variables. Finally, since TL programs are lists of labeled abstractions, which

may refer to other abstractions defined elsewhere in a program, we track bindings of

abstraction labels to types x : T .

The classic typing relation t : T connects terms to their types [60]. Due to the

presence of variable bindings, the typing relation is extended to Γ ` t : T , where Γ is

the typing context. Because our type system also needs to support type inferencing,

analysis of a term may affect previous bindings. Therefore, we adopt the following

typing relation

Γ ` e : 〈T,Γ1〉

which states that, under a typing context Γ, the type of expression e is T and the

resulting typing context (due to type inferencing) is Γ1.

Γ ::= contexts:
� empty context
Γ, tx: T term variable binding
Γ, ‘x type variable binding
Γ, x : T abstraction variable binding

T ::= types:
t × T list terms
‘x type variable
T → T rewrite rules
T + T choice

Figure 4.1: Types and typing contexts

4.3 Typing of patterns

The types of patterns are determined by (possibly recursive) application of the typing

judgements listed in Figure 4.2.

Rule p-var assigns term variable tx the type stored in environment Γ. Rule p-leaf

states that the type of a term with no sub-terms is (t, [ ]) under any environment.

Rule p-tree computes the type of individual sub-terms prior to assigning a type to
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tx : T ∈ Γ

Γ ` tx : 〈T,Γ〉
(p-var)

Γ ` t : 〈(t, [ ]),Γ〉
(p-leaf)

∀i. Γi−1 ` pi : 〈Ti,Γi〉
Γ0 ` (t, [pi∈1..ni ]) : 〈(t, [T i∈1..n

i ]),Γn〉
(p-tree)

Figure 4.2: Typing of patterns

the entire term.

To emphasize structure and to express the complete details of a term, the infer-

ence rules use a deeply structured tuple notation for terms – (t, [pi∈1..ni ]), where pi

are immediate sub-terms, instead of the more readable parse expression notation –

tJpi∈1..ni K, where pi are tree leaves. When the structure of a term’s type can be elided,

we will similarly use a more readable representation of the deeply structured type –

(t, [T i∈1..n
i ]) as t[T i∈1..n

i ]. Further, we use T i∈1..n
i with n ≥ 1 instead of T1, . . . , Tn to

avoid any notational complexities (see for example [60]).

Example Let us use the typing rules of Figure 4.2 to calculate types of some pat-

terns of object language Expr defined in Figure 3.2:

1. type of terminal symbol + is + or with full structure (+, [ ])

2. type of parse expression exprJxK is expr[x] or with full structure

(expr, [(id, [(idLex, [(x, [ ] )] )] )] )

3. type of parse expression exprJ0K is expr[0] or with full structure

(expr, [(integer, [(intLex, [(0, [ ] )] )] )] )

4. type of term variable expr1 under context {expr1 : expr[x + y]} is expr[x + y]

or with full structure
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(expr, [(expr, [(id, [(idLex, [(x, [ ] )] )] )] ), (+, [ ]),

(expr, [(id, [(idLex, [(y, [ ] )] )] )] )])

4.4 Typing of matches

A match equation is a syntactic match of term patterns, where the right operand is

a ground term and the left operand may contain unbound term variables:

• If the left operand is a ground term, then the match equation is used for syn-

tactic comparison of two ground terms, which produces a boolean value and an

unchanged substitution.

• If the left operand contains variables, then the match equation is used for bind-

ing term variable(s) for further use in the enclosing rewrite rule. In this case,

any term variable within the left operand is implicitly declared and bound to a

corresponding (sub)term of the right operand. The result of such match equa-

tion is a boolean value indicating structural compatibility of the two operands

and a substitution that binds variables to terms.

For example, consider the following conditional rewrite rule

expr1 → exprJid1K

if { exprJxK = expr1 andalso

exprJid1K = expr1

}

Here, schema variable expr1 is implicitly declared by the rule’s left-hand side and

becomes bound when the rule is applied to a matching term. The first match equation

is a syntactic comparison equation because both operands are ground terms. The

second match equation is a binding equation. In addition, schema variable id1 is
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implicitly declared. Finally, the rule’s right-hand side refers to the bound schema

variable id1.

To record term variables implicitly declared by match equations, we introduce a

relation that updates an environment

Γ1 vp Γ2

which states that if a variable contained in p is not bound by the existing environment

Γ1, then it is bound to a fresh type variable in the new environment Γ2. The relation

is specified by the rules in Figure 4.3.

tx : T ∈ Γ

Γ vtx Γ
(ctx-id)

tx : T 6∈ Γ Γ′ = (Γ, ‘a, tx : t[‘a])

Γ vtx Γ′
(ctx-update)

Γ vt Γ
(ctx-leaf)

∀i. Γi−1 vpi Γi

Γ0 vtJpi∈1..n
i K Γn

(ctx-tree)

Figure 4.3: Updating typing contexts with implicitly declared variables

Example To observe the effect of implicit declaration on an environment on con-

crete examples, consider the following match equations. Each equation is listed with

the resulting typing context assuming the initially empty context �. Note that these

examples illustrate just the implicit declarations. Actual matching of variables and

concrete terms will be discussed later.

1. idJaK = idJaK does not change the context because both sides of the match

equation are ground terms
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2. id1 = idJaK updates the context to {id1: id[‘x]}. Note that id1 will become

bound to idJaK after the actual matching is completed.

3. exprJidx+idyK = exprJa+bK updates the context to {idx: id[‘x], idy: id[‘y]}

Γ ` true : 〈bool,Γ〉
(m-true)

Γ ` false : 〈bool,Γ〉
(m-false)

Γ ` m : 〈bool,Γ〉
Γ ` not m : 〈bool,Γ〉

(m-not)

Γ ` m1 : 〈bool,Γ1〉 Γ1 ` m2 : 〈bool,Γ2〉
Γ ` m1 andalso m2 : 〈bool,Γ2〉

(m-andalso)

Γ ` m1 : 〈bool,Γ1〉 Γ ` m2 : 〈bool,Γ2〉 Γ3 = Γ1∩̂Γ2

Γ ` m1 orelse m2 : 〈bool,Γ3〉
(m-orelse)

Γ vp Γ1 Γ1 ` p : 〈T1,Γ2〉 Γ2 ` s : 〈T2,Γ3〉 T1 A T2
Γ ` p = s : 〈bool,Γ3〉

(m-match)

Figure 4.4: Typing of matches

The rules for the calculation of types of pattern matches are summarized in Figure

4.4. Rules (m-true) and (m-false) assign type bool to the boolean constants. Rule

(m-not) assigns a boolean type to a negation if the negation’s operand has a boolean

type. The environment produced by the analysis of negation needs to be the same as

the one prior to the analysis. In other words, there cannot be match equations within a

negation that create new local variables and both sides of any match equation must be

ground. This is in correspondence with the evaluation semantics of the transformation

language, where negation (including double negation) does not modify the existing

bindings.2

Rule (m-andalso) assigns a boolean type to a conjunction of match expressions

m1 and m2 if both of the expressions have a boolean type. The typing environment

2Prolog, for example, prohibits use of free variables within a negation. single(X) :-

person(X), not(married(X)) is valid, but single(X) :- not(married(X)) is not.
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is threaded through the analysis of conjunction such that the analysis of the second

operand uses the environment produced by the analysis of the first.

Rule (m-orelse) specifies the analysis of a disjunction of match expressions. In

contrast to the conjunction, the typing environment is not threaded through the

analysis of the operands. Instead, analysis of both operands is initiated with the

same environment Γ such that bindings of one operand do not interfere with the

bindings of the other.

Example One of the use cases of a disjunction is to perform case analysis on terms,

where different kinds of terms may lead to distinct bindings and execution paths.

Consider as an example the following rewrite rule that analyzes the input term and

rewrites it into the term’s type:

expr1 → id1

if { ((expr1 = exprJtrueK orelse expr1 = exprJfalseK)

andalso id1 = idJboolTyK)

orelse

(exprJinteger1K = expr1 andalso id1 = idJintTyK)

}

Here, if the input term is an expression that derives either true or false, then it is

rewritten into a term id that derives boolTy. Otherwise, if the input term derives a

term rooted in integer, then it is rewritten into idJintTyK. �

From the perspective of type analysis, since variables bound by the two operands

of a disjunction may not be identical (for instance variable integer1 in the example

above), the only variables guaranteed to be bound after the evaluation of the disjunc-

tion’s branches are variables bound by both branches. Otherwise, if the enclosing

context refers to a variable bound by only one of the branches, then an error occurs
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at run-time if the execution passes through the branch that does not bind the vari-

able. Therefore, the type system cannot allow an outer-context reference to a variable

that is bound by only one of the branches of a disjunction. Such condition is flagged

as a type error.

If a variable is bound by both operands of a disjunction, then the type system

compares the two types. If the types are identical, then the resulting typing context

binds the variable to that type. Otherwise, the variable in the resulting context is

bound to the least upper bound or join of the two types, which is conceptually the

largest common prefix of both types (see Section 4.7 for a discussion of joins).

In summary, the typing context resulting from the analysis of a disjunction is an

intersection of the typing contexts produced by the analysis of its operands such that

if the same variable is bound to distinct types in the two contexts, then the variable is

bound to the join of the two types. We denote this extended intersection of contexts

as ∩̂. Thus, rule (m-orelse) calculates the resulting typing context as Γ3 = Γ1∩̂Γ2.

Finally, rule (m-match) assigns a boolean type to a match equation if, after updat-

ing the context with implicitly declared variables within the left-hand side operand

(Γ vp Γ1), the analysis of the left-hand side p produces type T1 that is one of the

possible types of s: i.e. T1 A T2.

The need for membership check A arises due to the identity-based nature of the

transformation language. Since the right-hand operand of a match equation can be

an arbitrary strategy s (see Figure 3.1), the type of s can be a choice of possible

types instead of just one type. Abstractly, if type of rule r is T1 → T2 and type of

term t is Tx, then the type of strategy s = r t is T2 if Tx = T1 and Tx otherwise.

To account for such multiple potential results of an application, we introduce union

types · + · , which describe values drawn from heterogeneous types [60]. Thus, the

type of strategy s = r t can be calculated as T2 + Tx.
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T1 = T2

T1 A T2
(m-eq-id)

T2 = T21 + T22 T1 A T21
T1 A T2

(m-eq-left)

T2 = T21 + T22 T1 A T22
T1 A T2

(m-eq-right)

Figure 4.5: Membership of a type within a union type

The membership check A is specified by the rules summarized in Figure 4.5. Type

T1 is within another type T2 if it is identical (T1 = T2) or if it is within one of the

operands of the union type T2 = T21 + T22.

The need for introduction of union types deserves a special attention, because it

plays a pivotal role in the kinds of errors that are detected by the type analysis for

rewrite strategies. First, due to the static nature of the analysis, any static type sys-

tem can only approximate the behavior of a program at run-time. This immediately

implies that analysis of strategies is not complete, since some well-behaved programs

may be rejected by the type system because the type system performs the analysis

at the level of type abstractions and cannot check all possible execution scenarios for

all possible inputs.

Second, in the classic type analysis view[60], any approximation must be sound

to ensure that if a program is assigned a type, then it is guaranteed not to fail at

run-time. If a program cannot be assigned a type, then it may or may not fail. Our

type analysis takes a complement of this view in that if a program cannot be assigned

a type, then it is guaranteed to fail at run-time. This perspective is in correspondence

with the inherent nature of strategies, where a programmer, interested in rewriting

specific kinds of terms, expects failure and provides additional rewrite rules to handle

such failures. As an option of last resort, ID can be used as a catch-all handler

of any failure. Therefore, in the strategic rewriting framework, the most immediate
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question is whether a strategy can succeed. Once this has been answered, the question

of whether a strategy will succeed can be addressed by adding failure-handling rules

as necessary, if at all (note that identity-based languages including TL implicitly

handle failure by leaving the input term unchanged).

In summary, our type system defines an error as a strategy that cannot succeed,

which is manifested as an empty set of possible types. In this perspective, the type

analysis performs a conservative/sound approximation of whether a strategy can suc-

ceed.

Returning back to Figure 4.4, rule (m-match) states that a match equation has

a type error if the type of the left-hand operand is not equal to any of the possible

types of the right-hand operand.

Note that for readability, we abstract away from the details and denote type

equality with operator · = · or with identical type variables. In practice, type equality

is enforced by

1. unification of the operands:

e.g. function unify: env → ty → ty → env;

2. application of the resulting substitution to the operands:

e.g. function applySubst : env → ty → ty;

3. comparison of the resulting types for syntactic equality:

e.g. function eq : ty → ty → bool.

We follow well-known implementations of unification and substitution (see [6] or

p.327, § 22.4 in [60]) and hence avoid their repetition.

Example The following examples demonstrate concrete match expressions and the

corresponding types assuming an empty initial context. Note that the recording of

implicitly declared variables is omitted here, because it has been discussed previously.
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• id1 = idJxK is well-typed with context {id1 : (id, [(idLex, [(x, [ ] )] )] )}

• expr1 = idJxK is a type error due to the mismatch of root terms

• idJaK = idJbK is a type error due to mismatch of leaves

• exprJid1K = exprJxK creates local term variable id1 with context {id1 : id[x]}

• id1 = idJxK orelse id1 = idJyK is of type bool with context {id1 : id[‘a]}

�

4.5 Typing of rewrite rules

To assign types to rewrite rules we use the type constructor · → · , which captures the

types of a rule’s input term (left-hand side or premise) and output term or body. A

rule’s premise may contain variables, which are implicitly declared. Rules represent

scoped abstractions in that any variable used by the output term must be declared and

bound either by the rule’s premise or by match equations within the rule’s condition.

Figure 4.6 summarizes the calculation of types for rewrite rules.

Γ vp Γ1 Γ1 ` p : 〈T1,Γ2〉 Γ2 ` s : 〈T2,Γ3〉
Γ ` p→ s : 〈T1 → T2,Γ3〉

(rule-basic)

Γ vp Γ1 Γ1 ` m : 〈bool,Γ2〉 Γ2 ` p : 〈T1,Γ3〉 Γ3 ` s : 〈T2,Γ4〉
Γ ` p→ s if { m } : 〈T1 → T2,Γ4〉

(rule-cond)

Γ′ = (Γ, ‘x)

Γ ` ID : 〈‘x→ ‘x,Γ′〉
(rule-id)

Γ′ = (Γ, ‘x)

Γ ` SKIP : 〈‘x→ ‘x,Γ′〉
(rule-skip)

Figure 4.6: Typing of rewrite rules

Rule (rule-basic) calculates the type of a rewrite rule that does not have a

condition. Such rule is well-typed if both of its input and output terms are well-
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typed after an update of the initial context with variables contained within premise

p. Rule (rule-cond) states that a conditional rewrite rule is well-typed if, in addition

to the input and output terms, the rule’s condition is also well-typed. The sequence

of type analysis goes from the initial context update with variables in p to the analysis

of match expressions in m and concludes with calculation of types for the input and

output terms. This is to ensure that any type inferences made during the analysis of

match expressions are propagated to the calculation of the type of the input term.

The built-in rewrite abstractions ID and SKIP are generic in that they are appli-

cable to any input term and return the term unchanged. Therefore, rules (rule-id)

and (rule-skip) pick a fresh type variable and assign type ‘x→ ‘x to these abstrac-

tions.

Example The following are examples of rewrite rules and the types calculated based

on the typing rules above:

• expr1 → exprJexpr1 + 1K : expr[‘a] → expr[expr[‘a] + 1]

• expr1 → expr2 if { exprJexpr2 + 0K = expr1 } :

expr[expr[‘b] + 0] → expr[‘b]

• expr1 → id1

if { ((expr1 = exprJtrueK orelse expr1 = exprJfalseK)

andalso id1 = idJboolTyK)

orelse

(exprJinteger1K = expr1 andalso id1 = idJintTyK)

}

: expr[ ’a ] → id[ idLex[ ’d ] ]

�
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4.6 Typing of combinators

Combinators compose rewrite rules sequentially or conditionally. In sequential com-

position, the output of the first rule or strategy is used as input to the second. In

conditional composition, the second rule or strategy is attempted on the input term

only if the first strategy fails to apply to the input term; the output of the composition

is the output of the first successful application.

4.6.1 Conditional composition

Figure 4.7 summarizes the typing rules for conditional composition. Rule (comb-

lcond) calculates the type of left-conditional composition. The type of such com-

position is a union of the types of the operands provided that the right operand is

reachable, which is checked by predicate canReach. A strategy in a conditional com-

position’s sequence is reachable if it is not subsumed by other strategies earlier in

the sequence. Figure 4.8 summarizes the specification of the predicate. In the base

case, (reach-rule) states that rule x is reachable from another rule y, if the premise

(input term) of rule x is not a subtype of the premise of rule y. The other rules

– (reach-sum-right) and (reach-sum-left) – check reachability if either of the

operands is a union type.

Analysis of reachable strategies makes use of the subtyping relation · <: ·. Figure

4.9 summarizes the subtyping rules. Rule (s-tyvar) states that anything is a subtype

of a type variable. Rule (s-term) states that a term is a subtype of another if the

root symbols are identical and its sub-terms are subtypes of the other term’s sub-

terms. Rules (ss-base) and (ss-tail) check if a list of terms is a subtype of

another list of terms, which is the case if each of the terms in the subtype list is a

subtype of the corresponding term in the super-type list. Rule (s-rule) is equivalent

to the subtyping rule for functions (p.184, [60]) in that subtyping is contravariant in
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arguments and covariant in outputs. Finally, rules (s-refl) and (s-trans) reflect

that the subtyping relation is reflexive and transitive.

Γ ` s1 : 〈T1,Γ1〉 Γ ` s2 : 〈T2,Γ2〉 canReach(T1, T2)

Γ ` s1 <+ s2 : 〈T1 + T2,Γ〉
(comb-lcond)

Γ ` s2 : 〈T2,Γ1〉 Γ ` s1 : 〈T1,Γ2〉 canReach(T2, T1)

Γ ` s1 +> s2 : 〈T2 + T1,Γ〉
(comb-rcond)

Γ ` s1 : 〈T1,Γ1〉 Γ ` s2 : 〈T2,Γ2〉
Γ ` s1 <+> s2 : 〈T1 + T2,Γ〉

(comb-acond)

Figure 4.7: Typing rules for conditional combinators

¬(c <: a)

canReach(a→ b, c→ d)
(reach-rule)

(canReach(a, c) ∧ canReach(a, d))

canReach(a, c+ d)
(reach-sum-right)

(canReach(a, c) ∧ canReach(b, c))

canReach(a+ b, c)
(reach-sum-left)

Figure 4.8: Analysis of reachability. If y is reachable in composition x<+y, then
canReach(x, y) holds true.

Example To observe the analysis of reachable strategies, suppose we are given the

following rules:

a:exprJxK → exprJx-1K b:exprJid1K → exprJid1+1K

• Strategy (ID <+ a) is a type error, because ID successfully rewrites any term,

which makes rule a unreachable. This is checked at the level of types by deter-

mining that the input type of rule a (expr[x]) is a subtype of the input type

of ID (‘a), which does not fit the premise of the typing rule (reach-rule).
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S <: ‘x
(s-tyvar)

S = T Ss [<:] Ts

(S, Ss) <: (T, Ts)
(s-term)

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2
(s-rule)

S <: S
(s-refl)

S <: U U <: T

S <: T
(s-trans)

[ ] [<:] [ ]
(ss-base)

S <: T Ss[<:]Ts

S :: Ss [<:] T :: Ts
(ss-tail)

Figure 4.9: Analysis of subtyping.

• Strategy (b <+ a) is a type error, because input term exprJxK, which is the

only possible term that satisfies the input pattern of rule a, is also matched by

the input pattern of rule b, which makes rule a unreachable. At the level of

types, this is determined by checking that sub-term idJxK of term exprJxK is a

subtype of sub-term id1 of term exprJid1K.

• Strategy (a <+ b) is well-typed with type

expr[x] → expr[x - 1] + expr[id[‘a]] → expr[id[‘a] + 1].

�

Continuing with the rules in Figure 4.7, rule (comb-rcond) performs the same

analysis as in the case of left-conditional composition except that the order of analysis

and reachability is reversed. Finally, rule (comb-acond) states the the type of non-

deterministic conditional composition is the union of the types of its operands. Since

the choice of which operand is executed first is non-deterministic, the reachability

analysis is skipped.
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4.6.2 Strict sequence

Figure 4.10 summarizes the typing rules for strict sequential composition. Both

left- and right-biased compositions are analyzed by first computing the types of the

operands and invoking further analysis of the types using function ckStar, which

given operands’ types and an environment returns the set of possible types and the

environment of the entire composition.

Γ ` sa : 〈Ta,Γa〉 Γa ` sb : 〈Tb,Γb〉
Γb ` ckStar(Ta, Tb) : 〈{T i∈1..n:n≥1

i },Γc〉
Γ ` sa<∗ sb : 〈T1 + T2 + . . .+ Tn,Γc〉

(comb-lstar)

Γ ` sb : 〈Tb,Γb〉 Γb ` sa : 〈Ta,Γa〉
Γa ` ckStar(Tb, Ta) : 〈{T i∈1..n:n≥1

i },Γc〉
Γ ` sa∗>s2 : 〈T1 + T2 + . . .+ Tn,Γc〉

(comb-rstar)

Figure 4.10: Typing rules for strict sequence

Figure 4.11 specifies the function ckStar. In the base case, which is checked by

(ckstar-rule+), strict sequential composition is well-typed if the output type of the

first rule in the sequence is the same as (or type-unifiable with) the input type of the

second rule. This is in accordance with the evaluation semantics of strict sequence,

which succeeds only if the first strategy successfully applies to the input term and the

second strategy successfully applies to the output term of the first strategy. If the

types are not the same, which is indicated by (ckstar-rule−), then the composition

has no chance of succeeding, because the second strategy will always fail to apply. In

this case, the set of possible output types is empty.

The other cases check the compatibility of types when one or both of the operands

has a union type. For example, if the second operand has a union type, then rule

(ckstar-sum-right) recursively invokes the analysis on composition of the first

operand (Ta → Tb) with each of the union type’s operands Tc and Td. The resulting

sets of possible types Sabc and Sabd are combined using the standard union operation:
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Tb = Tc

Γ ` ckStar(Ta → Tb, Tc → Td) : 〈{Ta → Td},Γ〉
(ckstar-rule+)

Tb 6= Tc

Γ ` ckStar(Ta → Tb, Tc → Td) : 〈 ∅,Γ〉
(ckstar-rule−)

Γ ` ckStar(Ta → Tb, Tc) : 〈Sabc,Γ1〉
Γ ` ckStar(Ta → Tb, Td) : 〈Sabd,Γ2〉

Γ ` ckStar(Ta → Tb, Tc + Td) : 〈Sabc ∪ Sabd,Γ〉
(ckstar-sum-right)

Γ ` ckStar(Ta, Tc → Td) : 〈Sacd,Γ1〉
Γ ` ckStar(Tb, Tc → Td) : 〈Sbcd,Γ2〉

Γ ` ckStar(Ta + Tb, Tc → Td) : 〈Sacd ∪ Sbcd,Γ〉
(ckstar-sum-left)

Γ ` ckStar(Ta, Tc) : 〈Sac,Γ1〉 Γ ` ckStar(Ta, Td) : 〈Sad,Γ2〉
Γ ` ckStar(Tb, Tc) : 〈Sbc,Γ3〉 Γ ` ckStar(Tb, Td) : 〈Sbd,Γ4〉

Γ ` ckStar(Ta + Tb, Tc + Td) : 〈Sac ∪ Sad ∪ Sbc ∪ Sbd,Γ〉
(ckstar-sum-both)

Figure 4.11: Analysis of operands of strict sequence

Sabc ∪ Sabd. If one of the operands is a type error, then the resulting set of types

is that of the other operand. If both operands are type errors, then an empty set

is returned. If the initial invoker of ckStar receives an empty set of possible types,

then a type error occurs because the typing rules (comb-lstar) and (comb-rstar)

expect a non-empty set of possible types.

Example The following examples list strategies and their corresponding types com-

puted according to the rules discussed above:

• exprJexpr1 + 0K → expr1 <∗ exprJxK → exprJx+1K :

expr[x + 0] → expr[x + 1]

• exprJid1 + 0K → id1 <∗ exprJxK → exprJx+1K : type error

• idJaK → idJbK <∗ (idJaK → idJdK <+ idJbK → idJcK) :

id[a] → id[c]

• idJaK → idJcK <+ idJbK → idJcK) <∗

(idJaK → idJdK <+ idJbK → idJdK) : type error
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4.6.3 Non-strict sequence

The non-strict sequential combinators <; and ;> compose two strategies such that

the second strategy is applied on the output term of the first strategy irrespective

of whether or not the first strategy succeeded on the input term. This allows a

programmer to incrementally collect several strategies and apply them sequentially

without having to check that all of them can succeed. Figure 4.12 summarizes the

typing rules for these combinators. Similar to the typing rules of Figure 4.10, the

analysis proceeds by first computing the types of operand strategies and then passing

the types to function ckSeq, which performs further type analysis.

Γ ` sa : 〈Ta,Γa〉 Γa ` sb : 〈Tb,Γb〉
Γb ` ckSeq(Ta, Tb) : 〈{T i∈1..n:n≥1

i },Γc〉
Γ ` sa<;sb : 〈T1 + T2 + . . .+ Tn,Γc〉

(comb-lseq)

Γ ` sb : 〈Tb,Γb〉 Γb ` sa : 〈Ta,Γa〉
Γa ` ckSeq(Tb, Ta) : 〈{T i∈1..n:n≥1

i },Γc〉
Γ ` sa;>sb : 〈T1 + T2 + . . .+ Tn,Γc〉

(comb-rseq)

Figure 4.12: Typing rules for non-strict sequence

Figure 4.13 summarizes the definition of ckSeq. According to (ckseq-rule+), if

the output type of the first operand (Tb) is the same as (or type-unifiable with) the

input type of the second operand (Tc), then there are three possible execution paths

through non-strict sequential composition:

1. Both of the strategies succeed, in which case the type of the composition is

Ta → Td;

2. The first strategy fails to apply on the input term, in which case the second

strategy will be attempted on the input term. The type of the second strategy

becomes one of the possible types of the composition: Tc → Td.

3. Due to unification and propagation of type bindings, the type of the first
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strategy may become more constrained. For example, composition exprJid1K

→ id1 <; idJxK → idJyK, using the two executions paths above, has type

expr[x] → id[y] + id[x] → id[y]. Since the first strategy is applicable

to terms other than exprJxK, it is possible that only the first strategy will suc-

ceed. Therefore, the type of the composition has the type of the first strategy

as one of its possible types. In the example, it is expr[id[‘a]] → id[‘a].

Note that the implementation of the type system performs additional checks to

remove duplicate types from union types and to reduce the number of possible types

whenever possible: e.g. when the second strategy is guaranteed to apply to the output

of the first strategy.

Tb = Tc

Γ ` ckSeq(Ta → Tb, Tc → Td) : 〈{Ta → Td, Ta → Tb, Tc → Td},Γ〉
(ckseq-rule+)

Tb 6= Tc canReach(Ta → Tb, Tc → Td)

Γ ` ckSeq(Ta → Tb, Tc → Td) : 〈{Ta → Tb, Tc → Td},Γ〉
(ckseq-rule−)

Γ ` ckSeq(Ta → Tb, Tc) : 〈Sabc,Γ1〉
Γ ` ckSeq(Ta → Tb, Td) : 〈Sabd,Γ2〉

Γ ` ckSeq(Ta → Tb, Tc + Td) : 〈Sabc ∪ Sabd,Γ〉
(ckseq-sum-right)

Γ ` ckSeq(Ta, Tc → Td) : 〈Sacd,Γ1〉
Γ ` ckSeq(Tb, Tc → Td) : 〈Sbcd,Γ2〉

Γ ` ckSeq(Ta + Tb, Tc → Td) : 〈Sacd ∪ Sbcd,Γ〉
(ckseq-sum-left)

Γ ` ckSeq(Ta, Tc) : 〈Sac,Γ1〉 Γ ` ckSeq(Ta, Td) : 〈Sad,Γ2〉
Γ ` ckSeq(Tb, Tc) : 〈Sbc,Γ3〉 Γ ` ckSeq(Tb, Td) : 〈Sbd,Γ4〉

Γ ` ckSeq(Ta + Tb, Tc + Td) : 〈Sac ∪ Sad ∪ Sbc ∪ Sbd,Γ〉
(ckseq-sum-both)

Figure 4.13: Analysis of operands of non-strict sequence

If the input and output types are not compatible, then there are only two possible

paths through the composition: either the first or the second strategy. In addition

to assigning the union of the two types as the output type of the composition, rule

(ckseq-rule−) states that the second strategy must be reachable, otherwise the

second strategy has no chance of succeeding, which is obviously a programming error.
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Besides the detection of incompatible input and output types, the type system also

issues an informational log notice to the standard console notifying a programmer

that the non-strict sequential combinator can be replaced by one of the conditional

combinators. In other words, this condition manifests equivalence of s1<;s2 to s1<+s2

and s1;>s2 to s1+>s2.

The remaining rules (ckseq-sum-right), (ckseq-sum-left) and (ckseq-sum-

both) analyze the composition when one or both operands is a union type. Each of

a union type’s operands is composed with the type of the other strategy and results

are combined into a union of possible output types.

Example Here are example of strategies and their types:

• idJxK → idJyK <; idJyK → idJzK :

id[x] → id[z] + id[y] → id[z]

• idJyK → idJzK <; idJxK → idJyK :

id[y] → id[z] + id[x] → id[y]

• id1 → idJzK <; idJxK → idJyK : type error

4.7 Analysis of application

Having assigned types to the core constructs of rewrite strategies – patterns, match

expressions, rewrite rules and combinators, we are now ready to discuss the analysis

of applying a strategy to a term. This rounds out the discussion of the core features

of the type system. Other features of rewrite strategies such as iterators and non-

standard features of the target language such as higher-order rules and compositions

will be considered as extensions of this core system.

Application of strategy s to term t denoted by s t is well-typed if type of t is a term

type and type of s contains an arrow type either directly or as part of a union type.
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Figure 4.14 summarizes the typing rules of analysis of application. In particular, the

types of constituents of an application are computed and passed onto function reduce,

which performs further analysis at the level of types.

Γ ` s : 〈Ta,Γa〉 Γa ` t : 〈Tb,Γb〉 Γb ` reduce(Ta, Tb) : 〈{T i∈1..n:n≥1
i },Γc〉

Γ ` s t : 〈T1 + T2 + . . .+ Tn,Γc〉
(app)

Γ ` reduce(Ta → Tb, Ta) : 〈{Tb, Ta},Γ〉
(red-rule)

Γ ` reduce(Ta, Tc) : 〈Sac,Γ1〉 Γ ` reduce(Tb, Tc) : 〈Sbc,Γ2〉 Γ3 = Γ1∩̂Γ2

Γ ` reduce(Ta + Tb, Tc) : 〈Sac ∪ Sbc,Γ3〉
(red-sum)

Γ, ‘a, ‘b, ‘x : ‘a→ ‘b ` reduce(‘a→ ‘b, Tc) : 〈Sabc,Γ1〉
Γ ` reduce(‘x, Tc) : 〈Sabc,Γ1〉

(red-tyvar)

Figure 4.14: Analysis of strategy application

Rule (red-rule) states that application of arrow type Ta → Tb to a type is well-

formed if the type is the same as input type Ta of the arrow type. Further, since

application may fail due to non-type-related issues (e.g. the body of a conditional

rewrite rule evaluates to false) and the application failure has identity-based behavior,

which leaves the input term unchanged, the set of possible output types includes the

input term’s type. Therefore, the set of possible types of applying an arrow type is

{Tb, Ta}.

Rule (red-tyvar) performs type-inferencing by expanding the type variable into

arrow type ‘a→ ‘b, where variables ‘a and ‘b are fresh, and binding variable ‘x to the

arrow type prior to recursive invocation reduce(‘a→ ‘b, Tc).

Finally, rule (red-sum) checks application of a union type by recursively invoking

reduce on the union type’s operands and combining the resulting sets of types Sac,

Sbc into a union. Since the two recursive invocations may bind the same variable to

distinct types, the resulting typing contexts Γ1 and Γ2 are joined by performing an

extended intersection operation ∩̂, such that if variable x is bound to Tx1 in Γ1 and
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to Tx2 in Γ2 with Tx1 6= Tx2, then it is bound to the join type Tx1 ∨ Tx2 in Γ1∩̂Γ2. In

all other cases, the behavior of ∩̂ is that of the standard set intersection operation.

Figure 4.15 specifies the calculation of join types. Calculation of joins for arrow

types requires calculation of meets [60]. Therefore, the two algorithms are listed

simultaneously as mutually recursive definitions. We write S ∨ T = J for “J is the

join of S and T” and S ∧ T = M for “M is the meet of S and T”.

In particular, if one of the operands is a subtype of the other, then the join is

the super-type. If neither type is a subtype of the other, we search for some type

S ′ = ⇑ S that is more generic than the given type S. If the calculated type S ′ is

indeed more generic, then we recursively invoke the calculation of join T ∨ S ′ = J

and use J as the result. Otherwise, if S ′ = S, that is S is already in the most generic

form, then we find a more generic type T ′ = ⇑ T and use T ′ in recursive calculation

of J .

If the given types are arrow types, then, to be consistent with the subtype relation

for arrow types, we compute the meet for input types – M = S1 ∧ T1 – and join for

output types – J = S2 ∨ T2. The resulting join type is M → J . Finally, it is

possible that the calculation of meets may fail, because the existence of meets is not

guaranteed by the subtype relation. In this case, the join of such types is the (fresh)

type variable ‘a – the most generic type.

Calculation of meets mirrors the calculation of joins. In particular, if one of the

operands is a subtype of the other, then the meet is the subtype. If the operands

are arrow types, then the meet is J → M , where J is the join of input types and M

is the meet of output types. If none of the above holds, then there does not exist a

meet and the calculation fails.

Figure 4.16 summarizes the calculation of a more generic type ⇑ Ti given some

type Ti. In the base case, the more generic type of a type variable is the type variable

itself – rule (up-tyvar). To compute a more generic type of a term type (T, Ts),
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S ∨ T =



T if S <: T
S if T <: S
J if ⇑ S = S′

S′ 6= S
T ∨ S′ = J

J if ⇑ S = S′

S′ = S
⇑ T = T ′

T ′ ∨ S′ = J
M → J if S = S1 → S2

T = T1 → T2
S1 ∧ T1 = M
S2 ∨ T2 = J

‘a otherwise

S ∧ T =



S if S <: T
T if T <: S
J →M if S = S1 → S2

T = T1 → T2
S1 ∨ T1 = J
S2 ∧ T2 = M

fail otherwise

Figure 4.15: Calculation of join (and meet) types

we first make the list of immediate children Ts more generic. If the resulting list is

not the same as the original – rule (up-term-children), then the more generic type

is (T, Ts′). Otherwise – rule (up-term-root), the more generic type is a fresh type

variable ‘a.

To compute a generic type of a list of types, we make the head of a list, if any,

more generic – rule (up-list-head), and otherwise make the tail of the list more

generic – rule (up-list-tail).

Example The following examples demonstrate the analysis of application

• (exprJexpr1 + 0K → expr1) exprJx + 0K :

expr[ x ] + expr[ x + 0 ]

• (exprJexpr1 + 0K → expr1) exprJx + 1K : type error

• (exprJexpr1 + 0K → expr1 <+ exprJexpr1 * 1K → expr1) :
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⇑ ‘a = ‘a
(up-tyvar)

[⇑]Ts = Ts′ Ts 6= Ts′

⇑ (T, Ts) = (T, Ts′)
(up-term-children)

[⇑]Ts = Ts′ Ts = Ts′

⇑ (T, Ts) = ‘a
(up-term-root)

[⇑] [ ] = [ ]
(up-list-base)

⇑ T = T ′ T 6= T ′

[⇑] [T :: Ts] = [T ′ :: Ts]
(up-list-head)

⇑ T = T ′ T = T ′ [⇑]Ts = Ts′

[⇑] [T :: Ts] = [T :: Ts′]
(up-list-tail)

Figure 4.16: Extending a type into a more generic type

expr[ expr[ ’a ] + 0 ] → expr[ ’a ] +

expr[ expr[ ’b ] * 1 ] → expr[ ’b ]

• (exprJexpr1 + 0K → expr1 <+

exprJexpr1 * 1K → expr1) exprJx + 0K :

expr[ x ] + expr[x + 0]

• exprx →

(exprJexpr1 + 0K → expr1 <+ exprJexpr1 * 1K → expr1) exprx :

expr[ ’f ’g intLex[ ’h ] ] → (expr[ ’a ] + expr[ ’b ])

4.8 Analysis of strategy declarations

A program in TL is a list of labeled strategy definitions (or rewrite abstractions) of

the form x : s. The typing rules for programs are listed in Figure 4.17. A strategy

definition is well-typed, if the definition’s body is well-typed. If a definition is well-

typed, then the original typing context is extended with the type binding for the new
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label (rule (def-abs)). A program is well-typed if all constituent rewrite abstractions

are well-typed.

x : T ∈ Γ

Γ ` x : 〈T,Γ〉
(def-var)

Γ ` s : 〈T,Γ1〉 Γ2 = Γ1, x : T

Γ ` x : s : 〈T,Γ2〉
(def-abs)

Γ ` d1 : 〈T1,Γ1〉 Γ1 ` d2 : 〈T2,Γ2〉
Γ ` d1 d2 : 〈T2,Γ2〉

(def-seq)

Figure 4.17: Analysis of strategies and programs

4.9 Typing Properties

In the previous sections, we have presented the core parts of the type analysis: i.e.

types of terms and patterns, analysis of rewrite rules, rule compositions and their

applications. In this section, we summarize the properties of the core of type analysis,

in particular the soundness of the analysis.

A type system is sound if well-typed terms do not go wrong. In the strategic

rewriting setting, going wrong means applying a top-level strategy to a term, for

which it is undefined. In TL this means applying the main strategy to an input

term and always failing: i.e. main t = 〈 t, false〉 for all t. Note that constituent

(internal) strategy failures may be handled by an enclosing composite strategy and

thus applications of the form (t1 →t1 { if false} <+ ID ) t are well-typed

even though there exist intermediate application failures: i.e. (t1 →t1 { if false})

t. Thus, a strategy goes wrong when the failure always bubbles up and escapes the

strategic controls un-handled.

We formulate the following properties and leave their proof for all (≈70) con-

structors of the TL language for future work. A type soundness proof for a smaller
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language StratCore (5 constructors) along with its small-step operational semantics

has been previously presented and discussed in [50]. Additional details can also be

found in [49].

Lemma (Rewrite soundness): Given rewrite rule r of the form lhs → rhs and

term t, if type of application r t is {Trhs′}, then evaluation of r t succeeds and

produces rhs′, where rhs′ : Trhs′ . If the type of application r t is ∅, then the

evaluation of the rewrite rule application cannot succeed.

This lemma states that the type analysis follows the standard rewriting semantics

[6] such that if a substitution σ can be constructed from the match of lhs and t to

build the output term σ(rhs) = rhs’, then the type system will correctly compute

the type of the application result to be the set containing the type of rhs’. Fur-

ther, if a substitution cannot be constructed, then the type system will identify this

application failure by an empty set.

Theorem (Type soundness): If s t : {T i∈1..n,n≥1
i }, then evaluation of s t succeeds

and produces t′ such that t′ : T ′ and T ′ ∈ {T i∈1..n,n≥1
i }.

The theorem lifts the type soundness of a single rule analysis to the type soundness

of a strategy analysis. This theorem can be proved by a case-based analysis of the

constructors of strategy s [50].
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Chapter 5

Extension: Analysis of Other

Strategic Features

In the previous chapter, we discussed the core of the type system that focused on

the analysis of rewrite rules and their compositions. In this chapter, we continue the

analysis of the transformation language TL by considering other features such as calls

to Standard ML (SML) functions, higher-order rules and their compositions.

5.1 SML functions

In TL , a conditional rewrite rule may invoke an SML function to perform some

computation that may not be easily achievable using rewrite strategies: e.g. impera-

tive side effects such as modification of memory state and output to standard console.

While the typical context of function invocation is a boolean-valued match expression,

the results of a function call may also be matched to a pattern in a match equation:

p = sml.id(p∗)
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where the (possibly empty) list of function arguments can contain arbitrary patterns.

In other words, there is no restriction on the input and output terms of invocable

functions. Therefore, to ensure the consistency of type analysis in the presence of

function calls, it has been decided to allow a programmer to leverage type-checking

and include function calls in the type analysis. For this purpose, a programmer can

declare the type signature of a function in a signature block of a TL program. Having

declared the signature of a function, the programmer can rely on the type system

to ensure that the function is invoked with parameters of proper type and that the

result of the function is used in a context of proper type.

In order to retain backward compatibility with existing TL programs and to pro-

vide programming flexibility, the declaration of function signatures is optional. If a

call is made to a function, whose signature has not been declared, then the type sys-

tem performs a “best-effort analysis” by type inferencing both the function arguments

and the return type and ensuring that multiple invocations of the same function use

arguments and results of the same respective types.

d ::= ... declarations:
“UserDefinedFunctions” “=” “sig” [ sigs ] “end” signature block

sigs ::= sig [ sigs ] signature
sig ::= id “:” typeExpr type declaration
typeExpr ::= typeTerm “→” typeBase arrow type
typeTerm ::= typeBase “*” typeTerm product type

typeBase base type
typeBase ::= “<”id“>” schema type

“unit” unit type
“int” integer type
“bool” boolean type
“string” string type
“real” real type

Figure 5.1: SML function type declarations

Figure 5.1 summarizes the grammar of signature declarations. The signature block

consists of a list of signatures. Signature of a function is an arrow type, where the

input type can be (a product of) one of the basic types or a schema type. A valid
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schema type has an identifier of one of non-terminal symbols of the term language’s

grammar.

To analyze the calls to declared functions, the type system performs a pre-process-

ing step where the initially empty typing environment is populated with the type

signatures of declared SML functions. The updated context is then used in the

analysis of the program and the function calls.

Figure 5.2 summarizes the typing rules used in the analysis of function calls. We

distinguish two kinds of function calls: calls with an empty and non-empty argument

lists. In the first case, which is expressed by typing rules (sml-call0-decl) and

(sml-call0-infer), the type signature of the invoked function is looked up in the

typing context. If the signature is found, then the resulting type is the function’s

return type. Otherwise, an inferencing step is made by picking a fresh type variable

and binding it to the function’s return type.

If a call is made to a function with parameters, then the signature of the function

is looked up in the typing context. If one is found – rule (sml-call-decl), then each

of the function’s actual arguments pi is analyzed for its type. Further, for each i, the

type of formal parameter i needs to match the type of actual parameter pi. If so, the

returned type is the function’s declared return type.

On the other hand, if the invoked function’s signature is not found in the typing

context – rule (sml-call-infer), then an inferencing step is made by binding the

function’s identifier to an arrow type with the matching number of formal parameters

such that each component of the arrow type is a fresh type variable. Then, each of

the actual parameters pi is analyzed for its type Ti. Finally, each of the type variables

introduced in the inferencing step is bound to the corresponding actual type Ti and

the type ‘m is returned by the analysis of the function call.
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id : Unit→ T ∈ Γ0

Γ0 ` sml.id() : 〈T,Γ1〉
(sml-call0-decl)

id : Unit→ T 6∈ Γ0 Γ1 = Γ0, ‘a, id : Unit→ ‘a

Γ0 ` sml.id() : 〈‘a,Γ1〉
(sml-call0-infer)

id : (T i∈1..n,n≥1
i )→ T ∈ Γ0 Γi−1 ` pi∈1..n,n≥1i : 〈T i∈1..n,n≥1

i ,Γi〉
Γ0 ` sml.id(pi∈1..n,n≥1i ) : 〈T,Γn〉

(sml-call-decl)

id : (T i∈1..n,n≥1
i )→ T 6∈ Γ0

Γ1 = Γ0, ‘i, ‘m, id : (‘ii∈1..n,n≥1)→ ‘m
Γi ` pi∈1..n,n≥1i : 〈T i∈1..n,n≥1

i ,Γi+1〉
Γn+2 = Γn+1, ‘i : T i∈1..n,n≥1

i

Γ0 ` sml.id(pi∈1..n,n≥1i ) : 〈‘m,Γn+2〉
(sml-call-infer)

Figure 5.2: Analysis of SML function calls

Example The following examples illustrate the analysis of SML function calls given

the following list of function signature declarations:

UserDefinedFunctions =

sig

unit2Expr: unit -> <expr>

expr2Expr: <expr> -> <expr>

end

• expr1 → expr1 if { sml.unit2Expr() } : type error

because the context surrounding the function invocation expects a boolean

value, but is given expr[‘a]

• expr1 → expr1 if { sml.unit2Expr() = expr1 } :

expr[‘a] → expr[‘a]

• expr1 → expr1 if { sml.undeclared01() } : expr[‘a] → expr[‘a]

• expr1 → expr2 if { expr2 = sml.expr2Expr(expr1) } :

expr[‘a] → expr[‘b]
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• expr1 → id1 if { id1 = sml.expr2Expr(expr1) } : type error

because match equation’s operands’ types do not match

• expr1 → expr1 if { sml.foo(expr1) andalso sml.foo() } :

type error because after the first function call, the inferred type is expr[‘a]

→ ‘b, which does not match the second call’s type unit → ‘c

• expr1 → expr1 if { id1 = sml.foo(expr1) andalso sml.foo(id1) } :

type error because expr[‘a] → id[‘b] does not match id[‘b] → ‘c

• expr1 → expr1 if { sml.foo(expr1) orelse sml.foo() } :

expr[‘a] → expr[‘a] because bindings produced from the analysis of one of

orelse’s operands are not remembered in the analysis of the second operand;

the join type of expr[‘a] → ‘b and unit → ’c is ‘d

• id1 → id1 if { sml.foo(exprJid1K) orelse sml.foo(exprJyK) } :

id[‘a] → id[‘a] where the join type of expr[id[‘a]] → ‘b and expr[y]

→ ’c is expr[y] → ‘c

�

5.2 Primitive operations

In addition to access to SML functions to perform non-transformational tasks such as

imperative side effects, TL provides built-in primitive operations on parse tree leaves.

This provides a programmer the convenience of modifying terms directly within a

transformation program without needing to define and call SML functions.

Figure 5.3 summarizes the primitive operations built into the language. All of

the operators in TL are left-associative. The operator precedence, including the

precedence of strategic operators, from lowest to highest is listed in Figure 5.4.
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s ::= ... strategies:
s binop s binary operation
unop s unary operation
boolVal boolean value
intVal integer value
realVal real value
stringVal string value

binop ::= || | && boolean ops
== | ! = | < | <= | > | >= relational ops
+ | - | * | / | div | mod arithmetic ops
ˆ string concatenation

unop ::= ! negation
˜ unary minus

Figure 5.3: Primitive operations in TL

orelse match disjunction lowest
andalso match conjunction
= match equation
<+ , +> , <+> choice
<; , ;> non-strict sequence
<∗ , ∗> strict sequence
→ rule
if rule condition
|| disjunction
&& conjunction
==, !=, <, <=, >, >= relational operators
ˆ, +, - string concatenation, addition, subtraction
*, /, div, mod multiply, real divide, integer divide, modulo
˜, !, not unary minus, negation, match negation highest

Figure 5.4: Precedence of operators in TL

Primitive operations are overloaded with respect to operands’ types. For example,

the acceptable type signatures for arithmetic addition are int ∗ int → int as well

as real ∗ real → real. In addition, since (parse) trees are ubiquitous in strategic

rewriting, the operations are defined not only on operands of primitive type prim

– bool, int, real, string – but also on operands of tree types t[prim], where the tree

must be linear with a leaf of a primitive type. A linear tree is a tree, where each node

has at most one child node.
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Example The following examples illustrate primitive operations and their results

• exprJ1K + 1 ≡ exprJ2K

• exprJ1K + exprJ2K ≡ exprJ3K

• exprJHelloK ˆ“ ” ˆexprJworldK ˆ“!” ≡ exprJHello world!K

• exprJ1K <= exprJ2K && exprJ1.0K <= exprJ2.0K ≡ true

�

Figure 5.5 summarizes the typing rules for primitive values. In the base case,

primitive values are assigned their corresponding types. Rule (prim-term) states

that if, in the process of analyzing the primitive operations, we encounter a linear

tree tJleafK, whose leaf is one of the primitive types T , then the term’s type becomes

more abstract as t[T ], instead of the usual type t[leaf ]. Abstraction of term types is

necessary because primitive values are already abstracted. For example, the type of

term (boolean, [(boolLex, [(true, [])])]) becomes (boolean, [(boolLex, [(bool, [])])]). Note

that we do not encode all of these details inside rule (prim-term) to avoid notational

complexities.

Rule (prim-b-or) in Figure 5.6 analyzes boolean disjunction by calculating the

operands’ types and checking that they are either a boolean primitive type or a

boolean tree type. If so, the return type is a treeOf the two types: i.e. if one or both

types are tree types, then the result is the tree type t[bool]; otherwise, the result is

the primitive type bool. Analysis of boolean conjunction and negation is similar.

Examples

• true || false : bool

• true || exprJfalseK : expr[bool]
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• exprJexpr1 + expr2K → expr1 || expr2 :

expr[bool + bool] → expr[bool]

• true || exprJ"false"K : type error because "false" is of type string

• true || exprJ(false)K : type error because exprJ(false)K is non-linear

�

t ∈ {true, false}
Γ ` t : 〈bool,Γ〉

(prim-bool)

t ∈ Z
Γ ` t : 〈int,Γ〉

(prim-int)

t ∈ R
Γ ` t : 〈real,Γ〉

(prim-real)

t ∈ “alphanum∗”

Γ ` t : 〈string,Γ〉
(prim-string)

Γ ` leaf : 〈T,Γ1〉 T ∈ {bool, int, real, string}
Γ ` tJleafK : 〈t[T ],Γ1〉

(prim-term)

Figure 5.5: Analysis of primitive values

Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉 T1, T2 ∈ {bool, t[bool]}
Γ ` s1 || s2 : 〈treeOf(T1, T2),Γ2〉

(prim-b-or)

Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉 T1, T2 ∈ {bool, t[bool]}
Γ ` s1 && s2 : 〈treeOf(T1, T2),Γ2〉

(prim-b-and)

Γ ` s : 〈T,Γ1〉 T ∈ {bool, t[bool]}
Γ `! s : 〈T,Γ1〉

(prim-b-not)

Figure 5.6: Analysis of boolean operations

Analysis of relational operations, summarized in Figure 5.7, is similar to the anal-

ysis of boolean operations except that relational operations are overloaded and the

acceptable types of operands are all four primitive types in the case of equality and
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Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉
(T1, T2 ∈ {bool, t[bool]} or T1, T2 ∈ {int, t[int]} or

T1, T2 ∈ {real, t[real]} or T1, T2 ∈ {string, t[string]})
Γ ` s1 == s2 : 〈bool,Γ2〉

(prim-eq)

Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉
(T1, T2 ∈ {bool, t[bool]} or T1, T2 ∈ {int, t[int]} or

T1, T2 ∈ {real, t[real]} or T1, T2 ∈ {string, t[string]})
Γ ` s1 ! = s2 : 〈bool,Γ2〉

(prim-neq)

Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉
(T1, T2 ∈ {int, t[int]} or T1, T2 ∈ {real, t[real]} or T1, T2 ∈ {string, t[string]})

Γ ` s1 < s2 : 〈bool,Γ2〉
(prim-lt)

Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉
(T1, T2 ∈ {int, t[int]} or T1, T2 ∈ {real, t[real]} or T1, T2 ∈ {string, t[string]})

Γ ` s1 <= s2 : 〈bool,Γ2〉
(prim-leq)

Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉
(T1, T2 ∈ {int, t[int]} or T1, T2 ∈ {real, t[real]} or T1, T2 ∈ {string, t[string]})

Γ ` s1 > s2 : 〈bool,Γ2〉
(prim-gt)

Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉
(T1, T2 ∈ {int, t[int]} or T1, T2 ∈ {real, t[real]} or T1, T2 ∈ {string, t[string]})

Γ ` s1 >= s2 : 〈bool,Γ2〉
(prim-geq)

Figure 5.7: Analysis of relational operations

non-equality operators (rules (prim-eq) and (prim-neq)) and primitive types int,

real or string for the remaining four relational operators.

Figure 5.8 summarizes typing rules for arithmetic operations. Addition, subtrac-

tion and multiplication are overloaded operations, while real division, integer division,

modulo, string concatenation and unary minus operations are non-overloaded opera-

tions.

Examples

• ~1 : int

• ~1.0 : real

• expr1 → ~expr1 : expr[int]
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Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉
(T1, T2 ∈ {int, t[int]} or T1, T2 ∈ {real, t[real]})

Γ ` s1 + s2 : 〈treeOf(T1, T2),Γ2〉
(prim-plus)

Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉
(T1, T2 ∈ {int, t[int]} or T1, T2 ∈ {real, t[real]})

Γ ` s1 − s2 : 〈treeOf(T1, T2),Γ2〉
(prim-minus)

Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉
(T1, T2 ∈ {int, t[int]} or T1, T2 ∈ {real, t[real]})

Γ ` s1 ∗ s2 : 〈treeOf(T1, T2),Γ2〉
(prim-times)

Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉 T1, T2 ∈ {real, t[real]}
Γ ` s1 / s2 : 〈treeOf(T1, T2),Γ2〉

(prim-divide)

Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉 T1, T2 ∈ {int, t[int]}
Γ ` s1 div s2 : 〈treeOf(T1, T2),Γ2〉

(prim-div)

Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉 T1, T2 ∈ {int, t[int]}
Γ ` s1 mod s2 : 〈treeOf(T1, T2),Γ2〉

(prim-mod)

Γ ` s1 : 〈T1,Γ1〉 Γ1 ` s2 : 〈T2,Γ2〉 T1, T2 ∈ {string, t[string]}
Γ ` s1 ˆ s2 : 〈treeOf(T1, T2),Γ2〉

(prim-concat)

Γ ` s : 〈T,Γ1〉 (T ∈ {int, t[int]} or T ∈ {real, t[real]})
Γ ` ˜s : 〈T,Γ1〉

(prim-tilde)

Figure 5.8: Analysis of arithmetic operations

• expr1 → expr1 + 1 : expr[int]

• exprJ2K + exprJ2.2K : type error because both operands must be of the

same type

�

5.3 Transient strategies

Transient strategies and related operators opaque, raise, hide and lift modify the be-

havior of a strategy during execution. For example, successful application of a strategy

to a term may reduce it to the no-op SKIP and prevent other strategies in condi-



99

tional composition from applying to a term: i.e. transient(s1)<+s2. Because the

type system performs its analysis statically, the analysis needs to be conservatively

approximating the conditions at run-time. Therefore, these operators do not modify

the type of their strategy, which is a conservative assumption that a strategy may

or may never apply. In other words, given s1 : T11 → T12 and s2 : T21 → T22 the

type of a strategy transient(s1)<+s2 is T11 → T12 + T21 → T22 even if s1 happens to

always apply at run-time and the entire composition becomes just s2 after the first

application. Figure 5.9 summarizes the analysis of transient strategies and related

operators.

Γ ` s : 〈T,Γ1〉
Γ ` transient(s) : 〈T,Γ1〉

(transient)

Γ ` s : 〈T,Γ1〉
Γ ` opaque(s) : 〈T,Γ1〉

(opaque)

Γ ` s : 〈T,Γ1〉
Γ ` raise(s) : 〈T,Γ1〉

(raise)

Γ ` s : 〈T,Γ1〉
Γ ` hide(s) : 〈T,Γ1〉

(hide)

Γ ` s : 〈T,Γ1〉
Γ ` lift(s) : 〈T,Γ1〉

(lift)

Figure 5.9: Analysis of transient strategies

5.4 Local recursive strategies

Conditional rewrite rules in TL may contain definitions of recursive strategies of the

form id := s, where s may be an arbitrary strategy with recursive references to id.

Figure 5.10 summarizes the analysis of local recursive strategies. In particular, prior

to the analysis of the strategy, the typing context is extended by binding the identifier

id to a fresh type variable. This enables analysis of recursive references. Upon
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completion of the analysis, the existing binding is updated with the calculated type

T . Because the context of local recursive strategy definitions is a match expression

(i.e. a rule’s condition), the resulting type is bool.

Γ1 = Γ, ‘a, id : ‘a Γ1 ` s : 〈T,Γ2〉 Γ3 = Γ2, id : T

Γ ` id := s : 〈bool,Γ3〉
(bind)

Figure 5.10: Analysis of local recursive strategies

Example The following example illustrates the use and analysis of local recursive

strategies:

inc: expr1 → expr2 // increments all expressions except exprJ999K

if { expr2 = expr1 + 1 andalso

not(expr2 = exprJ1000K)

}

// type of inc is expr[int] → expr[int]

fix: expr1 → expr2 // counts up until exprJ999K

if { s := inc <∗ (s <+ ID) andalso

expr2 = s expr1

}

// type of fix is expr[int] → expr[int]

�

5.5 Higher-order rules and compositions

TL supports higher-order rewrite rules. If there is more than one dynamic rule gener-

ated by application of a higher-order rule, then the new rules can be composed using
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operator fold. Analysis of strategic expressions involving fold needs to ensure that

composition of dynamic rules does not contain any errors: e.g. the composition needs

to have a chance to succeed. For example, the strategy

fold <∗ ( exprJaK → exprJbK → exprJcK <∗

exprJaK → exprJyK → exprJzK

)

contains an error, because the dynamically generated composition

exprJbK → exprJcK <∗ exprJyK → exprJzK

will always fail for all inputs. Thus, the goal of analyzing higher-order rules and

compositions is to flag as many errors as can be determined statically.

Figure 5.11 summarizes the analysis of fold expressions. Upon calculation of the

type of the argument strategy s, further analysis is performed by function foldRules⊕,

where ⊕ is the binary combinator used in the fold expression.

Γ ` s : 〈T1,Γ1〉 Γ1 ` foldRules⊕(T1) : 〈T2,Γ2〉
Γ ` fold⊕ s : 〈T2,Γ2〉

(fold)

Figure 5.11: Analysis of higher-order compositions

Since the strategy s may be a composite strategy, we augment the previous anal-

ysis of compositions by extending functions ckStar and ckSeq, which were previously

defined in Figures 4.11 and 4.13. Figure 5.12 summarizes the extension. In par-

ticular, rule (ckstar-hi-rule+) states that composition of two higher-order rules

is well-typed if the outer input patterns of the two rules are type-unifiable. If so,

a special-purpose rule type T → [T i∈1..n
i ] is returned to foldRules⊕ to analyze the

composition T1 ⊕ T2 ⊕ · · · ⊕ Tn. Otherwise, the composition is a type error, which is

indicated by ∅.
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Similar analysis applies to non-strict sequential composition checked by rule

(ckseq-hi-rule+). However, here there are three different execution paths through

non-strict sequence a<;b: they are a and b, just a and just b. Therefore, the set of

return types includes three possible rule types in case of Ta = Tx, and two possible

rule types otherwise.

Ta = Tx
Γ ` ckStar(Ta → Tb → Tc, Tx → Ty → Tz) :

〈{Ta → [Tb → Tc, Ty → Tz]},Γ〉
(ckstar-hi-rule+)

Ta 6= Tx

Γ ` ckStar(Ta → Tb → Tc, Tx → Ty → Tz) : 〈∅,Γ〉
(ckstar-hi-rule−)

Ta = Tx
Γ ` ckSeq(Ta → Tb → Tc, Tx → Ty → Tz) :

〈{Ta → [Tb → Tc, Ty → Tz], Ta → Tb → Tc, Tx → Ty → Tz},Γ〉
(ckseq-hi-rule+)

Ta 6= Tx canReach(Ta → Tb → Tc, Tx → Ty → Tz)

Γ ` ckSeq(Ta → Tb → Tc, Tx → Ty → Tz) :
〈{Ta → Tb → Tc, Tx → Ty → Tz},Γ〉

(ckseq-hi-rule−)

Figure 5.12: Extension: higher-order compositions

Finally, Figure 5.13 specifies the definition of foldRules. Here, if the argument

is a single higher-order rule, then there is nothing to fold and the rule is returned as

the result – rule (fold-rules-base). If the argument is a sum type, then each of its

operands are analyzed recursively and the results are combined into a sum type – rule

(fold-rules-sum). Rule (fold-rules- list) states that if the argument is a rule

type, where the right-hand side is a list of types, then the list of types is converted

into a single type by function createComp.

Figure 5.14 summarizes the definition of createComp. If the combinator is one of

the conditional combinators , <+> , <+ , +> , <∗ , ∗> , <; , ;> , and <+> and <+ and

+> and <∗ and ∗> and <; and ;> then the resulting type is a sum of list elements.

Otherwise, the list elements are passed onto functions ckStar and ckSeq to obtain the

set of possible types. For notational simplicity, we implicitly lift binary compositions
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Γ ` foldRules⊕(Ta → Tb → Tc) : 〈Ta → Tb → Tc,Γ〉
(fold-rules-base)

Γ ` foldRules⊕(Ta) : 〈T ′a,Γ1〉 Γ ` foldRules⊕(Tb) : 〈T ′b,Γ2〉
Γ ` foldRules⊕(Ta + Tb) : 〈T ′a + T ′b,Γ〉

(fold-rules-sum)

Γ ` createComp⊕[T i∈1..n,n≥2
i ] : 〈Tis,Γ1〉

Γ ` foldRules⊕(Ta → [T i∈1..n,n≥2
i ]) : 〈Ta → Tis,Γ2〉

(fold-rules-list)

Figure 5.13: Folding dynamic rules

performed by the two functions to n-ary compositions. The elements of the returned

set are then combined into a sum type.

Γ ` createComp<+>[T i∈1..n,n≥2
i ] : 〈T1 + T2 + · · ·+ Tn,Γ〉

(create-comp-acond)

Γ ` createComp<+[T i∈1..n,n≥2
i ] : 〈T1 + T2 + · · ·+ Tn,Γ〉

(create-comp-lcond)

Γ ` createComp+>[T i∈1..n,n≥2
i ] : 〈Tn + Tn + · · ·+ T1,Γ〉

(create-comp-rcond)

Γ ` ckStar[T i∈1..n,n≥2
i ] : 〈{Sj∈1..m,m≥1

j },Γ1〉
Γ ` createComp<∗ [T i∈1..n,n≥2

i ] : 〈S1 + S2 + · · ·+ Sm,Γ1〉
(create-comp-lstar)

Γ ` ckStar[T i∈n..1,n≥2
i ] : 〈{Sj∈1..m,m≥1

j },Γ1〉
Γ ` createComp∗>[T i∈1..n,n≥2

i ] : 〈S1 + S2 + · · ·+ Sm,Γ1〉
(create-comp-rstar)

Γ ` ckSeq[T i∈1..n,n≥2
i ] : 〈{Sj∈1..m,m≥1

j },Γ1〉
Γ ` createComp<;[T

i∈1..n,n≥2
i ] : 〈S1 + S2 + · · ·+ Sm,Γ1〉

(create-comp-lseq)

Γ ` ckSeq[T i∈n..1,n≥2
i ] : 〈{Sj∈1..m,m≥1

j },Γ1〉
Γ ` createComp;>[T i∈1..n,n≥2

i ] : 〈S1 + S2 + · · ·+ Sm,Γ1〉
(create-comp-rseq)

Figure 5.14: Composing dynamic rules

Example Assuming the following definitions, the examples below demonstrate the

results of type analysis:

abc: exprJaK → exprJbK → exprJcK

ayz: exprJaK → exprJyK → exprJzK
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xyz: exprJxK → exprJyK → exprJzK

• fold <+ ID : type error because ID is not a higher-order rule

• (abc <∗ ayz) exprJaK: type error because a higher-order strategy is ap-

plied without an enclosing fold

• fold <+ abc: expr[a] → expr[b] → expr[c]

• fold <+ abc exprJaK: expr[b] → expr[c]

• fold <+ (abc <∗ ayz):

expr[a] → (expr[b] → expr[c] + expr[y] → expr[z])

• fold <+ (abc <∗ ayz) idJaK: type error because none of the higher-order

rule’s patterns match the input term

• fold <+ (abc <∗ ayz) exprJaK exprJyK: expr[z]

• fold <∗ (abc <∗ ayz): type error because dynamic rules cannot be com-

posed using <∗

• fold <+ (abc <∗ xyz): type error because higher-order rules’ input pat-

terns do not match

• fold <+ (abc <+ xyz):

expr[a] → expr[b] → expr[c] + expr[x] → expr[y] → expr[z]

�

5.6 Traversals

TL provides generic one-layer iterators mapL, mapR and mapB that apply their

argument strategy to immediate sub-terms of a term. Given a traversal strategy
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mapL s, it is an error to apply it to a term, whose immediate sub-terms are not

applicable for s. In such case, the traversal strategy can never succeed. Therefore,

the goal of type analysis is to identify such conditions and flag them as type errors.

Figure 5.15 summarizes analysis of one-layer traversals. Note that the semantic

differences of the three kinds of traversals are only manifested if the argument strategy

contains transient strategies (see Section 3.6.2 for the discussion). Because static type

analysis does not differentiate between transient and non-transient strategies (Section

5.3), the analysis of one-layer traversals does not distinguish between the three kinds

of operators as well. Therefore, rule (one-layer-trav) calculates the type of the

argument strategy s and assigns type map T to all three kinds of traversals.

travOne ∈ {mapL,mapR,mapB} Γ ` s : 〈T,Γ1〉
Γ ` travOne s : 〈map T,Γ1〉

(one-layer-trav)

Figure 5.15: Analysis of one-layer traversals

Due to the introduction of a new constructor map T , our goal in this section is to

extend existing analysis to account for the new constructor. In particular, to detect

ill-typed applications we need to extend the analysis of application.

Figure 5.16 summarizes the extension of the analysis of application. In the base

case, indicated by rule (red-map-leaf), application of one-layer traversal to a term

with no sub-terms (leaf) is well-typed, because there are no sub-terms to apply to.

Otherwise, as expressed by rule (red-map-term) if the argument strategy is rewrite

rule Ta → Tb and the term has one or more sub-terms (T, [T i∈1..n,n≥1
i ]), then the

argument rule is applied to each of the sub-terms to obtain sets of possible types Si.

Then, for each of the possible new sub-terms a new term is created such that each of

the sub-terms is represented in at least one new term. Then, the list of possible new

terms is filtered to ensure that only terms with valid (parse-able) structure remain.

Finally, all of the valid possible new terms are combined into a sum type, which
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becomes the final result of one-layer traversal application. If all applications are ill-

typed or if all applications produce invalid terms, then a type error is raised by the

analysis.

Example Given the following definitions, the examples below illustrate the analysis

of one-layer traversal application

sum: exprJx + yK

prim: expr1 → exprJbK if { expr1 = exprJ1K + 1 }

• mapL (expr1 → exprJ2K) sum : expr[2 + 2]

• mapL (exprJxK → exprJa + bK) sum : expr[a + b + y]

• mapL (idJxK → idJzK) sum : type error because there does not exist an

immediate sub-term idJxK

• mapL (exprJaK → exprJzK) sum : type error because neither exprJxK nor

exprJyK match exprJaK

• mapL (exprJxK → idJzK) sum : type error because the resulting term

(expr, [(id, · · · ), (+, [ ]), (expr, · · · )]) does not have a valid structure: i.e. it is

not parse-able with the grammar of language Expr (see Figure 3.2)

• mapL prim exprJ2 + cK: expr[b + c] + expr[2 + c]

�

Continuing with typing rule in Figure 5.16, rule (red-map-sum) states that anal-

ysis of one-layer traversal with a sum strategy type proceeds by applying each of the

sum’s operands to the input term and combining the resulting types into a union. The

resulting environment is the extended intersection Γ1∩̂Γ2, where a variable bound to

two distinct types is bound to their join type (see Section 4.7 for the discussion of

join types).
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Γ ` reduce(map T, (t, [ ])) : 〈(t, [ ]),Γ〉
(red-map-leaf)

∀i ∈ 1..n.Γi−1 ` reduce(Ta → Tb, Ti) : 〈Si,Γi〉
Γ0 ` reduce(map Ta → Tb, (T, [T

i∈1..n,n≥1
i ])) : 〈{(T, [Si∈1..n,n≥1

i ])},Γn〉
(red-map-term)

Γ ` reduce(Ta, Tc) : 〈Sac,Γ1〉 Γ ` reduce(Tb, Tc) : 〈Sbc,Γ2〉
Γ1∩̂Γ2 = Γ12

Γ ` reduce(map(Ta + Tb), Tc) : 〈Sac ∪ Sbc,Γ12〉
(red-map-sum)

Figure 5.16: Extension: application of one-layer traversals

Example Given the following definitions, the following examples illustrate the anal-

ysis and its results

ab: exprJaK → exprJbK

bc: exprJbK → exprJcK

• mapL (ab <+ bc) exprJa - bK : expr[b - b] + expr[a - c]

• mapL (ab <∗ bc) exprJa - bK : expr[c - b]

�
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Chapter 6

An ML Implementation of Type

Analysis

In the previous two chapters, we have presented the type analysis of rewrite strategies

from the formal, yet abstract, perspective. It is often easier to work with a formal

presentation, when it is grounded in a concrete implementation. Here, we describe

the key components of the implementation of type analysis. The code presented

here is written in Standard ML1 [56][57][55][65]. However, this can be easily ported

to SML’s cousin in the ML family of languages [25] – Objective Caml [46][17], or

other functional languages such as Haskell [31][63] or Scheme with pattern-matching

extensions [36][21].

6.1 Syntax

Type analysis is a syntax-directed method of computing types based on the syntactic

constructs of the language. Therefore, we first present the abstract syntax definition

of TL . Figures 6.1 and 6.2 summarize these constructs. Each construct is listed with

1The code is available from Subversion repository at http://code.google.com/p/tl-types/. TL ’s
IDE – HATS is available from http://faculty.ist.unomaha.edu/winter/
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a concrete syntax example on the right to provide an intuitive connection between

abstract and concrete syntax.

Each node is decorated with a value of type info, which contains file position of

the node including file name, line and column numbers. This information is created

by the TL parser and is used by the type checker in reporting of type errors to assist

the programmer in locating the source of an error.

6.2 Typing Context

Typing context tracks bindings of identifiers to types. For efficiency we use an ordered

map data structure provided by SML/NJ libraries. Further, the map uses a binary

search tree for a quick lookup of integer keys. The associated implementation in the

library is IntBinaryMap:

structure S = IntBinaryMap

type context = ty S.map

val initialEnv: context = S.empty

To avoid inefficiencies of strings as much as possible, we hash identifiers and map

hashed values to an integer counter. HashTable is an SML/NJ data structure.

exception SymbolExn

val hashtable: (string, int) HashTable.hash_table

= HashTable.mkTable(HashString.hashString, op =) (128, SymbolExn)

val nextSym = ref 0

(* Looks up a symbol for a given name or creates a new one if none exists.

* symbol: string -> (string, int) *)

fun symbol id = ...

Given these basic definitions, we can now invoke functions provided by ordered

maps [61]. For example:
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datatype expr =
Bool of bool * info true

| Int of int * info 1
| Real of string * info 1.0
| String of string * info “s”
| Identifer of string * info x

| Concat of expr * expr * info xˆy
| Plus of expr * expr * info x + y
| Minus of expr * expr * info x – y
| Times of expr * expr * info x * y
| Divide of expr * expr * info x / y
| Div of expr * expr * info x div y
| Mod of expr * expr * info x mod y
| Tilde of expr * info ˜x

| Eq of expr * expr * info x == y
| Neq of expr * expr * info x != y
| Lt of expr * expr * info x < y
| Leq of expr * expr * info x <= y
| Gt of expr * expr * info x > y
| Geq of expr * expr * info x >= y

| BOr of expr * expr * info x && y
| BAnd of expr * expr * info x || y
| BNot of expr * expr * info ! x

| Sml0 of expr * info sml.f()
| Sml of expr * expr list * info sml.f(args+)

| Term of itree * info exprJexpr1 + xK
| Bind of expr * expr * info x := s
| Match of expr * expr * info exprJid1K = exprJxK
| Andalso of expr * expr * info m andalso m
| Orelse of expr * expr * info m orelse m
| Not of expr * info not m

| Rule of expr * expr * info p → s
| CRule of expr * expr * expr * info p → s if { m }
| Id of info ID
| Skip of info SKIP
| App of expr * expr * info s t

| Transient of expr * info transient(s)
| Opaque of expr * info opaque(s)
| Raise of expr * info raise(s)
| Hide of expr * info hide(s)
| Lift of expr * info lift(s)

Figure 6.1: Abstract syntax of TL
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| Choice of expr * expr * info r <+> s
| LChoice of expr * expr * info r <+ s
| RChoice of expr * expr * info r +> s
| LStar of expr * expr * info r <∗ s
| RStar of expr * expr * info r ∗> s
| LSeq of expr * expr * info r <; s
| RSeq of expr * expr * info r ;> s

| FoldChoice of expr * info fold <+> s
| FoldLChoice of expr * info fold <+ s
| FoldRChoice of expr * info fold +> s
| FoldLStar of expr * info fold <∗ s
| FoldRStar of expr * info fold ∗> s
| FoldLSeq of expr * info fold <; s
| FoldRSeq of expr * info fold ;> s

| FoldSChoice of expr * info foldS <+> s
| FoldSLChoice of expr * info foldS <+ s
| FoldSRChoice of expr * info foldS +> s
| FoldSLStar of expr * info foldS <∗ s
| FoldSRStar of expr * info foldS ∗> s
| FoldSLSeq of expr * info foldS <; s
| FoldSRSeq of expr * info foldS ;> s

| MapL of expr * info mapL s
| MapR of expr * info mapR s
| MapB of expr * info mapB s

| Iterator of expr * expr list * info TDL s

| Signature of expr * info signatures
| List of expr list * info foo: bool → int

| NonRecursive of expr * expr * info x: s
| Recursive of expr * expr list * expr * info def x+ = s
| Prog of expr list * info; d+

datatype itree =
ITree of inode * itree list; (x, [ ])

datatype inode =
INode of string * info x

| IMatchVar of string * string * info; id1 or 〈id〉 1

Figure 6.2: Abstract syntax of TL (Cont’d)

S.insert(ctx1, #2(symbol id1), ty1)

S.find(ctx1, #2(symbol id1))

S.inDomain(ctx1, #2(symbol id1))
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6.3 Types

The set of valid types is defined by the data type summarized in Figure 6.3.

datatype ty =
TyBool | TyInt | TyReal | TyString primitive types

| TyUnit for SML function calls
| TyVar of int type variable ‘a
| TyTerm of string * ty list type of a term
| TyRule of ty * ty arrow type
| TySum of ty * ty union type

| TyList of ty list for accumulation of dynamic rules
| TyMap of ty one-layer iterators
| TyIter of string * ty full-term iterators

| TyInf type of TL constructs unsupported
| TyError for ill-typed declarations

at a given precision level

Figure 6.3: Types used by the analysis

In addition to the data type definition, utility functions provide auxiliary assis-

tance. Their signatures are summarized below:

exception TypeError of string;

(* Applies a function to an argument in a bottom-up manner.

* mapTy: (ty -> ty) -> ty -> ty *)

fun mapTy f (TyTerm (st1,ts) ) = f (TyTerm (st1, map (mapTy f) ts))

...

(* Applies a function to an argument in a top-down manner.

* mapTyTD: (ty -> ty) -> ty -> ty *)

fun mapTyTD f tyT = case f tyT of

TyTerm(t,ts) => TyTerm (t, map (mapTyTD f) ts)

...

(* Folds the specified argument using the specified function f.
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* foldTy: (ty * ’a) -> ’a -> (ty * ’a) -> ’a *)

fun foldTy f (p as TyTerm ( _ ,ts ), z) = f(p, foldl (foldTy f) z ts)

...

fun toString TyBool = "bool"

...

fun pp x = toString x

fun envToString (env: context) = ...

(* Propagates the bindings from the typing context into the argument type.

* applySubst: context -> ty -> ty *)

fun applySubst env tyIn = ...

fun nextVar() = let val i = !nextSym

in nextSym := i + 1;

TyVar i

end

(* Creates a new context with fresh bindings and propagates it.

* alphaRename: ty -> ty *)

fun alphaRename ty1

= applySubst

(foldTy (fn (TyVar x, e) => solve [(TyVar x, nextVar())] e

| (_, e) => e

)

(ty1,initialEnv)

)

ty1
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(* Records implicitly declared match vars:

* for each new <t>_x records a mapping <t>_x -> t[ ’a ].

* updateEnv: EXPR -> context -> context *)

fun updateEnv expr env

= foldExpr

(fn (_, e) => e)

(foldTerm (fn (imatch_var(sym, id1, _), e) =>

if S.inDomain(e, #2(symbol (sym^id1)))

then e

else S.insert(e, #2(symbol (sym^id1)), nextVar())

| (_,e) => e

)

)

(expr, env)

6.4 Unification

Type analysis often requires a check of whether two types are equal and, if not,

whether they are unifiable. The following functions provide the implementation of

unification. We use SML’s equality operator · = · to test whether two types are

equal.

exception UNIFY;

(* solve: (ty * ty) list * env -> env *)

fun solve [] e = e

| solve ((TyVar i, ty2 )::xs) e = elim [(i,ty2)] xs e

| solve ((ty1, TyVar i )::xs) e = elim [(i,ty1)] xs e

| solve ((TySum (a,b), TySum (c,d))::xs) e = solve ((a,c)::(b,d)::xs) e

...
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| solve ((a as TyTerm (x,xs),

b as TyTerm (y,ys))::rest) e = ...

...

| solve ((TyRule _, TyTerm _ )::xs) e = raise UNIFY

| solve ((TyTerm(_,[ty1]), TyBool )::xs) e

= solve ((ty1,TyBool )::xs) e

...

| solve (( ty1, ty2 )::xs) e

= if ty1 = ty2 then solve xs e else raise UNIFY

(* elim: (int * ty) list -> (ty * ty) list -> env -> env *)

and elim [] tts e = solve tts e

| elim ((x,t)::xs) tts e = let ...

(* Unifies a type with a list of expected types.

* The first successful unification returns an updated context.

* unify: (ty * ty list * context * expr) -> context *)

fun unify (givenTy, [expectedTy], env, expr)

= ((solve [(givenTy,expectedTy)] env) handle

UNIFY => raiseOperandError expectedTy givenTy expr

"operator and operand don’t agree")

| unify (givenTy, expectedTypes, env, expr)

= let

fun polyUnify [] = raisePolyOpError (givenTy, expr)

| polyUnify (expTy::rest)

= (solve [(givenTy,expTy)] env) handle

UNIFY => polyUnify rest

in
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polyUnify expectedTypes

end

6.5 Subtyping

The following functions implement the algorithms of subtyping, calculation of joins

and meets, reach-ability of a strategy within a composition, and intersection of typ-

ing contexts. The implementations directly correspond to their formal definitions

discussed in Chapters 4 and 5.

fun subtype _ (TyVar _) = true

| subtype (TyTerm (x,xs)) (TyTerm (y,ys)) = x = y andalso subtypeL xs ys

| subtype (ab as TyRule (a,b)) (cd as TyRule (c,d))

= let

val _ = finest("subtype. input: " ^ pp ab ^ " | " ^ pp cd) 1

val out = subtype c a andalso subtype b d

val _ = finest("subtype.output: " ^ Bool.toString out) ~1

in

out

end

| subtype a b = if a = b then true else false

(* subtypeL: ty list -> ty list -> bool *)

and subtypeL [] [] = true

| subtypeL [] _ = false

| subtypeL _ [] = false

| subtypeL (x::xs) (y::ys) = subtype x y andalso subtypeL xs ys

(* Converts a given term to a more generic term.

* generify: ty -> ty *)

fun generify (TyBool) = TyBool
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...

| generify (TyVar x) = TyVar x

| generify (TyTerm(x,xs))

= let

val xs2 = generifyL xs

in

if xs = xs2 then nextVar()

else TyTerm(x,xs2)

end

| generify t = raise TypeError("GRAMMAR.generify.match: " ^ pp t)

(* generifyL: ty list -> ty list *)

and generifyL [] = []

| generifyL (x::xs)

= let

val x2 = generify x

in

if x = x2 then x::(generifyL xs)

else x2::xs

end

exception NoMeetFound

(* Computes the lowest upper bound of two types.

* join: ty -> ty -> ty *)

fun join (a as TyRule(a1,a2)) (b as TyRule(b1,b2))

= let

val _ = finer("join.rules.input: " ^ pp a ^ " | " ^ pp b) 1

val (nmf, m1) = (false, meet a1 b1) handle

NoMeetFound => (true, nextVar())

val _ = finer("join.rules.args-meet-at: " ^ pp m1) 0
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val j1 = join a2 b2

val _ = finer("join.rules.outputs-join-at: " ^ pp j1) 0

val tyF = if nmf then m1 else TyRule(m1, j1)

val _ = finer("join.rules.output: " ^ pp tyF) ~1

in

tyF

end

| join a b

= if subtype a b then b

else if subtype b a then a

else let

val a2 = generify a

val _ = finer("join.fst: " ^ pp a2) 2

in

if pp a = pp a2

then let

val b2 = generify b

val _ = finer("join.snd: " ^ pp b2) 2

in

join b2 a

end

else join b a2

end

and

meet (a as TyRule(a1,a2)) (b as TyRule(b1,b2))

= let

val _ = finer("meet.rules.input: " ^ pp a ^ " | " ^ pp b) 1

val j1 = join a1 b1

val _ = finer("meet.rules.args-join-at: " ^ pp j1) 0



119

val m1 = meet a2 b2

val _ = finer("meet.rules.outputs-meet-at: " ^ pp m1) 0

val tyF = TyRule(j1, m1)

val _ = finer("join.rules.output: " ^ pp tyF) ~1

in

tyF

end

| meet a b

= if subtype a b then a

else if subtype b a then b

else raise NoMeetFound

(* Checks that the 2nd argument is reachable in conditional composition:

* isReachable: ty -> ty -> bool *)

fun isReachable (a as (TyRule (ty1,_))) (b as (TyRule (ty3,_)))

= let

val _ = fine("isReachable input: " ^ pp a ^ " | " ^ pp b) 1

val result = not (subtype ty3 ty1)

val _ = fine("isReachable output: " ^ Bool.toString result) ~1

in

result

end

| isReachable a (TySum (c,d)) = (fine("isReachable.TyRule.TySum") 0;

isReachable a c andalso isReachable a d)

| isReachable (TySum (a,b)) c = (fine("isReachable.TySum.TyRule") 0;

isReachable a c andalso isReachable b c)

| isReachable TyInf _ = (fine("isReachable.unsupported any") 0; true)

| isReachable _ TyInf = (fine("isReachable.any unsupported") 0; true)

| isReachable _ _ = (fine("isReachable.any") 0; false)
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(* Computes intersection of two contexts; if a key that is present in both

* contexts is mapped to two distinct types, then the key is mapped to a

* join of the two types (lowest upper bound) in the result.

* intersect: (context * context) -> context *)

fun intersect (env1,env2) = ...

6.6 Analysis of Composition

The following functions implement the analysis of composition.

fun checkStar (TyRule(a,b as TyTerm _), r2 as TyRule(c,d as TyTerm _)) e p

= let

val e2 = unify (b, [c], e, p)

(* on success, b and c are type-unifiable *)

val ad = TyRule(applySubst e2 a, applySubst e2 d)

in

(ad, e2)

end

| checkStar (TyRule(a,b), TyRule(c,d)) e p

= let

val e2 = unify (a, [c], e, p)

val rhs = case b of

TyRule _ => TyList [b,d]

| TyList bs => TyList (bs@[d])

| TyInf => TyList [b,d]

| arg => raise

TypeError("COMPOSITION.checkStar.rule-rule.match: " ^ pp arg)

val (a2, rhs2) = (applySubst e2 a, mapTy (applySubst e2) rhs)

val combTy = TyRule (a2, rhs2)



121

in

(combTy, e2)

end

...

fun checkSeq (r1 as TyRule(a,b as TyTerm _),

r2 as TyRule(c,d as TyTerm _)) e p

= let

val _ = debug("checkSeq(first-order): "^pp r1^" and "^pp r2) 1

val (unifiable, e2) = (true, unify (c, [b], e, p)) handle

TypeError _ => (false, e)

val ad = TyRule(applySubst e2 a, applySubst e2 d)

val (tyOut, envOut)

= if unifiable

then (TySum(ad, TySum(alphaRename r1, r2)), e2)

else (TySum(r1, r2), e)

val _ = debug("checkSeq result: " ^ pp tyOut) ~1

in

(tyOut, envOut)

end

...

(* Composes strategies x and y using combinator F.

* createComp: string -> ty -> ty -> context -> expr -> ty *)

fun createComp F x y e p = case F of

"<+>" => (TySum (x,y), e)

| "<+" => (TySum (x,y), e)

| "+>" => (TySum (y,x), e)

| "<;" => checkSeq (x,y) e p

| ";>" => checkSeq (y,x) e p

| "<*" => checkStar(x,y) e p
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| _ => checkStar(y,x) e p

(* Folds a list of dynamic rules into a single strategy.

* foldRules: string -> expr -> (ty * context) -> (ty * context) *)

fun foldRules F _ (TyRule(a, b as TyRule _ ), e) = (TyRule (a, b), e)

| foldRules F p (TyRule(a, TyList (x::xs) ), e)

= let

val (ty1,e1)

= foldl (fn (z,acc) => createComp F (#1 acc) z (#2 acc) p)

(x,e) xs

in

(TyRule (applySubst e1 a, ty1), e1)

end

| foldRules F p (TySum (a,b), e)

= let

val (tyA, _) = foldRules F p (a,e)

val (tyB, _) = foldRules F p (b,e)

in

(TySum(tyA, tyB), e)

end

| foldRules _ _ (TyInf, e) = (TyInf, e)

| foldRules _ _ (ty1,_)

= raise TypeError("COMPOSITION.foldRules.match: " ^ pp ty1)

6.7 Analysis of Application

Function reduce implements the analysis of application.

(* Computes the type of applying a strategy to a term.

* reduce: (ty * ty * ctx) -> EXPR -> ty *)
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fun reduce(TyInf, _, e) _ = (TyInf, e)

| reduce(r as TyRule (_, TyList _), t, _) p

= raiseAppError r t p "applying a higher-order rule without fold/foldS"

| reduce(s as TyVar _, t, e) p

(* applying a strategy of unknown type; perform type-inferencing *)

= let

val _ = debug("reduce.tyvar.input: " ^ pp s ^ " | " ^ pp t) 1

val s2 = TyRule(nextVar(), nextVar())

val (tyF, e2) = reduce(s2, t, e) p

val eF = if !precision = 1

then e2

else unify(s, [applySubst e2 s2], e2, p)

val _ = debug("reduce.tyvar.inferred: " ^ pp (applySubst eF s)) 0

val _ = debug("reduce.tyvar.output: result is " ^ pp tyF) ~1

in

(tyF, eF)

end

| reduce(r as TyRule (lhs,rhs), t, e) p

= let

val _ = debug("reduce.rule.input: " ^ pp r ^ " | " ^ pp t) 1

val e2 = unify (t, [lhs], e, p)

val rhs2 = applySubst e2 rhs

val (tyF, eF) = (TySum (rhs2,t), e2)

val _ = debug("reduce.rule.output: " ^ pp tyF) ~1

in

(tyF, eF)

end

| reduce(s as TySum (a,b), t, e) p

= let (* skip rules with incompatible types *)
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val (illTyped1, (rhs1, e1)) = (false, reduce (a,t,e) p) handle

TypeError _ => (true, (t, e))

val (illTyped2, (rhs2, e2)) = (false, reduce (b,t,e) p) handle

TypeError _ => (true, (t, e))

val e12 = intersect (e1,e2)

in

if illTyped1 andalso illTyped2 then

raiseAppError s t p

"unexpected arguments in strategy application"

else if illTyped1 then (rhs2, e2)

else if illTyped2 then (rhs1, e1)

else (TySum (rhs1, rhs2), e12)

end

...

6.8 Incremental Precision and Verbosity

Application of rewrite rule r to input term t can produce either a new term t′ or

failure. In TL , failure is handled from the identity-based perspective such that the

input term is returned unchanged. Thus, static analysis of an application results two

new terms – t′ in case of success and t in case of failure. This presents significant

challenges in the implementation, execution and validation of type analysis, because

a linear increase in the number of applications leads to exponential increase in the

number of possible outcomes.

To cope with the complexities, the type analysis is divided into increasing levels

of precision such that lower analysis levels report obvious errors with high degree of

confidence and higher analysis levels report finer errors with a correspondingly lower

degree of confidence (e.g. a reported error might not actually be a true error).
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The precision levels are defined in terms of constructs of the language targeted by

the type analysis:

Level 0 No analysis is performed

Level 1 Rewrite rules only

Level 2 Level 1 and combinators

Level 3 Level 2 and fold operators

Level 4 Level 3 and one-layer iterators (mapL, mapR and mapB)

Level 5 Level 4 and full term traversals (e.g. TDL, lcond tdl)

Higher precision levels include analysis of all constructs at the lower levels. At a

given level, all constructs of upper levels are ignored.

The control over desired precision is given to the TL programmer. Thus, for a

given program, one can set the type-checking precision and observe the results of type

analysis at varying levels of precision.

Similar to the precision levels, the type checker provides logging facilities of in-

cremental verbosity. During analysis, a TL programmer can choose the amount of

feedback that is printed to the standard console. This allows one to observe the details

of type-checking and to obtain greater feedback in case a type error is reported.

The following functions define the logging facilities.

val precision = ref 3;

(* Verbosity level:

0: OFF: no logging

1: ERROR: log only error messages

2: WARNING: level 1 and warnings
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3: INFO: level 2 and info messages

4: DEBUG: level 3 and debug messages

5: FINE: level 4 and fine messages

6: FINER: level 5 and finer messages

7: FINEST: level 6 and finest messages

8: ALL: log all messages *)

val verbosity = ref 3

val indent = ref ""

fun incIndent() = indent := !indent ^ " "

fun decIndent() = indent := implode(tl(explode(!indent)))

fun decode flag msg

= case flag of

0 => println(!indent ^ msg)

| 1 => (incIndent(); println(!indent ^ msg))

| 2 => (incIndent(); println(!indent ^ msg); decIndent())

| _ => (println(!indent ^ msg); decIndent())

fun error msg flag = if !verbosity < 1 then () else decode flag msg

fun warning msg flag = if !verbosity < 2 then () else decode flag msg

fun info msg flag = if !verbosity < 3 then () else decode flag msg

fun debug msg flag = if !verbosity < 4 then () else decode flag msg

fun fine msg flag = if !verbosity < 5 then () else decode flag msg

fun finer msg flag = if !verbosity < 6 then () else decode flag msg

fun finest msg flag = if !verbosity < 7 then () else decode flag msg

fun all msg flag = if !verbosity < 8 then () else decode flag msg

type configuration = {precision: int, verbosity: int}

fun init prec verb

= ((* set to false to skip assertion-checking/regression-testing *)
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inTestingMode := false;

(* precision of type-checking from 0 to 5 in the increasing order *)

precision := prec;

(* verbosity of output from 0 to 6 in the increasing order *)

verbosity := verb)

6.9 Type-checking

Having surveyed the key auxiliary components of type analysis, we are now ready to

discuss the functions that drive the analysis.

The type-checking function typeOf is in direct correspondence with typing rules

that were presented in Chapter 4 and 5. In particular, for each kind of constructor

defined in Section 6.1, the function computes the types of immediate sub-expressions

and builds an output type if everything fits or raises a type error otherwise.

fun typeOf(Bool _, e) = ( TyBool, e)

| typeOf(Int _, e) = ( TyInt, e)

| typeOf(Real _, e) = ( TyReal, e)

| typeOf(String _, e) = (TyString, e)

| typeOf(Identifier (id, ninfo), e)

= (case S.find(e, #2(symbol id)) of

SOME (TyVar i) => (TyVar i, e)

| SOME type1 => (fine("typeOf.id: " ^ id ^ " | " ^ toString type1) 2;

(alphaRename type1, e))

| NONE => raise TypeError(ninfoToString ninfo ^

"Type error: undefined variable: " ^ id) )

| typeOf(p as Concat (expr1, expr2, _), e)

= let

val (ty1, e1) = typeOf(expr1, e )

val (ty2, e2) = typeOf(expr2, e1)
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val e3 = unify (TySum (ty1,ty2),

[TySum (TyString,TyString)], e2, p)

in

(replaceLeaf [TyString]

(pickATree (applySubst e3 ty1, applySubst e3 ty2)), e3)

end

| typeOf(p as Plus (expr1, expr2, _), e)

= let

val (ty1, e1) = typeOf(expr1, e )

val (ty2, e2) = typeOf(expr2, e1)

val e3 = unify (TySum (ty1,ty2),

[TySum (TyInt,TyInt),

TySum (TyReal,TyReal)], e2, p)

in

(replaceLeaf [TyInt,TyReal]

(pickATree (applySubst e3 ty1, applySubst e3 ty2)), e3)

end

| typeOf(p as Term (aTree,ninfo), e)

= let

fun getTermType (itree (inode(name, _), [])) = TyTerm (name, [])

| getTermType (itree (imatch_var (sym,id1, _), []))

= (case S.find(e, #2(symbol (sym^id1))) of

SOME (TyTerm x) => TyTerm x

| SOME primTy => TyTerm(sym, [primTy])

| NONE =>

raise TypeError(ninfoToString ninfo ^

"Type error: unbound/free pattern variable " ^

"<" ^ sym ^ ">" ^ id1 ^ crlf ^

" in expression: " ^ exprToString p))
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| getTermType (itree (inode(name,_), xs))

= TyTerm (name, map getTermType xs)

| getTermType (itree (imatch_var _,_))

= raise TypeError "Impossible: match vars cannot have subterms"

val ty1 = getTermType aTree

in

(ty1, e)

end

| typeOf(p as Rule (left,right,_), e)

= let

val _ = fine("typeOf.rule.raw-input: " ^ exprToString p) 2

val e0 = updateEnv left e (* bind schema vars on the left*)

val (ty1, e1) = typeOf(left, e0) (* infer types *)

val (ty2, e2) = typeOf(right, e1)

val r1 = TyRule (ty1, ty2)

val _ = debug("typeOf.rule.input: " ^ toString r1) 1

val tyOut = applySubst e2 r1 (* propagate type inferences *)

val _ = debug("typeOf.rule.output: " ^ toString tyOut) ~1

in

(tyOut, e2)

end

| typeOf(Id _, e) = let val a = nextVar()

in (TyRule(a, a), e)

end

| typeOf(p as LChoice (a, b, _), e)

= let

val (ty1, _) = typeOf(a, e)

val (ty2, _) = typeOf(b, e)

val _ = if isReachable ty1 ty2
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then ()

else raiseCompositionError ty1 ty2 p

"right operand is subsumed by the left operand"

in

if !precision < 2 then (TyInf, e)

else (TySum (ty1,ty2), e)

end

| typeOf(p as LStar (left,right,_), e)

= let

val (ty1, e1) = typeOf(left, e )

val (ty2, e2) = typeOf(right,e1)

in

if !precision < 2 then (TyInf, e)

else checkStar (ty1,ty2) e2 p

end

| typeOf(p as LSeq (left,right,_), e)

= let

val (ty1, e1) = typeOf(left, e )

val (ty2, e2) = typeOf(right,e1)

in

if !precision < 2 then (TyInf, e)

else checkSeq (ty1,ty2) e2 p

end

| typeOf(p as FoldChoice (expr,_), e)

= let

val (ty1, e1) = typeOf(expr, e)

in

if !precision < 3 then (TyInf, e)

else foldRules "<+>" p (ty1, e1)
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end

| typeOf(p as MapL (expr,_), e)

= let

val (ty1, e1) = typeOf(expr, e)

in

if !precision < 4 then (TyInf, e)

else (TyMap ty1, e1)

end

| typeOf(p as Iterator (Identifier (id,_), [s], _), e)

= let

val (ty1, e1) = typeOf(s, e)

in

if !precision < 5 then (TyInf, e)

else (TyIter (id,ty1), e1)

end

...

Whereas function typeOf computes types of expressions, the following function

processes declarations and updates a given context with a new mapping for a declared

variable.

(* Checks recursive and non-recursive declarations.

* tyCheck: context -> EXPR -> context *)

fun tyCheck e (Prog (declList,_) )

= foldl (fn (x,ctx) => tyCheck ctx x) e declList

| tyCheck e (p as NonRecursive (Identifier (id,_), expr, ninfo))

= let

val _ = debug("tyCheck: analyzing body of " ^ id) 1

val (ty1, _) = typeOf(expr, e) handle

TypeError msg => (error("***" ^ crlf ^ msg ^ crlf) 0;
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incErrors();

(TyError, e))

val _ = debug("tyCheck: computed type is " ^ toString ty1) 0

in

enter(e, id, ty1)

end

| tyCheck e (Recursive (Identifier (id,_), args, expr, _))

= enter(e, id, TyInf)

| tyCheck _ expr

= raise TypeError("TYPECHECK.tyCheck.match: " ^ exprToString expr)

Finally, function typeCheck is the main driver function that analyzes a program

starting from an empty context and reports errors, if any.

(* Given

* - smlDecls: declarations of types of SML functions

* - program: TL program as an abstract syntax tree

* - grammar: extended-BNF grammar of a term language

* - configuration parameters defining type-checker’s

* precision and verbosity levels

* computes types of rewrite rules and recursive definitions and determines

* if the TL program is well-typed.

* typeCheck: EXPR -> EXPR -> grammar ->

{precision: int, verbosity: int} -> EXPR *)

fun typeCheck smlDecls

program

(G.GRAMMAR {precassoc_rules, production_list})

{precision, verbosity}

= if precision = 0 then program else

let
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val _ = init precision verbosity

val _ = info "[starting type analysis]" 0

val program1 = ckDuplicates program

val program2 = removeFwdRefs program1

val _ = inputTree := program2

val _ = tgtGrammar := crop production_list (!tgtGrammar)

val env1 = case smlDecls of

SIGNATURE (LIST (expr,_), _) =>

getSmlSignatures expr initialEnv

| _ => initialEnv

val env2 = tyCheck env1 program2

handle x => (error(exnName x ^ " " ^

exnMessage x) 0; env1)

val _ = info(envToString env2) 0

in

if !errors = 0

then (info "[type analysis completed successfully]" 0; !inputTree)

else (error("!***" ^ crlf ^

" Type analysis failed with " ^

Int.toString (!errors) ^

" errors. See error messages above." ^ crlf ^

"***!" ^ crlf ^

"[type analysis completed with errors]") 0;

!inputTree )

end
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6.10 Performance Experiments

In this section, we present results of some performance measurements of our imple-

mentation. In our experiments, we are interested in the time that our type system

takes to analyze TL programs. Our benchmarks consist of the following programs

written in TL :

Regression Test Suite consists of a collection of unit tests used to check correct-

ness of the type analysis. Each unit test is represented by a labeled strategy

s (e.g. s : idJxK → idJyK) and a corresponding type assertion in the form of

a labeled string assert s (e.g. assert s : “id[x] → id[y]”). In testing mode,

the type-checker computes the type of a given labeled strategy and compares it

with the asserted type for equality modulo type variable indices. An inequality

of the two type expressions is reported to a programmer to indicate an error

either in the asserted type or the implementation. Thus, the test suite serves an

additional purpose of a regression suite for additions and extensions to the ex-

isting type-checker. We report on the results of three disjoint test suites testing

the type-checker at precision levels 1, 2 and 3.

DSL Compiler is a transformation-based source-to-source compiler of a Domain

Specific Language called Paradigm into a micro-code program. The purpose of

the DSL is to expose micro-code level parallelism via high-level program abstrac-

tions. The intended execution platform of DSL programs is Score: an embedded

hardware realization of the Java Virtual Machine developed and maintained by

the Sandia National Laboratories.

Figure 6.4 summarizes measurements of the experiment on the test suites. The

execution platform for this experiment was an Intel Core 2 Duo 2.2GHz CPU, 4GB

RAM, Windows Vista 32-bit OS, SML/NJ v110.0.7 (Sep 28, 2000). Here, the results

are listed for three disjoint test suites that validate the type-checker at three precision



135

Analysis Time (sec)
Precision SLOC Wall CPU GC Speed (SLOC/sec)

1 4344 21.289 21.289 0.346 204.049
2 487 0.133 0.133 0.001 3,661.654
3 615 0.432 0.432 0.006 1,423.611

Total 5446 21.854 21.854 0.353 249.199

Figure 6.4: Performance measurements for “Regression Test Suite”

levels. While the test suites are disjoint, the precision levels are accumulating in the

sense that at level 3 the type-checker still performs level-1 and level-2 analyses.

The second column (SLOC) lists the number of source lines of code including

white-space and comment lines. The next group of columns displays the execution

time of the type-checker in seconds from the moment the type analysis is invoked until

the moment the control is transferred back to the TL ’s engine. The execution time

is reported in three forms: (1) Wall time, which is the real clock time, (2) CPU time,

which is the time the process has had the CPU and (3) GC time, which is the time

the process has spent on garbage collection. The final column lists an approximate

speed of the analysis in terms of the number of SLOC analyzed per second.

Note that the size of the first test suite is an order of magnitude larger than the

other test suites. This explains an order of magnitude decrease in the analysis speed

between the first and the other test suites. Next, the second test suite is smaller in

size than the third, which explains the faster execution speed on the second test suite.

Also, the third test suite performs all three levels of type analysis, which explains why

the third test suite while being only 25% larger in size than the second test suite is

analyzed at the 40% of the second test suite’s analysis speed.

If we add up the lines of code and execution times, then we can observe an

approximate overall speed of 5446/21.854 ≈ 250 lines per second. We attribute this

speed to the expensiveness of string comparison operations that are extensively used

in test suites’ comparisons of asserted versus actual types.
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Analysis Time (sec)
Precision SLOC Wall CPU GC Speed (SLOC/sec)

1 9652 2.869 2.869 0.166 3,364.238
2 9652 5.607 5.607 0.463 1,721.419
3 9652 5.536 5.536 0.455 1,743.497

Average 9652 4.671 4.671 0.361 2,066.367

Figure 6.5: Performance measurements for “DSL Compiler”

Figure 6.5 summarizes the analysis time of the DSL compiler. The execution

platform for this analysis was Intel Core i7 940 2.93GHz, 8GB RAM, Windows 7

Enterprize 64-bit OS, SML/NJ v110.0.7 (Sep 28, 2000). Here, the same TL program

has been analyzed at three different precision levels. We can observe that on average

the analysis executes at approximately 2000 lines per second.

We attribute an order of magnitude difference in the execution time between the

two experiments to the frequency of (expensive) string comparison operations in the

first experiment. Since the second experiment more closely approximates the actual

usage of the type system, where there are few (if at all) asserted versus actual type

comparisons, the results of the second experiment are closer to an actual execution

speed. Thus, we conclude that the overall approximate performance of the analysis

is on the order of thousands of source lines of code per second.

6.11 Limitations of the Implementation

Due to the complexity of type analysis as discussed in Section 6.8, the implementation

does not perform analysis of all syntactic constructs of TL . In particular, the current

precision of the type-checker that has been tested and validated is Level 3 – up to and

including rewrite rules and (higher-order) compositions. We leave the implementation

of analysis of term traversals as future work.

The following list provides examples of strategies, whose analysis remains for

future work.
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One-layer traversals: Partially supported

Applications: Implemented and validated. Example: (mapL r) t

Compositions: Partially implemented, not validated. Example:

(mapL r) <* s and (mapL r) <; s

Full term traversals: Unsupported

Applications Example: (TDL r) t

Compositions Example: (TDL r) <* s and (BUL r) <; s

Traversals with self-modifying higher-order compositions: Unsupported.

Example: mapL(foldS <+ s)

Custom traversals: Unsupported. Example: def customTDL s = ...
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Chapter 7

Conclusions and Future work

In this research, we have constructed a type system and presented type analysis of

strategic rewriting language TL . Without type analysis, programming rewrite strate-

gies in an un-typed language is prone to errors. Errors occur due to complexity of

manipulated values, which are parse tree terms exhibiting deep and wide structures.

Pattern-matching on complex terms may fail at arbitrary sub-term depths and posi-

tions, which makes traditional debugging of logging and comparing input and output

terms difficult. In addition to the complexity of terms, failure of a rule to match and

rewrite an input term may lead to application attempts of other rewrite rules in a

strategic composition’s sequence. In the worst case, the number of possible execution

paths in rewrite strategies exhibits exponential complexity. Facing such complexities,

automated analysis and detection of errors becomes a necessity.

Having surveyed the most common types of errors in rewrite strategies in Chapter

1, we then reviewed type systems and their analysis as a syntax-directed lightweight

formal method of proving absence of errors in a program. This was followed by an

overview of the syntactic constructs and features of TL – a representative transfor-

mation language supporting all of the major features of strategic rewriting.

In Chapter 4, we presented the core aspects of type analysis of rewrite strategies.
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The distinguishing features of this system are (1) recursive data type representation

of a term’s type to track the entire term structure for high-precision of type checks,

(2) union types to track multiple potential outcomes of a strategic application, and

(3) static analysis and type inferencing to minimize changes while integrating the

type system into an un-typed language infrastructure.

Having defined the essential features of the analysis, we then turned to the analysis

of non-standard features of TL such as SML function invocations, primitive operations

on terms and higher-order rules and compositions. Here, we have shown how simple

extensions of the core system can provide high-precision type checks to the entire

language.

As part of this research, the type system has been implemented in SML and

integrated into the infrastructure of TL. The numerous type-checked examples given

throughout the presentation are direct results of the implementation. Besides a several

KLOC-size regression test suite, the implementation is currently being used in at

least two industrial transformation projects, one of which has reported a previously

uncaught error detected by the type system.

In closing, this research produced a practical high-precision type analysis frame-

work for detection of errors in rewrite strategies. Programmers of rewrite strategies,

assisted with automated type analysis, no longer need to solely rely on testing to

determine whether a strategy is valid and can succeed in rewriting of inputs. Similar

to the success of type systems in making mainstream programming easier, it is the

goal of this research to have made strategic rewriting easier.

7.1 Future Work

Due to the size and complexity of analyzing all features of a strategic programming

language – rewrite rules, rule compositions and term traversals, the following aspects
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of the analysis remain as part of future work:

1. The analysis needs to be extended to include analysis of applicability of full-

term traversals. Current analysis capabilities can detect whether a strategy

can succeed in application to direct sub-terms of a term: e.g. mapL s t. This

remains to be extended to full-term traversals: e.g. TDL s t. Such analysis

would flag traversals that have no chance of succeeding. In turn, elimination of

such traversals could lead to performance improvements in the execution time

of a transformation program.

2. The analysis needs to be extended to include full-scale analysis of traversal com-

positions. In particular, future work needs to lift success or failure of application

of a single rewrite rule to the success or failure of application of a traversal of

a term with a rewrite rule. This kind of analysis would enable determination

of whether one-layer traversal compositions (e.g. mapL r <∗ s) or full-term

traversal compositions (e.g. TDL r <∗ s) can succeed. Elimination of such

traversals can also lead to performance improvements.

3. TL provides a heterogeneous operator foldS that allows a programmer to fold

dynamically generated strategies into the strategy that is used by a traversal:

e.g. mapL(foldS <+ s). In essence, this is an example of a traversal with a

self-modifying higher-order strategy, where a newly generated strategy is folded

to the left of the existing strategy: i.e. mapL(foldS <+ (sn <+ ... <+ s1

<+ s)). The details of this analysis need to include detection of whether the

original strategy s can succeed within a traversal and whether the dynamically

generated strategy can succeed within the traversal.

4. TL allows a programmer to define custom traversals using recursive equations

of the form def customTraversal s = .... Analysis of traversals needs to

be extended to include custom traversal definitions. In particular, the analysis
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could determine whether a given custom traversal definition can succeed when

applied to a term with a given strategy or whether a custom traversal can

succeed at all.

5. The full proof of type soundness of the analysis of all TL features.

6. Analysis of traversals can significantly increase complexity of the analysis. Fu-

ture work needs to investigate a possibility of abstractions of types. In partic-

ular, if a given non-terminal symbol of a term language grammar can derive

several combinations of sub-term symbols, it could be possible to investigate

applicability of a strategy to the symbol itself, instead of the multiple variants

of sub-term symbols. This includes (a) pruning a type’s tree structure toward

its root and (b) combining multiple constructor alternatives derivable from the

same parent symbol into one parent symbol (e.g. [Int(...), F loat(...)] into just

[Number(TyV ar(i))]).

7. In addition to the abstraction of types outlined above, future work includes an

overall investigation of performance improvements. In particular, related work

has identified the use of tree automata in the optimization of type-checking of

regular expression types. Similar performance improvements can potentially be

obtained in the type-checking based on constructor-based types used in this

research.
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Appendix A

Boolean expressions

Below is the implementation of an interpreter of boolean expressions in TL.

Target language

USE_LR_PARSER

t

<t> ::= <v>

| "if" <t> "then" <t> "else" <t> .

<v> ::= "true"

| "false" .

Program

main: FIX oneStep

oneStep:

<t>_in -> <t>_out

if { s :=

t[:] if true then <t>_2 else <t>_3 [:] -> <t>_2

<+

t[:] if false then <t>_2 else <t>_3 [:] -> <t>_3

<+

t[:] if <t>_1a then <t>_2 else <t>_3 [:] ->

t[:] if <t>_1b then <t>_2 else <t>_3 [:]
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if {

<t>_1b = s <t>_1a

}

andalso

<t>_out = s <t>_in

}

Test

.(Input) if if if true then false else false then true else true

then true else true

/(Output) true
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Appendix B

Arithmetic expressions

Below is the implementation of an interpreter of arithmetic expressions in TL.

Target language

USE_LR_PARSER

t

<t> ::= <v>

| "if" <t> "then" <t> "else" <t>

| "succ" <t>

| "pred" <t>

| "iszero" <t>.

<v> ::= "true"

| "false"

| <nv> .

<nv>::= "0" .

Program

main: FIX oneStep

oneStep:

<t>_in -> <t>_out

if { s :=

// reduction of booleans
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t[:] if true then <t>_2 else <t>_3 [:] -> <t>_2

<+

t[:] if false then <t>_2 else <t>_3 [:] -> <t>_3

<+

t[:] if <t>_1 then <t>_2 else <t>_3 [:] ->

t[:] if <t>_11 then <t>_2 else <t>_3 [:]

if { <t>_11 = s <t>_1 }

// reduction of arithmetic exprs

<+

t[:] pred 0 [:] -> t[:] 0 [:]

<+

t[:] pred succ <t>_1 [:] -> <t>_1

<+

t[:] iszero 0 [:] -> t[:] true [:]

<+

t[:] iszero succ <t>_1 [:] -> t[:] false [:]

<+

t[:] succ <t>_1 [:] -> t[:] succ <t>_11 [:]

if { <t>_11 = s <t>_1 }

<+

t[:] pred <t>_1 [:] -> t[:] pred <t>_11 [:]

if { <t>_11 = s <t>_1 }

<+

t[:] iszero <t>_1 [:] -> t[:] iszero <t>_11 [:]

if { <t>_11 = s <t>_1 }

andalso

<t>_out = s <t>_in

}

Test

. if iszero pred 0 then 0 else succ 0

/ 0
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Appendix C

Lambda calculus

Below is the implementation of an interpreter of lambda calculus expressions in TL.

Target language

USE_LR_PARSER

t

<t> ::= <id>

| <v>

| "(" <t> <t> ")" .

<v> ::= "(" "lam" <id> "." <t> ")" .

<id>::= lexId .

Program

main: FIX oneStep

oneStep:

<t>_in -> <t>_out

if { s :=

t[:] ( ( lam <id>_x . <t>_1 ) <v>_1 ) [:] ->

TDL (t[:] <id>_x [:] -> t[:] <v>_1 [:] ) <t>_1

<+

t[:] ((<t>_1a <t>_1b) <t>_2) [:] -> t[:] (<t>_11 <t>_2) [:]

if {
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<t>_11 = s t[:] (<t>_1a <t>_1b) [:]

}

<+

t[:] (<v>_1 (<t>_2a <t>_2b)) [:] -> t[:] (<v>_1 <t>_22) [:]

if {

<t>_22 = s t[:] (<t>_2a <t>_2b) [:]

}

andalso

<t>_out = s <t>_in

}

Test

1. Test Church boolean true

. (((lam t. (lam f. t)) (lam a. a)) (lam b. b))

/ ( lam a . a )

2. Test Church boolean false

. (((lam t. (lam f. f)) (lam a. a)) (lam b. b))

/ ( lam b . b )

3. Test (and true true)

. (((lam b. (lam c. ((b c) (lam t. (lam f. f)) )))

(lam t1. (lam f1. t1))) (lam t2. (lam f2. t2)))

/ ( lam t2 . ( lam f2 . t2 ) )

4. Test (and false true)

. (((lam b. (lam c. ((b c) (lam t. (lam f. f)) )))

(lam t1. (lam f1. f1))) (lam t2. (lam f2. t2)))

/ ( lam t . ( lam f . f ) )
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5. Test (fst (pair v w))

. ((lam p. (p (lam ta. (lam fa. ta))))

(((lam f. (lam s. (lam b. ((b f) s)) ))

(lam v. v)) (lam w. w)) )

/ ( lam v . v )
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Appendix D

Typed arithmetic expressions

Below is the implementation of a type-checker of arithmetic expressions in TL.

Target language

USE_LR_PARSER

t

<t> ::= <v>

| "if" <t> "then" <t> "else" <t>

| "succ" <t>

| "pred" <t>

| "iszero" <t>

| <ty> .

<v> ::= "true"

| "false"

| <nv> .

<nv>::= "0" .

<ty>::= "BOOL"

| "NAT"

| "ABORT" .

Program

step:

<t>_in -> <t>_out
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if { s :=

t[:] true [:] -> t[:] BOOL [:]

<+

t[:] false [:] -> t[:] BOOL [:]

<+

t[:] if <t>_1 then <t>_2 else <t>_3 [:] -> <t>_then

if {t[:] BOOL [:] = s <t>_1 andalso

<t>_then = s <t>_2 andalso

<t>_else = s <t>_3 andalso

<t>_then = <t>_else

}

<+

t[:] 0 [:] -> t[:] NAT [:]

<+

t[:] succ <t>_1 [:] -> t[:] NAT [:] if { t[:] NAT [:] = s <t>_1 }

<+

t[:] pred <t>_1 [:] -> t[:] NAT [:] if { t[:] NAT [:] = s <t>_1 }

<+

t[:] iszero <t>_1 [:] -> t[:] BOOL [:] if { t[:] NAT [:] = s <t>_1 }

andalso

<t>_out = s <t>_in

}

main:

<t>_in -> <t>_out

if { <t>_1 = FIX step <t>_in andalso

(((<t>_1 = t[:] BOOL [:] orelse <t>_1 = t[:] NAT [:])

andalso <t>_out = <t>_1)

orelse <t>_out = t[:] ABORT [:])

}

Test

. if iszero pred 0 then 0 else succ 0

/ NAT
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. iszero true

/ ABORT
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Appendix E

Simply typed lambda-calculus

Below is the implementation of a type-checker of lambda calculus expressions in TL.

Target language

USE_LR_PARSER

t

<t> ::= <id>

| <v>

| "(" <t> <t> ")"

| <ty> .

<v> ::= "(" "lam" <id> ":" <ty> "." <t> ")" .

<id>::= lexId .

<ty>::= <tybase>

| <tybase> "->" <ty>

| "(" <ty> ")" "->" <ty> .

<tybase>

::= lexTy

| "ABORT" .

Program

step:

<t>_in -> <t>_out
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if {

s :=

t[:] ( lam <id>_x : <ty>_x . <t>_1 ) [:] -> <t>_3

if {

<t>_2 = TDL (<id>_x -> <ty>_x) <t>_1 andalso

t[:] <ty>_y [:] = s <t>_2 andalso

((ty[:] <tybase>_x [:] = <ty>_x andalso

<t>_3 = t[:] <tybase>_x -> <ty>_y [:]) orelse

<t>_3 = t[:] (<ty>_x) -> <ty>_y [:])

}

<+

t[:] (<t>_1 <t>_2) [:] -> t[:] <ty>_2 [:]

if {

<t>_11 = s <t>_1 andalso

<t>_22 = s <t>_2 andalso

((t[:] (<ty>_1) -> <ty>_2 [:] = <t>_11 andalso

t[:] <ty>_1 [:] = <t>_22) orelse

(t[:] <tybase>_1 -> <ty>_2 [:] = <t>_11 andalso

t[:] <tybase>_1 [:] = <t>_22))

}

andalso

<t>_out = s <t>_in

}

main:

<t>_in -> <t>_out

if { <t>_1 = FIX step <t>_in andalso

((<t>_1 = <t>_in andalso <t>_out = t[:] ABORT [:]) orelse

<t>_out = <t>_1)

}

Test

1. The Church boolean true
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. (lam t: A. (lam f: B. t))

/ A -> B -> A

2. Test the Church boolean true

. (((lam t: T -> T. (lam f: F -> F. t)) (lam a: T. a)) (lam b: F. b))

/ T -> T

3. Ill-typed test of the Church boolean true

. (((lam t: T. (lam f: F. t)) (lam a: T. a)) (lam b: F. b))

/ ABORT

4. Higher-order function

. (lam f: A->A. (lam x: A. (f (f x)) ))

/ ( A -> A ) -> A -> A
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