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The proliferation of the Semantic Web depends on ontologies for knowledge 

sharing, semantic annotation, data fusion, and descriptions of data for machine 

interpretation.  However, ontologies are difficult to create and maintain.  In addition, 

their structure and content may vary depending on the application and domain.  Several 

methods described in literature have been used in creating ontologies from various data 

sources such as structured data in databases or unstructured text found in text documents 

or HTML documents.  Various data mining techniques, natural language processing 

methods, syntactical analysis, machine learning methods, and other techniques have been 

used in building ontologies with automated and semi-automated processes.  Due to the 

vast amount of unstructured text and its continued proliferation, the problem of 

constructing ontologies from text has attracted considerable attention for research. 

However, the constructed ontologies may be noisy, with missing and incorrect knowledge.  

Thus ontology construction continues to be a challenging research problem.  

 The goal of this research is to investigate a new method for guiding a process of 

extracting and assembling candidate terms into domain specific concepts and 

relationships.  The process is part of an overall semi-automated system for creating 

ontologies from unstructured text sources and is driven by the user’s goals in an 



incremental process.  The system applies natural language processing techniques and 

uses a series of syntactical analysis tools for extracting grammatical relations from a list 

of text terms representing the parts of speech of a sentence.  The extraction process 

focuses on evaluating the subject-predicate-object sequences of the text for potential 

concept-relation-concept triples to be built into an ontology.  Users can guide the system 

by selecting seedling concept-relation-concept triples to assist building concepts from the 

extracted domain specific terms.  As a result, the ontology building process develops into 

an incremental one that allows the user to interact with the system, to guide the 

development of an ontology, and to tailor the ontology for the user’s application needs.   

The main contribution of this work is the implementation and evaluation of a new semi-

automated methodology for constructing domain specific ontologies from unstructured 

text corpus. 
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1 Introduction 
 

  The ability to build high quality and practically usable ontologies remains an 

open research problem.  Although there have been increasing improvements in various 

methods and systems, the process known as “ontology creation,” or also as “ontology 

learning”, or “ontology construction”, is still cumbersome and difficult. Several methods 

of creating ontologies using automated and semi-automated techniques from various data 

sources have been described in literature.  Due to the vast amount of available 

unstructured text residing on the Web, there exists a high degree of motivation for using 

these techniques for the creation of domain specific ontologies [Sousan et al. 2007]. 

 Ontology construction from text sources generally consists of several processes 

configured within a pipelined architecture where the output of one process is used as the 

input to another process.  Typically, some of these processes include collecting relevant 

documents into a domain specific corpus, detecting and extracting relevant text terms, 

clustering the terms into groups that identify a concept, determining names of the 

identified concepts, determining the semantic distance between concepts, and finally 

hierarchically arranging the concepts based on their taxonomic and semantic relations.  In 

addition, some applications may require richer ontologies that would also need additional 

processes to extract non-taxonomic relations, attributes, and axioms.  Figure 1 outlines 

the levels of ontology learning from text in the well-known ontology learning layer cake 

[Buitelaar et al.  2005].   
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Figure 1 - Ontology learning layer cake 

Note that the ontology construction process described in this research work focuses on 

the lower four layers and part of the fifth layer that consists of “learning terms,” 

“synonyms,” “concepts,” “concept hierarchies,” and “relations.” 

 Several problems exist with an entirely automated, unsupervised process of 

creating ontology from text.  In addition to the technical challenges mentioned above, an 

ontology generated without intensive human intervention is often mixed with noisy, 

inaccurate, missing, and insufficient concepts and relationships.  Furthermore, the 

ontology resulting from automated processes may lack the necessary properties for the 

applications that require their accrued knowledge for completing the intended problem-

solving tasks. Domain ontologies are also subject to the acceptance from its community 

of users. Overall, the unsupervised ontology building methods, although they need 

relatively little or no user assistance, are vulnerable in terms of the algorithm’s ability to 

find the problem-relevant concepts and mold them correctly into the desired structure.  
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 On the other hand, semi-automated and supervised methods allow for the 

configuration and adjustment of the ontology construction process which is timely and 

accurate, but has the obvious drawback of requiring significant user intervention.  In 

addition, noise resulting from the output of any one of the pipelined processes may be 

propagated up through the pipeline and possibly cause problems with other processes 

along the way. 

 These challenges provide the motivation for the research presented in this 

dissertation.  As such, this dissertation focuses on a semi-automated process for ontology 

construction.  Efforts are devoted to the development of a user-feedback guided 

methodology that attempts to deliver higher quality ontology as compared to fully 

unsupervised methods, but without the time consuming drawbacks of a fully manual 

process.  The goal is to minimize the needed interactions from the user in guiding and 

improving the ontology building process.   

Thus the research question posed in this work is whether improvements can be 

made to previous methods of semi-automated ontology construction techniques in order 

to construct a particular domain-specific ontology.  The objective behind this research is 

to determine useful types of ontology construction parameters that can be defined by the 

user and used within a formally defined method to construct and incrementally extend a 

domain specific ontology.   

1.1 Ontologies 

 Ontologies are used for modeling knowledge of a particular domain by using 

concepts and their relations. These concepts can be real-world entities such as cars, or 

planes, or abstract things such as emotions, motivation, and others.  As Tom Gruber 
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[Gruber 1993] so eloquently stated, “An Ontology is a formal explicit specification of 

shared conceptualization”. Thus ontologies provide the capability of formally modeling 

knowledge with concepts and their semantics that are formally defined together with their 

corresponding attributes and interrelationships.  Ontologies also provide a means for data 

normalization so that different systems can refer to the same object explicitly and without 

any ambiguity.  Furthermore, the implementation of ontologies in well-defined formal 

languages allows for the machine readability of ontologies, and thus various applications 

and software agents can refer to ontologies for a standardized description of things.  

Moreover, ontologies allow one to infer new information based on implicit information 

within the structure of the ontology.  Overall ontologies are key parts of Semantic Web 

[Berners-Lee et al. 2001] technologies. They provide the schematics of standardized 

concepts and their relationships which allow for the automatic linking, processing, and 

understanding of published data that has been described semantically by an ontology.  

 Ontologies are made up of several components.  They consist of concepts 

represented by text terms, the concepts themselves, attributes of concepts, relationships 

between concepts, and axioms that identify constraints amongst the components. 

Attributes are properties, characteristics, or parameters of concepts such as the color of an 

object and axioms are constraints on objects such the concept of an airplane could have a 

rule that airplanes must fly.  

 In addition, ontologies vary in their structure that depends on the needs of the 

application that uses the ontology.  For example, light-weight ontologies, may simply be 

a hierarchical taxonomy of concepts that describes the items of discourse within a given 

domain, which is one of the desired goals of this research.  In contrast, more complex 



                                                                                                                                                                 5 

ontologies may contain multi-folds of concepts, relationships, attributes, and 

constraints/axioms.   Figure 2 depicts a generalized structure of an ontology: 

 

Figure 2 - Generalized ontology structure 

 

The work in this dissertation focuses primarily on terms, concepts, and 

relationships and their respective hierarchy in building an ontology. The ontological 

structure is similar to the one used in [Desmontils & Jacquin 2002] that formally 

describes the ontology as O(C, R, T), where: 

 • C: a set of concepts, C = {c1, c2, … cn}; 

 • R:  a set of relationships, R = {r1, r2, … rn}; and  

 • T:  a set of terms, T = {t1, t2, … tn}. 

A given concept may be represented by a group of terms used to lexically identify 

the concept and the concepts are arranged in a hierarchical structure based on taxonomic 

relationships between each concept.  Note that a term may consist of one or more words, 

such as tn = w1 + wn.  

Concept A 

Concept B Concept C 

Relation R1 
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… 

Term n 
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 Figure 3 gives an example of an ontology structure that is used within this 

research. 

 

Figure 3 - Example ontology 

 In figure 3, the ovals represent the concepts; the arrows between the concepts 

represent the taxonomic relationships between the concepts, where the arrow points to the 

sub-concept which is more specific than its parent concept.  In addition, each concept has 

a corresponding list of terms that lexically identify the concept.  Note that for a given 

concept, a term associated with the concept and the actual name of the concept itself may 

be identical. 

1.2 Ontology Based Information Systems 

 Ontology Based Information Systems (OBIS) uses ontologies for knowledge 

management which provide the solutions to several problems.  Ontologies can be used for 

data fusion purposes, as they can contain synonyms of concepts, or character strings 
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referred to as terms, that may also be considered as lexical representation of concepts.  

Therefore different terms that semantically mean the same thing from various documents 

can be normalized or mapped to the same concept.  For example, the terms “whirlybird” 

and “chopper” may both be used to identify the concept of ‘Helicopter’. Note again that 

the name of a concept can also be one of its original terms. For example, the concept of 

‘Helicopter’ could also have a term of “helicopter”. 

 In addition, ontologies provide a means for indexing documents based on desired 

semantic levels and concepts.  Documents can have terms annotated that identify 

concepts within a given ontology.  Also, ontologies are a useful means for data retrieval 

and extraction such that they provide a clear means of query specification for the target 

information.  Ontologies provide a method for semantically annotating text which 

provides information that can be semantically retrieved by the user’s intent in a 

WYGIWYN (What you get is what you need) fashion [Sousan et al. 2007].  In addition, 

they can provide a means for semantically specifying queries in a contextually relevant 

fashion, versus a simple sequence of keywords or “bag of words” that contain no 

information regarding the relationships between the words. 

 There have been several OBIS reported in literature.  For example, the ADDminer 

system [Garcia et al. 2006] performs text mining for creating instances as defined within 

its ontology.  This ontology models the information stored in text-based reports 

describing incidents occurring on offshore drilling platforms.  The IBlogs project from 

VIStology [Ulicny B. et al. 2007] analyzes online blogs with an ontology for the purposes 

of the early detection of cyber threats.  The Tailored Information Delivery System (TIDS) 

project [Sousan et al. 2008] uses ontologies for the collection of military intelligence 
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using ontologies for harvesting information from open source intelligence sources on the 

Web. 

 Semantic Web applications rely upon ontologies for their semantic needs for a 

clear and unambiguous understanding of their data.  Therefore there is a need for the 

construction of high-quality domain specific ontologies to support these applications.  In 

addition, future applications or users may need the ability to generate relatively small 

ontologies quickly for information retrieval purposes within a narrow domain via an 

“Ontologies on Demand” [Cimiano et al. 2006] process.  These ontologies need to be 

highly precise and cover only the domain of interest without a lot of irrelevant 

ontological components.   

1.3 Ontology creation 

 Creating ontologies has been studied from the use of various approaches 

including manual, semi-automatic, and automatic methods.  It has been well documented 

that ontologies require a great effort in their creation and maintenance, and as such, a 

considerable amount of research has been dedicated to creating ontology construction 

systems.  When constructing a domain specific ontology, a domain expert and/or domain 

ontology components are needed as input to the ontology building process.  Sources for 

domain ontology building can come from structured data such as formal databases, semi-

structured data such as HTML tables or machine readable dictionaries or unstructured 

text.  The overall objective is to model the desired domain relying on the data sources for 

its description. 

 However, ontologies are difficult to build and are extremely labor intensive to 

create [Gruninger, and Lee, 2002]. There has been a considerable amount of work 
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performed in the area of ontology construction.  For example, there were over 50 systems 

in 2003 described in [Shamsfard & Barforoush 2003]. In addition, there is no 

standardized ontology definition or structure and no universally accepted evaluation of 

quality for a given ontology [Zouaq and Nkambou 2009].  The need for high quality and 

usable ontologies are often referred to as one of the bottlenecks [Wagner 2006] in the 

proliferation of the Semantic Web.  A considerable amount of research has been 

performed in the construction of ontologies using automated, semi-automated, and 

manual processes from various data sources.  Current automated and semi-automated 

methods have some levels of success; however, the resulting ontologies generated from 

these methods are often noisy with inaccurate, missing, and insufficient concepts and 

relationships.  These generated ontologies may also lack the necessary properties for the 

applications that require their usage for completing their tasks.  In most cases, the 

generated ontologies may be used as prototype or guide for ontology construction or 

“cleaned up” by domain experts. As a result, the motivation for creating new methods for 

ontology construction continues.  

 As we have seen, the automated methods, although need relatively little or no user 

assistance, are vulnerable to their algorithm’s ability to find concepts and mold them 

correctly into the desired ontology.  On the other hand, semi-automated methods allow 

for the configuration and adjustment of the ontology construction process with the 

obvious drawback of possibly needing too much user input. 
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2 Creating Ontologies from Text Corpus 

 Current methods of constructing ontologies from text often involve a complex 

series of processes arranged in a pipeline fashion.  Each of these processes has 

imperfections, and as such, contains a degree of inaccuracy about their outcomes.  As a 

result, much research has been performed in refining and experimenting with various 

algorithms within these processes.  Figure 4 depicts the basic blocks of constructing 

ontologies from text.  These processes are commonly found in systems that attempt to 

model domains from a given text corpus.  However, variations exist in literature that adds 

additional blocks and feedback loops.   

For the purposes of analysis of this research work, the ontology construction 

processes have been classified into four sections; that are 1) Corpus creation 2) extracting 

potential domain-relevant terms 3) Conceptualization 4) Conceptual graph based on 

taxonomic relations. 
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Figure 4 - Common ontology construction architecture 

 

 In addition, there does not exist a one-size-fits-all ontology learning process for 

any domain.  There may be ontology building methods that are better for building 

ontologies for particular domains than others [Zhou 2007].  For example, the authors in 

[Zhou 2007] recommend that established domain ontologies may be better suited for a 

top-down learning process as compared to an emerging domain where a bottom-up 

approach is preferred due to the need to discover new domain knowledge. 

2.1 Corpus creation 

 The initial problem in an ontology construction process is to determine what text 

articles should be used in the text corpus.  Note that the better coverage of domain 
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concepts and relationships, the better the chances are for a well constructed ontology.  

Some authors have expressed the need for additional supporting data sources from other 

upper-level ontologies, machine readable dictionaries, and the Web as they feel that text 

corpus may not capture enough of the domain.  Furthermore, there are factors regarding 

whether the document corpus should be hand created or retrieved by using keywords or 

theme extraction.  In addition, it may be difficult to justify the sample size in terms of 

number articles within the text corpus needed for a fair evaluation of an ontology 

construction system. 

2.2 Extracting potential domain-relevant terms 

 Various methods have been described in literatures that are used for finding terms 

that lexically identify domain relevant concepts and relationships.  This process is known 

as Terminology Extraction, and common methods for performing this consists of using 

statistical, linguistic, or a hybrid of both methods, as described in [Pazienza et al. 2005]. 

The discovery of candidate concepts and relationships from text are difficult due to the 

many ways semantics can be expressed and the many different senses of words.  Several 

methods have been tried such as lexico-syntactic patterns [Hearst 1992], noun-verb-noun 

patterns [Schutz and Buitelaar 2005], association rules [Maedche and Staab 2000], and 

word frequency. 

 Terms can be extracted from “scratch” in a sense where, given a corpus, the 

requirement is to mine all the terms that have a high probability of being part of the 

domain under consideration.  This is typically used when sorting a group of documents.  

However, there may be other types of ontology that need to be more narrowly defined.  

Thus it may be beneficial for some guidance for identifying the particular domain of the 
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ontology.  Hints may be given to the system in the form of upper-level concepts, an 

actual skeleton of an ontology, or just a “bag of words”. 

2.3 Conceptualization 

 Once a group of candidate concept and relationship terms have been extracted, it 

is necessary to group them into similar or identical clusters.  Doing so facilitates the task 

of formally creating concepts, relationships, and their respective synonyms.  Thus the 

problem is how to determine the semantic relevance between terms and what concepts 

are represented by the terms.  Various types of clustering methods have been used to 

group terms in groups of semantically similar entities.  Problems arise with determining 

the semantic relevance as words can have multiple senses as well as a given concept can 

be represented with different words.  In addition, it may be difficult in the naming of 

concepts within the clustering process without user intervention.  Finally the granularity 

of the ontology or part of the ontology needs to be constructed appropriately for the given 

domain.   

2.4 Conceptual graph based on taxonomic relations. 

 Various methods have been reported in literature for hierarchically arranging 

concepts based on taxonomic relations, which is also known as the learning of concept 

hierarchies.  For example, in [Hearst 1992], the author uses lexico-syntactic patterns, 

known as “Hearst Patterns”, for discovery of hyponyms from text.  As an instance, the 

follow pattern “NP0 including NP1” indicates to look for a sequence of a noun phrase (NP) 

followed by the word “including” and ending with another noun phrase.  In addition, the 

semantic relationships and concepts need to be defined for the sequence.  For this 
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sequence, NP0 and NP1 would be considered concepts related in a hyponym (IS-A) 

relationship where NP1 is a hyponym of NP0.  For instance, the sentence fragment “… all 

kinds of fish including tuna, halibut…” contains the pattern “NP0 including NP1”, which 

indicates that tuna is a type of fish.  Thus these patterns can be used to identify taxonomic 

relations between concepts.  However, these patterns are reported to have low occurrence 

rates within test corpora [Cimiano et al. 2006].  In order to increase the occurrence rates 

of the patterns the work in [Cimiano et al. 2004b] uses the Web as corpus for matching 

the Hearst Patterns for finding ontological relations.  Note that the work in [Brewster et al. 

2002] uses these patterns for the purposes of detecting ISA/hyponymy relations and for 

detecting new terms too. 

 Formal Concept Analysis (FCA) [Ganter and Wille 1999] has also been used for 

determining the hierarchical arrangement of concepts.  Using this method requires the 

determination of concept’s characteristics such as attributes and relations to use as a 

means to determine the semantically similarity as well as the parent-child taxonomic 

relationships.  FCA has been used for learning concept hierarchies in the work of 

[Cimiano et al. 2005]. 

2.5 Use of Patterns 

 Information extraction methods that use linguistic patterns have been described in 

literature.  For example, patterns are used to build a terrorist event dictionary in the 

Autoslog [Riloff 1993] project.  In addition, Subject-Predicate-Object (SPO) triples were 

used in the EXDISCO system [Yangarger et al. 2000] for information extraction.  The 

authors exploited the use of the triples for finding relevant documents based on their 

inclusion of designated patterns.  The assumption that the subject or object terms of the 
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SPOs are also viewed as a concept that has multiple terms for lexically representing it.  

The difference between these systems and the work described in this dissertation is that 

this work uses the triples for the purposes of extracting domain relevant terms that are 

later conceptualized.  Furthermore, there have been several accounts in literature 

regarding the use of SPOs for finding candidate non-taxonomic relations.  This research 

uses these sequences for term extraction purposes only. 

 The use of patterns for ontology learning has been reported to have a high rate of 

precision but a low rate of recall [Rastegari et al. 2010].  Although there may be several 

reasons for the low recall rate, two reported reasons are considered the most important.  

First, the corpus may generally have a low amount of instances of predefined patterns.  

Second, the patterns may have low flexibility in the ability to match new instances.  

Patterns are typically defined by identifying positive instances and may be selected by 

such processes as machine learning. 
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3 Semi-Automated Processes- State of the Art 

 Semi-Automatic ontology construction, from a high level perspective, relies on 

the user to provide guidance and feedback in the ontology building process.  It is desired 

that through minimal user feedback and guidance that a higher quality ontology can be 

constructed as compared to a totally automated process.  The user feedback can be 

provided through various means and used to adjust different parts of the construction 

process such as the concept discovery, determining semantic distances between concepts, 

a concept’s relationships and attributes, and in the creation of the concept hierarchy. 

However, if the amount of guidance and feedback required within the process 

overburdens the knowledge worker, then the process may not be any better than 

constructing the ontology manually.   

 Various semi-automated methods for ontology construction have been described 

in literature.  However, the semi-automated portions of these methods vary greatly 

amongst reported methods and the interpretation of semi-ness.  The following examples 

of semi-automated ontology construction processes are ones that appear similar to the 

work within this research and are listed in chronological order. 

 The work in [Brewster et al. 2002] considers their work as a user-guided process 

for knowledge management.  Their system uses a user-defined seed ontology that 

requires the identification of at least one term, called the seed term, for each seed concept.  

In addition, the system uses Natural Language Processing (NLP) tools to parse a domain 

specific text corpus looking for Hearst patterns [Hearst 1992] that contains the defined 

seed terms.  Users validate the identified patterns as a positive or negative example, and 

the system generalizes the patterns and applies them to the entire corpus to find related 
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concepts and relationships.  When the user is satisfied with the pattern configurations, 

they can cleanup the resulting ontology. 

 Software Application Programming Interface (API) documentation is used as the 

domain knowledge resource in a semi-automated ontology building process in [Sabou 

2004].  Java programming language method headers, which are described with plain text 

and field descriptions, are used as domain knowledge input into the system.  Using NLP 

tools, the text fields are tokenized into words and the parts-of-speech of each word are 

identified. Afterwards, verb-noun pairs are identified from the parts-of-speech breakdown. 

The verb-noun pairs are lemmatized in order to normalize the words, and ranked based 

on their significance using different ranking schemes. It is then the job of the knowledge 

engineer to assign a concept to each verb-noun pair as they deem significant – thus 

provided the semi-automated component of concept assignments.  For example, the 

authors described the assignment of the verb-nouns pairs of “load graph” and “add 

model” to the concept of AddOntology. But the system relies on the knowledge engineer 

to manually structure the derived concepts into the corresponding hierarchy. 

 The work described in [Liu et al. 2005] uses a semi-automated method for 

constructing and updating an ontology on the domain of climate change.  Their system 

utilizes a seed ontology for designating the upper-level domain ontology that is extended 

and refined via text data mining from the Web.  The terms within the seed ontology are 

used to mine additional terms through term co-occurrence and the semantic relationships 

are determined by analyzing WordNet [Fellbaum 1998], which is a general purpose 

ontology. The use of trigger phrases to identify parent-child relationships is reported in 

[Joho et al. 2004], where weighted links are used to connect the mined terms to the seed 
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ontology.  Concepts are identified by analyzing the terms in WordNet and using 

disambiguation processes to determine the correct sense.  Afterwards, a process known as 

“Spreading Activation”, similar to neural networks, is used to determine the degree of 

term relevancy and the term’s placement into the seed ontology.  This process iteratively 

traverses through the network, analyzes the node and link weights to determine node 

activation, and spreads the activation across related links for the objective of identifying 

the most relevant keywords.  The confirmation of the semantic relationships is performed 

by again using a combination of the WordNet with the head nouns and subsumption 

analysis.  Terms that can not be automatically confirmed are evaluated by a domain 

expert or left alone for another iteration of the “Spread Activation” process using 

additionally acquired evidence.  It appears that the semi-automated portions of this 

process are the construction of the seed ontology and re-running the process against an 

updated text corpus. 

 For the purposes of building a topic-specific ontology, the OntoGen tool [Fortuna 

et al. 2006] assists the user by analyzing a corpus of plain text documents and 

recommending potential new topics and providing a visualization of the currently 

constructed ontology.  The authors define the semi-automated component of the process 

consisting of the user making all the decisions based on computer generated suggestions 

on topic names and assigning documents to the created topics.  Users can edit existing 

concepts, further expand topics into subtopics, evaluate suggested subtopics for a given 

topic, and view related topics to the selected topic.  Changes to the ontology are reflected 

within the ontology visualization window.  Subtopics of a selected topic are suggested by 

the system using  Latent Semantic Indexing (LSI) or K-means clustering algorithms that 
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are applied only to the selected topic’s documents.  LSI [Deerwester et al. 1990] is 

applied to textual context to determine similar word meanings and K-means clustering 

[Jain et al. 1999] is used to iteratively partition data into K similar groups. 

 The authors in [Zhou et al. 2006] use a semi-automated process for the creation of 

a domain specific ontology of medicine.  Their process requires the specification of a 

core ontology that serves as the upper-level ontology that will be extended.  This core 

ontology consists of seed concepts that are defined by domain experts.  The goal is to 

first extend the core ontology with additional concepts gleaned from WordNet that may 

require multiple iterations.  Second, they process it to further extend the ontology with 

more concepts and non-taxonomic relations through event based learning. The authors 

consider events as a triplet defined by E (C1, V, C2) where C1 and C2 are concepts, or 

either C1 or C2 is a frequently occurring noun, V is a verb linking the C1 and C2. Note 

that the events described in this work are closely related to the Subject-Predicate-Object 

sequences described in this dissertation. Events are extracted from the corpus using NLP 

tools and analyzed for the addition of the verb as a relation between two existing 

concepts within the ontology and/or one of the frequently occurring nouns within the C1 

or C2 slot as a new concept within the ontology.  Thus the semi-automated components 

consist of users guiding the system by defining the core ontology and potentially running 

multiple iterations of the two processes after evaluating the output of each process. 

 Other methods allow for users to encode concepts based on a domain’s best 

practices using cased based reasoning as in the OntoCase system [Blomqvist 2007]. In 

[Blomqvist 2008] the author looks for stored patterns in a given group of extracted 

concepts and relationships.  It focuses on the creation and reuse of these patterns along 
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with their confidence levels in the semi-automatic process of ontology creation in regards 

to enterprise domain and application ontologies which are denoted by the author as 

“enterprise application ontology.”  These patterns focus on reusing ontology structures 

and are less focused on text analysis.  Furthermore this work builds on the application of 

existing state of the art ontology learning algorithms for text processing as a front end to 

their pattern-based method. 
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4 Research Methodology 

The Constructive Research Methodology [Dodig-Crnkovic 2010] was adhered to 

for conducting the research within this project.  The methodology is built upon the 

following steps: 

a) Finding and identifying a relevant problem to solve 

b) Performing a literature review and investigating the theoretical foundation 

c) Designing and constructing a solution (artifact)  

d) Demonstrate usability 

e) Showing research contribution 

4.1 Identifying relevant problem for solving 

 Ontologies are often referred to as one of the bottlenecks [Wagner 2006] to the 

proliferation of the Semantic Web and are also used for a variety of knowledge based 

applications.  Various methods of creating ontologies automatically and semi-

automatically has been reported in literature and is still a yet to be a fully solved problem.  

The reported systems are typically very complex pipelined methods with various 

techniques for solving different parts of the pipelined methods and have varying levels of 

success.  As a result, there exist several areas with the ontology construction systems for 

research. 
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4.2 Performing a literature review and investigating theoretical 

foundation  

 Several ontology construction systems are reported in literature.  In addition, 

considerable work has been reported on various components that make up the ontology 

construction process along with any open issues.  A key part of this research is the 

analysis of what characteristics of an ontology construction process can be configured or 

tailored to successfully construct and refine the ontology.  The following research 

questions need to be answered: 

• Are there ways to guide the construction process to tailor it to a specific domain 

and application such that only includes those concepts and relationships needed 

for the application and inhibits and removes unwanted concepts and relationships? 

• What techniques can be used to reduce the amount of effort needed to create 

domain specific ontology? 

• How to improve the quality of the ontology? 

 Finally, the objective of the resulting ontology is not meant as a means for 

semantically indexing a given domain specific corpus, but rather for extracting an 

explicit set of concepts for a specific domain. 

4.3 Designing and constructing artifact 

 In order to test and evaluate the proposed methods, it was necessary to develop a 

model and implement the model within a software prototype.  The model was developed 

by analyzing various methods and challenges described in literature, reviewing plain text 

documents on the Web, performing experiments on the types of semantic information 
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that could be extracted, and finally researching and experimenting on the types of concept 

characteristics that could be defined by users.  Once the model was completed, it was 

necessary to realize the model by implementing it into a computer program that would 

perform as an ontology constructing tool kit – thus a software artifact.  This artifact 

would provide a test bed for experimentation and analysis.   

 The program is written in Java and leverages open source software packages to 

reduce the implementation efforts.  In addition, state-of-the-art algorithms were used for 

those components not essential to the novelty of the research.  Note however that the goal 

is not develop the entire system – just those components unique to the goals of the 

research.  Algorithms previously reported in literature that fit the goals of the ontology 

construction process are used.  Furthermore several components are needed to construct 

ontologies from text and therefore a considerable amount of time was spent on 

implementing the algorithms. 

4.4 Demonstrate usability 

 Experiments are needed to collect data for determining the degree of usability.  

Therefore a domain needs to be selected for the purposes of experimentation that consists 

of using the ontology constructing software prototype for creating an ontology of the 

selected domain.  For the purposes of this research, the cyber-attack domain was selected 

and used in experiments for data collection.  A corpus of hand selected plain text articles 

was created for input into the system that provided the necessary background knowledge 

for the cyber-attack domain.  Various experiments were defined that exercised the 

features and new technologies of the system for data collection.  However, it is difficult 
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to evaluate constructed ontologies as there are currently no universally accepted 

standards to judge the quality of an onotology.   

4.5 Showing research contribution 

 The final task of the constructive research methodology is to identify those 

components that contribute to the corresponding research area.  The research performed 

within this dissertation contains several new methods that are considered as contributions 

and are outlined at the end of the report.  
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5 Techniques 

 To test and evaluate the proposed methods, it was necessary to implement them 

within a prototype system.  Note that, as stated before, constructing ontologies is a 

complex process that typically involves several tasks executed in a pipelined fashion.  

Also note that some of these processes have been used in previous research projects while 

others are unique to this research.  In an effort to clearly describe the ontology 

construction and iterative process, all the pipelined tasks are identified with those that are 

unique to this research.  There are two major processes within the ontology constructing 

process, first the process of building the initial ontology and then the process of 

incrementally extending the ontology. The following sections describe the processes used 

within the ontology building system.   

5.1 Process summary 

 Typical of other systems, the semi-automatic ontology construction system of this 

research consisted of a relatively complex pipelined process that contains a mixture of 

custom developed code in conjunction with various open source packages.  Several steps 

are needed within the process for developing and iteratively refining the ontology.  The 

basic steps of the initial process to build the first ontology are the following: 

1) Create text corpus by manually accumulating various unstructured text 

articles from the Web into a text corpus that supplies ontological knowledge 

regarding the domain of interest 

2) Build parsed corpus by using NLP tools and parsing each article into an 

Extensible Markup Language (XML) file which contains a breakdown of the 
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article into sentences, words, parts of speech, noun and verb phrases, and type 

dependency lists 

3) Create phrase and Subject-Predicate-Object (SPO) databases by lemmatizing 

all the words within the phrases to the root words and extract noun phrases, 

verb phrases, and build SPO triples 

4) Build a seed ontology by allowing the user to manually create seed concepts 

and defining at least one term to identify its corresponding seed concept 

5) Display lists of SPOs to the user that are ranked in ascending order based on 

the semantic relevance between a given seed concept and either the SPO’s 

subject or object term 

6) Allow the user to select SPOs for a given seed concept that will be used as a 

Term Extraction Pattern (TEP) for identifying domain-specific terms.  Thus 

the user builds a list of TEPs for each seed concept. 

7) Use the TEPs for extracting domain specific terms from the text corpus.  Also 

use the patterns for extracting terms in future articles retrieved from the Web. 

8) Conceptualize the terms within each term pools into clusters of similar terms 

that describe a concept.  Then hierarchically arrange the terms into an 

ontology. 

Figure 5 depicts the initial process. 
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Figure 5 - Initial ontology construction process 

 Note that steps 1, 2, 3, 4, and step 8 are typical steps that have been implemented 

in similar work using various algorithms such as in [Zouaq and Nkambou 2009], [Sabou 

2004], [Zhou et al. 2006], and others.  However, steps 5, 6, and 7 are considered to have 

new contributions in them as reported in this research. 

After the initial ontology has been created, the user can then update the text 

corpus by adding new articles and re-running parts of the process in order to extend and 

refine the ontology.  This is accomplished by the following steps: 

1) Add text articles to the corpus 

2) Parse added articles only 

3) Extract noun and verb phrases and SPOs from newly added articles only, and 

add these to the Phrase and SPO database 
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4) User can review an updated ranked SPO list for each concept.  In addition, the 

terms from the term pool are used to improve the ranking process.  Thus SPOs 

containing Term Pool (TP) terms are pushed higher into the rankings 

5) Optionally, the user can selected additional SPOs for new Term Extraction 

Patterns (TEPs) or evaluate existing TEPs for low performance and possibly 

remove them 

6) Update each TP based on the current set of TEPs 

7) Add new terms that were added to the term pools to the existing ontology.  

Note that parts of the ontology may be restructured due to adding new terms 

 

Figure 6 depicts the ontology extension and refinement process: 

 

 

Figure 6 - Ontology extension and refinement process 

Updated 
Parsed Corpus 

Updated 
Phrase & SPO 
DB 

7. Add new terms 
from each Term 
Pool into 
Corresponding 
Taxonomy  

Updated Text 
Corpus 

1. Update Text 
Corpus with 
new articles 

4. Optional: Review Ranked 
SPO’s for adding new TEP’s 

2. Parse added 
articles 

3. Extract Phrases 
(Terms) and 
SPO’s and add to 
database 

Ranked SPO 
List per Seed 
Concept 

Updated List 
of TEP’s for 
Each Seed 
Concept 

5. Optional:  
User can  
add/Remove  
TEP’s 

Updated Term 
Pool for Each 
Seed Concept 

6. Update Term 
Pool for each 
Seed Concept 
using its 
corresponding 
TEP List 

Updated 
Taxonomy 
Under Each 
Seed Concept 

TP Terms 
feed back 
into SPO 
Ranking 



                                                                                                                                                                 29 

 Note that the above ontology extension and refinement process can be performed 

periodically as needed to update the resulting ontology.  In addition, note that steps 4, 5, 

and 6 are considered to have new contributions in them reported in this research. 

5.2  Building Text Corpus 

 The text corpus forms the foundation of domain-relative terms that may 

correspond to domain concepts and relations.   Thus it is critical that the selection of text 

articles placed in the corpus be articles that represent text passages that contain domain-

related information.   For the purposes of this research, the articles were hand selected 

from the Internet.   

 This text corpus was iteratively expanded with additional text articles to simulate 

the process of adding new domain relative information to the corpus for the purposes of 

updating the ontology with new concepts and relationships.  Thus the objective is to use 

the system in an ongoing fashion, so that the ontology would continue to be updated over 

time to express the changes and new information reported in the text articles.  

 The domain of cyber-attacks was chosen to help solve some of the challenges of 

cyber security for the purposes of determining the probability of an impending cyber-

attack due to events that occur across the world.  These events are classified based on 

Social, Political, Economical, and Cultural (SPEC) disturbances in the physical world 

[Gandhi et al. 2010].  Within the SPEC events, certain types of attacks may occur that 

consists of various types of characteristics.   These attacks may be motivated by amateur 

hacking, insider retaliations, psychopathic obsessions, social protests, personal gain, 

commercial competitiveness, organized crime, terrorism, and national/international 

interests.  Furthermore, each attack contains certain attributes such as the type of attacker, 
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the means of the attack, the consequences of the attack, the victims of the attack, and 

others.  By collecting and analyzing historical data found on the Web within reported 

events, it may be possible to determine the probability of a future attack based on SPEC 

events as well as determining the corresponding attack characteristics.  The 

characteristics described in SPEC events provide the motivation for this research to 

develop an ontology to model the characteristics within SPEC events. 

5.3  Parsing Text Corpus 

 In order to analyze noun and verb phrases and their respective relationships, the 

text articles need to be parsed into words, their respective parts of speech, and 

grammatical relationships.  To accomplish this, open source Natural Language 

Processing (NLP) tools were used.  This project used the Stanford NLP tools [Klein and 

Manning 2003] that parse English language sentences into various types of formats.  This 

parser was chosen due to its recommendation at related conferences and to its continual 

development efforts.  As of this writing, version 1.6.4 was released on 8/20/2010.   

 The format used in this research, known as the “typed dependency representation”, 

identifies the grammatical relations betweens words and their parts of speech.  Figure 7 is 

a sample of the output from the parsing of the following sentence: “A cyber attack 

disrupted access to several popular Web sites Tuesday morning, including Yahoo, 

Google, Microsoft, and Apple” 
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Figure 7 - Example output from Stanford Parser 

Note that each line contains a dependency relation such that the first string identifies 

the grammatical relation between the pair of words separated by a comma within the 

parenthesis.  The number after the dash at the end of each word identifies its sequence 

within the sentence.  For example, nsubj (nominal subject), identifies a noun-verb type of 

relation between two words where the right side word in the parentheses is the 

noun/object and left side word is the verb/predicate.  So the following relation 

nsubj (disrupted-4, attack-3) 

signifies a noun-verb relation between the words “attack” and “disrupted” where the 

word “attack” is the third word in the sentence and the word “disrupted” is the fourth 

word in the sentence.  The complete list of relations is described in [Marneffe et al. 2006]. 

det(attack-3, A-1) 

nn(attack-3, cyber-2) 

nsubj(disrupted-4, attack-3) 

dobj(disrupted-4, access-5) 

amod(sites-10, several-7) 

amod(sites-10, popular-8) 

nn(sites-10, Web-9) 

prep_to(disrupted-4, sites-10) 

nn(morning-12, Tuesday-11) 

tmod(disrupted-4, morning-12) 

nn(Microsoft-16, Yahoo-14) 

nn(Microsoft-16, Google-15) 

prep_including(disrupted-4, Microsoft-16) 

conj_and(Microsoft-16, Apple-18) 
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 Each article stored in the corpus is parsed and its output is stored into an XML 

file with the same name as the original article. The new XML file has an .xml file 

extension appended to the end of the file name of the original article file. 

5.4  Building Phrase and SPO Database 

 Each parsed article has its corresponding typed dependency output list scanned 

for noun phrases, verb phrases, and Subject-Predicate-Object sequences.  Similar work on 

the analysis of the typed dependency has been performed in [Zouaq and Nkambou 2009], 

for the purposes of extracting subject-verb-object triples by transforming grammatical 

structures into semantic ones.   The work done in this dissertation also uses grammatical 

structures for extracting noun phrases, verb phrases, and subject-predicate-object triples.  

The extraction process is done by searching for specific grammatical relation types and 

then finding connecting words to extract the phrases and SPO sequences. 

 The process first scans the typed dependency list for the purposes of extracting 

noun phrases.  This is done by looking for the specific grammatical relations of “nn” 

(noun compound modifier) and “amod” (adjectival modifier).  The “nn” relation 

identifies a pair of connecting nouns, and the “amod” relation identifies an adjective of a 

noun.  Thus a noun phrase can be constructed by scanning the typed dependency list for 

these sequences. 

 After the first scan that creates the noun phrases, a second scan is performed for 

finding subject-verb-object sequences.  This is done by looking for sequence of “nsubj” 

following by a “dobj” (direct object).  Thus these two grammatical relations identify a 

subject-verb-object triple.  Note however that other grammatical relations may also 

identify subject-verb-object relations but this work only focuses on the nsubj-dobj pairs.  



                                                                                                                                                                 33 

Also note that the process creates a list of verbs that are found within these sequences, 

but only the verb is stored without any connecting relations such as adverbs. 

 These phrases and SPO sequences are then lemmatized (words converted to their 

lemma or base form), filtered by a stop-word list, and then stored within a database for 

use later in the system.  Also, the number of occurrences within the text corpus of each 

phrase is tracked for statistical purposes.  The phrase and SPO database is extended as 

new articles are parsed and their corresponding phrases and SPOs are appended to the 

database. 

 Note that the parts of speech and their relations can express potential concepts and 

relationships and as well as attributes.  Noun Phrases (NP) are potentially lexical 

identifiers of corresponding concepts, and Verb Phrases (VP) are potential identifiers of 

relations between two concepts.  Each NP and VP can be viewed as a term.  A term in 

this sense is a lexical indicator of a concept or relationship.  For example, the term 

“chopper” may be the lexical indicator of the concept ‘Helicopter’.  Sometimes a term 

may be the same character string or sub-string as the concept name, but this is not always 

the case.  In addition, terms may consist of multiple words and as such, need to be 

evaluated to determine if all the words should remain in the term, or if there are intra-

term relationships between the words.  The breakdown of a multi-word noun phrase can 

potentially produce taxonomic relationships.  Noun phrases that consist of multiple words 

may also contain multiple nouns and adjectives as well.  For example, the sentence 

fragment of “U.S. soldiers continue to come under attack” has as its first noun phrase or 

subject the multiword term “U.S. soldiers”.  This term consists of two words that are each 

nouns in that what could be interpreted as “U.S. soldiers” are a subclass or IS-A relation 
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to the concept of ‘Soldiers’.  Research using these methods has been performed in 

[Buitelaar et al. 2004].  However, this is not always the case and may not be the desired 

goal of the domain being modeled. 

 Patterns of NP-VP-VP can be examples of semantic information described in 

Subject-Predicate-Object (SPO) sequences that represent potential concept-relationship-

concept triples.  These triples are formally stated as c1-r1-c2 where c1 is a member of the 

domain of relationship r1 and c2 is a member of the range of r1.   Thus each triple provides 

the potential for supplying two concepts and a relationship between them for the ontology 

construction.  Previous work in [Schutz and Buitelaar 2005], [Villaverde et al. 2009], and 

others have been performed in extracting relationships from SPO sequences. 

 A sample of text segments used for extracting SPO sequences is shown in the 

Table 1.   These articles are indicative of the types of articles accumulated within the 

corpus. 

Table 1- Sample text segments showing detected SPOs 

Muslim hackers hit 3,000 Danish Web sites NCHRO - Feb 22, 2006 

http://www.nchro.org/public_html/index.php?option=com_content&view=article&id=1653:muslim-

hackers-hit-3000-danish-websites&catid=57:press&Itemid=37 

Muslim hackers angered by the publication of cartoons of the Prophet Mohammed have defaced 
nearly 3,000 Danish Web sites over the past month in the biggest politically motivated cyber attack 
long-time observers have ever seen.  

Experts say that the world-wide protests over a Danish newspaper's decision to publish the 
caricatures … 

Hacktivism: An Emerging Threat to Diplomacy - Dorothy E. Denning – Sept 2000 

http://www.afsa.org/fsj/sept00/Denning.cfm 

… Hacktivists have also defaced Web sites belonging to the U.S. embassies in Belgium and in 
Bosnia-Herzegovina. Doctor Nuker, a founder of the Pakistan Hackerz Club, claimed credit for the 
attacks and posted images with messages "Stop the Indians" and "Save Kashmir." In these cases, it 
was obvious to any observer that the defacements were the work of hackers, … 
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China blames US cyber attack for Iran unrest – News.scotsman.com – Jan 25, 2010 

http://news.scotsman.com/world/China-blames-US-cyber-attack.6009653.jp 

Zhou mentioned an outage suffered by Chinese search engine Baidu on 12 January, but did not 
mention that it was attacked by the Iranian Cyber Army, which had previously attacked Twitter, nor 
that Chinese hackers launched retaliatory attacks on Iranian sites the next day. 

A Brief History of Cybercrime – Time – June 1, 2009 

http://www.time.com/time/nation/article/0,8599,1902073,00.html 

… A 15-year-old Canadian with the handle "mafiaboy" launched the first documented DoS attack in 
2000, against numerous e-commerce sites, including eBay and Amazon.com, shutting some down 
and wreaking havoc that cost an estimated $1.7 billion. In 2007, entities believed to have been 
associated with the Russian government or its allies launched a DoS attack against … 

5.5  Seed Ontology 

 In order to better define the needed groups of concepts to be extracted from the 

domain of interest, a seed ontology construct is used.  The seed ontology allows for the 

user to restrict the concept groups to the particular ones that apply to the domain ontology.  

This helps to prevent the influence of popular terms not related to the domain.  These 

seed concepts represent the core concepts within the domain specific ontology and 

provide the scaffolding for the ontology structure.  The user is required to define at least 

one term for each seed concept that is used as a lexical identifier that represents the seed 

concept.  These terms will later be used to extract domain-specific terms by helping to 

rank term extraction patterns for the user to select from in order to define term extraction 

patterns for a given seed concept. 

 Seed ontologies have been used before as in the work of [Liu et al. 2005] in which 

a seed ontology was used to create an ontology for climate change that consisted of 

concepts used for global warming”, “nuclear winter”, “greenhouse gas” and others.  

Similarly, the work described in [Brewster et al. 2002] uses a user-defined seed ontology 

with corresponding seed terms for mining Hearst Patterns.  These Hearst patterns, which 
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are used to find taxonomic relations, are rated by the user as positive or negative 

examples and then used to form general patterns for the purposes of finding new ones for 

the same taxonomic relation. 

 The seed ontology used in this research consisted of the following concepts that 

were developed and described in the work of [Gandhi et al. 2010] as shown in Figure 8: 

 

Figure 8 - Cyber-attack Seed Ontology 

 

 Note that in the seed ontology the attack-motives concept as described in [Gandhi 

et al. 2010] is not used.  Table 2 describes the concepts from Figure 8: 

Table 2 - Description of seed concepts 

Seed Concept Description 

Attack-Agent Type of attacker such as hacker, hacktivist, mercenaries, 

etc… 

Attack-Coordination How the attack was organized, un-organized, chat-room 

organized, cybermilitia, cyber-vigilante, etc… 

Attack-Origin The origin of the attack such as malware victims, malicious 

agents, etc… 

Attack-Timing The timing of the attack such as immediately following an 

attack, in parallel with an attack, timed activation of planted 

malware, etc… 

Attack-Means The means of the attack such as Denial of Service, spread of 

malware, SQL or code injections, etc…. 

Attack-Victims The victims of the attack such as military, government, 

businesses, individuals/civilians, and others. 

Attack-Consequences The results of the attack, financial loss, information loss, 

mass panic, etc… 
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 The program allows the user to define as many seed concepts as they need.  

Within the definition of each seed concept, the user is required to enter at least one term 

that will be used later for finding relevant SPOs.  The user can also specify a specific 

word-sense within WordNet [Fellbaum 1998] for each seed concept’s term.  This helps to 

improve the ranking process by reducing the amount of word-sense ambiguity problems 

during the ranking of the SPOs as WordNet is used in the semantic relevance 

computations. 

5.6 Semantic relevance between terms 

 Several processes within the program require the need for determining the 

semantic relevance between terms as well as determining the concept a given term 

represents.  Various methods of determining the semantic relevance between terms have 

been reported in literature.  Although the ability to determine semantic relevance was 

needed for several tasks in the ontology construction process, it was not the focus of this 

research.  As such, the method of using a general purpose ontology was selected along 

with a corresponding method of using the ontology’s concepts and terms to determine 

semantic relevance.  Thus in this research, the WordNet [Fellbaum 1998] was selected 

along with using the open source package WordNet Similarity Package [Pedersen et al. 

2004], which implements four different semantic relevance algorithms.  From this set of 

algorithms, the Lin’s [Lin 1998] method for semantic similarity was selected as a result 

of its evaluation in [Budanitsky and Hirst 2001].  Lin’s method provides a degree of 

semantic evidence that two terms may represent similar concepts; the range is from 0.0 to 

1.0 where 1.0 is the highest degree of similarity.  In addition, Lin’s method is based on 

the idea of using the Least Common Subsumer (LCS) [Colucci et al. 2008] and the 
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Information Content (IC) [Resnik 1995] of a concept.  The LCS is the most specific 

concept that subsumes a group of concepts (i.e. most specific superclass).  The IC of a 

concept is the inverse of the probability of encountering an instance of the concept.  That 

is the more generalized a concept is the less information it will contain.  Note that the use 

of IC is an improvement over using the simple counting of link distances due to problems 

with taxonomies not representing uniform distances between parent/child relationships.  

Also note that Lin’s algorithm is not specific to WordNet and is a generalized method 

that can be applied to any given taxonomy.   The variation of Lin’s method used in the 

WordNet similarity package is:  

 2 * IC(LCS) / (IC(synset1) + IC(synset2)). 

 Where: 

  IC = Information Content 

  LCS = Least Common Subsumer 

  synset  = WordNet synset  

Note that a WordNet synset is basically group of synonyms that define a concept.  

The IC is computed based on taking the –log of the probability of a concept/term 

appearing in a corpus.  The probability used in the WordNet Similarity package is the 

frequency of a term divided by the total number of terms.  In addition, the probabilities 

are computed based on a group of text corpora.  However, the implementation will return 

a zero value for an IC that can not be computed based on a missing term frequency value 

resulting from the term not being found in any of the corpora.  As a result, the semantic 

relevance may not be computable for all terms found in WordNet. 
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 To enhance the semantic relevance computation, a method was added in order to 

determine the taxonomic direction between two words as defined in WordNet.  This was 

needed to determine the direction of the semantic similarity between two terms so that it 

would be indicated if one of the semantically similar pair of terms is more generalized or 

specialized than the other.  The taxonomic direction is indicated by adding a positive or 

negative sign to indicate the direction of generalization to specialization.  For example, if 

the two terms “vehicle” and “truck” are analyzed with the above method, a semantic 

relevance value of +0.7858 is returned indicating the magnitude of relevance. Since the 

value is positive, it indicates the term “truck” is more specific than the term “vehicle”.  

The following formula, which is referred to as semrel, is used for determining the 

semantic relevance between two terms t1 and t2: 

simrel(t1, t2) = lins(t1,t2) * wpathdir(t1,t2)             (1) 

Where: 

• simrel(t1, t2) is the semantic relevance between t1 and t2 

• lins(t1,t2) is the semantic relevance between terms t1 and t2 using Lin’s algorithm 

within the WordNet taxonomy using the first sense of both terms 

• wpathdir(t1,t2) is the hyponym/hypernym relation between t1 and t2.  If t2 is 

lower than or equal to t1 within the WordNet taxonomy (more specific), then a 

positive value of 1.0 is returned, else -1.0 is returned to indicate t2 is more 

general or abstract than t1. 

 Within the WordNet structure, terms can have multiple senses and therefore 

problems exist with determining the related concept or WordNet synset of a given term 

from a text passage without analyzing the context of the term.  This causes problems with 
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word sense ambiguity when the semrel() formula is used for computing semantic 

relevance.  In order to reduce the negative affects with word-sense ambiguity, some 

heuristics are used.  Normally, if both terms have multiple senses, then the most common 

sense of each term is used in the semantic relevance computation.  However, if either 

term has a single sense, then the semantic relevance computation computes the relevance 

for all combination of senses and selects the highest relevance computation.  By doing so, 

it is assumed that due to the fact that the corpus is domain relevant, that if the sense of 

one term is known, there is a high probability that the closest sense of the term being 

compared is probably the correct sense.  This same heuristic is used if one of the terms 

has a designated sense.  WordNet senses can be designated when the user defines seed 

terms.   

 Note that the work in this research does not modify Lin’s algorithm in the 

WordNet Similarity Package.  Lin’s method is simply used as the initial foundation and 

the word senses that are used as inputs to Lin’s method are designated through using the 

above word sense heuristics. 

 In addition to using the above heuristic, terms are searched for in the WordNet by 

using the most number of words within in multi-word term.  That is the words in the 

multi-word term as used from left to right.  For example, the term “financial institution” 

is searched for by first looking for the word “institution” which is known as the head 

noun.  If the word “institution” is found within WordNet, then the process goes to the 

next word within the term, which in this case would be “financial institution”.  If the term 

“financial institution” is found then it is used in the semantic relevance computation, 

otherwise just the word “institution” is used in the computation. 
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5.7  Ranking SPOs 

 After the database of NP, VP, and SPOs entities is created, and the initial seed 

ontology has been built, a list of ranked SPOs can be presented to the user.  This list is 

ranked based on the semantic relevance between a given seed concept’s term and either 

the subject or object phrase within the stored SPOs.  Thus the user selects a specific seed 

concept and indicates either the subject or object field to be used in the sorting.  The 

ranked list is presented to the user in ascending order based on semantic relevance of the 

selected fields.  The user can select SPOs which appear to be good candidates for 

detecting domain specific terms.  It is critical to rank the SPOs well to help reduce the 

workload on the knowledge engineer by limiting the amount of SPOs that has to be 

analyzed.  Note that the SPOs are ranked first by their semantic relevance, and if the 

relevance value is zero, than the SPOs are ranked alphabetically by their predicate values.  

Ranking has been performed previously in literature in projects such as [Sabou 2004] for 

ranking verb-noun pairs list for the purposes of concept assignment to each pair.  In 

[Sabou 2004] the verb-noun pairs are ranked based pair frequency, term weights, or 

number of occurrences within an API.  In contrast, the ranking performed in work is 

based on semantic relevance between the subject or object term compared to a given seed 

concept’s term. 

 The SPOs are formally represented as spoi = <si, pi, oi>, where si is the subject 

term, pi is the predicate term, and oi is the object term.  To create an SPO list for a given 

concept cj , either si or oi is semantically compared against the terms listed for concept cj 

and are presented in ranked order based on the semantic relatedness of either si or oi  to 

concept cj.  The closer the two terms are, the higher in the list they will be placed.  In 
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addition, the degree of computed semantic relevance is shown for each ranked SPO.  The 

following diagram in Figure 9 is a screen shot from the program that displays a ranked 

SPO list.   

 

 

Figure 9 - Example of ranked SPOs for user evaluation 

 

Note that the highlighted column indicates that the object field was used in the 

comparison.  Checkboxes are provided for the user to indicate which SPOs are to be 
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transformed into term extraction patterns.  Only unique TPs are stored so if multiple 

SPOs are transformed into the same TP, only a single copy of the TP will be saved. 

 For a given seed concept, the user can select multiple SPOs to be used for 

detecting domain specific concepts.  In addition, selected SPOs can also be removed in 

later steps within the process to allow for refining of the ontology construction 

parameters. 

5.8 Creating Term Extraction Patterns 

 The purpose of selecting SPOs from the ranked list is for the creation of Term 

Extraction Patterns (TEPs).  For a given concept, multiple SPOs are selected for and 

stored in the concept’s parameter list.  These SPOs form a set of TEPs for detecting 

semantically relevant terms for the given concept.  The TEPs can be viewed as a form of 

linguistic patterns used for candidate term detection for a domain-specific vocabulary.   

 Since our goals of the ontology construction process is to strive for generating a 

higher quality ontology, it is necessary to focus on quality instead of quantity for the term 

extraction process.  A careful creation and selection and the TEPs is needed as the system 

requires specific groups of concepts and relationships.  There may a considerable amount 

of information that others may consider as being part of a cyber-attack ontology but 

which are not what is required in this particular case.   In other words, it may be difficult 

to find text articles that strictly uses terms within the sought after domain-specific 

vocabulary.  Therefore this system relies on the TEPs to discover terms that have a high-

probability of domain relevancy. 

 The SPOs are transformed into a TEP by identifying either the subject or object 

position within as selected SPO as a “slot” that will later be filled with a candidate 
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domain relevant term.   For example, suppose the user selects the following SPO “Cyber-

weapon -> target -> Critical Infrastructure” and chose the object slot as the domain 

relevant term.  The generated pattern would be “Cyber-weapon -> target -> *” and 

would match any SPO containing the phrase cyber-weapon in the subject position and the 

verb target in the predicate position.  This pattern would assume the term found in the 

object slot (asterisk) is a term that is semantically similar to the seed concept that was 

assigned this pattern.  As a result, the list of TEPs for given seed concept are used in 

harvesting domain-specific terms by applying the TEPs to every SPO stored within the 

SPO database.  As new SPOs are added to the SPO database, the TEPs can be re-applied 

to harvest additional domain specific terms.  Thus a pool of domain specific terms is 

formed for each seed concept. 

 Note that the TEPs actually serve for two purposes: first they represent the 

linguistic patterns for detecting potential domain-specific terms, and second, they indicate 

relations that belong to the corresponding concept.  Thus when the user selects SPOs for 

a given concept, they are also selectively indicating non-taxonomic relationships that 

belong to the concept.  Through the combination of multiple iterations selecting SPOs 

and specifying terms for the concepts, the user executes a process of describing features 

of a concept.  This in turn, is used to mine semantically related concepts by the user 

describing the seed concept’s relationships and then in using these relationships to find 

terms that have the same relationships as the seed terms. 

5.9  Building Term Pools 

 Term Pools (TPs) are the resultant pools of candidate domain specific terms that 

are extracted by applying the TEPs against the database of SPOs.  A TP is created and 
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updated for each seed concept within the ontology.   Thus the process to create or update 

the TPs consists of scanning the database of SPOs looking for SPOs that match one of the 

TEPs defined for a given seed concept.  Note that presently the comparison against the 

subject or object term is compared based on using the head-noun of the terms.  For 

example, suppose a given concept has the TEP of “successful cyber-attack -> on -> *” 

where * is the slot that contains candidate terms that map to the concept.  So this TEP 

would match to the SPO of “sophisticated cyber-attack -> on -> US defense department” 

because only the head-nouns, “cyber-attack”, of each term is compared.  The following 

pseudo-code in Figure 10 describes the algorithm for building the TPs: 

Figure 10 - Pseudo code for building TPs 

 The TPs are maintained for each seed concept and are updated as new terms are 

discovered during the TP updating process.  Statistical data such as the frequency of 

occurrence within the corpus are maintained for both the initial TP creation and updates 

to the TP.  In addition, each term within the TP has a link to its corresponding TEP that 

generated the term.  This is needed for evaluation purposes for determining the quality of 

the TEPs. 

 

FOR each seed concept, ci DO: 

    FOR each SPO, spoj DO: 

        FOR each TP, tpz DO: 

            IF predicate(spoj) == predicate(tpz) 

           IF useSubjectSlot == TRUE 

          IF headNounObj(spoj) == headNounObj(tpz) 

              addSubTermToPool(spoj, ci) 

      ELSE 

          IF headNounSub(spoj) == headNounSub(tpz) 

         addObjTermToPool(spoj, ci) 

        DONE   

    DONE 

DONE 
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5.10  Conceptualizing Term Pools 

 The final stage in building the ontology is the conceptualization of the TPs and 

hierarchically arranging the concepts.  This is done by semantically comparing the terms 

to one another and creating clusters of semantically similar terms based on a given 

threshold.  Thus each cluster forms a concept.  Later the clusters are arranged 

hierarchically based on their semantic relevance to one another and the taxonomic 

relationships between one another. 

 The Hierarchical Agglomerative Clustering (HAC) is used for clustering similar 

terms into corresponding concepts and to link pairs of parent-child concepts together in a 

bottom-up fashion.  The HAC method has been used in previous work for hierarchical 

arrangement as described in [Cimiano et al. 2004].  The core components of this method 

are the construction of a two-dimensional term relevance matrix and a method of 

determining the semantic distance between every pair of terms.  The process 

continuously reduces the rows and columns of the matrix by combining the current 

iteration’s semantically closest concepts and terms building the hierarchy from bottom up.  

Within the process, two experimentally derived thresholds are used.  The first threshold, 

known as SynonymThreshold, identifies if two terms are semantically close enough to be 

considered synonyms of the same concept.  The second threshold, known as 

TaxonomicThreshold, is used to identify if two terms are not close enough to be 

considered synonyms but close enough to have a parent/child taxonomic relationship.  If 

the semantic distance value is less than both of these values, then the term pairs being 

analyzed are considered non-related.  The computation described previously in (1) is used 

for all semantic relevance computations and for determining the taxonomic relationships.  
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Also note that the first term found for a new concept is used as the name of the 

concept.  WordNet is queried with the term, and only the words within multi-word terms 

found in WordNet are used.  For example, if the term “Nuclear Power Plant” is 

designated as the concept’s name, and WordNet only lists a “Power Plant” term, then the 

string “Power Plant” will be used as the concept’s name.  Similarly, if a term found for a 

new concept is not listed within WordNet, including the term’s head noun, then the full 

term is used as the concept’s name.  A head noun is the main noun in the term.  For 

example, in the term “big brown cow” the adjectives “big” and “brown” modify the head 

noun of “cow”. 

 A final step is added in that after the above two steps, any concepts that contain a 

term that is contained in WordNet and has a single sense listed, will have an abstract 

concept added to it if WordNet has a hyponym listed.  Only words with a single sense are 

analyzed to reduce the introduction of noise to due to word-sense ambiguity.  More 

generalized concepts are added to the ontology to help in categorizing the more specific 

concepts because most terms found in text tend to be more specific than generalized.  

 The HAC algorithm actually serves two purposes.  First, it conceptualizes the 

terms into concepts by clustering the terms into semantically similar groups.  Second, it 

arranges the concepts into a hierarchy based on taxonomic relationships.  However, 

within the semantic distance matrix, there may be terms that are not listed in WordNet 

and thus pockets of hierarchies may develop within the matrix.   

 The open source software package of Graphviz (http://www.graphviz.org/) is used 

to convert the ontology meta-model to a graphical format for analysis.  The concepts are 
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converted to nodes with the parent-child relationships converted to links.  Added 

generalized concepts from WordNet are identified by showing dashed ovals. 

5.11  Ontology Meta-Model 

The seed concepts, TEPs, and TPs, are all stored as part of the ontology construction 

parameters.  These parameters are structured into a model that is considered an ontology 

meta-model or goal tree that is used to create and extend/refine the ontology.  Thus users 

can refine the parameters stored within the goal-tree to improve the ontology.  Figure 11 

depicts the data structure of the meta-model for the ontology construction process: 

 

 

Figure 11 - Ontology Meta-Model 

 

Note that the breakdown is such that for each seed-concept, there exists a list of TEPs for 

extracting semantically related terms for the seed-concept.  In addition, each seed concept 

contains a corresponding TP of semantically related terms that are or will be 
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conceptualized and hierarchically arranged into an ontology whose root node is the seed 

concept.  Each term within the TP also is linked to the TEP that generated the respective 

term.  This is necessary so that the user can evaluate the performance and quality of each 

TEP.  Also, the terms that make up each created concept are stored along with their 

respective concept.  This is also beneficial for later ontology construction needs, in order 

to determine if the terms within a given concept must be split up into additional concepts 

and further sub-divided. 

5.12  Iteratively repeating the process 

 Once the initial process is complete and the first ontology is constructed, the user 

can iteratively add text articles for phrase and SPO extraction to be followed by updating 

the TPs and eventually updated the ontology.  In addition, users can evaluate the 

generated TPs and ontology and add/remove TEPs to refine the ontology refinement 

process. 

 The iterative process consists of following steps: 

a. Step 1: Increase and update the text corpus by adding more domain specific 

text files that may include updated ontological knowledge 

b. Step 2: Parse only the added text files and update the parsed article database. 

c. Step 3: Update the phrase and SPO database by only adding those phrases and 

SPOs that were found in the added parsed articles.  This is critical to maintain 

the correct frequency counts (statistical data) on each unique phrase and SPO 

as well as to avoid redundant computations. 

d. Step 4: Apply the currently defined TEPs against the entire corpus generating 

a new TP.  However, the new terms will be merged into the current TPs to 
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preserve the statistical data on each term and avoiding creating duplicate 

terms.  Each term within the TP will be unique and the number of occurrences 

within the corpus will be updated to reflect the correct value. 

e. Step 5: Execute the ontology update method such that terms that are in the TP 

and not accounted for in the ontology will be conceptualized and added to the 

ontology.  Note that this process is different than the conceptualization and 

hierarchically arranging of terms within the initial process.  This process 

consists of extending the ontology as compared to the initial process of 

constructing the ontology. 

f. Step 6: (Optional) The user can review currently constructed ontology, TPs. 

and TEPs for the purposes of determining the quality of the TEPs.  New 

ranked lists of SPOs can be viewed for the possibility of creating new TEPs as 

well as the possibility of removing TEPs that are not operating correctly. 

The following pseudo code in Figure 12 describes the ontology extension method: 
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Figure 12 - Pseudo code for conceptualization and hierarchy arrangement  updating 

 

5.13  Term Pool to SPO Ranking Feed-back Loop 

 As part of an incremental building process, the terms generated within a given TP 

are fed back into the ranking process to help push potentially relevant SPOs closer to the 

top of the rankings, thus helping to reduce the workload on the knowledge engineer.  A 

fixed semantic relevance value of 0.9988 is assigned to an SPO subject or object term 

whose head noun matches a head noun from one the TP terms.  As a result, as the number 

of terms within the TPs increase, potentially more relevant SPOs can be pushed higher 

into the rankings.  Note that the highest value of semantic relevance is 1.0, and as such  

FOR each seed concept, sci DO: 

    FOR each term tj in TPi DO: 

        added = FALSE   

        // Look at each concept and determine if 

        // this term should be assigned to concept 

        FOR each concept ci in hierarchy hi DO: 

            sd = semdist(tj, ci) 

  IF (abs(sd) >= 0.95) 

   addTermToConcept(tj, ci) 

                  added = TRUE         

        DONE 

        // if term was not assigned to concept, look  

        // if this term represents a new concept 

        IF added == FALSE 

           FOR each concept ci in hierarchy hi DO: 

               sd = semdist(tj, ci) 

     IF (abs(sd) >= 0.50) 

   addSubSuperToConcept(tj, ci,sd) 

                  added = TRUE 

           DONE  

        // If term not added, then by default make it a  

        // subconcept of the root node 

        IF added = FALSE 

           addSubToRoot(tj, root)  

    DONE 

DONE 
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0.9988 was selected to indicate SPO terms that may not be an “exact” synonym.  In 

addition, this value makes it easy for the knowledge worker to spot SPO ranking values 

that identify a TP term match. 

 The following example highlights the benefits from the use of the feed-back loop.  

Suppose a seed ontology is created that contains a seed concept of Attack-Agent that is 

designated with the term of “hacker”.  This seed concept’s purpose is to contain those 

entities that attack things.  The user can view a SPO list based on this seed concept whose 

ranking will show terms similar to “hacker” near the top of the list.  Terms with head 

nouns of “hacker” will appear closest to the top of the list.  Table 3 shows an example 

excerpt of the SPO rankings based on the subject term: 

Table 3 - SPO ranking before using TP terms 

Semantic 

Relevance 

Subject Predicate Object 

… … … … 

1.0000 Hacker Create Countermeasure 

1.0000 Muslim Hacker Deface Danish Web Site 

1.0000 Hacker Deface Individual Web 

Site 

1.0000 Hacker Demand Apology 

… … … … 

0.0000 Hacktivist Deface Web Site 

… … … … 

 

Note that the term “Hacktivist” is also in the list, but is near the bottom, as WordNet does 

not contain the term “Hacktsivist”.  However, suppose the user selected the SPO of 

“Hacker => Deface => Individual Web Site” which would transform into a TEP of “* => 

Deface => Site”.  Afterwards, when the TPs are generated from this TEP, the 

“Hacktivist” term would be extracted and placed into the TP.  Thus future SPO rankings 
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for the Attack-Agent seed concept would place SPO’s with the “Hacktivist” term higher 

in the list as shown in the excerpt in Table 4. 

 

Table 4 - SPO ranking after using TP terms 

Semantic 

Relevance 

Subject Predicate Object 

… … … … 

1.0000 Hacker Target Credit card 

1.0000 Hacker Trigger Cascade Effect 

1.0000 Hacker Turn Attention 

1.0000 Teenage Hacker Wreak Virus 

0.9988 Hacktivist Deface Web Site 

0.9988 Hacktivist Expose Strategy 

… … … … 

0.9988 Hacktivist Steal Documents 

… … … … 

 

Now the term “Hacktivist” appears higher up in the rankings and from observation, the 

SPO of “Hacktivist => Steal => Documents” appears to make a good TEP for mining 

more semantically similar terms to the Attack-Agent concept for entities that “steal 

documents”. 
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6 Experimentation, Results, and Discussion 

 Presently there is no universally accepted standard for judging the quality of an 

ontology.  However, there are various methods described in literature for ontology 

evaluation.  One possible method is the evaluation of the generated ontology by domain 

experts.  Multiple experts may use a common criteria and rating system for evaluating the 

ontology such as in [Caraballo 1999].  Another method is to compare the generated 

ontology to a manually created “golden” standard of the domain being compared.  

Various ontology similarity and structure measures such as AKTiveRank as described in 

[Alani and Brewster 2006] may be used.  Finally, a simple and lightweight solution 

would be to simply analyze the generated ontology for incorrect concepts and 

relationships.  For example, a military domain containing the concept of “tank” linked to 

the sub concept of “Fish Tank” would indicate a probable incorrect relationship and 

concept, as fish tanks are most likely not part of the military domain. 

6.1 Experimentation 

 For the purposes of evaluating the developed methodology, experiments were 

performed using the cyber-attack domain previously described.  Due to the lack of 

existing related text corpora, cyber-attack related articles were manually selected from 

various news sites across the Web in this research.  The selected articles were stored in 

plain text documents and stored as one article per text file within a single directory.  The 

statistics of the experiment are reported in terms of number of articles processed, number 

of phrases and SPOs extracted, number of TEPs created, size of TPs, number of created 

concepts, and finally a graphical visualization of the resulting ontology. 
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6.2 Analysis of Boot Strap process 

 The initial iteration was executed by defining the seed ontology, selecting TEPs 

for each seed concept, and then running the process for building the TP and for 

conceptualization and hierarchy arrangement.  Note that although the cyber-attack 

ontology proposed contained seven seed concepts, we selected four of the seven for 

testing.  This was needed due to the lack of sufficient information sources in finding 

TEPs for three of the seven.  So for the analysis, the seeds concepts of Attack-Agent, 

Attack-Victims, Attack-Consequences, and Attack-Means were evaluated. 

 A total of 191 plain text articles were present within the text corpus.  Table 5 

indicates the number of phrases and SPOs that were extracted from this corpus: 

Table 5 - Initial run corpus extraction statistics 

# Documents #Noun Phrases #Verb Phrases # SPOs 

191 13,002 681 4,716 

 

Table 6 indicates the statistics for each seed concept.  Note that the last column 

labeled ”Added Concepts” are the count of concepts added from WordNet in an attempt 

to inject additional higher level concepts for better classification. 

Table 6 - Initial run TEPs and terms per concept 

Seed Concept #TEPs Term Pool Size Concepts Added 

Concepts 

Attack-Victims 18 30 23 5 

Attack-Agent 11 78 48 16 

Attack-

Consequences 

12 29 21 7 

Attack-Means 3 4 2 0 
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 From the above table it can be seen that there are more terms than TEPs, and one 

could theorize that if the same TEPs where used with a larger text corpus, the number of 

generated terms would increase due to a larger base of potential terms.  Note that the 

Attack-Means TEPs did not generate very many concepts.  This may be an indication that 

the TEPs that were chosen were poor, that the concept may be difficult to represent with 

TEPs, or that the frequency of SPOs that can be used to detect terms for Attack-Means is 

low.   

 The initial output from the ontology construction is shown in Figure 13.  The 

Graphviz package is used to convert the meta-ontology model to a graph where the ovals 

represent the concepts and the arrows or edges between the ovals represent the taxonomic 

relationships.  The hierarchy of the structure flows from left to right where the left side is 

more general terms and the right side are more specific.  The farthest left node is the top 

of the tree, which is the main node of Cyber-Attack.  Next to it are the four seed concepts 

shown with each of their respective term pool clusters.  Note that there are also some 

concepts/terms that are generated from more than one seed concept’s TEP.  Abstract 

concepts that are added from WordNet are indicated using dashed ovals.  Also note that 

there are few sibling nodes.  Further work is need in clustering the generated concepts 

and using additional more generalized concepts in classifying the concepts. 
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Figure 13 - Resulting ontology 
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Figure 14 shows an enlarged section of the resulting ontology. 

 

Figure 14 - Enlarged section of ontology 

 

 The following tables list all of the resulting terms from the four seed concepts 

from the boot strap process test.  Results from the experiments show that the terms for the 

attack consequences would be better conceptualized using the predicates from the TEPs.  

Table 7 - Resulting terms for Attack-Agent concept 

Israeli Hacker  Russian Hacker  

wahhabi Hacker  Intruder  

Hacker  computer System  

Group  computer Hacker  

Intrusion  Attack  

Cyberattack  allege Hacker  

Disruption  Team  

Hacktivist  Plum  

Muslim Hacker  FBI computer Consultant  

rant Blockade  Russian Spy  

Chinese Hacker  IP  

So-called patriotic-hacker Group  Cyperspy  



                                                                                                                                                                 59 

very few Individual  Attacker  

Korean internet User  Department  

Russian Force  same Vulnerability  

 

Table 8 - Resulting terms for the Attack-Victim concept 

  Google   Twitter  

  estonian government Network    Infrastructure  

  Journalist    own bureaucracy’s information 

technology Infrastructure  

  Church    non_governmental Infrastructure  

  Server    member state Estonium  

  fra's Website    new York  

  us defence Department    polish government System  

  corporate infrastructure Originating    small Network  

  Network    Critical infrastructure System  

  power Plant    computer System  

  Country's Network    web Site  

  google Inc    shia Website  

  Internet    american Soil  

  Atheism    telecommunications computer Network  

  Freedom    Nation’s technology Apparatus  

  Scientology    Sunday Website  

  uk's computer Network    america's Infrastructure  

  oil Supplies    us Increase  

  major financial Institution    shiite_related Site  

  vulnerable Business    other shiite Site  

  Montenegrin companies' Website    Blogger's Site  

  Internet System    Exxon  

  other Network    oil Company  

  government Server    Website  

  Estonia    retail System  

  U.S.    Banking System  

  library Site    enemy computer System  

  US military Computer    restricted computer Database  

  Wane    Chechen governmental youth Website  

  Non_governmental Organization    Database  

  defense Company    System  

  Google's Server    higher_balance Account  

  human_rights Activist    home User  

  computer Network    credit Card  

  NATO's unfair Aggression    Vulnerability  

  public Site    Hundred  

  India's Bhabha Atomic Research Center    Georgian government web Site  
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  Center    Danish web Site  

  Government Computer    Indian show trademark Capability  

 

Table 9 - Resulting terms for the Attack-Consequence concepts 

  electronic communication System    Gmail Account  

  greater Damage    valuable Information  

  serious Disruption    social security Number  

  company's customer Record    phone Number  

  card Number    Network  

  intellectual Property    Higher-balance Account  

  Specification    home User  

  Information    credit Card  

  Password    web Site  

  sensitive Datum    US Economy  

  customer Information    entire Economy  

  classified Information    power Outage  

  Users’ Datum    Harm  

  Thousand    public Unease  

  proprietary Information   

 

Table 10 - Resulting terms for the Attack-Means concept 

 cyber Attack  

  Attack  

  retaliatory Attack  

  low_intensity Attack  

 

 It’s difficult to formally evaluate the generated terms as correct or incorrect as 

there is no golden standard to compare too that aligns with the goals of this ontology.  A 

few cyber-attack related ontologies were found during the literature review such as the 

ones in [Prueitt & Stephsenson 2005], [Simmonds et al. 2004], and [Shiva et al. 2009].  

But they do not deal with the concepts needed by this research. 

 In addition, the author of this work is not considered a domain expert of the 

desired cyber-attack ontology.  However, for future work, a fair evaluation may be one of 
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how well the ontology works for its corresponding application, which in this case is the 

CyCast application. 

6.3 Incremental analysis 

 After the initial boot strap process is complete, the user can incrementally 

continue to build and refine the ontology.  If desired, the user can leave the initial set of 

TEPs alone, and continue to add articles with updated information and process them into 

their respective term pools and have them added to the ontology.  This cycle can continue 

building and extending the ontology.  The user can re-run parts of the process with new 

adjustments, such as adding new TEPs and re-running them over the current text corpus.  

Also if desired, the user can add new seed concepts and continue to run the system 

periodically to add the processing of new articles.   

6.4 Analysis of Operations 

 The following sections describe the results and analysis from the various 

components of the ontology construction processes.   

6.4.1 Seed Ontology analysis 

 The seed ontology allows the user to establish the upper-level concepts that will 

be further extended and defined during the ontology constructing process.  Challenges 

arise in determining how specific or abstract to make the seed concepts.  In addition, it 

may be difficult to designate a single term that can identify a relatively abstract concept.  

For example, the Attack-Victim concept used in the cyber-attack domain is a relatively 

abstract concept that would be difficult to describe using a single term.  The purpose of 
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the Attack-Victim concept is to describe victims of a cyber-attack that could be such 

entities as a network, a computer, or higher level ones such as governments, types of 

businesses, or critical infrastructure systems.  Thus with these variations of sub-concepts 

it would be difficult to describe all of them with a single or handful of terms such as other 

systems do [Liu et al. 2005].  This provides the motivation for using patterns for mining 

terms related to the abstract seed concepts.  Although this system requires a user defined 

term for each seed concept, the term’s purpose is not to find semantically similar terms, 

but to aid in finding patterns that can possibly locate a larger quantity of semantically 

similar terms.  Thus it is just part of the boot-strapping process.  The patterns are actually 

what are used to find related terms.  Similar work in using terms defined for seed 

concepts for pattern mining have been reported in [Brewster et al. 2002].  However, they 

look for Hearst-style patterns [Hearst 1992] instead of the SPO patterns used in this work. 

 Note however in this research that the seed concepts can only be defined on a 

single level.  That is there presently is no support for defining hierarchical seed concepts, 

which may be supported in future versions.  There may be tradeoffs in the amount of 

work versus reward that would result in defining these hierarchical seed concepts.  

Obviously an increase in the number of hierarchical seed concepts defined would result 

in a decrease in the amount of programmatic decisions needed by the system in the 

process of conceptualizing and arranging concepts. 

6.4.2 Semantic Relevance computation 

 The computation of the semantic relevance is based on using a general purpose 

ontology in combination with Lin’s formula for semantic relevance.  As mentioned 

before there are problems with using a general purpose ontology such as WordNet for 
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determining semantic relevance.  Problems such as multiple word senses and lack of 

support for many domain specific terms cause problems with determining semantic 

similarity.  In addition, the concepts and structures within the general purpose ontology 

may not completely match or align with the domain specific ontology that is being built.  

Note that the addition of other forms of semantic relevance may be combined with the 

use of WordNet for improved semantic relevance.  Work described in literature in 

[Cimiano et al. 2003] describes using multiple forms of semantic relevance. 

6.4.3 Term Extraction Patterns analysis 

 Observations of the results confirm the notion that the ratio for the number of 

usable patterns compared to the available patterns is relatively low, which has also been 

observed in literature [Rastegari et al. 2010].  In other words, pattern instances generally 

have high precision and low rates of recall.  Another property of patterns to consider is 

the level of generalization versus the recall and precision rates.  Patterns that are more 

generalized my result in more terms extracted and also larger amounts of incorrect terms.  

In contrast, more specific patterns may have a higher rate of precision and lower recall 

rate of extracted terms.  These characteristics provide motivation for combining the use 

of patterns along with the use of other methods for term extraction such as term co-

occurrence [Liu et al. 2005].  Also, the amount of relevant terms that a given pattern may 

generate needs to be considered.  That is, two or more patterns may generate the same 

terms, so it would be better for efficiency purposes to choose the pattern that generates 

the greatest amount of domain relevant terms.  In addition, there may be some concepts 

where no SPO patterns can be found that would generate related terms.  Finally, the use 

of patterns for finding domain related terms is preferred over statistical methods for 
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computational efficiency when processing newly added articles.  Pattern usage requires 

the system only to analyze the data from new articles as compared to statistical means, 

which would require an additional analysis of the entire text corpus. 

 Table 11 shows the results from the generation of a TP for the Attack-Agent seed 

concept and the corresponding TEPs. 

Table 11 - Example Term Pool results from TEPs 

TEP Candidate Attack-Agent Term 

* => Attack  => Site Machine 

* => Attack  => Site virtual Sit_ins 

* => Attack  => Site computer Hacker 

* => Attack  => System Virus 

* => Attack  => System big economic Collapse 

* => Attack  => Website israeli Hacker 

* => Attack  => Website wahhabi Hacker 

* => Breach  => System Hacker 

* => Breach  => System Group 

* => Claim  => Responsibility Post 

* => Create  => Attack sophisticated Attacker 

* => Cripple  => Economy cyber Attack 

* => Cripple  => Site Attack 

* => Deface  => Site Hacktivist 

* => Deface  => Site muslim Hacker 

* => Deface  => Site rant Blockade 

* => Deface  => Website  hacker Group 

* => Deny  => Attack chinese foreign Ministry 

* => Deny  => Involvement Moscow 

* => Deny  => Involvement chinese Official 

* => Disrupt  => Server individual Acting 

* => Disrupt  => Site Software 

* => Gain  => Access Team 

* => Gain  => Access Plum 

* => Gain  => Access fbi computer Consultant 

* => Gain  => Access russian Spy 

* => Gain  => Access Ip 

* => Gain  => Access Cyperspy 

* => Gain  => Access Attacker 

* => Gain  => Access Department 

* => Gain  => Access same Vulnerability 

* => Hack  => Website Specialist 
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* => Launch  => Attack chinese Hacker 

* => Launch  => Attack so_called patriotic_hacker Group 

* => Launch  => Attack very few Individual 

* => Launch  => Attack korean internet User 

* => Launch  => Attack 15_year_old Canadian 

* => Launch  => Attack north Korea 

* => Penetrate  => System Ghostnet 

* => Steal  => Information Intruder 

* => Steal  => Information computer System 

 

6.4.4 Pattern ranking and domain term Feedback Loop 

 The ranking of the SPOs by semantically comparing either the subject or object 

term of each SPO to a selected seed concept’s term was beneficial in reducing the amount 

of work needed to find potential TEPs for term extraction.  In general, there are patterns 

located near the top of the list which were suitable.  However, due to terms that were not 

correctly ranked by the semantic calculations, potentially useful patterns are also found 

considerably farther down the list.  Problems with the semantic distance calculations are 

due to such issues as word sense ambiguity, words not being found in WordNet, and the 

differences of relationships between terms in WordNet and terms in the constructed 

ontology. 

 In order to continually improve the number of usable SPOs appearing near the top 

of the ranked SPO list, the technique of using a feedback loop of comparing the 

designated terms against terms within the corresponding term pool is used.  This appears 

to help rank potentially usable SPOs whose terms are not identified in WordNet higher in 

the list.  However, the evaluation of the feedback loop has to take into consideration the 

ratio of irrelevant terms versus relevant terms fed back into the ranking. 
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6.4.5 Conceptualization 

 This work considers the process of conceptualization as the task of creating 

concepts from the terms extracted by the patterns.  These terms are a lexicon 

representation of concepts to be entered into the resulting ontology.  A general purpose 

ontology, WordNet, was used to determine what concepts were represented by which 

terms as well as the taxonomic relations between terms.  In addition, the HAC algorithm 

is used to cluster semantically similar terms into the concepts.  For simplicity, the string 

of the first term found for the cluster is used as the concept’s name which may or may not 

be appropriate for the given domain.  Terms that were extracted but not found in 

WordNet were designated as new concepts and named from the corresponding term.  

 Problems arise with determining the relevance between terms as well as what 

concept a term represents due to multiple senses of words.  In addition, the term and 

concept structure within WordNet may not be the correct one for the desired domain.  

Recall though that this research focuses on investigating and developing user guided 

ontology construction processes, and thus this task was not taken into main consideration 

and was simplified by using WordNet in order to focus the research efforts on user-

guided technology.   

6.4.6 Learning concept hierarchy 

 The HAC algorithm was used to hierarchically arrange the concepts with 

taxonomic relationships between them.  However, due to the use of WordNet for 

determining semantic relevance, terms that do not appear in WordNet could not have 

their semantic relevance value determined and thus had a zero value.  This created 

pockets of semantically related clusters, but not a complete tree.  For those terms that 
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were not defined in WordNet, the terms are simply designated as stand alone concepts 

and made a direct child concept of the seed concept.  As in the conceptualization process, 

the concept hierarchy learning was simplified in order to focus the research on the user 

guided technology.  In other words, the conceptualization and concept hierarchy learning 

tasks were simplified but needed to help in the analysis and research of the user-guided 

technology.  These processes can be improved by integrating more of the state-of-the-art 

methods. 

6.4.7 Ontology Meta-Model 

 The ontology meta-model is the center of the novelty of this work and contains 

the user preferences and incremental additions and refinements.  Within this model the 

upper-level seed concepts are stored that basically defines sub-ontologies within the 

ontology.  The initial term for the seed concept is used to find patterns that in turn find 

more terms for the seed concept that find more patterns, and so on.  In addition, the TEPs 

that generated the terms is saved for TEP evaluation.  Note that the TEPs could also be 

used to determine relations and concept ranges for each term.  
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7 Conclusions and Future Work 

 The goals of this work were to research and implement a user-guided 

methodology for the purposes of constructing and incrementally refining a domain 

specific ontology.  This included the exploration of the types of ontology construction 

parameters as well the types of user input for designating and refining the ontology 

construction parameters.  In addition, research was performed on how to model the 

ontology construction and refining processes.  In order to evaluate the feasibility and 

performance of these proposed methods, a software prototype was created to provide a 

means of evaluation.  Experiments were performed based on the selected domain of 

cyber-attacks and the resulting terms, concepts, and taxonomic relationships where 

shown.  

7.1 Results 

 Results of this research lie within the performance and new techniques of the 

developed software prototype for constructing and refining ontologies.  The evaluation of 

the tool may be expressed in such parameters as (1) ease of use in terms of the number of 

semi-automatic ontology building functions provided and the amount of required user 

input, and (2) correctness of resulting ontology in terms of extracted terms, concepts, and 

relationships as well as the amount of missed concepts and relationships. 

 In terms of “ease of use”, several methods were developed and implemented 

within this research to reduce the burden of the knowledge worker.  First, the use of the 

seed ontology was developed in order to allow the user to guide the development of a 

domain specific ontology by designating the upper-level concepts.  Although seed 
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ontologies have been used in previous work, this work builds on the seed concepts by 

allowing the user to assign and refine parameters used in shaping the seed concept’s child 

concepts.  By doing so, it eases the burden of selecting candidate terms for a given seed 

concept. 

 Second, a ranked list of potential patterns is shown to the user for their evaluation 

for mining semantically related terms with respect to a given seed concept.  The ranking 

helps reduce the amount of patterns the knowledge worker needs to evaluate.  In addition, 

terms that are extracted from current patterns are fed back into the ranking process to 

further improve the ranking.  Thus a continuous feed back loop develops to improve the 

ranking and further reduce the workload on the knowledge worker. 

 Third, each term that is extracted causes the corresponding pattern to be saved.  

This allows for a listing of which patterns generated what terms.  Users can then evaluate 

the performance of the patterns in order to remove relatively “noisy” patterns or selected 

patterns that generate a greater number of semantically related terms.  As a result, the 

user can optimize the patterns and thus help to reduce the amount of cleanup for the 

knowledge worker after the ontology is generated. 

 The correctness of the ontology is difficult to express as there does not exist a 

“golden” standard for the cyber-attack ontology.  Note that the evaluation of the quality 

of ontologies is a well recognized research problem.  By the very nature of the diversity 

of ontologies, the evaluation of them is highly subjective as different evaluators have 

different beliefs on the model of a given domain.  Other methods for evaluating ontology 

quality are to have a group of domain experts judge the constructed ontology.  Also, the 
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structure of the ontology may be evaluated for such errors as duplicate concepts or self-

referencing concept where a parent concept is a parent of itself. 

7.2 Main contributions 

 The main contributions to this work are defined in three areas.  These areas are (1) 

a new method of semi-automatic ontology construction, (2) developed techniques for 

dynamical construction of domain ontology, and (3) applied the method and techniques 

for an experimental process of ontology construction in a cyber security domain. 

 This work is considered as a method of semi-automatic ontology construction by 

its technique for allowing the user to define initial ontology parameters and later to add 

and refine the ontology construction parameters.  They include: 

a. A streamlined process: The process goes in a sequence of: Seed ontology 

specification → Term extraction patterns (TEP) → Text corpus processing → 

TEP Ranking and selection → Term Pool formation → Formal concept 

identification → Ontology updating 

b. An incremental learning approach: The system makes conceptualization of 

ontological terms based on the existing ontology structure and concept, starting 

from a seed ontology, continual in user-guided iterations 

c. A user-in-the-loop control mechanism: Check and feedback points are provided 

along the construction path for users to interact with the software systems 

d. A goal tree representation scheme: The system effectively stores and manages 

domain-specific expert knowledge and user preferences for guidance of the 

ontology construction process  
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In conjunction with the above methods, the following techniques were implemented and 

used: 

a. Seed ontology specification using goal tree 

b. Term extraction using text corpus 

c. Concept analysis using Subject-Proposition-Object (SPO) triples 

d. Concept selection using Term Extraction Patterns (TEP) 

e. Semantic relevance computation using a combination of WordNet and domain 

knowledge  

f. Concept generalization using tree hierarchy climb-up inference 

g. Concept specialization using tree hierarchy crawl-down inference 

7.3 Future work 

 Several areas exist for improvement.  First, in the system’s present form, the seed 

ontology can only contain a single level of seed concepts.  That is any defined seed 

concept is a sibling of all the other seed concepts.  Future work may include the ability to 

define a hierarchy of seed concepts.  In addition, currently only one term can be defined 

for each seed concept.  Thus, it may improve the initial SPO ranking process to allow the 

user to define multiple terms per seed concept. 

 Second, there are problems determining the semantic relevance between terms for 

ranking the SPOs.  The semantic relevance computation in current implementation is 

based on WordNet which inherently has problems due to words with multiple senses and 

terms that may not be listed in WordNet.  Thus support for word sense disambiguation 

can be integrated to reduce the amount of inaccuracies due to the selection of incorrect 

word senses.  In addition, other statistical methods for determining semantic relevance 
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could be combined with the WordNet based method to further improve the semantic 

matching.  Also, Hearst patterns could be combined with the semantic relevance 

computation.  The incorporation of weights may have to be applied with multiple forms 

of semantic relevance inputs to determine the significance of each input.  Furthermore, 

the use of other knowledge resources such as Wikipedia could be considered as an 

additional measurement for semantic relevance.  Wikipedia may be beneficial as it is a 

collaborative effort from Internet users and may be more update to date in some areas. 

 Third, improvements to the criteria for ranking the SPOs presented to the user 

may reduce the workload to the knowledge engineer.  Perhaps additional ranking 

parameters such as head-noun frequency or verb frequency may be considered.  

 Lastly, improvements to the processes of conceptualization and hierarchical 

arrangements would result in an improved ontology.  Presently, the initial semantic 

relevancy matrix used in the HAC algorithm may contain zero values due to the 

occurrence that terms are not found in WordNet and thus can not have their relevance 

computed.  
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