
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

4-2011

Dynamic Reconfiguration in Modular Self-
Reconfigurable Robots Using Multi-Agent
Coalition Games
Zachary Ramaekers
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of DigitalCommons@UNO. For
more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Ramaekers, Zachary, "Dynamic Reconfiguration in Modular Self-Reconfigurable Robots Using Multi-Agent Coalition Games" (2011).
Student Work. 2868.
https://digitalcommons.unomaha.edu/studentwork/2868

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2868&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2868&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2868&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2868&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2868&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2868&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2868?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2868&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2868&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2868&utm_medium=PDF&utm_campaign=PDFCoverPages

Dynamic Reconfiguration
in

Modular Self-Reconfigurable Robots
using

Multi-Agent Coalition Games

A Thesis

Presented to the

Department of Computer Science

and the

Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment
of the Requirements for the Degree

M.S in Computer Science

University of Nebraska at Omaha

By

Zachary Ramaekers

April 2011

Supervisory Committee:

Dr. Prithviraj Dasgupta
Dr. Carl Nelson

Dr. Jong-Hoon Youn

UMI Number: 1490929

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 1490929

Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

Dynamic Reconfiguration in Modular Self-
Reconfigurable Robots using Multi-Agent Coalition

Games

Zachary Ramaekers, M.S.

University of Nebraska, 2011

Advisor: Dr. Prithviraj Dasgupta

In this thesis, we consider the problem of autonomous self-reconfiguration by modular

self-reconfigurable robots (MSRs). MSRs are composed of small units or modules that

can be dynamically configured to form different structures, such as a lattice or a chain.

The main problem in maneuvering MSRs is to enable them to autonomously reconfigure

their structure depending on the operational conditions in the environment. We first

discuss limitations of previous approaches to solve the MSR self-reconfiguration

problem. We will then present a novel framework that uses a layered architecture

comprising a conventional gait table-based maneuver to move the robot in a fixed

configuration, but using a more complex coalition game-based technique for

autonomously reconfiguring the robot. We discuss the complexity of solving the

reconfiguration problem within the coalition game-based framework and propose a

stochastic planning and pruning based approach to solve the coalition-game based MSR

reconfiguration problem. We tested our MSR self-reconfiguration algorithm using an

accurately simulated model of an MSR called ModRED (Modular Robot for Exploration

and Discovery) within the Webots robot simulator. Our results show that using our

coalition formation algorithm, MSRs are able to reconfigure efficiently after

encountering an obstacle. The average “reward” or efficiency obtained by an MSR also

improves by 2-10% while using our coalition formation algorithm as compared to a

previously existing multi-agent coalition formation algorithm. To the best of our

knowledge, this work represents two novel contributions in the field of modular robots.

First, ours is one of the first research techniques that has combined principles from

human team formation techniques from the area of computational economics with

dynamic self-reconfiguration in modular self-reconfigurable robots. Secondly, the

modeling of uncertainty in coalition games using Markov Decision Processes is a novel

and previously unexplored problem in the area of coalition formation. Overall, this thesis

addresses a challenging research problem at the intersection of artificial intelligence,

game theory and robotics and opens up several new directions for further research to

improve the control and reconfiguration of modular robots.

i

Acknowledgements

First, I would like to thank the NASA Nebraska Space Grant Consortium for their

funding of my research during 2010 and 2011. I would also like to thank Dr. Dasgupta

and Dr. Nelson for giving me the opportunity to work with them in the advancement of

the ModRED project.

I would again like to thank Dr. Dasgupta for all of the time and effort he spent working

with me and keeping me going in the right direction. We spent countless hours reviewing

research and talking through ideas. Without him, none of this would have been possible.

Finally, I would like to thank my family for all of their support. First to my parents, who

have always pushed me to never underestimate myself and have always allowed me to

follow my dreams. And finally to my fiancée Kristina, who has always encouraged me,

been patient with me, and kept me level headed.

ii

Table of Contents

Introduction ... 1

Related Work .. 7

2.1 Modular Self-Reconfigurable Robots (MSRs) ... 7

2.1.1 Self-Reconfiguration Problem in MSRs ... 9

2.2 Multi-Agent Systems .. 11

2.3 Coalition Structure Generation (CSG) ... 12

2.3.1 Optimal Coalition Structure.. 15

2.3.1.1 Approximate Coalition Structure Generation ... 16

2.3.1.2 Pruning for Optimal Coalition Structure Generation 17

2.4 Markov Decision Process (MDP) .. 20

2.4.1 Factored MDP... 22

ModRED: A Chain-Type MSR.. 24

3.1 Webots .. 24

3.2 ModRED .. 25

3.3 ModRED Simulation in Webots .. 28

3.3.1 ModRED Movements ... 29

3.3.1.1 Single Module Inchworm Motion ... 30

3.3.1.2 Two Module Chain Inchworm Motion ... 31

3.3.1.3 Two Module Chain Sideways Rolling Motion ... 32

3.3.1.4 Six Module Chain Rolling Motion ... 33

3.4 Dynamic Reconfiguration .. 34

iii

Approximate Solution to Coalition Structure Generation Using a Modified MDP . 38

4.1 MDP Model Representation ... 39

4.2 CS Graph Generation Algorithm ... 43

4.2.1 Children Node Generation .. 47

4.2.2 Pruning the Coalition Structure Graph ... 48

4.3 Value Iteration .. 49

4.4 Determining the Optimal Policy .. 51

4.4 MDP Traversal ... 53

4.5 Complete CS Generation Algorithm .. 56

Experimental Results .. 58

5.1 Size of the State Space ... 58

5.2 Maximum CS Reward Value ... 61

5.3 Optimal Node Path Generation .. 63

5.4 Comparison to Sandholm ... 65

5.5 Implementation in Webots ... 70

5.6 Summary .. 71

Future Work .. 73

Conclusion ... 75

Bibliography .. 77

iv

List of Figures

Figure 1. The number of coalitions and coalition structures by the number of agents. Y-

Axis is a logarithmic scale. ... 14

Figure 2. Coalition Structure Graph for 4 agents. ... 15

Figure 3. A visual representation of G pruning from Rahwan (Rahwan, 2007). 19

Figure 4. A CAD drawing of the ModRED robot showing its novel four degrees of

freedom design (Chu & Nelson, 2011). .. 27

Figure 5. A side-by-side comparison of the CAD rendering of ModRED with the model

of ModRED. The Webots ModRED model is on the left, and the original CAD drawing

is on the right. ... 29

Figure 6. A single ModRED module performing a forward inchworm motion. The

pictures are ordered from left to right, and top to bottom. In the pictures, the module is

moving from the right to the left across the image. .. 30

Figure 7. Two ModRED modules performing a forward inchworm motion. The pictures

are organized from left to right, and top to bottom. The chain in the pictures is moving

from right to left. ... 31

Figure 8. Two ModRED modules performing a sideways rolling motion. The pictures

are organized from left to right, and top to bottom. The chain in the pictures is towards

the background. ... 32

v

Figure 9. Six ModRED modules performing a forward rolling motion. The six modules

begin by forming a chain which then transforms into a loop. Once in a loop, the modules

perform simple movements in unison to create the forward motion. The series of pictures

goes from left to right and top to bottom. ... 33

Figure 10. In the image on the left, a two-module chain attempts to cross a simulated

ravine and is not long enough to reach across. If the two module chain is joined by four

other modules, the chain is then long enough to easily roll across the gap and reach the

other side. .. 35

Figure 11. Coalition Structure Graph representation with sub-states of Sub-Additive,

Additive, and Super-Additive ... 41

Figure 12. A visual representation of the coalition structure graph shown in Figure 2.

The top image shows how the original graph would have one vCS for each node.

However, in our modified coalition structure graph shown in the bottom image, we have

a sub-additive, additive, and super-additive value for each node represented as gsub, gadd,

and gsup. ... 43

Figure 13. A model representation of the array of data sets that are sent into the coalition

structure graph generation algorithm. ... 44

Figure 14. The formula to determine the value of a coalition. pdist represents the weight

assigned to the distance portion, putil represents the weight assigned to the utility portion,

and pdist + putil = 1. poscent represents the centroid location of all the agents in S, and uS

represents the average utility value of all the agents in S. .. 45

vi

Figure 15. The formulas to calculate the sub-additive, additive, and super-additive values

for a node. subp represents the percentage used to decrease the values in the sub-additive

case, and supp represents the percentage used to increase the values in the super-additive

case. ... 45

Figure 16. The pseudo-code for the algorithm to generate all the nodes of the CS graph.

V is a map that contains the IDs of each coalition for its key, and the coalitions’ value for

the key-value. S is the set of agent IDs. ... 47

Figure 17. The pseudo-code for the algorithm that is used to generate the children nodes

of a given node. The function returns back an array of nodes that contains the nodes that

were not pruned away. .. 49

Figure 18. The pseudo-code for the value iteration algorithm. The function performs the

value iteration algorithm on the set of nodes that is passed to it and returns back the same

set of nodes with the updated utility values. ... 51

Figure 19. A visual representation of a CS graph and its optimal policy. In the CS

Graph, the lines connecting different nodes represent neighboring nodes. The bold lines

with arrows represent the optimal policy for this CS graph. Each node can have multiple

neighbors, but each node only has a single bold arrow coming from it shows what node to

move to next from the current node. ... 52

Figure 20. The pseudo-code for the MDP Traversal algorithm. The function takes a set

of nodes as an input and returns back the best node that was found during the traversal of

the MDP. ... 56

vii

Figure 21. A flowchart the shows the entire set of steps required to go from the input of

modules information to the optimal coalition structure. ... 57

Figure 22. A graph showing the number of nodes generated in the full coalition structure

graph compared the average number of nodes generated in the coalition structure graphs

while pruning nodes. ... 59

Figure 23. A graph showing the average amount of time it takes to generate the coalition

structure graph for the full graph compared to the graph using the pruning methods. 60

Figure 24. A graph comparing the average maximum reward values found in each of the

three pruning methods compared to the average maximum reward value found in the

entire CS graph. .. 62

Figure 25. A graph showing the average percentage difference between the maximum

reward value found in the entire CS graph compared to each of the three pruning methods

(the lower the percentage, the closer the average maximum pruned value is to the optimal

value)... 63

Figure 26. A graph showing the percentage of the nodes in the full coalition structure on

the path to the optimal node that are generated from each of our three methods of

pruning. ... 64

Figure 27. A graph comparing the number of nodes generated by using the algorithm

proposed by Sandholm compared the number of nodes generated using our pruning

method to reduce the size of the coalition structure graph. .. 66

viii

Figure 28. A graph comparing the time to generate the coalition structure graph using the

full coalition structure graph, using our pruning method, and using Sandholm's algorithm.

... 67

Figure 29. A graph comparing the optimal additive reward values found using the full

coalition structure graph compared to our pruning methods and Sandholm's algorithm. 68

Figure 30. A graph comparing the average percentage difference between our three

pruning methods and Sandholm's algorithm compared to the optimal additive reward

value found in the entire coalition structure graph. .. 69

Figure 31. A set of four ModRED modules performing dynamic reconfiguration using

our modified MDP algorithm. The modules begin as four individual coalitions but then

form two coalitions each containing two modules. .. 71

ix

List of Tables

Table 1. This table lists MSR chain and hybrid robots that are currently being developed.

For each robot, we show the MSR type, the degrees of freedom in each module, and the

action space for each module (Chu & Nelson, 2011). .. 26

1

Chapter 1

Introduction

Self-reconfigurable robots (Stoy, Brandt, & Christensen, 2010) are robots that are able to

change their shape in order to adapt to a new environment or perform a new task. These

robots are designed to be highly adaptable and capable of performing many different

tasks using the same set of parts configured in different ways. Modular self-

reconfigurable robots (MSRs) are a class of self-reconfigurable robots that are made up

of functionally simple modules that are capable of working together. On its own, each

module is capable of performing very limited operations, but when connected with other

modules, they can adapt their shape to accomplish complex tasks. Each module in an

MSR is easy to maneuver and the entire MSR’s movement can be specified through a

series of movements for each module comprising the MSR. Another key advantage of

MSRs is that the individual modules are very simple robots that are inexpensive to

manufacture. Hence, it is economical to use MSRs in place of expensive robots that are

custom-made for performing specific tasks. In spite of their simple and inexpensive

construction, and easy maneuverability, a principal challenge in MSRs is how to change

their shape autonomously so that they can continue their operation after encountering

obstacles or occlusions that impede their movement. In this thesis, we address this

problem, called the dynamic self-reconfiguration for MSRs – how to find a set of rules

that allows an MSR to dynamically change its current configuration and get into a new

2

configuration so that it can continue its operation efficiently. This problem is challenging

because a fixed set of rules does not work for all situations. For example, a rule that tells

the MSR to form a long, linear chain-shape to cross a chasm would not be appropriate

when the MSR needs to climb a hill, possibly by forming a ring shape. Therefore, in the

self-reconfiguration problem, the MSR needs to perceive its current environment to

determine how many modules to connect together, and the configuration or shape those

modules should get into, so that the MSR can perform its assigned task most efficiently.

The MSR self-reconfiguration problem falls under the category of autonomous robotic

control problems that deals with how to autonomously provide each module or robot with

intelligence, so that it can perform the tasks assigned to it autonomously, without

requiring constant human intervention (Russel & Norvig, 2010; Siegwart & Nourbaksh,

2004). To solve this problem, researchers have proposed using software entities called

agents that are situated on the robot. An agent is programmed to perform intelligent

behavior, based on the sensory inputs that the robot receives, and helps the robot to make

decisions and perform appropriate actions. In robotic systems composed multiple robots

or multiple modules, agents situated on different robots need to interact with each other

so that the multi-robot system can behave as a coordinated entity. The branch of artificial

intelligence called multi-agent systems provides techniques for multiple autonomous

software agents to interact with each other to achieve a common goal or to pursue

individual interests (Multi-Agent Systems, 2010). In the case of MSRs, each module is

provided with an agent that determines the actions for the module so that the MSR can

perform its task efficiently. For the modules to be able to work together in a coordinated

manner, they must be able to communicate with one another, and they must also be able

3

to determine on their own what groups of modules would be best to join together. In the

area of multi-agent systems, a significant body of research has been done on team

formation between multiple agents using coalition game theory (Shoham & Leyton-

Brown, 2009; Ray, 2008). Coalition game theory gives a set of techniques that can be

used by a group of agents to form teams or coalitions with each other. The rules of

coalition games ensure that the agents have incentive to remain together in the teams

determined by the game’s rules and do not arbitrarily change teams. This feature called

stability is particularly essential for MSR self-reconfiguration because it ensures that

modules that are determined to form a new configuration will remain together and not try

to leave the new configuration and attempt to combine with other modules. However,

there are also several research challenges in using coalition game theory in MSRs that are

outlined below:

1) In coalition game theory, the assimilation of agents into teams and the

communication between agents is assumed to be free of cost. However, for

MSRs, modules have to physically move to each other’s proximity so that they

can dock with each other. Communication between modules also expends their

battery power.

2) In coalition games, the order between the agents within a coalition or a team does

not matter. For example, if four agents have IDs 1, 2, 3 and 4, respectively, the

coalition {1, 2, 3, 4} is the same as the coalition {4, 2, 1, 3}, or for that matter,

any other permutation among the agent IDs. In contrast, in MSRs, the order

between neighboring modules does impact the formation of the MSR because the

modules have to physically connect with each other.

4

3) Most of the existing solution techniques in coalition games are computationally

intensive and are calculated using powerful desktop computers. On the other

hand, for MSRs, the computations have to be done within limited computational

capabilities available on each MSR.

4) Finally, in coalition games, the values or utilities the agents calculate for

determining how much they benefit by participating in a coalition is assumed to

be free from uncertainty. In contrast, in MSRs, due to the presence of noise in the

robot’s sensor readings, the perception of the robot’s environment done by the

robot (e.g., its location coordinates in a 2-D plane) is not 100 percent certain.

Because of this, the coalition game solution techniques have to be modified so

that their calculations can be done with uncertain values.

In this thesis, we have addressed these research challenges by developing appropriate

techniques to integrate coalition games with MSR control. One of the fundamental

contributions of this thesis is the novel combination of coalition game theory with

planning under uncertainty using Markov Decision Processes (MDPs).

To illustrate the operation of our MSR, while using coalition game theory-based self-

reconfiguration techniques, we have used the domain of robotic exploration of initially

unknown environments. Robotic exploration is encountered in many applications of

unmanned robotic systems such as unmanned search and rescue, surveillance and

reconnaissance for homeland security applications, space exploration and even for

agricultural and domestic applications such as automated crop harvesting, automated

lawn mowing, etc. In each of these application domains, MSRs may provide improved

5

fielding and maneuver capabilities because they are cheaper to manufacture, easier to

deploy and more dexterous to manipulate and move. For our research, we have used an

accurately simulated version of the MSR called ModRED (Modular Robot for

Exploration and Discovery) within the Webots robot simulation software. ModRED is

being currently developed by our collaborators in the Mechanical Engineering

Department at the University of Nebraska, Lincoln. In contrast to previously developed

MSRs, most of which have a maximum of three degrees of freedom (DOF), ModRED

offers improved dexterity by having an additional 4th DOF per module. The improved

dexterity allows ModRED to maneuver itself efficiently in tight spaces as well as to

rapidly self-reconfigure when its motion is impeded by obstacles.

Our experimental results show that coalition game theory-based algorithms can be

successfully used to dynamically self-reconfigure ModRED into different configurations.

We have compared our results while using three different heuristics for our algorithm and

shown that MSR modules using our techniques to self-reconfigure receive on average 2-

10 % more reward as compared to MSR modules using a previously existing algorithm

for determining coalitions. To the best of our knowledge, the research results and insights

gained from the field of coalition game theory have not been used to date to understand

the problem of self-reconfiguration in MSRs.

The rest of this document is structured as follows: In Chapter 2, we explore the work

related to MSR development and summarize recent research in the area of coalition

structure generation. In Chapter 3, we discuss a modular self-reconfigurable robot

currently being developed that introduces a new problem in the area of coalition structure

6

generation. Chapter 4 introduces our approach to solving the optimal coalition structure

generation problem using a modified Markov Decision Process. The summary of our

experimentation results is presented in Chapter 5, and Chapter 6 defines the future work

to be done in the project. Finally, Chapter 7 concludes and summarizes the thesis.

7

Chapter 2

Related Work

In this chapter, we will introduce work currently applicable to the area of MSR

development. In the first section we will begin by introducing some key concepts in the

area of MSRs. In the second section we will discuss work in the area of multi-agent

systems. The third section introduces the coalition structure generation problem. Finally,

we will discuss the Markov Decision Process (MDP) and why it is useful for modeling

situations with uncertainty.

2.1 Modular Self-Reconfigurable Robots (MSRs)

Self-reconfigurable robots can be defined as simple robots that can connect together

autonomously to change their shape and adapt for a given task. Modular self

reconfigurable robots (MSRs) are a class of self-reconfigurable robots which are

composed of identical modules (Stoy, Brandt, & Christensen, 2010). Individually, a

single module is capable of performing very simple movements and taking sensor

readings from its sensors. The modules also have the capability of communicating with

one another in order to decide how best to group themselves together into different

configurations. MSRs require connectors that allow the modules to dock and undock

with each other dynamically based on their decided configurations. While MSRs follow

these main rules, there are three main categories that different types of MSRs fall into.

8

The first set of self-reconfigurable robots is known as the lattice type robot. In the lattice

type robot, the modules of the MSR are all connected together at all times to form a

lattice structure. The modules are usually incapable of moving on their own, but they do

have a limited set of actuators that allow for movements of simple parts. A key

distinguishing feature of lattice type MSRs is that the actuators have discrete or binary

motions which limit the modules to a finite set of states. When the modules are

connected together and they move their actuators in a coordinated set of motions, the

entire robot can then move. In order for the robot to change its shape, the individual

modules perform a set of disconnects, moving an actuator, and reconnecting. These

modules are always connected to one another and therefore do not have to rely on

communication to figure out where they are in relation to one another. These modules

are very simple on their own, but through communication and coordinated motions the

modules can work together to perform complex motions.

The second type of self-reconfigurable robots is known as chain type robots. Chain type

robots are similar to lattice robots, but chain robots only connect to one another in a

front-to-back or side-to-side configuration. These robots are capable of moving on their

own (based on their kinematic design), and therefore in order to connect to one another

the modules must communicate and move towards each other to connect together.

Another key distinguishing feature of chain MSRs is the ability of the actuators to move

in continuous motion, compared to the lattice type MSRs where the actuators move in

distinct, binary motions. Chain robots are good for locomotion and capable of being

more independent compared to the lattice robots.

9

The final type of robot is known as the hybrid robot. The hybrid robot combines the

capabilities of the lattice robot as well as the chain robot. The modules are capable of

moving on their own and communication with one another to find each other and move

together. The modules also have the capability of performing lattice type reconfiguration

without having to communicate after they have been connected together initially.

MSRs have been planned for different application domains of robotic systems. NASA is

currently working on robotic systems where multiple robots work together to achieve a

common goal. The ATHLETE rover (Townsend, J; Biesiadecki J; Collins, C; Jet

Propulsion Lab., California Inst. of Technology, 2010) and the Tetrahedral Walker

(Curtis, S; Brandt, M; Bowers, G; Brown, G; NASA Goddard Space Flight Center, 2007)

are two such next generation rover systems. Another potential application of MSRs is for

search and rescue operations. The ability of MSRs to traverse through environments that

most robots could not travel through and then reconfigure into a shape that could help a

person could become lifesaving. There could also be applications of MSRs being a

household robot to help perform different tasks around the house. Having robots that can

work together to complete a task provides many advantages over current rover

technologies, and MSRs allow for an unprecedented amount of adaptability to advance

this concept.

2.1.1 Self-Reconfiguration Problem in MSRs

The key issue with MSRs is how to form teams of modules that can work together to

accomplish an assigned task. But after a task has been completed, the robot will then be

assigned a new task to complete and it is likely that the current configuration of the

10

modules will not suffice to complete the next task. The modules therefore need to

reconfigure themselves into a new configuration that will allow them to work towards

their next task. This is a complex problem in MSRs, deciding how to go from one

configuration to another. Three main approaches have evolved to solving this problem:

search-based reconfiguration, control-based reconfiguration, and task-driven

reconfiguration.

Search-based reconfiguration uses known search algorithms to try to find a path between

a current state and a goal state. The states in this case are the current configuration and

the needed configuration for the next task. The path that is determined is the series of

movements that need to be completed to arrive at the goal state. Control-based

reconfiguration is a less strict process that again tries to go from a current configuration

to a goal configuration. In control-based, the modules perform movements related to

their local position that lets the robot “evolve” to a goal configuration. Each module

performs simple movements to try to make the entire robot get closer to its goal

configuration. The final approach is known as task-driven reconfiguration. Task-driven

reconfiguration is not focused on getting into a specific configuration as the previous two

methods, but it simply wants to find any configuration that will meet its needs.

We have decided to use task-driven reconfiguration to address the reconfiguration

problem. Task-driven reconfiguration eliminates the need to specifically know what

modules need to be in what position in the final configuration. The robot is done when it

finds a configuration that meets its needs. This method is most suitable to meet our needs

in the MSR reconfiguration problem. By using task-driven reconfiguration, we take

11

advantage of advances being made in multi-agent systems which provides us a set of

rules for the modules to work together in a coordinated manner.

2.2 Multi-Agent Systems

Multi-agent systems (MAS) consist of multiple agents that work in an environment to

either maximize the collective utility value of all the agents or to maximize their

individual utility values (Shoham & Leyton-Brown, 2009). In the area of MAS, we use

the term coalition to define the concept of how we want the modules in an MSR to group

together into a certain configuration. Coalitions can be defined in the following way:

“Coalitions in general are goal-directed and short-lived; they are formed
with a purpose in mind and dissolve when that purpose no longer exists,
or when they cease to suit their designed purpose, or when the profitability
is lost as agents depart.” (Horling & Lesser, 2005)

Within the context of an MSR, we posit that a coalition represents a set of modules that

are connected together in a certain configuration. Because the MSR has to change its

configuration and its size to perform its intended task, the coalition has to be adapted

dynamically. When a module or a set of modules that are part of an existing coalition

decide that they have reached a point where they need to form a new coalition, possibly

with other modules in their vicinity to perform their task better, the modules

communicate with one another to decide which subsets of modules should join together.

This process is known as coalition structure generation, which was formally defined by

Sandholm (1999) as:

“The formation of coalitions by agents such that agents within each
coalition coordinate their activities, but agents do not coordinate between

12

coalitions. Precisely, this means partitioning the set of agents into
exhaustive and disjoint coalitions. This partition is called a coalition
structure (CS).”

While there has been much research in the area of coalition structure generation, we have

been unable to find research that incorporates a level of uncertainty into the coalition

structure generation problem. The solutions we have seen assume there is a known and

certain utility value assigned to each coalition structure. The problem with this approach

is that determining an exact value for each coalition structure takes too much time and

consumes too many resources on the modules to be viable. We will explore the current

research being done in the area of coalition structure generation, and propose a modified

Markov Decision Process (MDP) as a model that can be used to determine a near-optimal

solution to the coalition structure generation problem without exhaustively searching

through an entire coalition structure graph.

2.3 Coalition Structure Generation (CSG)

In systems where agents need to work together to form teams such as MSRs, a key

component of the process is figuring out what modules should work together to

accomplish a task in the most efficient manner. A form of game theory known as

coalition game theory deals with how to partition the set of players into teams known as

coalitions. The end of result of dividing the agents into coalitions is known as the

coalition structure, and the process of creating the coalition structure is the coalition

structure generation (Sandholm, Larson, Andersson, Shehory, & Tohme, 1999).

13

In the coalition structure generation problem, the agents are divided so that each agent is

in one and only one coalition. Given a set of agents, where n is the number of agents,

there are a possibility of 2n-1 coalitions ranging in size from 1 to n. In the case of three

agents, there are seven possible coalitions: { {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} }.

Given that there are n agents, the number of possible coalition structures that use all of

the agents is given by a second order Sterling value. The Sterling value is defined as

� �(�, �)
�
	
�

, where Z(n,i) = i*Z(n-1,i) + Z(n-1,i-1), and Z(n,n) = Z(n,1) = 1. Again

with the three agents, the possible number of coalition structures is five: { [{1},{2},{3}],

[{1},{2,3}], [{2},{1,3}], [{3},{1,2}], [{1,2,3}] }. In the worst case scenarios, the

number of possible coalition structures is O(nn) (Sandholm, 1999). Figure 1 shows the

calculations for the number of coalitions and coalition structures given a number of

agents.

14

Figure 1. The number of coalitions and coalition structures by the number of agents. Y-Axis is a logarithmic scale.

In order to help organize the possible coalition structures that can be generated from a set

of agents, a coalition structure graph can be generated to help visualize how the

coalitions can be structured. The coalition structure graph is a visualization of how the

possible coalition structures are related to one another. Figure 2 shows a coalition

structure graph for a four-agent scenario. The bottom node of the graph represents level

one. The number of the level corresponds to how many coalitions are present in each

node at that level of the graph (i.e., level one has one coalition per node, level two has

two coalitions per node, etc). The maximum number of levels in the graph is n, which

represents the case where each module is in its own coalition.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Coalitions

Coalition

Structures

100

105

1010

1015

1020

1025

The Number of Coalitions and Coalition

Structures by Number of Agents

Number of Agents

15

In the coalition structure graph, the edges between nodes represent an association

between the nodes. If you follow an edge from level n to level n-1, it represents two of

the coalitions in the node at level n joining together to form a single coalition in the node

at level n-1. For example, referring to the node in level 3 in Figure 2 which contains the

coalitions {{1}{2}{3,4}}, if you follow the edge from that node to the node in level 2

containing the coalitions {{1}{2,3,4}}, the edge represents coalition {2} and coalition

{3,4} joining together to form coalition {2,3,4}. If you follow an edge from at node at

level n to a node at level n+1, the edge represents a coalition in the node at level n

splitting into two coalitions at level n+1.

2.3.1 Optimal Coalition Structure

The ultimate goal of enumeration of the possible coalition structures is to determine the

coalition structure that gives us the optimal utility value. In order to determine which

{1}{2}{3}{4}

{1}{2}{3,4} {3}{4}{1,2} {1}{3}{2,4} {2}{4}{1,3} {1}{4}{2,3} {2}{3}{1,4}

{1}{2,3,4} {1,2}{3,4} {2}{1,3,4} {1,3}{2,4} {3}{1,2,4} {1,4}{2,3} {4}{1,2,3}

{1,2,3,4}

Figure 2. Coalition Structure Graph for 4 agents.

Level 1

Level 2

Level 3

Level 4

16

coalition structure gives us the best value, we need to define how we value a coalition

structure.

We first define a coalition S as a subset of all possible agents, and the set of agents that

make up coalition S is known as the set A. The value of a coalition is called vS, which is

calculated in some fashion that is consistent across all possible S. A coalition structure is

denoted as CS, where each CS has a distinct set of S that account for all possible agents.

For simplicity, we assume that the value of a coalition structure, V(CS), is additive, i.e.

V(CS) = ∑ � ∈�� vS. After defining the value of a coalition structure, we can define the

optimal coalition structure as CS* = maxCS ∈ M V(CS), where M is the set of all possible

coalition structures.

The process of finding the optimal coalition structure is trivial in cases where the number

of possible coalition structures is low. However, as stated previously, the number of

coalition structures becomes O(nn) which creates a very computationally and time

complex problem to solve. There has been research done to try to solve the optimal

coalition structure problem in the cases where the number of coalition structures becomes

too large to enumerate.

2.3.1.1 Approximate Coalition Structure Generation

Sandholm et al. (1999) proposed an algorithm which generates a coalition structure that is

guaranteed to be within a certain bound of the optimal coalition structure while searching

through the minimum possible number of coalition structures.

17

The goal of their algorithm is to search through a subset, N, of all possible coalition

structures, M. They define the optimal coalition structure value they find by searching

through N as CS*
N = arg maxCS∈N V(CS). They claim that V(CS*

N) is always within

bound k of V(CS*), where CS* is the optimal coalition structure of M, where k = min(κ)

and κ ≥
�(��∗)

�(��∗�)
.

After conducting their analysis, they found that they can bind k = n, where the number of

nodes searched is 2n-1. They create this bound when they search only level one and level

two of the coalition structure graph. The reason for this is that within level one and level

two of the graph, all possible coalitions can be observed. The grand coalition is observed

at level one, and all other possible coalitions are present in a node at level two.

According to their research, no other algorithm can search less than 2n-1 coalition

structures and guarantee the bound they have. While their research does provide a

mathematically bounded way to find a near optimal coalition structure, it does restrict the

number of possible coalitions in their result to having only a single coalition or at most

two coalitions.

2.3.1.2 Pruning for Optimal Coalition Structure Generation

Rahwan (2007) proposed an anytime solution to coalition structure generation that

guaranteed bounds on the optimal solution while being able to prune part of the search

space. In order to be able to prune the state space of the coalition structure generation

problem, Rahwan proposed to group coalitions together that have similar structure. This

grouping was done through the use of integer partitions on the number of agents. For

18

example, with four agents the coalition structures with a single coalition and four agents

are grouped together, the coalition structures with a coalition of three agents and a

coalition of a single agent are grouped together, etc.

The algorithm begins by enumerating all possible coalitions and their values and storing

them in lists according to the number of agents in the coalition. When doing this, the

algorithm also keeps track of the maximum, average, and minimum vS for each coalition

size. For every possible integer partition of the number of agents, the algorithm

determines the maximum, average, and minimum values for the coalition structure group.

To do this, they calculate the maximum value for each coalition size in integer partition

and add them together to get the maximum, and the minimum is calculated as the sum of

the average values for each coalition length in the coalition structure group. For example,

if we assume max(Li) is the maximum vS for any coalition that contains i agents, and

avg(Li) is the average vS of all coalitions of length i, we can easily represent

mathematically what the algorithm says. Assuming we have 16 agents that we want to

find the optimal coalition structure for, we first find all coalitions, calculate their vS, and

determine max(Li) and avg(Li) for all i from 1 to 16. For a given coalition structure group

such as G = {5,4,4,1,1,1}, we can calculate the max(G) = max(L5) + 2*max(L4) +

3*max(L1), and avg(G) = avg(L5) + 2*avg(L4) + 3*avg(L1). Instead of using min(G) as

the lower bound for the range, we use avg(G) because in most cases the actual values of a

V(CS) will be above avg(G), and by using avg(G) compared to min(G) we reduce the

range of values which helps with pruning.

19

To do the pruning, we start by calculating LB, which is defined as LB = max(avg(G)) for

all G. We then prune off all G where the max(G) < LB. After pruning all possible G, we

start with the G having the maximum max(G) and determine the max(V(CS)) for all CS in

G. We can then prune all G that have a max(G) less than the current max(V(CS)). We

repeat this procedure until we have reached a point where there are no more G left. At

this point, we have found the optimal coalition structure.

Figure 3. A visual representation of G pruning from Rahwan (Rahwan, 2007).

 The optimal CSG calculation techniques described above deals with situations where the

value of a coalition structure is certain. In other words, the coalition structure’s value

does not change while the optimal CSG is being calculated or while the agents are

‘getting together’ to form the coalition. In contrast, in the domain of MSRs there can be

situations where the value of a configuration or coalition structure is uncertain because of

20

the noise and limited range of the MSR- modules’ sensors. For example, a coalition’s

perceived value might change because of obstacles in the modules’ paths when they try to

physically dock with each other. This scenario is elaborated in Section 3.4. To address

this problem, w propose to use a mathematical framework called a Markov Decision

Process (MDP) that provide techniques to determine a prescribed action for the agents in

the presence of uncertainty in the actions of the agents.

2.4 Markov Decision Process (MDP)

A large amount of research has been devoted to the area of decision making in complex

environments. While simple problems can be modeled as a single episodic problem,

most real world problems need to be modeled as a sequential decision problem. In a

sequential decision problem, the utility an agent receives is based on a series of decisions.

To accurately model real-world problems, a model that accounts for uncertainty was

described in the Russell and Norvig Artificial Intelligence text (Russel & Norvig, 2010).

A decision process model is defined by a set of states and the transitions that are allowed

between states. Each state s has a defined set of states that it is allowed to transition to

which is called a transition model. If we always take an action a and it would always

take us from state s to state s’, we would consider our environment to be deterministic. In

other words, we have 100% certainty that performing action a at state s leads us to state

s’; however, the real world is not deterministic. In the real world actions are unreliable

and we can never be absolutely certain of the outcome of performing an action. In a non-

deterministic model, we define a transition model T(s,a,s’) as the probability of reaching

21

state s’ by performing action a at state s. In a stochastic environment, if we take action a

there is a probability that we reach state s’, but there is also a probability that we end up

at state s’’. This uncertainty in the outcome of our actions comes from things in the

environment such a sensor noise and communication problems. When we say that the

probability of reaching state s’ from state s by taking action a does not depend on any

previous actions that we have taken, we can say that the transition model is Markovian.

An MDP is defined as a sequential decision process where the environment is fully

observable and the transition model is Markovian. An MDP is formally defined by the

following:

 Initial State: S0
 Transition Model: T(s, a, s’)
 Reward Function: R(s)

The reward function R(s) is a function that determines the immediate reward an agent

receives for reaching state s, which could be positive or negative, and does not depend on

the series of steps that were taken to reach the state. The idea of an MDP is to traverse

through a set of states to reach a goal state which is the end of a sequence of steps. Goal

states can be good or bad depending on how the environment is modeled. We also define

a utility value for each state which is based on the reward function for the state, but is

also based on the reward values of the states around the state. The final result of an MDP

is known as a policy, where a policy is defined as the action that an agent should take

when the agent is in any given state. In essence, when an agent is at a state s, the policy

defines what action the agent should take. An optimal policy is the policy that leads an

agent towards the state with the optimal utility value.

22

2.4.1 Factored MDP

In some cases where MDPs have a viable option of being used to solve a problem, it is

possible that the number of actions in the action space as well as the number of states in

the model can become exponential. Factored MDPs are a representation language that is

used to represent the cases where an MDP grows into an exponentially large state space

(Guestrin, Koller, Parr, & Venkataraman, 2003).

In a factored MDP, a state is defined by a set of variables where each variable is assigned

a value from its domain. The transition model of the factored MDP is modeled by a

Dynamic Bayesian Network (DBN). If we assume variable xi is a variable at the current

time step, then xi’ is the same variable at the next time step. All arcs in the DBN

represent connections between variables in consecutive time slices. Each state has a

conditional probability distribution that defines the transitions between a state and its

parents, which are simply the states that are reachable from a given state. This transition

graph which defines how states are affected based on a previous state is a two-layered

graph, which means it only shows a generic graph for time step i and time step i + 1. All

states can be represented by this graph.

MDPs define a standard way to model an environment that must incorporate an amount

of uncertainty. The goal of an MDP is to define that at any given state in an environment,

we know what action should be taken to help lead us towards the optimal goal state. In a

dynamic environment, MDPs help an agent make the best decision based on the given

information at the time the MDP was created.

23

Complimentary to our research, Chalkiadakis (Chalkiadakis, 2007) has proposed a

technique to model uncertainty in coalition games using agent types based on research by

(Suijs & Borm, 1999). That work is most theoretical and has some challenges when

applied to our setting, such as giving each agent (or module) the distribution of types for

all agents, and assuming that communication between agents is free of cost.

24

Chapter 3

ModRED: A Chain-Type MSR

In this chapter, we will discuss the development of a novel chain-type MSR that uses four

degrees of freedom to increase the possible range of motions compared to most MSRs.

To advance the development of the robot, we have a created a model of the robot in the

Webots software suite. We will begin by introducing the robot simulation software

Webots. We will also discuss the design and capabilities of the ModRED robot. Finally,

we will introduce the different movements and activities that we have developed for

ModRED in the Webots simulator as well as explain the dynamic reconfiguration

problem.

3.1 Webots

Webots is a robot simulation software package that allows for the rapid prototyping and

simulation of mobile robots (Cyberbotics Ltd., 2011). The goal of Webots is to provide a

platform that allows researchers to spend less time developing the physical robots and

more time working on the software that will control the robots. As stated on their

website, the development of mobile robots combines many different disciplines and

Webots strives to help eliminate the time hurdle of building the robots to do

experimentation.

25

The software system has built-in robots that can be used or users can build their own

robots from an included set of actuators and sensors. Not only can you build a robot

inside of Webots, it also has the capability of importing models with the use of the

VRML97 standard. Webots uses the Open Dynamics Engine (ODE) to simulate the

physics of factors such as gravity and friction.

Webots also allows for the compilation of the code to run the robots in addition to having

the capability of creating a simulated model of a robot. The software is capable of using

several different languages to control the running of the robot simulation, such as C, C++,

Java, and Python. There are APIs for controlling all of the different actuators and sensors

of the robot in each language. Another key feature of Webots is the ability of the

software to simulate the robot movements in accelerated time, up to 300 times faster than

real time. The accelerated time allows for the quick simulation of experiments that could

take very long to perform in real time.

3.2 ModRED

The ModRED (Modular Self-Reconfigurable Robot for Exploration and Discovery)

robot is a prototype robot that is currently being developed by Dr. Carl Nelson, Khoa

Chu, and Mamur Hossain of the University of Nebraska at Lincoln Mechanical

Engineering Department (Chu & Nelson, 2011). ModRED is being developed as a chain-

type MSR that allows the modules to connect end-to-end to create long chains of modules

that allow for increased movements and range of motion. What makes ModRED such a

unique design is its incorporation of four degrees of freedom into each module. Most

26

MSRs being developed are limited to one or two degrees of freedom, with some recent

work being done on modules with three degrees of freedom.

Table 1 lists a current set of chain and hybrid MSRs along with their degrees of freedom

for each module and the motion space of each module.

The goal of adding a fourth degree of freedom into ModRED was to increase the range of

motions that each module can perform, which therefore also increase the range of

motions that a chain a modules can perform. Having increased range of motion will help

lead to increase the activities that the robot can perform during space exploration

missions. The main design of ModRED can be seen in Figure 4. The figure shows a

single module with its four degrees of freedom. The main module has a hinge on each

end that is a rotational degree of freedom. This hinge is used to lift one end of a single

module off the ground, or to change the angle that two modules make while connected.

System MSR Type DOF Motion Space
YaMor (Moeckel, Faquier, Drapel, Dittrich,
Upegui, & Ijspeert, 2006)

Chain 1 2-D

Tetrobot (Lee & Sanderson, 1998) Chain 1 3-D
PolyBot (Yim, Zhang, Roufas, Duff, & Eldershaw,
2003)

Chain 1 3-D

Molecube (Suh, Homans, & Yim, 2002) Chain 1 3-D
CONRO (Castano, Behar, & Will, 2002) Chain 2 3-D
Polypod (Yim, Locomotion Gaits with Polypod,
1994)

Chain 2 3-D

MTRAN III (Kamimura, Yoshida, Murata,
Kurokawa, Tomita, & Kokaji, 2008)

Hybrid 2 3-D

Superbot (Salemi, Moll, & Shen, 2006) Hybrid 3 3-D
iMobot (iMobot - an Intelligent Reconfigurable
Mobile Robot)

Hybrid 4 3-D

Table 1. This table lists MSR chain and hybrid robots that are currently being developed. For each robot, we show the MSR type,
the degrees of freedom in each module, and the action space for each module (Chu & Nelson, 2011).

27

On this hinge is also a mechanical connecting apparatus which allows the modules to

dynamically connect and disconnect from one another. Each of these hinges has a 180

degree range of rotation. In the middle of the module is a translational degree of freedom

which allows the module to expand and contract itself. The final degree of freedom

comes from one of the ends that is capable of rotating infinitely in either a positive or

negative orientation.

Figure 4. A CAD drawing of the ModRED robot showing its novel four degrees of freedom design (Chu & Nelson, 2011).

Included inside each ModRED module is a set of actuators and sensors that will move the

robot as well as allow for information gathering about the environment around it. Each

module is equipped with a CPU that will complete all of the necessary calculations and

control the motors of the robot. Each robot will also contain motors to control the

degrees of freedom. For gathering information, each module will be equipped with

28

infrared (IR) distance sensors (two in the front, two in the rear, and one on each side).

The use of the six distance sensors allows for adequate processing to determine nearby

obstacles or other modules. Each module will also be fitted with a compass to detect

orientation as well as a tilt sensor to allow determination of which direction is up. For

communication, ModRED uses a short-range wireless communication device. The final

sensing equipment for each module will be some form of localization device, with that

equipment to be determined at a later step in the prototyping phase.

3.3 ModRED Simulation in Webots

While Dr. Nelson’s team from the University of Nebraska at Lincoln was developing a

physical prototype for ModRED, we developed a simulation model of ModRED using

Webots. Webots allowed us to create a very accurate model of the robot that can be seen

below in Figure 5. All of the dimensions and weights from the ModRED prototype were

incorporated into our simulation. In Webots, we were able to use built-in actuators and

sensors to recreate all of the motors and sensors that would be available on the real

ModRED modules. As in the prototype, our simulated model has six IR distance sensors,

a compass for directional information, an accelerometer to detect which direction is up,

wireless radios for communication between modules, and GPS for localization among the

modules.

29

Figure 5. A side-by-side comparison of the CAD rendering of ModRED with the model of ModRED. The Webots ModRED model is
on the left, and the original CAD drawing is on the right.

3.3.1 ModRED Movements

During the prototyping of ModRED, Dr. Nelson’s team developed a series of steps that

modules in different configurations can perform in order to achieve motion (Chu &

Nelson, 2011). The basic motions they described were for a single module and for a

chain of two modules. Following the main series of steps they created, we were able to

successfully create locomotion for a single module as well as a chain of modules. In

addition to the simple motions outlined by Dr. Nelson, we were also able to experiment

with chains of multiple modules and achieve complex motions of modules in a loop.

30

3.3.1.1 Single Module Inchworm Motion

In order for the modules to be useful when they are not connected to any other module,

they need to be able to move on their own to do both exploration and join together with

other modules to form coalitions. To perform the forward movement, the module begins

by rotating its front arm down and its back arm up. The module can then expand its

translational DOF to move the front of the module forward. Next, the module rotates its

front arm up and rotates it rear arm down. Finally, the module contracts its translational

DOF to move the back of the module forward. Following these steps continuously

allows a module to move forward. The sequence of images in Figure 6 shows a single

module following these steps and moving forward. For a module to turn, it can simply

rotate its DOF that is able to rotate infinitely in either direction. Rotating that DOF in

different directions allows the module to turn left or right.

Figure 6. A single ModRED module performing a forward inchworm motion. The pictures are ordered from left to
right, and top to bottom. In the pictures, the module is moving from the right to the left across the image.

31

3.3.1.2 Two Module Chain Inchworm Motion

Once two modules have moved toward each other and connected together, they need to

be able to continue exploration or connect again with more modules. To achieve forward

motion, the modules can use another inchworm motion. In this chain configuration we

have two modules, m1 we will call the front module and m2 will be the back module. To

begin, we have both modules with their translational DOF contracted. We begin by

having m1 raise its body into the air by rotating its rear arm up. While in the air, m1

extends its translational DOF and then lowers its body back to the ground. Next, m1

lowers its front arm and m2 lowers its back arm to lift the middle of the chain in the air.

While raised, m1 contracts its translational DOF and at the same time m2 extends its

translational DOF to shift the body of the chain forward. After this, m2 raises its body in

the air by rotating its front arm up, and while in the air it contracts its translational DOF

before return the body back to the ground. These series of steps are performed by two

modules in Figure 7. Again, a module can turn by having m2 rotate its DOF that has the

unlimited rotational capability.

Figure 7. Two ModRED modules performing a forward inchworm motion. The pictures are organized from left to right, and top to
bottom. The chain in the pictures is moving from right to left.

32

3.3.1.3 Two Module Chain Sideways Rolling Motion

A unique motion that ModRED is able to perform compared to other chain robots comes

from its unique fourth degree of freedom. The degree of freedom we are referring to is

the rotational degree of freedom on each module that is capable of rotation infinitely in

either direction. Due to this degree of freedom, we are able to perform what we call a

sideways rolling motion with two modules. The advantage of this motion is the

capability of the robot to move directly sideways without having to turn itself. This

motion is achieved by having two connected modules rotate this fourth DOF at the same

time. The two modules begin in a chain configuration, with m1 being at the front of the

chain and m2 being at the back of the chain. Module m1 lowers it front arm and slightly

raises its back arm, while module m2 lowers its back arm and slightly raises its front arm.

Module m1 then begins to rotate its fourth DOF in one direction while m2 rotates its

fourth DOF in the opposite direction. This allows the module to roll directly sideways.

Figure 8 shows two modules performing the series of steps we have described.

Figure 8. Two ModRED modules performing a sideways rolling motion. The pictures are organized from left to right, and top to
bottom. The chain in the pictures is towards the background.

33

3.3.1.4 Six Module Chain Rolling Motion

The final motion of ModRED we will discuss uses six modules in a chain to perform a

rolling motion. One of the limitations of ModRED is that during its single module

inchworm and two module chain inchworm motions, the movements are very slow and

covering a large distance takes the module a long time. However, with enough modules

we can form a chain that allows the modules to perform a forward rolling motion that

moves very quickly. This motion begins by having a chain of six modules that are

connected together. To form a loop configuration, the front module and the back module

are rotated up so that they are at a 90 degree angle with the ground. Next, the second

module and fifth module are rotated up so they are at a 90 degree angle with the ground.

While doing this, the first and sixth modules again become parallel with the ground and

are close enough to connect. To move forward, the modules at the corners bend their

front and back arms in unison to move the entire chain forward. Figure 9 shows six

modules in a chain, forming the loop, and then moving the loop forward.

Figure 9. Six ModRED modules performing a forward rolling motion. The six modules begin by forming a chain which then
transforms into a loop. Once in a loop, the modules perform simple movements in unison to create the forward motion. The series of
pictures goes from left to right and top to bottom.

34

3.4 Dynamic Reconfiguration

ModRED is designed to be a self-reconfigurable robot that is capable of performing a

wide range of tasks. The main capability of the robot is the exploration of an unknown

region. When these robots are being used for the exploration of an unknown

environment, a large amount of them will be placed in the terrain and they will work

together to map the region. The goal of the robots will be to explore the maximum

amount of space in the least amount of time while also minimizing the amount of area

that is covered by multiple modules; so they must communicate with one another to make

sure they do not overlap their exploration activities. The modules must also be capable of

handling any type of terrain with different types of obstacles that they encounter, such as

valleys, cliffs, and rocks.

Chains of different sizes will be good at achieving these different goals. While a single

module will be good at exploring a space that is small with lots of turns, it will be very

slow at traveling to a spot far away. However, a chain of modules that form into a loop

can cover a long distance very quickly, but will be unable to fit into tight spaces.

Another problem that could arise is a situation where a short chain of modules needs to

move to a certain location, but there is a trench in the path that a single module cannot

cross on its own. While this short chain might not be able to cross it, a chain of modules

in a loop configuration is long enough to easily cross the gap. A simulated representation

of this situation can be seen in Figure 10. In this case, a chain of two modules is unable

to climb a ridge in its path, but a chain of six modules is capable of crossing the ridge.

35

All of these situations provide valid reasons for having chains of different lengths;

however, before we explore an area we will be unsure of the terrain that the modules will

encounter. We will have no way of knowing if we should have a large amount of single

modules or lots of chain configurations with multiple modules in each chain. To account

for this, dynamic reconfiguration of the modules is necessary to be able to handle

whatever terrain the MSR encounters.

The problem of coalition formation has been studied for many years and there are many

different approaches to solving the problem (Ray, 2008). The dynamic reconfiguration

problem can be modeled as a coalition formation problem, where each coalition

represents a chain of modules. The modules will be working on their own in the

environment, so there will be no supervising entity that tells the modules which robots

should form into coalitions. The modules will need to determine on their own how to

form coalitions and what structure or configuration those coalitions should have.

Figure 10. In the image on the left, a two-module chain attempts to cross a simulated ravine and is not long enough to reach across. If
the two module chain is joined by four other modules, the chain is then long enough to easily roll across the gap and reach the other
side.

36

Because each of the modules is very limited in computational abilities, the process of

determining the coalitions needs to be computationally simple.

In exploring research done in the field of MSR reconfigurations, most of the work has

been done in the area of searching, where the initial and final configurations of the

modules is known and they need to determine what movements need to be made to get

from the initial configuration to the final configuration. In our case, we know the initial

configuration, but what we want to find is the final configuration. Since we do not know

the final configuration we are unable to fit our problem into the search model. We also

looked at research that has been done in the multi-agent coalition formation area. In the

research done by Sandholm, they were able to quickly select a near optimal solution to

the coalition structure generation problem; however, their optimal coalition structure

always contained either a single coalition of all the agents or the agents split into only

two coalitions (Sandholm, Larson, Andersson, Shehory, & Tohme, 1999). In the research

conducted by Rahwan, they were able to construct anytime solution to the coalition

structure generation problem by grouping modules together and using a form of pruning

(Rahwan, 2007). Yet their solution was only optimal as long as the upper bounds and

lower bounds of the different groups they created did not overlap. In the case that they

did overlap, it was possible to have to search through the entire state space to find the

optimal coalition structure.

Another problem we encountered when trying to find a solution to our problem is the fact

that we are unsure of the utility value we would give to a coalition structure. In the

research we examined for coalition structure generation, the order of the agents in the

37

coalitions did not matter. However, in our case the order of the modules in the coalition

would change the utility value we give to the coalition, so this uncertainty would need to

be accounted for.

To solve this problem we introduce a new solution to the coalition structure generation

problem. We model our problem in the form of a Markov Decision Process to traverse

through the state space of possible coalitions and find the optimal coalition structure. We

describe the algorithm we developed in Chapter 4 and discuss the results we obtained by

using the algorithm in Chapter 5.

38

Chapter 4

Approximate Solution to Coalition
Structure Generation Using a Modified
MDP

In this chapter we introduce our solution to the coalition structure generation problem

using a modified MDP. To the best of our knowledge, our work is the first in the

direction of using the coalition structure generation (CSG) problem from coalition game

theory to solve the self-reconfiguration problem in MSRs. The CSG problem is more

complicated in MSRs than in conventional game theory. Because in conventional

coalition formation, only the identity of the agents that are together in a coalition

determines the coalition’s value and the order in which the agents are placed within a

coalition is inconsequential. In contrast, in MSRs the order in which the modules in an

MSR are connected is vital to being able to determine the value of the coalition.

Moreover, when we introduce uncertainty into the value a coalition might get, the current

models and solutions for the coalition structure generation problem do not provide any

means to find a solution. While Rahwan’s algorithm (Rahwan, 2007) does provide an

efficient manner to prune the space of possible coalition structures by splitting the

coalition structures into distinct groups that each have a maximum and minimum limit,

the model fails when the maxima and minima from different groups overlap with one

39

another. In these cases, the algorithm from Rahwan fails to provide the ability to

consistently prune the number of coalition structures.

Unlike most problems that fit into the MDP model, our uncertainty comes from the

values that we assign to a state, as compared to the normal uncertainty that arises from

the action space. For this fact, we needed to develop a new model that allowed us to

incorporate this uncertainty while also providing the ability to prune the space of possible

coalition structures.

4.1 MDP Model Representation

We propose using a modified MDP to solve the coalition structure generation problem.

As stated in section 2.1, the concept of an MDP is that there is uncertainty in traversing a

state space to find a goal state. In a normal MDP, the uncertainty comes from not

knowing with 100 percent accuracy what state you will end up in after taking an action.

In the model of coalition structure generation we propose, the uncertainty comes from not

knowing a true value for a coalition, and therefore a coalition structure.

For coalition formation situations, the value of coalitions and therefore coalition

structures is based on predetermined function. The value of a coalition is decided based

on what agents will form the team for any given coalition. In the case of the ModRED

robot, we know what modules or agents will get together to form a coalition, but we are

uncertain of the order they will be in. The value we assign to a coalition will depend on

the time the agents take to get into their chain configuration, and the amount of time it

takes them will depend on the order of the agents. In order to save computation time, we

40

cannot compute exactly what order the agents will be in for each coalition, we want to be

able to approximate the value efficiently. This is where the uncertainty in the problem

arises. We are unsure of the value a coalition receives because we do not want to take the

computation time to determine the order of the agents in the chain. In order to model the

uncertainty in our problem, we will use a modified MDP to model our problem and find a

solution.

The state space in our model will be all of the possible coalition structures that can be

generated for a set of n agents. In keeping with the MDP model, our action state will be

moving towards any state that can be generated by combining two current coalitions or

splitting a single coalition from the current state. There will be a reward value for each

state in the model, and a policy will be calculated to determine the best move for any

given state.

The coalition structure graph we are using for the state space of our MDP is described in

detail in the paper by Sandholm (Sandholm, Larson, Andersson, Shehory, & Tohme,

1999). Each level of the graph represents the number of coalitions in the coalition

structure of each state in that level. For example, graph level 1 contains all states that

have 1 coalition in the coalition structure; graph level 2 contains all coalition structures

that contain two coalitions up to n.

The possible number of coalition structures in the coalition structure graph is nn , which is

too large a state space to explore. In order to prune the state space, we pick only certain

states to explore further as we generate the coalition structure graph. We begin by

starting at the level n of the coalition structure graph, which is the state where each agent

41

is in its own coalition. We call the states that can be generated by combining any two

coalitions of the current coalition structure the children of a state. So for level 4 of a

coalition structure graph with 4 agents, the only state in level 4 would be the state

containing the coalitions {1}{2}{3}{4}, and the children of this state would be

{{1,2}{3}{4}}, {{1,3}{2}{4}}, {{1,4}{2}{3}}, {{2,3},{1}{4}}, {{2,4}{1}{3}},

{{3,4}{1}{2}}. As we generate each possible child coalition structure, we also generate

three possible values for each coalition structure, which we call sub-additive, additive,

and super-additive. Each of these states represents the possible values for each of the

coalitions. As stated previously, our uncertainty comes from not knowing with certainty

the value of a coalition. The sub-additive state represents the case where the coalitions

take a long time to get into a chain and therefore would receive a lower value for each

coalition. The additive state represents a case where on “average”, the agents take a

normal time to get into a chain. Finally, the super-additive state represents a case where

the agents are already close to being aligned and do not require much work to get into a

chain, and therefore would receive a higher than normal value for their coalitions.

{1}{2}{3}{4}

Sub Add Sup

{1}{2}{3,4}

Sub Add Sup

{3}{4}{1,2}

Sub Add Sup

{1}{3}{2,4}

Sub Add Sup …

:
:

:
:

:
:

Figure 11. Coalition Structure Graph representation with sub-states of Sub-Additive, Additive, and Super-Additive

42

We will define a formal model for each node in the coalition structure graph. We will

call a node in the coalition structure graph gn. Each gn contains a set of variables that

define the node. The node has a unique ID, gnid, that is used to distinguish nodes from

one another. There are three values inside the node that keep track of the values for the

sub-additive state, gnsub, the additive state, gnadd, and the super-additive state, gnsup.

These are the variables used to store the reward values for the different sub-states. Along

with each sub-state value, we also assign a percentage to each sub-state. These

percentages are used during the value iteration and MDP traversal to calculate utility

values. The sub-additive percentage is noted as gnsub-p, the additive percentage as gnadd-p,

and the super-additive percentage as gnsup-p , where gnsub-p + gnadd-p + gnsup-p = 1. To keep

the information for the policy of the MDP, each node also has variable gnp that tells the

node which node it should move to during the MDP traversal. Finally, each node also

contains an array that keeps track of the neighbors of the node in the graph, gnn.

43

4.2 CS Graph Generation Algorithm

We begin our algorithm by gathering input from all of the available agents. The data

comes into the algorithm as a set for each agent, where each set contains the ID of the

agent, its current utility value, and finally its x and y positions according to some

vCS

vCS vCS vCS vCS vCS vCS

vCS vCS vCS vCS vCS vCS vCS

vCS

gsub | gadd | gsup

gsub | gadd | gsup gsub | gadd | gsup gsub | gadd | gsup gsub | gadd | gsup gsub | gadd | gsup gsub | gadd | gsup

gsub | gadd | gsup gsub | gadd | gsup gsub | gadd | gsup gsub | gadd | gsup gsub | gadd | gsup gsub | gadd | gsup gsub | gadd | gsup

gsub | gadd | gsup

Figure 12. A visual representation of the coalition structure graph shown in Figure 2. The top image shows how the original graph
would have one vCS for each node. However, in our modified coalition structure graph shown in the bottom image, we have a sub-
additive, additive, and super-additive value for each node represented as gsub, gadd, and gsup.

44

universal map1. A representation of the data model is visualized below in Figure 13. To

begin, we generate all possible coalitions from the set of agents. As we determine each

coalition S, we also calculate an approximate value for S, vS. We say that vS is

approximate because there are several unknown factors which could contribute to the vS

being higher or lower, such as obstacles between modules when they are trying to

navigate to one another.

To calculate the vS for each coalition, we first calculate the centroid of the locations of all

the agents in S. We then calculate the average distance of all the agents in S from the

centroid and combine that with an average of the utility values for each agent in S to get

vS.

1 In comparison to the algorithms presented by Rahwan and Sandholm, we are generating our vs from the
physical location data of the modules, whereas in Rahwan’s and Sandholm’s algorithms they were
generating random values for their vs.

Integer id
Double utility
Double xPos
Double yPos

Integer id
Double utility
Double xPos
Double yPos

:
:

Figure 13. A model representation of the array of data
sets that are sent into the coalition structure graph
generation algorithm.

45

�� = ��	�� ∗ ���� ∈ �� �!"(�#!� , �#!$%��)& + �(�) ∗ ���� ∈ �� �*!(+�, +�)&

Figure 14. The formula to determine the value of a coalition. pdist represents the weight assigned to the distance portion, putil
represents the weight assigned to the utility portion, and pdist + putil = 1. poscent represents the centroid location of all the agents in S,
and uS represents the average utility value of all the agents in S.

After we have determined the vS for all possible S, we move on to creating the coalition

structure graph. In reference to the coalition structure graph (Sandholm, Larson,

Andersson, Shehory, & Tohme, 1999), we begin by creating the coalition structure node

at level n in the graph, where each agent is in its own coalition. However, when we

create a node in our model, the node has three sub-nodes as stated previously, a sub-

additive node, an additive node, and a super-additive node. We assume that the vS we

created for each coalition S represents the additive case, so for the additive sub-node, we

factor together all of the vS for each coalition in the current node’s coalition structure.

For the sub-additive sub-node, we decrease each coalitions’ vS by a percentage when

combining them, and for the super-additive sub-node, we increase each coalitions vS by a

percentage when combining them.

���(, = ���� ∈ ���� − !+*. ∗ ��&

����� = ���� ∈ �(��)

���(. = ���� ∈ �(�� + !+�. ∗ ��)

Figure 15. The formulas to calculate the sub-additive, additive, and super-additive values for a node. subp represents the percentage
used to decrease the values in the sub-additive case, and supp represents the percentage used to increase the values in the super-
additive case.

46

As we generate the utility values for each gn, we also create a unique ID for each gn.

The ID allows us to quickly compare nodes together to guarantee that we do not create

the same node twice. The ID we generate is based on the ID of the agents in each

coalition as well as the number of agents in each coalition. Once the id of the node has

been generated, we set gnid equal to the ID.

To keep track of all of the nodes in the graph, we create two data structures to help with

the organization of the nodes. The first data structure is an array that holds all of the

nodes that we create, and the second is a key-map that maps the IDs of each CS node to

its index in the array. After we generate the top level node, we place it into the array at

index 0, and we place into the key-map the ID from the top node and map it to 0.

We then begin a looping process to loop over each CS node in the array to generate the

children of each node (described in section 4.2.1). When we generate a child node, we

again determine the sub-additive, additive, and super-additive sub-nodes. Following the

creation of the children nodes, we check to see if any of the IDs of the newly created

children nodes already exist in the key-map. If a child does not already exist in the key-

map, then we know it is a new node and add it to the array of nodes as well as add its ID

to the key-map. When a child node is created, the index of the array location for the node

is added to the parents’ list of neighbors, gnn, and the parents’ array index is added to the

neighbors list of the child node as well. This lets us know that from the child node we

can traverse to the parent node, as well as traverse from the parent node to the child node

when we are navigating through the MDP later. If when checking the ID of the child

node against the key-map and we discover, based on the ID, that the node has already

47

been created, we simply update the list of neighbors in both the parent and child nodes to

include each other. Figure 16 provides the pseudo-code for the generation of the coalition

structure graph.

4.2.1 Children Node Generation

The child of a node in the CS graph is defined as a node that can be generated by

combining any two coalitions from the current node into a single coalition. The

algorithm begins by looping over each coalition in the current node’s coalition structure.

The current coalition is then combined with every other coalition in the coalition

Figure 16. The pseudo-code for the algorithm to generate all the nodes of the CS graph. V is a map that contains the IDs
of each coalition for its key, and the coalitions’ value for the key-value. S is the set of agent IDs.

function generateAllNodes returns node[] CS
inputs: map V, set S
variables: map CV, int num, int total, node[] children

CS[0] = createNode(S,V)
CV.add(CS[0].id, 0);
num = 0
total = 1

for num < CS.size
 children = CS[num].createChildren(V)
 for i = 0 to (|children|-1)
 if CV.contains(children[i].id)
 CS[num].addNeighbor(CV.get(children[i].id))
 CS[CV.get(children[i].id)].addNeighbor(num)
 else
 CS[total] = children[i]
 CS[num].addNeighbor(total)
 CS[total].addNeighbor(num)
 CV.add(CS[total].id, total)
 total++
 num++

return CS

48

structure, and the rest of the coalitions are left as they are to create a new coalition

structure. For example, a CS node with the coalitions {{1,2}{3}{4}} can generate the

following children nodes: {{1,2,3}{4}}, {{1,2,4}{3}}, {{1,2}{3,4}}. The children

nodes are generated in the same way as the parent nodes, while determining the values

for each of the sub-nodes.

4.2.2 Pruning the Coalition Structure Graph

In order to keep the number of nodes in the tree from becoming exponential, we propose

a form of pruning the tree while we are generating the children from any given node. As

we are generating the children, the algorithm keeps only a small number of all possible

children by using one of the following three strategies:

1. The algorithm keeps the child with the highest additive node and the two
children with the two lowest utility values.

2. The algorithm keeps the child with the highest additive node, the median
additive node, and the lowest additive node.

3. The algorithm keeps three randomly chosen children nodes.

For the first two pruning methods, we keep the child with the best utility value because

that child node will be the node that the MDP policy will choose as the next node. In

determining which other nodes to keep in the pruned model, we keep the nodes with bad

utility values because those nodes with a current bad coalition structure utility value

should generate a node with a better utility value by combining two coalitions with bad

utility values. We keep these immediately bad children because of the uncertainty we

must account for. In the algorithms presented by Rahwan and Sandholm, they

49

immediately prune nodes with bad utility values because they do not incorporate

uncertainty in their model, and therefore, there is no possibility of visiting these pruned

nodes again while traversing the coalition structure tree. Our third model uses randomly

selected children to test against the first two models. A full pseudo-code representation

of the children generation algorithm can be found in Figure 17.

4.3 Value Iteration

After we have constructed the pruned coalition structure graph, we use the value iteration

algorithm to determine the optimal policy. In the value iteration algorithm, we continue

to update the reward value for each node to take into account the neighboring nodes

reward values. For each node, we calculate a utility value for each sub-node. As we

function generateChildNodes returns node[] children
inputs: node n, map V, set S
variables: int coalitions, int childCnt, coalition tmpCoal, set coals

coalitions = number of coalitions in n
childCnt = 0

for i = 1 to coalitions
 for j = i+1 to coalitions
 coals.empty()
 tmpCoal = combine(n.getCoalition(i), n.getCoalition(j))
 coals.add(tmpCoal)
 for k = 1 to coalitions
 if k != i and k != j
 coals.add(n.getCoalition(k)
 children[childCnt] = createNode(tmpCoal,V)
 childCnt++

children = pruneChildren(children)

return children

Figure 17. The pseudo-code for the algorithm that is used to generate the children nodes of a given node. The function returns back
an array of nodes that contains the nodes that were not pruned away.

50

perform more iterations, each node takes more into account the utility values from its

neighboring nodes. The following function is used for the value iteration algorithm,

where i is a sub-node in a node:

3′	 = 5	 + 6(max: ∈;(3�))

where Ri = gnsub, gnadd , or gnsup depending on if i is sub-additive, additive, or super-

additive for the current node, 6 is a discount factor between 0 and 1, and m is the set of

all neighbors for node gn, and the initial value of U for a state is set to 0. We continue

generating U’ for all states until the maximum difference between any U and U’ in a

given loop is less than some value, ε. When we conclude the algorithm, we store the

final U’ value for each node in the node, and we have a final utility value for each state.

The pseudo-code for the value iteration algorithm is shown in Figure 18.

51

4.4 Determining the Optimal Policy

The next step is to determine the optimal policy, where a policy is defined as a solution

which tells us which node we should move towards from any node that we could reach,

function valueIteration returns node[]nodes
inputs: node[] nodes, double discount
variables: double[][] u,double[][] newU, double maxDiff, double epsilon, double
maxVal, node curNeighbor, double curVal

u = double[nodes.size][3]

for i = 1 to nodes.size
 u[i][0] = 0
 u[i][1] = 0
 u[i][2] = 0

maxDiff = 0
while maxDiff > epsilon
 newU = u
 for i = 1 to nodes.size
 maxVal = 0
 for j = 1 to nodes[i].getNeighbors().size
 curNeighbor = nodes[nodes[i].getNeighbor(j)]
 curVal = u[curNeighbor][0] + u[curNeighbor][1] + u[curNeighbor][2]
 if curVal > maxVal
 maxVal = curVal

 newU[i][0] = nodes[i].getSubVal() + discount * maxVal
 newU[i][1] = nodes[i].getAddVal() + discount * maxVal
 newU[i][2] = nodes[i].getSupVal() + discount * maxVal

 u = newU

for i = 1 to nodes.size
 nodes[i].setSubVal(u[i][0])
 nodes[i].setAddVal(u[i][1])
 nodes[i].setSupVal(u[i][2])

return nodes

Figure 18. The pseudo-code for the value iteration algorithm. The function performs the value iteration algorithm on the set
of nodes that is passed to it and returns back the same set of nodes with the updated utility values.

52

and the optimal policy is the policy that leads us towards the node with the optimal utility

value. The goal of the entire process is to find the node with highest utility value, and the

optimal policy tells us that at any given node what node we should move to next that gets

us closer to the maximum utility value. To find the optimal policy, we loop over each

node in the CS graph and examine the utility values of the neighbors of the node. The

neighbor with the highest utility value is the optimal node we can move to during the

MDP traversal, and the policy for the current node is set to that neighbor node. A

diagram explaining the optimal policy is shown in Figure 19.

Figure 19. A visual representation of a CS graph and its optimal policy. In the CS Graph, the lines connecting different nodes
represent neighboring nodes. The bold lines with arrows represent the optimal policy for this CS graph. Each node can have multiple
neighbors, but each node only has a single bold arrow coming from it shows what node to move to next from the current node.

53

4.4 MDP Traversal

The MDP traversal is the final step in determining the optimal coalition structure based

on the final data we have calculated from the value iteration algorithm. Once we have

completed the value iteration algorithm and have an optimal policy which guides us from

a node to its neighbor with the highest utility value, we are able to traverse through the

coalition structure graph to try to find an optimal coalition structure with the highest

utility value. Unlike a traditional MDP, we do not have any defined goal states, so the

algorithm we use accounts for that.

The policy at a given node tells us which neighboring node should give us the best utility

value, yet these utility values were based on the utility values and probabilities of the

three sub-nodes at the neighboring node, so we will not know which node gives us the

best value until we visit it. We begin the MDP traversal by starting at any given node in

the CS graph. We start at the node that represents the current configuration of the

modules (i.e., if we currently have modules 1 and 2 in a coalition and modules 3 and 4

are in a coalition, we start at the node that represents the coalition structure of

{{1,2}{3,4}). To begin with, we set the maxu to -∞ where maxu represents the best utility

value we have seen for any node. When we arrive at a node, we check to see if the node

has already been visited. If we have not visited the node previously, we must

probabilistically determine if the node will be viewed as having a sub-additive, additive,

or super-additive utility value based on the gnsub-p, gnadd-p, and gnsup-p percentages. As

stated previously, gnsub-p + gnadd-p + gnsup-p = 1, and these percentages represent the

likelihood of the current node being sub-additive, additive, or super-additive. The

54

percentages are calculated based on any previous information we have about the terrain

between the modules in the node’s coalitions (i.e., if we know there is a large cliff

between some of the modules of a coalition in the node’s coalition structure, the

percentage for the sub-additive state would increase and the super-additive and additive

states would decrease). Once we determine if the node is viewed as sub-additive,

additive, or super-additive, we will set finalu to gnsub if the node is sub-additive, gnadd if

the node is additive, or gnsup if the node is super-additive. We only calculate finalu the

first time we visit a node, and if we visit the same node again, we return finalu instead of

calculating it again. The node will return the same finalu value every time it is visited.

Once finalu has been determined for the node, we return that value and we check to see if

the current finalu is greater than maxu. If so, we set maxu to the value of finalu from the

current node.

After we have checked the current node’s finalu, we follow the policy of the current node

to tell us which node to move to next. If the policy tells us to go back to the node we just

came from and we followed the policy, we would be in a loop at a local maximum and

would never be able to explore any more of the MDP state space. To avoid this, if the

policy tells us to return to the node we visited before the current node, we

probabilistically determine a neighboring node from the current node’s set of neighbors.

This is why once we determine the optimal policy we still keep information about all

neighbors of the current node. Avoiding local maxima allows us to explore more of the

coalition structures in the MDP.

55

We continue visiting nodes in the graph until we have visited every node in the graph, or

we have not seen a node with a utility value better than the maxu in the last m nodes.

When the algorithm concludes, we return the coalition structure from the node that gave

us the maxu. This coalition structure represents the coalition structure with the best utility

value that of any nodes that we have visited. The pseudo-code for the MDP traversal is

shown in Figure 20.

56

4.5 Complete CS Generation Algorithm

Putting together all of the steps from the coalition structure graph generation, the value

iteration, and the MDP traversal, we are able to go from a set of input that contains each

module’s ID, location, and utility value to determining the optimal coalition structure

based on that data. There are four main steps in being able to determine the optimal

function mdpTraversal returns node bestNode
inputs: node[] nodes, int cutoff, int startingNode
variables: double maxVal, int bestNode, int lastBest, int nodesVisited, int curNode, int
nextNode, int lastNode

maxVal = -∞
bestNode = -1
lastBest = 0
nodesVisited = 0
curNode = startingNode
lastNode = -1

while nodesVisited < nodes.length && lastBest < cutoff
curVal = nodes[curNode].getFinalVal()
if curVal > maxVal
maxVal = curVal
bestNode = nodesVisited
lastBest = -1

nextNode = nodes[curNode].getPolicy()
if nextNode == lastNode
nextNode = nodes[curNode].getRandomNeighbor()

lastNode = curNode
curNode = nextNode

nodesVisited++
lastBest++

return nodes[bestNode]

Figure 20. The pseudo-code for the MDP Traversal algorithm. The function takes a set of nodes as an input and returns back the
best node that was found during the traversal of the MDP.

57

coalition structure (a visualization of the process can be seen in Figure 21). The first step

is calculating the utility value for each possible coalition based on the input data. Once

we have a utility value for each coalition, we can begin the process of generating the

coalition structure graph. The CS graph is the state space that defines all of our possible

coalition structures and is used for both the value iteration and the MDP traversal. Once

we have the CS graph generated, we run the value iteration algorithm on the graph which

determines the optimal policy for the given CS graph. Once we have the graph

constructed and the optimal policy, we run the MDP traversal. The MDP traversal

searches through the state space to find the node in the graph with the maximum utility

value. When we know the node that produces the maximum utility value, we have found

the optimal coalition structure in the graph. The optimal coalition structure tells us which

modules should form into coalitions.

Set of
modules
information

Generate
Coalition
Utility
Values

Generate
Coalition
Structure
Graph

Run Value
Iteration and
Determine
Policy

Run MDP
Traversal to
Find
Optimal CS

Optimal
Coalition
Structure

Figure 21. A flowchart the shows the entire set of steps required to go from the input of modules information to the optimal coalition
structure.

58

Chapter 5

Experimental Results

To evaluate the effectiveness of the approach we have proposed to the coalition structure

generation problem, we have implemented the algorithm in C++. The goal of our

algorithm was to create a quick and simple approach to solve the coalition structure

generation problem for MSRs that would take into account the uncertainty that arises

from the complexity of creating coalitions. Our algorithm uses a modified Markov

Decision Process to traverse a state space while pruning away nodes in the coalition

structure graph. To analyze the results of our approach, we will compare the data from

the pruned coalition structure graph to the full coalition structure graph.

5.1 Size of the State Space

The driving factor for the necessity to prune the state space of the coalition structure

graph came from the fact that the number of possible states in the coalition structure

graph was O(nn). Not only does it take a large amount of onboard memory space to store

all of the possible states, it took an extremely long time to generate all possible nodes that

would exist in the coalition structure graph. The graph in Figure 22 compares the number

of nodes in the full coalition structure graph compared to the average number of nodes

generated from the three pruning methods described in section 4.2.1. The y-axis in the

graph is a logarithmic scale in base 10. As can be seen from the graph, the number of

59

nodes in the full CS graph grows large quickly, to over 109 possible coalition structures

with only 16 agents. When we generate a maximum of three children from each node as

is done in each of our three pruning methods, we reduce the possible number of states

from O(nn) to O(3n) in the worst-case scenario. After experimenting with our data, since

multiple nodes can actually produce the same children nodes, we have found that the

number of nodes generated in the coalition structure graph ends up being close to O(2n-2)

in our data collected for up to 16 agents.

Figure 22. A graph showing the number of nodes generated in the full coalition structure graph compared the average number of
nodes generated in the coalition structure graphs while pruning nodes.

Not only does pruning reduce the number of nodes in the coalition structure graph, it also

reduces the amount of time it takes to generate the coalition structure graph. Even with

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
u

m
b

e
r

o
f

N
o

d
e

s
in

 t
h

e
 C

S
 G

ra
p

h
 (

b
a

se
 1

0
)

Number of Agents

Averge Number of Nodes in the CS Graph

Full CS

Graph

Average

Pruning CS

Graph Size

100

101

102

103

104

105

106

107

108

109

1010

60

only 11 individual agents, the time to generate the full coalition structure graph was more

than 20 minutes (on a laptop running Linux with a dual-core Intel i5 processor). This

amount of time is too large for practical applications of finding the optimal coalition

structure. In Figure 23, the graph shows how the time complexity for generating the

coalition structure graph is reduced using our pruning method. Even with only 10 agents,

the average running time to create the full coalition structure graph was around five

minutes; while using the pruning methods we cut the average running time down to less

than two seconds. This reduction in the amount of time to create the coalition structure

graph shows that our pruning methods are capable of performing significantly quicker

compared to generating the full coalition structure graph.

Figure 23. A graph showing the average amount of time it takes to generate the coalition structure graph for the full graph compared
to the graph using the pruning methods.

0.0001

0.001

0.01

0.1

1

10

100

1000

3 4 5 6 7 8 9 10A
v

e
ra

g
e

 R
u

n
n

in
g

 T
im

e
 (

se
c)

 (
lo

g
a

ri
th

m
ic

 s
ca

le
)

Number of Agents

Average Time to Compute CS Graph

Full CS Graph

Average

Pruning CS

Graph

61

5.2 Maximum CS Reward Value

While it was important to reduce the number of nodes in the coalition structure graph as

well as the amount of time to generate the graph, these were not the most important

factors. We needed to guarantee that the limited number of nodes we were generating in

the pruned coalition structure graph were still giving is high reward values. If we are

pruning away the nodes that contain the highest reward values, then our pruning method

becomes counterproductive.

In order to verify that we are in fact obtaining nodes during our pruning methods that are

near optimal, we compared the nodes in the following way. We first generated the full

coalition structure graph for a set of agents, including the reward values for the sub-

additive, additive, and super-additive sub-nodes. We have stated that we view the

additive sub-node as the average case reward value for a particular node, so for our

comparison method we used the reward value of the additive sub-node. After creating

the entire coalition structure graph with no pruning, we found the highest additive sub-

node reward value in the coalition structure graph and called this our maxCS. To compare

our pruning methods, we then created a coalition structure graph for each of our three

pruning methods using the same set of data that was used to create the full coalition

structure graph. We then traversed through each of the pruned graphs to determine the

highest reward value of any additive sub-node for each pruning method. Finally, we

found the difference between the maxCS and the maximum reward value found in each of

the pruned graphs. The graph in Figure 24 shows the average maximum reward values

found in the full coalition structure graph compared to each of the pruned graphs based

62

on the number of agents. Figure 25 shows a graph that displays the average percentage

away from maxCS for each of the three pruning methods. After examining the data

presented in Figure 24 and Figure 25, we see that the second pruning method we used

(selecting the child with the optimal reward value, the child with the median reward

value, and the child with the lowest reward value) results in average maximum reward

values that are closest to the maxCS. The first pruning method is close to the second

pruning method, but the third pruning method (randomly selecting three children to keep)

results in average reward values that are the farthest from the maxCS.

Figure 24. A graph comparing the average maximum reward values found in each of the three pruning methods compared to the
average maximum reward value found in the entire CS graph.

0.2

0.25

0.3

0.35

0.4

0.45

3 4 5 6 7 8 9 10

A
v

e
ra

g
e

 R
e

w
a

rd
 V

a
lu

e

Number of Agents

Average Optimal Reward Values

Full CS

Graph

Pruning

Method 1

Pruning

Method 2

Pruning

Method 3

63

Figure 25. A graph showing the average percentage difference between the maximum reward value found in the entire CS graph
compared to each of the three pruning methods (the lower the percentage, the closer the average maximum pruned value is to the
optimal value).

5.3 Optimal Node Path Generation

For our final method of comparison we examined the nodes on the different paths from

level n of the coalition structure graph to the optimal node. In testing for this method, we

first generated a full coalition structure graph with no pruning and again found the node

with the additive sub-node that had the highest reward value. After finding the optimal

node, we then found all of the nodes on all of the paths from the single node at level n to

the optimal node. For comparison methods, we then generated pruned coalition structure

graphs using our three pruning methods. We then checked what percentages of the nodes

0

2

4

6

8

10

12

14

3 4 5 6 7 8 9 10

A
v

e
ra

g
e

 P
e

rc
e

n
ta

g
e

 F
ro

m
 O

p
ti

m
a

l

Number of Agents

Average Difference from Optimal Value

Pruning

Method 1

Pruning

Method 2

Pruning

Method 3

64

on the paths to the optimal node in the full coalition structure graph were also generated

in our pruned graphs. We were experimenting to find out which pruning method

generated the greatest amount of the nodes on the paths to the optimal node. If we have a

larger amount of nodes on the path to the optimal node being generated, then we will

have a better chance of generating the optimal node. Figure 26 shows the results we

obtained from our experiments.

Figure 26. A graph showing the percentage of the nodes in the full coalition structure on the path to the optimal node that are
generated from each of our three methods of pruning.

As can be seen from the graph, the second and third pruning methods actually generated

more nodes on the paths to the optimal node than did the first pruning method. Using

0

10

20

30

40

50

60

70

80

90

100

3 4 5 6 7 8 9 10

A
v

e
ra

g
e

 P
e

rc
e

n
ta

g
e

 o
f

N
o

d
e

s
o

n
 P

a
th

 t
o

 t
h

e
 O

p
ti

m
a

l

N
o

d
e

Number of Agents

Average Percentage of Nodes on Path to the Optimal

Node

Pruning

Method 1

Pruning

Method 2

Pruning

Method 3

65

data from all three of the graphs in Figure 24, Figure 25, and Figure 26, although the

random selection of children nodes does result in around the same percentage of nodes on

the path to the optimal node as does our second pruning method, we can see that this does

not guarantee that we are generating near-optimal nodes. The second pruning method

does a good job of generating nodes on the path to the optimal node and also results in

much higher average maximum reward values.

5.4 Comparison to Sandholm

For comparison of the algorithm we have developed to find the near-optimal coalition

structure, we look at comparing the results of our algorithm to the results of the algorithm

proposed by Sandholm (Sandholm, Larson, Andersson, Shehory, & Tohme, 1999). In

their algorithm, they look at only the bottom two levels of the coalition structure and find

the node that has the highest vCS and they are able to say it is within a bound of the

optimal coalition structure of the entire graph. By only looking at the bottom two levels

of the graph, they are able to look at only O(2n-1) nodes to find a near-optimal coalition

structure. In the graph shown in Figure 27, we have compared the number of nodes

examined by Sandholm’s algorithm and compared it to the number of nodes generated by

our pruning algorithm. As we have stated, Sandholm’s algorithm looks at O(2n-1) nodes,

and our algorithm during experimentation generated a little better than O(2n-2) nodes.

Also in Figure 28, we have compared the amount of time it takes to generate the coalition

structure graph using our algorithm in comparison with the time taken to generate the

same graph using Sandholm’s algorithm (Sandholm, Larson, Andersson, Shehory, &

Tohme, 1999). As can be seen, Sandholm’s algorithm did take less time to determine to

66

generate the need coalition structures, but as stated previously the coalition structures are

limited to only coalition structures with a single coalition or two coalitions. This

approach is not very applicable to situations where we might want to generate any

number of coalitions, and possibly even have all modules in their own coalition.

Figure 27. A graph comparing the number of nodes generated by using the algorithm proposed by Sandholm compared the number of
nodes generated using our pruning method to reduce the size of the coalition structure graph.

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
o

ta
l

N
o

d
e

s
in

 t
h

e
 C

S
 G

ra
p

h

Number of Agents

CS Graph Size Comparison

Pruned

Graph

Size

Sandholm

67

Figure 28. A graph comparing the time to generate the coalition structure graph using the full coalition structure graph, using our
pruning method, and using Sandholm's algorithm.

We also implemented Sandholm’s algorithm to look at the bottom two levels of coalition

structure graph to find the best vCS in those two levels. We again modified the algorithm

to allow each node to have sub-additive, additive, and super-additive sub-nodes that each

have their own values. For comparison, we found the highest additive value of any node

in the bottom two levels and compared that to the highest additive value found by using

each of our three pruning methods. The graphs in Figure 29 and Figure 30 compare the

additive reward values we found using Sandholm’s algorithm and the additive reward

values we found using our pruning methods. Figure 29 shows the optimal additive reward

values found plotted with the optimal additive reward value of the entire graph. Figure

30 shows the average percentage difference between the optimal additive value of the full

0.0001

0.001

0.01

0.1

1

10

100

1000

3 4 5 6 7 8 9 10A
v

e
ra

g
e

 R
u

n
n

in
g

 T
im

e
 (

se
c)

 (
lo

g
a

ri
th

m
ic

 s
ca

le
)

Number of Agents

Average Time to Compute CS Graph

Full CS Graph

Average

Pruning CS

Graph

Average

Using

Sandholm

68

coalition structure graph compared to each pruning method and the values found using

Sandholm’s algorithm.

Figure 29. A graph comparing the optimal additive reward values found using the full coalition structure graph compared to our
pruning methods and Sandholm's algorithm.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

3 4 5 6 7 8 9 10

A
v

e
ra

g
e

 R
e

w
a

rd
 V

a
lu

e

Number of Agents

Average Optimal Reward Values

Full CS

Graph

Pruning

Method 1

Pruning

Method 2

Pruning

Method 3

Sandholm

69

Figure 30. A graph comparing the average percentage difference between our three pruning methods and Sandholm's algorithm
compared to the optimal additive reward value found in the entire coalition structure graph.

As can be seen from the two previous graphs, the method for searching for the optimal

coalition structure using Sandholm’s algorithm gives us less optimal values than using

our three pruning methods. On average, the optimal reward value found by using

Sandholm’s algorithm was five to fifteen percent farther away from the optimal reward

value found by using our pruning methods. Using our pruning methods, we are able to

find a more optimal additive node while generating fewer nodes in the coalition structure

graph. We have been able to show that our approach to the finding the optimal coalition

structure reduces the number of nodes explored and also increase the additive reward

value found.

0

5

10

15

20

25

3 4 5 6 7 8 9 10

A
v

e
ra

g
e

 P
e

rc
e

n
ta

g
e

 F
ro

m
 O

p
ti

m
a

l

Number of Agents

Average Percent Difference from Optimal

Value

Pruning

Method 1

Pruning

Method 2

Pruning

Method 3

Sandholm

70

5.5 Implementation in Webots

We have been able to successfully incorporate our algorithm for coalition structure

generation into our Webots model of the ModRED robot. We begin by placing a group

of modules in a simulated environment. We randomly assign each module a utility value

that represents how well it is performing in its current configuration. A random module

is then assigned to be in charge of calculating the optimal coalition structure of all the

modules that responded to the request. Once all of the data has been collected, the

module in charge then runs the algorithm for optimal coalition structure generation that

we described in Chapter 4. When the algorithm is complete, the module in charge has a

set of all the coalitions that should be formed. In our current implementation, the in-

charge module then randomly selects a module from each coalition to be the leader of

that coalition. The coalition’s leaders are then notified that they are leaders and are told

which modules in are in their coalition.

Each coalition leader is then in charge of getting the modules in their coalition into a

chain. The leader begins by selecting the module in its coalition it is closest to and

calculates the angle between them. The leader then rotates to that bearing and tells the

other module to move to its location. Once close enough, the modules lock their

connectors and form a chain. The process then repeats for the next closest module until

all modules in the coalition have joined into a single chain.

A series of screenshots from the implementation of the algorithm in Webots can be seen

in Figure 31. In this situation, we have put four ModRED modules randomly in an

71

environment and oriented them in different directions. We then assigned a random

module to begin the coalition structure generation process. As can be seen from the

images, in this instance the best coalition structure consisted of two chains of modules

each containing two modules. The modules orientated themselves properly and were

able to form two chains.

5.6 Summary

As we have shown, our method for creating a pruned coalition structure graph is capable

of generating near-optimal coalition structures. We are able to significantly reduce the

time complexity to create the graph as well as reduce the number of nodes in the graph

from O(nn) to O(3n). In looking at the results from our experimentation, the pruning

method that keeps the child with the best reward value, the child with the median reward

Figure 31. A set of four ModRED modules performing dynamic reconfiguration using our modified MDP algorithm. The modules
begin as four individual coalitions but then form two coalitions each containing two modules.

72

value, and the child with the lowest reward value produces the best results in generating

near-optimal nodes. In combination with our modified MDP approach, our algorithm

provides an effective solution to the optimal coalition structure generation problem.

73

Chapter 6

Future Work

We have shown how our approach to solving the optimal coalition structure generation

problem can be solved using a modified Markov Decision Process and a pruned coalition

structure graph. From an implementation standpoint, we were able to successfully

implement our optimal coalition structure generation algorithm for experimentation as

well as within our Webots implementation of the ModRED robot.

Within the generation of the pruned coalition structure graph, there is room for

advancement of our pruning methods. The three methods of pruning we introduced can

be compared to other methods of pruning. In our pruning methods, we always kept three

children nodes, yet it is possible that a better pruning solution could be found by keeping

fewer children or by introducing a method of keeping a variable number of children

nodes.

In our current implementation of the algorithm within Webots, our process for coalition

creation is very simple. In the current process that is described in section 5.5, we

discussed how the leaders of the coalitions are picked and how one module at a time

move towards the leader in order to form the chain of modules. For future enhancements,

not only could the leader and the other module move towards each other, but not all

modules have to necessarily join with the leader right away. For example, if we have

74

four modules that joining into a single coalition, it might be more time effective to have

module 1 and module 2 form a chain and at the same time have module 3 and module 4

form a chain, and then have the two chains move towards each other.

75

Chapter 7

Conclusion

The optimal coalition structure formation is a problem that has been studied and

researched from many different angles. The goal of forming the optimal coalition

structure is to create coalitions that help lead to the optimal performance of all of the

modules in the environment. Coalitions of different sizes are needed to perform different

tasks, as some coalitions might be too large or too small to perform the given task.

In this thesis, we have proposed an alternative solution to the optimal coalition structure

generation problem and applied it to a novel chain-type MSR, ModRED. To solve the

problem of the optimal coalition structure, we outlined an algorithm that uses a modified

Markov Decision Process to account for uncertainty in the valuation a coalition and

therefore a coalition structure receives. We have also introduced a method for generating

and pruning the coalition structure graph which still leads to a near-optimal solution to

the problem.

There are several future directions that can be researched starting from the topics

explored in this thesis. Compact and distributed representations of MDPs such as

decentralized MDPs (dec-MDP) (Becker, Zilberstein, Lesser, & Goldman, 2004), multi-

MDPs (MMDPs) (Kumar & Zilberstein, 2009) and sparsely interactive MDPs (SIMDPs)

(Spaan & Melo, 2008) are some of the proposed models of MDPs that can be investigated

76

for a more succinct representation of the MDP proposed in Section 4 of this thesis.

Similarly, research can be done to extend distributed algorithms for solving coalition

games such as DCVC (Rahwan, Michalak, Sroka, & Wooldridge, 2010), to include

uncertainty in the coalition structure graph space along the lines of the work in this thesis.

Yet another research direction is to develop realistic representations of terrains, closely

resembling extra-terrestrial environments within the Webots simulator for more accurate

testing of ModRED’s operation. Finally, implementing and testing the algorithm

proposed in this thesis on the physical ModRED robot is a challenging and exciting

research direction.

Modular self-reconfigurable robots provide a viable option for the future of space

exploration. Not only are they capable of handling a wide variety of tasks, they are

capable of performing tasks that they were never designed to perform due to their ability

toself-reconfigure and form new coalitions. MSR’s ability to adapt to new environments

and figure out how to accomplish a given task makes them a promising option in space as

well as here on earth.

77

Bibliography
Aziz, H., & de Keijzer, B. (2011). Complexity of Coalition Structure Generation.

Becker, R., Zilberstein, S., Lesser, V., & Goldman, C. (2004). Solving Transition
Independent Decentralized Markov Decision Processes. Journal of Artificial Intelligence
Research , 22:423-455.

Castano, A., Behar, A., & Will, P. (2002). The Conro modules for reconfigurable robots.
IEEE/ASME Transactions on Mechatronics , 7 (4), 403-409.

Chalkiadakis, G. (2007). A Bayesian Approach to Multiagent Reinforcement Learning
and Coalition Formation under Uncertainty. Ph.D. Thesis, University of Toronto,
Toronto, Ontario.

Chu, K. D., & Nelson, C. A. (2011). Design of a Four-DOF Modular Self-Reconfigurable
Robot with Novel Gaits. Proceedings of the ASME 2011 International Design
Engineering Techniques Conferences (In Review). Washington, D.C.

Curtis, S; Brandt, M; Bowers, G; Brown, G; NASA Goddard Space Flight Center.
(2007). Tetrahedra Robotcs for Space Exploration. Aerospace and Electronic Systems
Magazine , 22-30.

Cyberbotics Ltd. (2011). Webots Home. Retrieved February 28, 2011, from Cyberbotics
Website: http://www.cyberbotics.com

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003). Efficient Solution
Algorithms for Factored MDPs. Journal of Artificial Intelligence Research , 19, 399-468.

Horling, B., & Lesser, V. (2005). A survey of multi-agent organizational paradigms. The
Knowledge Engineering Review , 19 (4), 281-316.

iMobot - an Intelligent Reconfigurable Mobile Robot. (n.d.). Retrieved April 11, 2011,
from UC Davis Integratio nEngineering Laboratory:
http://iel.ucdavis.edu/projects/imobot/home.html

Kamimura, A., Yoshida, E., Murata, S., Kurokawa, H., Tomita, K., & Kokaji, S. (2008).
Distributed Self-Reconfiguration of M-TRAN III Modular Robotic System. The
International Journal of Robotics , 373-386.

78

Kuman, A., & Zilberstein, S. (2009). Event-Detecting Multi-Agent MDPs: Complexity
and Constant-Factor Approximation. Proceedings of the 21st International Joint
Conference on Artificial Intelligence.

Lee, W., & Sanderson, A. (1998). Dynamic simulation of tetrahedron-based Tetrobot.
Intelligent Robots and Systems , 1, 630-635.

Moeckel, R., Faquier, C., Drapel, K., Dittrich, E., Upegui, A., & Ijspeert, A. (2006).
Exploring adaptive locomotion with YaMor: a novel autonomous modular robot with
Bluetooth interface. Industrial Robot: An International Journal , 33 (4), 285-290.

Multi-Agent Systems. (2010, October 30). Retrieved February 14, 2011, from AAAI Web
Site: http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/MultiAgentSystems

Myerson, R. B. (1997). Game Theory: Analysis of Conflict. Cambridge, Massachusetts:
Harvard University Press.

Rahwan, T. (2007). Algorithms for Coalition Formation in Multi-Agent Systems. Ph.D.
Thesis, University of Southampton, Southampton, UK.

Rahwan, T., Michalak, T., Sroka, J., & Wooldridge, M. (2010). A Distributed Algorithm
for Anytime Coalition Structure Generation. Proceedings of the 9th International
Conference on Autonomous Agents and Multi-Agent Systems, (pp. 1007-1014). Toronto,
Canada.

Ray, D. (2008). A Game-Theoretic Perspective on Coalition Formation (1st ed.). Oxford
University Press, USA.

Russel, S., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach (3rd ed.).
Upper Saddle River, NJ: Prentice Hall.

Salemi, B., Moll, M., & Shen, W. (2006). Superbot: A deployable, multi-functional, and
modular self-reconfigurable robotic system. Intelligent Robots and Systems, IEEE/RSJ
International Conferrence, (pp. 3636-3641).

Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohme, F. (1999). Coalition
structure generation with worst case guarantees. Artificial Intelligence , 111, 209-238.

Shoham, Y., & Leyton-Brown, K. (2009). Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. New York, NY: Cambridge University Press.

Siegwart, R., & Nourbaksh, A. (2004). An Introduction to Autonomous Mobile Robotics.
Cambridge, MA: The MIT Press.

79

Spaan, M., & Melo, F. (2008). Interaction-drivern Markov Games for Decentralized
Multiagent Planning under Uncertainty. Proceedings of the International Joint
Conference on Autonomous Agents and Multi Agent Systems, (pp. 525-532).

Stoy, K., Brandt, D., & Christensen, D. J. (2010). Self-Reconfigurable Robots: An
Introduction. Cambridge, MA: The MIT Press.

Suh, J., Homans, S., & Yim, M. (2002). Telecubes: Mechanical Design of a Module for
Self-Reconfigurable Robotics. IEEE Robotics & Automation Magazine , 4, 4095-4101.

Suijs, J., & Borm, P. (1999). Stochastic Cooperative Games: Superadditivity, Convexity
and Certainty Equivalents. Journal of Games and Economic Behavior , 27:331-345.

Townsend, J; Biesiadecki J; Collins, C; Jet Propulsion Lab., California Inst. of
Technology. (2010). ATHLETE mobility performance with active terrain compliance.
Aerospace Conference (pp. 1-7). Big Sky, MT: 2010 IEEE.

Weiss, G. (1999). Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. Cambridge, Massachusetts: The MIT Press.

Yim, M. (1994). Locomotion Gaits with Polypod. Video Proc. of the IEEE Intl. Conf. on
Robotics and Automation. San Diego, CA.

Yim, M., Zhang, Y., Roufas, K., Duff, D., & Eldershaw, C. (2003). Connecting and
disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Transactions on
Mechatronics , 7 (4), 442-451.

	University of Nebraska at Omaha
	DigitalCommons@UNO
	4-2011

	Dynamic Reconfiguration in Modular Self-Reconfigurable Robots Using Multi-Agent Coalition Games
	Zachary Ramaekers
	Recommended Citation

	\376\377\000Z\000a\000c\000h\000R\000a\000m\000a\000e\000k\000e\000r\000s\000_\000T\000h\000e\000s\000i\000s

