
Masthead Logo
University of Nebraska at Omaha

DigitalCommons@UNO

Theses/Capstones/Creative Projects University Honors Program

5-2019

Building an Artificial Intelligence to Learn Go
Nathan Skalka
nskalka@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/
university_honors_program

This Dissertation/Thesis is brought to you for free and open access by the
University Honors Program at DigitalCommons@UNO. It has been
accepted for inclusion in Theses/Capstones/Creative Projects by an
authorized administrator of DigitalCommons@UNO. For more
information, please contact unodigitalcommons@unomaha.edu.

Footer Logo

Recommended Citation
Skalka, Nathan, "Building an Artificial Intelligence to Learn Go" (2019). Theses/Capstones/Creative Projects. 59.
https://digitalcommons.unomaha.edu/university_honors_program/59

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Nebraska, Omaha

https://core.ac.uk/display/232778587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/university_honors_program?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/honors_community?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/university_honors_program?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/university_honors_program?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/university_honors_program/59?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages

Building an Artificial Intelligence to Learn Go
Honors Project

Nathan Skalka

Mentor/Supervisor: Dr. Prithviraj (Raj) Dasgupta

Computer Science Department
University of Nebraska at Omaha

29 April 2019

Building an Artificial Intelligence to Learn Go 1

1 Introduction 3

2 Related Work 5

3 Implementation 7
3.1 Background Details 7
3.2 Monte-Carlo Tree Search and Adaptive Policy Playouts 7
3.3 Unsupervised Learning with Tensorflow 8

4 Results and Analysis 10
4.1 Monte-Carlo Tree Search 10
4.2 Unsupervised Learning 10

Appendix I 12

5 Future Work 13

Bibliography 14

2

1 Introduction
Go is a 2-player board game played competitively on a 19x19 grid board. Each player

takes turns placing a black or white piece, respective to the player, in an empty intersection until
the game ends. This goal state can occur if the board is filled or both players agree that no more
pieces need to be placed in order to
determine the end score of the game. The
end score is determined by counting the
empty spaces within territories which is
defined as the enclosed space of a
player’s pieces and by subtracting the
number of pieces captured by the
opposing player surrounding the player’s
pieces, creating a territory. Capturing
occurs when one player’s pieces are
surrounded on all outside adjacent sides.
Figure 1a and 1b describes a few
different territories while Figure 1c
exemplifies the result of white capturing an opponent’s black pieces, creating a territory.

The author’s interest in this research stems from an interest in artificial intelligence
driven game playing. In order to better research the core topic, there were a few in-depth
concepts like a game trees, game state space, and reinforcement learning which needed to be
covered prior. First, an explanation of the game tree utilized in order to initially solve the
challenge of playing Go. Given a specific state of the board, there are a number of possible
actions which branch from the current state to a new state as exemplified in transition of Figure

2a to 2b. Repeating this branching behavior out to a final game state, this branching can recurse
deep into a tree structure given a 19x19 board and approximately 150 to 400 turns in a game.
Complexity on the magnitude of 10360

 due to the high count of nodes in the tree, and too complex

3

for some of the fastest computers with a large memory space. (Brown et al., 2012) To note, this
level of complexity out matches that of chess which is in the magnitude of 10123. Thus, solving
the problem of this research required much more recent developments in the artificial
intelligence field in order to tackle the higher difficulty of the problem.

As much of artificial intelligence starts out, an algorithm of relative newness to the field
called Monte-Carlo Tree Search (MCTS) is used in order to explore the state space of Go and
determine the appropriate action. However, due to the extremely large state space introduced by
the simple game of Go and the size of a 19 by 19 board, measures were taken in the author’s
effort to reduce the board size to 9 by 9 in order to observe the results of an MCTS algorithm
without requiring the large computation power necessary in order to process the state space. By
studying and implementing the process for playing Go with MCTS, the author better understands
the benefits of automating the algorithm into a learning process through reinforcement learning.
Some steps were skipped in the process due to previous research completed by DeepMind in the
field of reinforcement learning (supervised and unsupervised), bridging the gaps between the
MCTS process, a supervised learning model, and an unsupervised learning model.

2 Related Work
Past works on the topic of MCTS-oriented solutions include efforts to produce an

efficient, time-sensitive program called Pachi. Pachi is an open source project which aims to be a
state-of-the-art solution written in C++. “Petr Baudis maintains a Pachi instance running with 8
threads on Intel i7 920 with hyperthreading enabled and 6 GiB of RAM available that plays as
users Pachi, PachIV and PachIW. These instances can hold a solid 1-dan rank” (Baudiš & Gailly,
2012). This rank of 1-dan, or 2200 Elo rating, is objectively what will be used in comparison of
the various implementations this project is attempting to achieve. The Pachi program utilizes an
enhanced MCTS algorithm in order to calculate the appropriate action without simulating the
entire game tree. Relevant implementation details of Pachi is the incorporation of each
intersecting tile containing data like the intersection color, counts of immediate neighbor colors,
group identification based on the group-founding piece’s position. (Baudiš & Gailly, 2012)
Baudiš acknowledges that a pure MCTS algorithm is not stable enough to play in highly
disadvantaged or advantaged situations. Because of this, Pachi further emphasized the ability to
optimally compute by incorporating domain specific knowledge pro-players utilize in order to
prioritize what areas of the game tree are explored first. (Baudiš & Gailly, 2012) Common 3x3
patterns are used like the one in Figure 3 to describe a locally-scoped scenario and the
appropriate play for a given player. In the
figure, various forms of the “Hane”
pattern are shown with a variety of
possibilities for either player to make a
move, but the far right option shows the

4

beneficial option is only for the black-pieced player. These patterns are the driving force behind
the solution that is Pachi; however, this requires human observation which lacks the powerful
insight of machine learning.

In the past three years, reports published by DeepMind tackled the challenge of utilizing
machine learning to improve upon the design of Pachi. It does so by learning the patterns Pachi
was hardwired to find from human experience. This leverages the insights a computer can make
on a variety of patterns by looking at a board state, and understanding more optimal plays from
past experience. At first, DeepMind research focused on the observation and learning from
recorded games of professional players, commonly referred to as supervised learning due to the
large sample set the program was given to learn. This is referred to as learning through replay
where the program learns by only observing past positions. (Silver, Huan, Maddison, Guez,
Sifre, Van Den Driessche, & Dieleman, 2016) The result was the program AlphaGo which
successfully defeated Lee Sedol, one of the highest ranked 9-dan players at the time. (Silver et
al., 2016) After this, further research was put forth in order to build upon the supervised learning
of AlphaGo with a less supervised learning approach called reinforcement learning. Precisely,
AlphaGo Zero (AGZ) was developed in order to learn from a blank slate, without any knowledge
of high-level plays and knowing only the rules of the game. This is referred to in some literature
as learning via “tabula rasa”, the latin for “blank slate”. (Silver, Schrittwieser, Simonyan,
Antonoglou, Huang, Guez, & Chen, 2017) As an extension of AlphaGo, the transition focuses on
learning while playing against itself. This is referred to as self-play, and AGZ starts by only
playing random moves. It learns by playing
against itself, observing which plays lead to a
winning game, and adopting those plays to
become better in future iterations. Repeating
these steps is the key to building both a
consistent as well as more fully “experienced”
player.

3 Implementation

3.1 Background Details
Two implementations of a Go playing

engine were created for this project, a
MCTS-oriented process and a reinforcement
learning (unsupervised) process. Both were
developed in the Python programming
language. A general board with state and

5

actions related to the game like placing pieces, capturing pieces, calculating liberties, and scoring
the board was created for use by both implementations. Finally, an interface for interaction
between the various artificial intelligences was chosen to allow the competing AI’s to interact in
an automated way.

GoGui is a free, packaged suite of programs for playing Go and interacting with Go
programs. Within GoGui is a tool called GoGui-TwoGtp which allows two Go Text Protocol
(GTP)-enabled processes to receive and respond to Go related actions like determining the next
move of a player or playing a move to update the internal model of the GTP-enabled programs.
As the name implies, GTP is a text based protocol running on the standard input and output of a
process. As exemplified by Figure 4, commands are sent in the common form of command then
space separated arguments while a response is given by returning a validation character of “=”
for okay or “?” for a failure. Following the response character, an expected value when
succeeding or an error message when failing is sent on the same line. In other aspects of
computer science, this form of communication is likened to GET or POST web endpoints.

3.2 Monte-Carlo Tree Search and Adaptive Policy Playouts
As MCTS solutions can be viable at a small state-space complexity like a 5x5 board, the

initial proposed implementation was to be a 5x5 board. However, this became difficult to test
due to Pachi running at a minimum of a 7x7-sized board, leaving an incomplete subset of the
board unaccounted for within the game tree. Therefore, the final implementation set the size for
the rest of the project to 9x9 which is also the common, smallest board size for teaching moves
to beginners. This board size is still computationally possible for the less powerful computers
with the use of Adaptive Policy Playouts (APP) to prioritize said computation towards generally
well-recognized high-level play patterns. This tactic is used to optimize Pachi’s efficiency in
determining moves. Similarly, this tactic is being utilized for the lessen computational load just
to produce a strong set of moves in a short amount of time, but not potentially the one best move.

The research-driven, python implementation utilizes many of the same features as the
Pachi program, namely the focus on prioritizing which branches of the game tree to explore via
APP. This utilization of APP mentioned above requires an analysis step of the current board state
in 3x3 patterns before exploration begins. While this step does add complexity to the
computation of the whole tree were it to be explored, the analysis is giving efficiency in creating
a thin tree with few, high potential branches to be searched. There is also a secondary level of
limit given in the readout count for exploration so the MCTS did not take up a large portion of
time in order to calculate one move, giving a more responsive behavior of at most 10 seconds.

6

3.3 Unsupervised Learning with Tensorflow
MiniGo is a project focusing on being an open-source implementation based on the AGZ

paper. It incorporates many different aspects with the intention of being highly readable code. As
mentioned in the core readme, another primary goal of the project is to exemplify the use of the
Tensorflow framework, reinforcement learning, and docker as a OS abstraction. While some of
these targets align with the objectives of this project, not all parts were translated over for the
purposes of this project.

Tensorflow is an open-source machine learning library aiding in the development of
reinforcement learning. (Tensorflow, n.d.) More commonly seen applications involving machine
learning are image classification, handwriting text recognition, and language translation.
Interestingly, a 9x9 grid of patterns falls into much of the same category as the above application
of image classification. That is to say, Tensorflow is leveraged to teach an application to
recognize patterns from examples and to learn where to use them from the success of initially
random decisions. In testing and research, working with the dockerization was difficult to follow
running Docker on Windows; however, for the the author’s implementation, dockerizing the
solution was not within the scope and was not pursued as running in a python virtualenv was the
core necessary step in connecting the python code to the Tensorflow-gpu package and GPU
drivers.

The utilization of Tensorflow was key in developing the reinforcement learning elements
of this project. However, there were some core differences between the the AGZ paper, the
minigo research, and the final implementation. First, as per the minigo project itself there is no
virtual loss, not enough filters (128 instead of 256), and ambiguity around the MCTS output, pi,
the policy network target. The author leveraged Tensorflow’s Example class as the initial
implementation unlike in the the minigo project. Minigo utilized a Dataset class to handle the
training data prior to the evolution of the tfExample class. This allowed for some initial cutaway
code to be much more cleanly developed to begin with, and gave the overall Tensorflow learning
pipeline a more readable feel.

4 Results and Analysis

4.1 Monte-Carlo Tree Search
For the evaluation of the MCTS implementation with limited readouts, the

implementation scored 1 win out of 25 against the Pachi program operating at approximately
1-dan (2200) Elo rating. Given these two values, a calculated score of approximately 1400-1648
Elo was assigned to the MCTS implementation. Relative to reinforcement learning, there is no

7

learning or improvement from playing more games. Only through further optimization, would
there be an improvement in playing. Some optimizations come from the greater library of 3x3
patterns as well as incorporating more than just the 3x3 patterns with certain larger scale patterns
like laddering. For reference, laddering occurs when one player attempts to guide the other
player’s singular line of pieces to an end on the board and captures them. Referring to Appendix
I, the gtp output of a losing game between the Pachi and the MCTS implementation shows an
ability to play. However, there is also a lack of ability to compete against higher level AI’s and
players due to static skill of the program.

4.2 Unsupervised Learning
Unlike the MCTS algorithm which lacks a natural ability to learn from what it plays, the

unsupervised learning implementation does in fact learn. A version of the Tensorflow model
used by the minigo application was used in order to test the running and integration of
Tensorflow-gpu and CUDA. The result of testing the given model produced 8 wins out of 25
matches against Pachi, calculating out to an approximate 1750-2035 Elo score. However, there
were two issues which appear not to
match up with the AGZ paper this
project was built on. First, it appears
there is some amount of overfitting
given a lower prediction accuracy
than the paper’s 85%. This is thought
to be due to the training process not
adequately shuffling the dataset in
the learning step. Secondly, it
appears that certain transformations
of the same board produces variable
resulting plays due to a variation in
the application’s value estimations.
Lastly, the learning loop portion of
the application was tested with the following Figure 5 which represents the learning over
generations. However, this learning is at a much slower pace than the AGZ and recorded minigo
learning due to both the hardware used and the less efficient learning in fewer samples per
generation than both AGZ and minigo (125,000 each). Given Figure 5, there is much more
within the learning loop to accomplish without much reduction ability to learn. This exemplifies
a good learning process, but with more time needed to fully build the model rendered in either
AGZ or minigo.

8

5 Future Work
For the potential future work of the MCTS-based algorithm, the author notes a few

potential benefits which could increase the strength of play and raise the programs Elo rating.
First, diversifying the APP samples the program works by incorporating a file location to load
more data from. Given the static structure of APP, an large number of patterns could become
known to the Go community. Being able to incorporate these patterns in a singular location as
opposed to cramming it into the source code would make for a better designed process. Second,
The current program only recognizes 3x3 patterns, so incorporating a large pattern recognition
process to the current board analysis would further improve the Elo. It would aid the program by
arming it with the knowledge necessary to handle patterns similar to laddering which requires an
analysis of a 3x3 space and recursively check in each diagonal direction without larger pattern
recognition.

For the future work of the reinforcement learning algorithm, there are a few lacking
implementation details which exist in the AGZ paper which inhibit but do not prevent the
reinforcement learning process. First, adding a virtual loss to the learning process. Adding such a
process would allow for the MCTS to be parallelized without each thread affecting the real loss
of a node. This would also point the MCTS to evaluate a single option as opposed to the 8 or 16
proposed due to the thread count. Secondly, increasing the number of filters which was not at the
count of the proposed paper could increase the precision of behavior.

6 Conclusion
There were a variety of objectives behind this project. These included the following:

researching various projects and papers related to the topic, researching specifically the machine
learning and reinforcement learning processes of AlphaGo and AlphaGo Zero, implementing
similar algorithms utilized in repositories like Pachi and minigo, and systematically analyzing
the performance of the written algorithms. Each of these goals was met in one form or another,
and the results of each are presented above in this report with similar structure to the execution
of the project. This project met my largest of learning-oriented goals I personally set as a
takeaway from performing this research. My takeaway that I will use in future research and
projects was understanding how an AI interacts with a state space of a game’s environment and
learning how to model a game state in order to utilize effective processes of machine learning
and reinforcement learning.

9

Appendix I
1. MCTS with APP Game Result (B: Pachi, W: Research Implementation)

2. Reinforcement Learning Game Result (B: Pachi, W: Research Implementation)

10

Bibliography
Baudiš P., Gailly J. (2012) PACHI: State of the Art Open Source Go Program. In: van den Herik

H.J., Plaat A. (eds) Advances in Computer Games. ACG 2011. Lecture Notes in
Computer Science, vol 7168. Springer, Berlin, Heidelberg.

Browne, C. et al. A survey of Monte-Carlo tree search methods. IEEE Trans. Comput. Intell. AI

in Games 4 (2012).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... &

Dieleman, S. (2016). Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587), 484.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Chen, Y.

(2017). Mastering the game of Go without human knowledge. Nature, 550(7676), 354.

TensorFlow. (n.d.). Retrieved April 27, 2019, from https://www.tensorflow.org/.

The Go Text Protocol. (2009). Retrieved April 27, 2019, from

https://www.gnu.org/software/gnugo/gnugo_19.html.

11

https://www.tensorflow.org/
https://www.gnu.org/software/gnugo/gnugo_19.html

	University of Nebraska at Omaha
	DigitalCommons@UNO
	5-2019

	Building an Artificial Intelligence to Learn Go
	Nathan Skalka
	Recommended Citation

	tmp.1556552999.pdf.Qra0E

