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Problems in Current Code Inspection 
Tools

• Developers need to inspect program differences on 
diff patches file by file
• Despite recurring changes, a group of similar, related 

edits in multiple locations

• Manually examine individual edits
• Tedious and error-prone process

• Current tools do not summarize recurring changes 
nor report anomalies in a diff patch
• Hard to understand such code changes



CS WORKSHOP 2019

RIDL: Recurring Code Change Inspection with 
Deep Learning 

• RIDL: (i) summarizes recurring changes and (ii) detects 
potential change anomalies in the codebase 

• Learn similar code fragments from a clone database to train 
a binary-class classifier

• Train the classifier by true and false clones, cloned and non-
cloned pairs of code fragments

• Extract an edit script by analyzing data and control flow 
context

• Form change patterns by leveraging

the classifier
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Major Research Contribution

• Summarization for Recurring Changes  
• A novel integration of program differencing and AST-

based code pattern search to track the changes to 
clones based on a deep learning technique. 

• Detection for Change Anomalies 
• Detect potential change anomalies, such as missing and 

inconsistent edits. 
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Motivating Example
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… Clone Instance #1
m1(..);

public class JEditTextArea {
public void processKeyEvent(KeyEvent evt, int from) {

Event event = (Event) evt;
- if(inputHandler.isActive() && from != VK_CANCEL) {..
- focusKeyTyped = event.getEvent();
- ..
- }
+  focusKeyTyped = processEvent(from, focusKeyTyped, event);

...
event = (Event) evt;

- if(inputHandler.isActive() && from != VK_CANCEL) {..
- focusKeyTyped = event.getEvent();
- ..
- } 
+  focusKeyPressed = processEvent(from, focusKeyTyped, event);

}
public void processFocusedKeyEvent(KeyEvent evt, int from) {

Event event = (Event) evt;
- if(inputHandler.isActive() && from != VK_CANCEL) {..
- focusKeyTyped = event.getEvent();
- ..
- }
+  focusKeyTyped = processEvent(from, focusKeyTyped, event);

case Event.KEY_PRESSED: 
event = (Event) evt;

- if(inputHandler.isActive() && from != VK_CANCEL) {..
- focusKeyTyped = event.getEvent();
- ..
- }
+   focusKeyTyped = processEvent(from, focusKeyTyped, event);

..}
}

(a) Recurring changes for refactorings applied 
in revisions v20060919-7074 and v20060919-

7075 in an open source project JEdit.
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public class JEditStyledTextArea {
void processActionEvent(ActionEvent ev, int 

from) {
Event changeEventAction;
Event action = (Action) ev;
switch(ev.getID()) {
case Event.CTRL_MASK: 

- if(inputHandler.isActive() 
- && from != VK_CANCEL) {..
- changeEventAction = ev.getEvent();
- ..
- }
// It should call to processEvent with three 
parameters, instead of calling to another 
overloaded method. 
+       focusKeyPressedEvt = processEvent(from, 

changeEventAction);
..

} 
}}

public class JEditEmbeddedTextArea {
void processKeyEvent(MouseEvent evt, 

int from) {
Event focusKeyPressed;
Event event = (Event) evt;
switch(evt.getID()) {
case Event.KEY_PRESSED: 

// It should apply a refactoring but missed 
required edits.

if(inputHandler.isActive() 
&& from != VK_CANCEL) {..

focusKeyPressed = evt.getEvent();
..

}
..

}
}

}

(b) Code fragments that have been missed 
to apply the required refactoring as (a).

(c) Code fragments refactored similarly but 
edited inconsistently unlike (a).

Missing updates
⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼
Inconsistent changes 

 RIDL summarizes these 
recurring changes

 RIDL identifies these change 
anomalies
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Overview of RIDL’s workflow

 Phase 1. Feature extraction for change patterns
 Phase 2. Differencing and dependence analysis 
 Phase 3. Recurring change summarization and change  

anomaly detection with trained models
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Phase I. Feature Extraction for Change  Patterns

• AST Tree Matching 
• Code clones are converted to Abstract Syntax Tree (AST) model.
• RIDL applies an efficient and worst-case optimal tree matching 

algorithm, Robust Tree Edit Distance (RTED).

• AST Node Categorization
• Five groups: loop, exception, condition, declaration, control 

statements.

• Identifier Similarity
• Identifier Normalization.
• RIDL computes features using similarity scores of tokens.
• RIDL computes the similarity score between the parameterized 

expressions by token level alignment using Levenshtein Similarity 
calculation.
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Tree Matching Example

Public void m1( int parm1, int parm2) {
int val = parm2;
int std = 0;
if (parm1 == 10000)  {

char[] buf = foo ();
String c = baz(buf, std);

}
}

Public void m2( int parm1, int parm2) {
int val = parm2;
while(bar()) {

std = 0;
if (parm1 >= 10000)  {

char[] buffer = foo ();
String c = baz(buffer, std);

}
}

}
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Tree Matching Example

N2: int val = parm2 

N5: char[] buf = foo() 

N1: m1(int parm1, int parm2)

M1: m2(int parm1, int parm2) 

M2: int val = parm2 

M6: char[] buffer = foo() 

N3: int std = 0 

N6: String c = baz(buf,std) 

N4: if(parm1 == 10000) 

M5: if(param1 >= 10000)

M3: std = 0 M4: while(bar())

M7: String c = baz(buffer, std) 
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Training

• Training a binary-class classifier to identify change 
patterns by characterizing the relationship of cloned (or 
non-cloned) AST subtree pairs

• The feature vectors of AST subtree pairs are extracted 
from cloned and non-cloned method pairs from a clone 
database

• Clone database is mined from 25,000 open source 
projects

• In the training data set, each data point forms 
<node_type_vector, label>
• node_type_vector is a vector of five category scores (i.e., 

node alignment frequency and token similarity) 
• label is either 1 to denote cloned AST subtree pairs or 0 to 

non-cloned AST subtree pairs
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Extracting Features

Input Data Set

Mined Code 
Corpus

Code Clone 
Database

Clone AST Parsing

Subtree 
Normalization

Tree Edit Distance 
Computation

Set of Aligned 
Subtrees

Subtrees  x, y

Training Data Set

Deep Learning

AST Node 
Categorization

Classifier
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Phase II. Differencing and Dependence Analysis

• Computing AST differences 
• RIDL computes differences of original and edited versions of 

the program, using AST differencing technique Change 
Distiller.

• Produce AST edit operations such as deletes, inserts, and 
updates

• The extracted differences then are represented as tree edit 
operations to identify recurring changes

• Data and Control dependences
• Data dependence: creating an edit script by analysing data 

dependences between edits and surrounding unchanged 
context. 

• Control dependence: creating an edit script by computing 
control dependences between the execution of edits and 
control predicates of unchanged context. 
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Analyzing Edits

N1:MTHD

N2:DECL N3:ASGN N4:SWCH Na:..

NN5:CASE Nb:..

Nc:…N6:IF

N7:ASGN Nd:…

N1:MTHD

N2:DECL N2:DECL N4:SWH Na:…

NN5:CASE Nb:..

N8:ASGN Nc:… N9:MTHD

(a) The AST subtree before edits (b) The AST subtree after edits 

Delete insertinsert

Legend
CASE: case statement 
DECL: variable declaration
IF: if statement
SWCH: switch statement        ASGN: assignment 
INVC: method invocation        MTHD: method definition 
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Phase III. Recurring  Change  Summarization  and  
Change  Anomaly  Detection with Trained Models

• Summarizing Recurring Changes 
• Using the edit scripts RIDL interoperates a pair of pre –

and post-edit matchers such as Mpre and Mpost. 

• Mpre and Mpost exploit the edit script to extract from a 
portion of a diff patch the categories of AST node types. 

• These matching implementations leverage the trained 
classifier to match specified changes against the code 
base to search for recurring change patterns. 

• Detecting Change Anomalies 
• Detect a method that matches the pre-edit version but 

not the post-edit version or vice-versa. 

• Reporting missing or inconsistent edits 
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Summarizing recurring changes and detecting 
change anomalies with the trained classifier

Tool Demo

https://drive.google.com/file/d/19WV4C50-ixmkPG-4BTUK-v60gw8_77rZ/view?usp=sharing
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Evaluation

• The evaluation of the proposed approach aims to 
answer the two Research Questions
• RQ1. Can RIDL accurately identify similar code 

fragments using a deep neural network model?

• RQ2. Can RIDL accurately summarize recurring changes 
and detect change anomalies?

• The questions are answered by experiments with 
deep neural network models to evaluate the tool 
accuracy.
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Experimental Design

• Similar Code Fragments Detection: 
• To evaluate our approach, we will apply RIDL to a clone 

database which has been mined from over 25,000 open 
source programs, including 2.3 million Java source files 
with over 365 MLOC.

• Change Summarization and Anomaly Detection:
• To evaluate our approach in a real world setting, we 

collected the data set by manually examining clones and 
their changes where real developers applied recurring 
changes in Version Control System (VCS) repositories.
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Dataset

Project Files Code

JFreeChart 1013 144703

Tomcat 2042 274785

JDT 1013 211718



CS WORKSHOP 2019

Conclusion
• In this research, we propose a technique for inspecting 

recurring changes with deep learning. 

• Our evaluation will show how accurately our static 
analysis approach with deep learning can effectively 
identify recurring changes and detect potential 
anomalies from open source projects. 

• As future work for improving our approach and tool, 
we intend to (1) create pattern templates for more 
clone types; (2) provide tool support for fixing 
incomplete clone changes; and (3) implement checking 
operations to determine the correctness of extra edits 
to edited versions. 
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Thank You!!

• The research work is awarded with GRACA funds 
for 2019

• Questions and Answers


