
CS WORKSHOP 2019

Tool Support for Recurring Code Change
Inspection with Deep Learning

Krishna Teja Ayinala

Faculty Mentor : Dr. Myoungkyu Song

April 5th 2019

CS WORKSHOP 2019

Problems in Current Code Inspection
Tools

• Developers need to inspect program differences on
diff patches file by file
• Despite recurring changes, a group of similar, related

edits in multiple locations

• Manually examine individual edits
• Tedious and error-prone process

• Current tools do not summarize recurring changes
nor report anomalies in a diff patch
• Hard to understand such code changes

CS WORKSHOP 2019

RIDL: Recurring Code Change Inspection with
Deep Learning

• RIDL: (i) summarizes recurring changes and (ii) detects
potential change anomalies in the codebase

• Learn similar code fragments from a clone database to train
a binary-class classifier

• Train the classifier by true and false clones, cloned and non-
cloned pairs of code fragments

• Extract an edit script by analyzing data and control flow
context

• Form change patterns by leveraging

the classifier

CS WORKSHOP 2019

Major Research Contribution

• Summarization for Recurring Changes
• A novel integration of program differencing and AST-

based code pattern search to track the changes to
clones based on a deep learning technique.

• Detection for Change Anomalies
• Detect potential change anomalies, such as missing and

inconsistent edits.

CS WORKSHOP 2019

Motivating Example

CS WORKSHOP 2019

… Clone Instance #1
m1(..);

public class JEditTextArea {
public void processKeyEvent(KeyEvent evt, int from) {

Event event = (Event) evt;
- if(inputHandler.isActive() && from != VK_CANCEL) {..
- focusKeyTyped = event.getEvent();
- ..
- }
+ focusKeyTyped = processEvent(from, focusKeyTyped, event);

...
event = (Event) evt;

- if(inputHandler.isActive() && from != VK_CANCEL) {..
- focusKeyTyped = event.getEvent();
- ..
- }
+ focusKeyPressed = processEvent(from, focusKeyTyped, event);

}
public void processFocusedKeyEvent(KeyEvent evt, int from) {

Event event = (Event) evt;
- if(inputHandler.isActive() && from != VK_CANCEL) {..
- focusKeyTyped = event.getEvent();
- ..
- }
+ focusKeyTyped = processEvent(from, focusKeyTyped, event);

case Event.KEY_PRESSED:
event = (Event) evt;

- if(inputHandler.isActive() && from != VK_CANCEL) {..
- focusKeyTyped = event.getEvent();
- ..
- }
+ focusKeyTyped = processEvent(from, focusKeyTyped, event);

..}
}

(a) Recurring changes for refactorings applied
in revisions v20060919-7074 and v20060919-

7075 in an open source project JEdit.

CS WORKSHOP 2019

public class JEditStyledTextArea {
void processActionEvent(ActionEvent ev, int

from) {
Event changeEventAction;
Event action = (Action) ev;
switch(ev.getID()) {
case Event.CTRL_MASK:

- if(inputHandler.isActive()
- && from != VK_CANCEL) {..
- changeEventAction = ev.getEvent();
- ..
- }
// It should call to processEvent with three
parameters, instead of calling to another
overloaded method.
+ focusKeyPressedEvt = processEvent(from,

changeEventAction);
..

}
}}

public class JEditEmbeddedTextArea {
void processKeyEvent(MouseEvent evt,

int from) {
Event focusKeyPressed;
Event event = (Event) evt;
switch(evt.getID()) {
case Event.KEY_PRESSED:

// It should apply a refactoring but missed
required edits.

if(inputHandler.isActive()
&& from != VK_CANCEL) {..

focusKeyPressed = evt.getEvent();
..

}
..

}
}

}

(b) Code fragments that have been missed
to apply the required refactoring as (a).

(c) Code fragments refactored similarly but
edited inconsistently unlike (a).

Missing updates
⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼⎼
Inconsistent changes

 RIDL summarizes these
recurring changes

 RIDL identifies these change
anomalies

CS WORKSHOP 2019

Overview of RIDL’s workflow

 Phase 1. Feature extraction for change patterns
 Phase 2. Differencing and dependence analysis
 Phase 3. Recurring change summarization and change

anomaly detection with trained models

CS WORKSHOP 2019

Phase I. Feature Extraction for Change Patterns

• AST Tree Matching
• Code clones are converted to Abstract Syntax Tree (AST) model.
• RIDL applies an efficient and worst-case optimal tree matching

algorithm, Robust Tree Edit Distance (RTED).

• AST Node Categorization
• Five groups: loop, exception, condition, declaration, control

statements.

• Identifier Similarity
• Identifier Normalization.
• RIDL computes features using similarity scores of tokens.
• RIDL computes the similarity score between the parameterized

expressions by token level alignment using Levenshtein Similarity
calculation.

CS WORKSHOP 2019

Tree Matching Example

Public void m1(int parm1, int parm2) {
int val = parm2;
int std = 0;
if (parm1 == 10000) {

char[] buf = foo ();
String c = baz(buf, std);

}
}

Public void m2(int parm1, int parm2) {
int val = parm2;
while(bar()) {

std = 0;
if (parm1 >= 10000) {

char[] buffer = foo ();
String c = baz(buffer, std);

}
}

}

CS WORKSHOP 2019

Tree Matching Example

N2: int val = parm2

N5: char[] buf = foo()

N1: m1(int parm1, int parm2)

M1: m2(int parm1, int parm2)

M2: int val = parm2

M6: char[] buffer = foo()

N3: int std = 0

N6: String c = baz(buf,std)

N4: if(parm1 == 10000)

M5: if(param1 >= 10000)

M3: std = 0 M4: while(bar())

M7: String c = baz(buffer, std)

CS WORKSHOP 2019

Training

• Training a binary-class classifier to identify change
patterns by characterizing the relationship of cloned (or
non-cloned) AST subtree pairs

• The feature vectors of AST subtree pairs are extracted
from cloned and non-cloned method pairs from a clone
database

• Clone database is mined from 25,000 open source
projects

• In the training data set, each data point forms
<node_type_vector, label>
• node_type_vector is a vector of five category scores (i.e.,

node alignment frequency and token similarity)
• label is either 1 to denote cloned AST subtree pairs or 0 to

non-cloned AST subtree pairs

CS WORKSHOP 2019

Extracting Features

Input Data Set

Mined Code
Corpus

Code Clone
Database

Clone AST Parsing

Subtree
Normalization

Tree Edit Distance
Computation

Set of Aligned
Subtrees

Subtrees x, y

Training Data Set

Deep Learning

AST Node
Categorization

Classifier

CS WORKSHOP 2019

Phase II. Differencing and Dependence Analysis

• Computing AST differences
• RIDL computes differences of original and edited versions of

the program, using AST differencing technique Change
Distiller.

• Produce AST edit operations such as deletes, inserts, and
updates

• The extracted differences then are represented as tree edit
operations to identify recurring changes

• Data and Control dependences
• Data dependence: creating an edit script by analysing data

dependences between edits and surrounding unchanged
context.

• Control dependence: creating an edit script by computing
control dependences between the execution of edits and
control predicates of unchanged context.

CS WORKSHOP 2019

Analyzing Edits

N1:MTHD

N2:DECL N3:ASGN N4:SWCH Na:..

NN5:CASE Nb:..

Nc:…N6:IF

N7:ASGN Nd:…

N1:MTHD

N2:DECL N2:DECL N4:SWH Na:…

NN5:CASE Nb:..

N8:ASGN Nc:… N9:MTHD

(a) The AST subtree before edits (b) The AST subtree after edits

Delete insertinsert

Legend
CASE: case statement
DECL: variable declaration
IF: if statement
SWCH: switch statement ASGN: assignment
INVC: method invocation MTHD: method definition

CS WORKSHOP 2019

Phase III. Recurring Change Summarization and
Change Anomaly Detection with Trained Models

• Summarizing Recurring Changes
• Using the edit scripts RIDL interoperates a pair of pre –

and post-edit matchers such as Mpre and Mpost.

• Mpre and Mpost exploit the edit script to extract from a
portion of a diff patch the categories of AST node types.

• These matching implementations leverage the trained
classifier to match specified changes against the code
base to search for recurring change patterns.

• Detecting Change Anomalies
• Detect a method that matches the pre-edit version but

not the post-edit version or vice-versa.

• Reporting missing or inconsistent edits

CS WORKSHOP 2019

Summarizing recurring changes and detecting
change anomalies with the trained classifier

Tool Demo

https://drive.google.com/file/d/19WV4C50-ixmkPG-4BTUK-v60gw8_77rZ/view?usp=sharing

CS WORKSHOP 2019

Evaluation

• The evaluation of the proposed approach aims to
answer the two Research Questions
• RQ1. Can RIDL accurately identify similar code

fragments using a deep neural network model?

• RQ2. Can RIDL accurately summarize recurring changes
and detect change anomalies?

• The questions are answered by experiments with
deep neural network models to evaluate the tool
accuracy.

CS WORKSHOP 2019

Experimental Design

• Similar Code Fragments Detection:
• To evaluate our approach, we will apply RIDL to a clone

database which has been mined from over 25,000 open
source programs, including 2.3 million Java source files
with over 365 MLOC.

• Change Summarization and Anomaly Detection:
• To evaluate our approach in a real world setting, we

collected the data set by manually examining clones and
their changes where real developers applied recurring
changes in Version Control System (VCS) repositories.

CS WORKSHOP 2019

Dataset

Project Files Code

JFreeChart 1013 144703

Tomcat 2042 274785

JDT 1013 211718

CS WORKSHOP 2019

Conclusion
• In this research, we propose a technique for inspecting

recurring changes with deep learning.

• Our evaluation will show how accurately our static
analysis approach with deep learning can effectively
identify recurring changes and detect potential
anomalies from open source projects.

• As future work for improving our approach and tool,
we intend to (1) create pattern templates for more
clone types; (2) provide tool support for fixing
incomplete clone changes; and (3) implement checking
operations to determine the correctness of extra edits
to edited versions.

CS WORKSHOP 2019

Thank You!!

• The research work is awarded with GRACA funds
for 2019

• Questions and Answers

