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A B S T R A C T

Conversational agents (CAs) are an integral component of many personal and business interactions. Many recent
advancements in CA technology have attempted to make these interactions more natural and human-like.
However, it is currently unclear how human-like traits in a CA impact the way users respond to questions from
the CA. In some applications where CAs may be used, detecting deception is important. Design elements that
make CA interactions more human-like may induce undesired strategic behaviors from human deceivers to mask
their deception. To better understand this interaction, this research investigates the effect of conversational
skill—that is, the ability of the CA to mimic human conversation—from CAs on behavioral indicators of de-
ception. Our results show that cues of deception vary depending on CA conversational skill, and that increased
conversational skill leads to users engaging in strategic behaviors that are detrimental to deception detection.
This finding suggests that for applications in which it is desirable to detect when individuals are lying, the
pursuit of more human-like interactions may be counter-productive.

1. Introduction

The goal of many modern information systems is to replace ex-
pensive human-human interactions with automated human-computer
interactions to provide more cost effective, efficient, customizable, and
reliable service. Recent advancements in natural language processing
(NLP) have led to a surge of automated conversational agents
(CAs)—computer systems designed to communicate in natural language
with humans, as opposed to using predefined computer commands. CAs
have recently been used in domains such as healthcare (Bickmore &
Picard, 2005), education (Fridin & Belokopytov, 2014; Rodrigo et al.,
2012), and as “digital personal assistants” (e.g., Siri and Alexa). These
systems can provide improved convenience and service at a fraction of
the cost of a human agent. Because of these benefits, companies are
rapidly investing in CA technologies to supplement their existing cus-
tomer interaction platforms (Lin & Chang, 2011).

One common goal in the design of such applications is to increase
the social presence of the CA by manipulating characteristics of the CA
to make it seem more human-like (Heerink, Kröse, Evers, & Wielinga,
2010). For example, characteristics of a CA such as gender, demeanor,
dress (Nunamaker, Derrick, Elkins, Burgoon, & Patton, 2011), similarity
(Pickard, Burns, & Moffitt, 2013), and perceived agency (Appel, Von
Der Pütten, Krämer, & Gratch, 2012) affect how humans perceive and

interact with the CA. Social presence also improves perceptions of a
system as users develop more connection with the system (Shin, 2013).
This has been demonstrated in human-robot interaction, where the
social capabilities of a robot strongly influence acceptance (Shin &
Choo, 2011). Technologies that facilitate NLP enable computers to
engage in more human-like conversations by analyzing the speech
provided by the user and responding in a way similar to how another
human would respond. While communicating with a computer in the
same way one communicates with another human is often considered
desirable and is frequently portrayed in popular culture as the future of
computing (i.e., HAL from Space Odyssey, KITT from Knight Rider, or
JARVIS from Iron Man), our pursuit of this type of natural commu-
nication with computers has perhaps surpassed our understanding of
the impact of increasingly human-like communication on the people
using the technology. To ensure that improved CA capabilities do not
conflict with operational goals of CAs, we must gain a better under-
standing of the effect of increasing the capabilities of a CA on human
behaviors. The goal of this research is to advance this understanding.

Eliciting complete and truthful information is important in many
emerging applications for CAs, such as conducting investigatory inter-
views (Pollina & Barretta, 2014; Proudfoot, Boyle, & Schuetzler, 2016),
detecting deception (Cunningham, 2017; Higginbotham, 2013; Warth,
2017), and discussing sensitive health matters (Schuetzler, Giboney,
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Grimes, & Nunamaker, 2018; Steiner, 2012). Obtaining truthful in-
formation is especially important in contexts where people may have
incentive to deceive, such as a job interview (HarQen, 2017) or in-
surance claim (Hibbeln, Jenkins, Schneider, Valacich, & Weinmann,
2014). Additionally, determining the veracity of information in these
contexts is important to the efficacy of the decision-making process and
can facilitate a system's ability to assess and appropriately respond to
information provided to it.

Given our current understanding of CAs, these operating environ-
ments, and the process of human-human deception, it is unclear if in-
creasing the human-likeness of a CA—and therefore its social pre-
sence—is universally desirable. Prior work has shown that socially
anxious people disclose more information to a CA that is perceived to be
a computer rather than one that is perceived to be human (Kang &
Gratch, 2010). Similarly, Interpersonal Deception Theory (IDT, Buller &
Burgoon, 1996) proposition 8 suggests that deceivers exhibit more
strategic deception behaviors—actions that reflect “large-scale plans and
intentions (as opposed to specific behavioral routines or tactics)”
(Buller & Burgoon, 1996, p. 207) to make a deceptive message appear
credible–to avoid detection as their relational and behavioral famil-
iarity with their target increases. When an interlocutor is more socially
present, this facilitates familiarity, thereby leading to an increase in the
deceiver's strategic behaviors to avoid their deception being detected.
Strategic behaviors include information management (modifying or
manipulating message content), image management (attempts to
maximize credibility through a competent and trustworthy demeanor),
and behavior management (actions designed to suppress behaviors that
might expose one's deception) (Buller & Burgoon, 1996). Some strategic
behaviors, such as rehearsed lies, are planned and deliberately acted on,
while others, such as controlling the length or speed of a response, are
not planned or deliberate, but rather are natural responses used for
behavior management (i.e., attempts to maintain a natural and un-
assuming flow in the communication). That is to say, not all strategic
behaviors—such as maintaining a natural rate of speech—are conscious
and deliberate actions, but rather they may be constituent behaviors
used to maintain the overall goal of behavior management.

These applications and theories reflect potentially conflicting design
principles that could be inferred from the desire to make CAs more
human-like, to encourage truthful responses, and to detect deceptive
responses. Many CA designs call for the CA to be more human-like to
facilitate engagement. However, in contexts where a goal of the CA is to
elicit truthful responses and detect when responses may be deceptive,
appearing more human-like may cause individuals to engage in more
strategic behaviors to avoid detection, thus making the CA's detection
of deception more difficult. To establish the most effective type of in-
teraction for eliciting and assessing the veracity of information, we
must understand how a CA's characteristics influence humans' beha-
vioral indicators of deception. In this research, we extend the tradi-
tional human-to-human interpersonal communication described by IDT
to consider deceptive communication from humans interacting with
virtual agents that have varying levels of conversational skill—that is,
how capable of following human-like communication patterns the CA
is. We aim to answer the following research question:

What impact does the level of conversational skill of a CA have on
peoples' behavior during deceptive and truthful communication?

To answer this question, we develop a theoretical research model
that describes the influence of improving a CA's conversational skill on
two behavioral indicators of deception: response latency and response
hesitations (DePaulo et al., 2003). In the following pages we provide a
theoretical foundation for this work and describe a laboratory experi-
ment used to test our hypotheses. Finally, we discuss the results of the
study and the theoretical and practical implications.

2. Theoretical development

2.1. Human-likeness of conversational agents

Prior research has demonstrated that computers are often perceived
and interacted with as social actors (Nass, Steuer, & Tauber, 1994). This
view of computers as social actors is in part facilitated by the user's per-
ception of the computer as a partner in the communication and leads to a
“sense of human contact embodied in a medium” (Gefen & Straub, 1997,
p. 390). Information systems that are perceived as having a more human-
like touch facilitate trust (Gefen & Straub, 2004), enjoyment and perceived
usefulness (Hassanein & Head, 2007), and self-efficacy beliefs (Baylor,
2009). Variations in characteristics such as gender and demeanor have
also been shown to influence the connection users feel with the system
(Nunamaker et al., 2011). Features such as these help to establish a sense
of connection with the other participant, human or computer, through the
medium (Schultze, 2010), and create perceptions of humanity.

Humanity for a CA is very broadly defined as the ability of the agent to
act in human-like ways (Radziwill & Benton, 2017). By the most strict
definitions, this would require the CA to pass the Turing test of artificial
intelligence (Turing, 1950). For general applications, however, individual
elements of a CA can reflect humanity, even if the Turing Test is not passed
(Araujo, 2018; Hayes & Ford, 1995; Morrissey & Kirakowski, 2013). The
Computers are Social Actors (CASA) paradigm posits that we often attri-
bute humanity to computers, even if they demonstrate few or no human-
like qualities (Nass et al., 1994; Nass & Moon, 2000). For example, people
frequently personify their personal electronics by giving them names, at-
tributing blame or emotions to them, and applying norms such as polite-
ness and reciprocity (Nass, Moon, & Carney, 1999), despite the devices
clearly falling short of the strict definition of humanity. This reflects the
fluid nature of our relationship with computers as social actors, and the
mindless way in which users anthropomorphize systems.

This anthropomorphism is often the result of a computer system
having social abilities (Appel et al., 2012; Waytz, Heafner, & Epley, 2014)
such as exhibiting conversational skill (Morrissey & Kirakowski, 2013).
Participants in human-to-human conversations exhibit conversational skill
by following conversational norms regarding the content, timing, and flow
of the conversation. One of these norms is the maxim of relation (Grice,
1975), which describes the expectation that conversation partners will
respond to each other during the conversation with responses that are
tailored to the conversation. CAs can simulate human conversational skill
by giving tailored responses, in which the CA adjusts its own dialogue
based on what people say. Through these tailored responses, users per-
ceive that the CA understands what they are saying and can adapt its
conversation accordingly. This is referred to as the conversational relevance
of responses—that is, that responses are appropriate and contingent on the
messages they have received (Sundar, Bellur, Oh, Jia, & Kim, 2016).

Violations of the conversational relevance norm, such as responding
with generic questions or comments, or frequently changing topics in order
to mask a lack of conversational awareness, violate the maxim of relation,
leading to a decrease in the perception of human-likeness (Kirakowski,
O'Donnell, & Yiu, 2007). Maintaining conversational relevance, especially in
computer-mediated communication (CMC), involves incorporating context
into messages to maintain continuity from one message to the next
(Herring, 2013). For a CA to be considered conversationally skilled, it must
be capable of processing information in users' messages and carrying that
information forward into its own messages (Morrissey & Kirakowski, 2013).
It is the act of tailoring responses by incorporating conversational context
that signals to users that the CA understands.

Other conversational norms relate to temporal features of the re-
sponse such as response latency and hesitations (Miller, 1968). Response
latency is the delay between when a user receives a message and when
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they send a reply. In oral communication, response latency is a brief
period of silence typically measured as the time between when one
speaker is finished speaking, and the next speaker begins to speak
(Bassili, 2000). This brief silence between speaking turns indicates that
a speaker is finished and sets the expectation that the other conversa-
tional partner will take a turn. This period of silence is generally short
as people attempt to minimize silence between conversational
turns—on average roughly 250 ms for spoken communication (Stivers
et al., 2009). In text-based communication, response latencies are
generally longer as they must compensate for the length of time re-
quired to read and understand the message (Temple & Geisinger, 1990).
Response latency can also be negative—for example, when a participant
begins responding before their partner has finished sending their mes-
sage—resulting in a phenomenon known as cross-talk (Taboada, 2006).

Hesitation time is another temporal nonverbal communication be-
havior that provides additional insight into the meaning of a message.
Hesitations in oral communication are periods of silence within a com-
municator's turn that vary in both their duration and operationalization
depending on the type of conversation or speech (Duncan, 1969). In-
creases in hesitation time are frequently associated with increases in
cognitive effort (Berthold & Jameson, 1999). Hesitations in spoken
dialogue include both filled pauses (e.g., “umm” or “uhh”) and unfilled
pauses (e.g., silence) (Goldman-Eisler, 1961). While words typically
associated with filled pauses may be found in typed text, they serve a
different purpose in written as compared to spoken communication
(Carey, 1980; Kalman & Gergle, 2014). Further, many of the para-
linguistic features found in oral communication are not available in
computer-mediated communication, thus typed communication has
only unfilled pauses (Zhou, 2005). Both response latency and hesita-
tions are conceptually similar to their oral counterparts (Schuetzler,
Grimes, Elkins, Burgoon, & Valacich, 2016), and may signal that the
sender is distracted, not engaged in the conversation or is uncertain of
the message that is being sent (Burgoon et al., 2015).

Bringing together the essence of CASA and conversational norms, it
should hold that when an individual's conversational partner demon-
strates conversational skill—for example, by giving responses that are
tailored to be relevant to the conversation—they will reciprocate by
treating their partner more like a person and less like an object (Dennis
& Kinney, 1998; Williams, 1977) and likewise adhere to conversational
norms—for example, by being more temporally responsive. To this end,
we hypothesize:

H1. People interacting with a more conversationally skilled CA will
exhibit a) lower response latency and b) lower average hesitation time
than people interacting with a less conversationally skilled CA will.

2.2. Deception

As CAs have become more integrated into interactions in which
people might behave deceptively, the ability to assess the veracity of
responses has become increasingly important. Thus, one area of interest
is identifying changes in human behaviors that are the result of a
human attempting to deceive a CA (Nunamaker et al., 2011; Zhou,
Burgoon, Zhang, & Nunamaker, 2004). Deception may occur in inter-
actions where one might lie to prevent embarrassment (e.g., doctor's
office), avoid getting in trouble (e.g., interaction with a law enforce-
ment officer), or to gain undeserved benefits (e.g., interaction with a
company or customer service representative).

Interpersonal Deception Theory (IDT, Buller & Burgoon, 1996)
postulates how deception changes normal communication between at
least two parties. While IDT was originally formulated with human-
human interactions in mind, prior research has successfully applied IDT
in CMC settings (Derrick, Meservy, Jenkins, Burgoon, & Nunamaker,
2013; Zhou, Burgoon, Twitchell, Qin, & Nunamaker Jr, 2004). Further,
as CA technologies continue to improve and computers are able to
communicate in more human-like ways, the relevance of the distinction

between humans and computers in dyadic communication is reduced.
IDT makes 18 propositions related to deception, focusing on the deeply
interconnected nature of interpersonal communication, and the im-
portance of each participant in a deceptive communication. IDT posits
that communication participants are actively encoding and decoding
messages, that the communication is dynamic, and that the commu-
nicators have multiple goals, topics, and methods of transmission
(Buller & Burgoon, 1996).

Communication, and especially deceptive communication, involves
both strategic and nonstrategic behaviors (Buller & Burgoon, 1996;
Kellermann, 1992; McCornack, 1992), and is governed by cognitive and
behavioral forces. IDT describes deceptive communication as ad-
ditionally having a central deceptive message, ancillary messages de-
signed to enhance the perceived validity of the message, and inad-
vertent messages that imply the truth (i.e., messages that “leak” from
the communicator) (Buller & Burgoon, 1996; Ekman & Friesen, 1969).
Successful deception is dependent on producing appropriate strategic
cues of truthfulness and managing nonstrategic cues that result from
the emotional and mental effort associated with managing deceptive
communication (Zuckerman, DePaulo, & Rosenthal, 1981).

In order to give the appearance of truthfulness, deceivers must put
forth greater effort to appear credible (IDT proposition 3a). However,
the increased effort associated with appearing credible produces other
observable artifacts, including “performance decrements” (IDT propo-
sition 3b). Such performance decrements include exhibiting longer re-
sponse latency or hesitation time due to the effort required to produce
and maintain a false story. Accordingly, extant deception research
suggests that deceivers tend to exhibit increases in hesitations (Buller,
Comstock, Aune, & Strzyzewski, 1989; Buller, Strzyzewski, & Comstock,
1991; Levine & McCornack, 1996) and response latency (Ho, Hancock,
Booth, & Liu, 2016; Sporer & Schwandt, 2006).

Since most deception research to date has focused on oral commu-
nication, there remains a scarcity of research testing latency and hesi-
tations for typed communication (e.g., Derrick et al., 2013). This is one
of the first projects looking at typing behavior during deception with
conversational agents. Based on the nonstrategic leakage propositions
from IDT, we hypothesize:

H2. People engaging in deception will exhibit longer a) response
latency and b) hesitation times when interacting with a CA,
compared to truthful interactions.

2.3. The interactive nature of CA conversational skill and deception

As described in the prior two subsections, it is expected that a CA
that demonstrates more human-like behavior by exhibiting more con-
versational skill will elicit shorter response latency and shorter hesita-
tions from its human interlocutor than would a CA with low con-
versational skill, as conversational norms are reciprocated. However,
according to deception theories, deceivers may display longer response
latency and hesitations than truth-tellers as they experience the addi-
tional effort associated with deception (Dunbar et al., 2014; Sporer &
Schwandt, 2006). There is obviously tension between these outcomes,
as neither conversational norms nor deception exist in a vacuum. While
deception will generally lead to increased response latency and hesi-
tation, individuals who wish to mask their deception may engage in
strategic behaviors, such as responding more quickly or reducing hes-
itations, in order to avoid detection. However, engaging in such stra-
tegic behaviors only makes sense if the human interlocutor perceives
their communication partner as having the ability to evaluate their
messages.

IDT proposition 4 suggests that increasing interactivity results in
greater strategic behavior and reduced nonstrategic behavior as people
work to manage their behavior to avoid detection. Applying this pro-
position to human-CA conversation would suggest that deceivers
communicating with a CA that exhibits higher conversational skill by
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providing tailored responses (i.e., more interactivity) would be more
likely to strategically manage expressed information and control their
nonstrategic behavior (Buller & Burgoon, 1996; Burgoon & Buller,
1994). To avoid detection, deceivers will be more strategic in their
communication by attempting to control the expected increase in re-
sponse latency and hesitations when interacting with a more skilled CA
(Sporer & Schwandt, 2006). This phenomenon has been demonstrated
in deceptive interpersonal communication (Dunbar et al., 2014). Thus,
while we expect deceivers overall to show increases in response latency
and hesitations (H2), we expect this relationship will be moderated by
the presence of a more skilled (i.e., humanlike) CA as deceivers engage
in strategic behaviors to avoid detection. As such, we propose the fol-
lowing hypothesis:

H3. The relationship between deception and a) response latency and b)
hesitations will be moderated by CA conversational skill.

In summary, we hypothesize that a CA that exhibits high con-
versational skill will lead people to reciprocate conversational norms by
likewise being more responsive, operationalized here as reduced re-
sponse latency (H1a) and average hesitation time (H1b), as compared
to interactions with a CA that exhibits low conversational skill. We
expect deception to increase response latency (H2a) and average hesi-
tation time (H2b), however, we expect these relationships to be mod-
erated by CA conversational skill (H3a/b) as people strategically at-
tempt to control their response in the presence of a CA with higher
conversational skill. Our model is presented in Fig. 1.

3. Method

3.1. Developing the chatbots

Conversational agents are a broad category of interaction tools. One
common type of CA is a chatbot. A chatbot is a text-based agent de-
signed to carry on a conversation. A collection of custom chatbots were
developed for this study using the ChatScript language (Wilcox, 2017).
This approach afforded the research team several advantages for
creating a robust environment for testing the hypotheses. First, the
creation of custom chatbots allowed us to control the interaction be-
tween the participants and the CA and to capture additional features of
the communication that are not readily available in existing chat soft-
ware. JavaScript code embedded in the chat application captured pre-
cise timings of when messages were presented to the participants, when
participants started responding, and time taken between each typed
character. The participants' responses were split into two data
streams—the content of the message, which was processed by natural
language processing (NLP) algorithms used by ChatScript to formulate
responses—and the keystroke timing, which was sent to a separate
application for analysis.

Second, the use of ChatScript as a development platform facilitated
the creation and organization of chat topics. The topics can be triggered
by keywords from the user or selected by the chatbot if no matching
topics are available. ChatScript also includes features such as automatic
spelling correction and expansion of abbreviations (e.g., “IDK” to “I do
not know”) and contractions (e.g., expanding “how's” into “how is”).

This is important as people frequently make typographical errors or use
shorthand that impedes NLP techniques. This capability eliminates the
need for chatbot developers to write patterns that match many potential
ways of communicating the same message.

Finally, ChatScript groups keywords and responses into concepts.
Concepts are used for organizing words and phrases into groups with
similar meaning so that the chatbot can respond appropriately to an
idea that might be expressed in a variety of ways. For example, people
may greet the bot in many ways, such as “hello,” “howdy,” or “hey.” No
matter how people choose to say hello, the effective meaning is the
same. ChatScript groups these greetings into a single concept (∼emo-
hello). Developers can use this concept (rather than the exact words) to
match all greetings, rather than anticipating every possible way a user
might begin a conversation.

3.2. Experiment design

We conducted a study at a large public university in the United
States. Participants were recruited from an entry-level MIS course and
instructed to report to our research lab at a specified time. Upon arrival
at the lab, the participants completed an online survey capturing de-
mographic information and computer use behavior. Upon completion
of the survey, participants' web browsers were automatically redirected
to the experiment where they were randomly assigned to a high con-
versational skill chatbot which gave tailored responses or a low con-
versational skill chatbot which gave generic responses. Before inter-
acting with the chatbot, the participants were given the following
instructions:

In this experiment you will be placed in an online chatroom and
asked questions about a series of images. Your chat partner cannot
see these images, and you will be instructed to lie about the content
of some of the images – it is important to follow these instructions.

The instructions were worded in such a way that participants were
not told whether their chat partner was human or computer. All chat
interactions were in fact with a chatbot.

The experiment was designed to mimic a classic deception experi-
ment in which participants are shown a series of images then asked to
describe some images deceptively and others truthfully (Ekman &
Friesen, 1974). Prior to beginning the interaction, participants were
shown example screenshots of the interface, with instructions for how
to proceed. Screenshots showed what the interface would look like
when they were to lie and when they were to tell the truth. Alternating
between lying and telling the truth is common for deception studies to
be able to compare an individual's truthful behavior to their deceptive
behavior (Elkins & Derrick, 2013; Giboney, Brown, Lowry, &
Nunamaker, 2015; Nunamaker et al., 2011). For images with instruc-
tions to deceive, a bold message stated “For this image, please answer
the questions as if the picture is of [something similar in topic but of
opposite valence]”. For example, if the picture were of two dogs
fighting, the instructions might ask the participant to describe the
image as two dogs sleeping on a bed. Neither of the images used in the
example screenshots were used in the experiment, and both example
images were of neutral valence.

After the two examples, the participants clicked a link that took
them to the chat interface. Participants were shown, and had a chat
conversation about, twelve images—four each of positive, negative, and
neutral valence—from the International Affective Picture System (Lang,
Bradley, & Cuthbert, 2008). Participants were instructed to lie about
the content of 6 of the 12 images shown—two from each valence ca-
tegory. For the other six images, participants were asked to tell the
truth. Images were presented in two different orders to different groups
of participants, with each group being asked to lie about different
images. This was done to account for potential ordering effects or dif-
ferences in the images.

Prior to beginning the chat, participants were given as much time asFig. 1. Research model.
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needed to review the image. Participants were instructed to click a
button labeled “I'm ready” to indicate they were ready to begin the
chat. Shortly after clicking the button, the first question from the
chatbot appeared and participants began their conversation. In each
step of the conversation, participants had as much time as they needed
to construct their description (truthful or deceptive) of the image. After
the set of questions for an image was completed, the chat window was
temporarily disabled and a system message instructed them to click
“Next” to move to the next image, then “I'm ready” after they had
viewed the image and were ready to chat about it. An example of the
chat interface is shown in Fig. 2. This research design resulted in one
binary, between-subjects condition (high or low conversational skill
CA) and one binary, within-subjects condition (answer truthfully or
answer deceptively).

For each image shown, the CA followed a conversation stream si-
milar to that presented in Table 1 in which the participant was asked
two base questions and two follow up questions. In the high con-
versational skill condition, the CA was configured to look for key words
in the participant's message to formulate a response that was tailored to
the message provided by the participant. For example, as illustrated in
Fig. 3a, since the user said the key words “puppies” and “sitting” in
response to the first inquiry, the CA responded with the question “What
are the puppies sitting on?” As illustrated in Fig. 3b, participants in the
low skill CA condition received a generic follow-up question each time.
This is not to say that the responses were not appropriate, however. For
example, despite “Why does it make you feel that way” being an ap-
propriate response to “Very happy”, it does not signal any under-
standing of the message sent by the user. The same response from the
CA would be equally appropriate if the user had said “Sad”, “Angry”, or
“Elated”—thus we consider these responses to be “generic”. All parti-
cipants received the same number of messages from the CA regardless
of condition, keeping the conversation length roughly consistent be-
tween the conditions.

Response latency was measured in milliseconds (ms) from the time
users received a question from the CA and when they began typing a
reply. If users began typing before the question from the CA was re-
ceived, this resulted in a negative response latency. Hesitations were
measured as pauses longer than 500 ms after the first character was
typed. Hesitations shorter than 500 ms were removed, as prior work has
suggested hesitations of under 500 ms are indicative of normal typing
latencies rather than hesitations for thinking (Joyce & Gupta, 1990).

4. Analysis

One-hundred twelve students were recruited from an entry-level
MIS course. They participated in exchange for course credit. Data from
five participants was excluded due to technical issues with the experi-
ment site, and four participants were removed for reporting that they
failed to follow instructions (they reported that they did not lie on the
images they were instructed to lie about). We manually reviewed re-
sponses to verify that deception occurred. In total, 103 participants'
data (51 male, 52 female) were used in the final analysis. Of those
participants, 88% were native English speakers with an average age of
19.5 years (SD = 3.02) ranging from 18 to 45 years.

We analyzed the results with a repeated measures nested general-
ized linear model comparison. We included deception and question as
random effects within participants. The deception measure was a
dummy code for each participant x image indicating whether the par-
ticipant was told to lie or tell the truth about the image. We first tested
response latency. We removed response latencies from the first image of
the experiment because it was significantly higher than the rest, pre-
sumably due to the novelty of the interface (See specific numbers in
Appendix A).

The first variables in the model are controls for ordering effects and
question effects. Order was not significant (X2 (1) = 0.43, p = .51), but
there was a significant effect of question, X2 (3) = 60.24, p < .001.
Next, we tested for the main effects of CA conversational skill and de-
ception. We found a significant main effect of CA conversational skill,
X2 (1) = 36.32, p < .001, but no additional main effect of deception,
X2 (1) = 0.86, p = .35. Finally, we include the interaction between
conversational skill and deception in the model, which is statistically
significant, X2 (1) = 4.60, p = .032.

In the final model, the statistically significant main effect of con-
versational skill on response latency remains (b = 1380, t = 6.93,
p < .0001, b is unstandardized in nested models), as does the inter-
action effect (b = −243, t = −2.14, p = .03). However, there is no
significant main effect of deception (b = 62, t = 0.80, p = .42). The
means plot of response latency differences is shown in Fig. 4. The
skilled CA condition increased response latency by an average of
1.4 seconds (SE = 0.2). Response latency decreased during deception
for those in the high skill condition, but increased slightly for those in
the low skill condition.

Similar models were used to compare mean hesitation time across
conditions. First we took the average hesitation length for each parti-
cipant during each question. The mean of hesitation times for both
truthful and deceptive responses were calculated. As the distribution of
hesitation time was right-skewed, we used a log transformation to
produce a more normal distribution. Nested linear model comparisons
showed that, as with response latency, question number had a sig-
nificant effect on hesitation length, X2 (3) = 22.93, p < .001. CA
conversational skill, X2 (1) = 0.39, p = .53, deception, X2 (1) = 0.007,
p = .94, and the interaction of skill and deception, X2 (1) = 0.08,
p = .77, were all non-significant. The means plot in Fig. 5 shows that
there was very little difference in hesitation length between conditions.

4.1. Post hoc analysis

The primary experiment analysis shows significant differences in
behavior between participants assigned to the CA with high conversa-
tional skill that gave tailored (and inherently varied) responses and low
conversational skill which gave generic, and ultimately invariant, re-
sponses. It is possible, however, that this difference is due to the re-
petitive nature of the responses in the low conversational skill condi-
tion, and that the mere presence of variance in the responses from the
high conversational skill was the driving force of the effect, rather than
the relevance of the responses. To eliminate the confounding effect
caused by the fact that the responses from the low conversational skill
CA were not only generic but also repetitive, we gathered additional
data in which participants were assigned to interact with a bot that gave
varied, but still generic, responses—that is, rather than giving the exact
same response for every follow up question, the CA was configured to
give a variety of similar, but still generic, responses.

In the conversationally varied condition, the CA randomly selected
variations of the static follow-up questions given by the low conversa-
tional skill CA. For example, rather than asking the static follow-up
question, “Please describe one more detail about the image,” as the
second question for every image, the varied CA randomly selected a
variation of this question such as “Next describe more detail about the
picture.” or “Okay, now tell me another detail about the photo.” Similar
variations were made to the second follow-up question. With this ma-
nipulation, we can isolate the effects of conversational relevance and
variety from the high conversational skill CA. We collected data from
47 additional participants from the same subject population as the main
study.

We analyzed the combined results with a repeated measures nested
generalized linear model comparison, which yielded very similar results
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to the previous analysis. Order was still not significant, X2 (1) = 0.044,
p = .83. Question was still significant, X2 (3) = 110.61, p < .001. CA
condition (tailored, variety, and generic) was significant, X2

(1) = 33.86, p < .001, and deception was still not significant as a main
effect, X2 (1) = 0.29, p = .59. Finally, the interaction between condi-
tion and deception approached statistical significance, X2 (1) = 5.22,
p = .073. In the final model, there was a significant effect for the

tailored condition (b = 1384, t = 6.32, p < .0001) but not for the
variety condition (b = 319, t = 1.44, p = .1522). There was also a
significant effect for the interaction between the tailored condition and
deception (b = −243, t = −2.12, p = .0344) but not for the interac-
tion between variety and deception (b = −28, t = −0.24, p = .8083).

Fig. 6 shows the means of response latency of the variety condition
compared to the generic and the tailored conditions. The figure shows
that the variety condition is more similar to the generic condition than
to the tailored condition.

Fig. 2. Experiment interface (Left justified bubbles are text from the chatbot)1.

Table 1
Tailored and generic interview flow.

(a) Tailored Responses (High skill) (b) Generic Responses (Low skill)

1a. Please describe the contents of the image. 1a. Please describe the contents of the image.
1b. [Question based on response to 1a] 1b. Please describe one more detail.
2a. How does the image make you feel? 2a. How does the image make you feel?
2b. [Question based on response to 2a] 2b. Why does it make you feel that way?

Fig. 3. Sample tailored and generic conversations.

1 “baby harp seal” by Flickr user CaroLa is licensed under CC BY 2.0/Resized
and included in interface.

R.M. Schuetzler, et al. Computers in Human Behavior 97 (2019) 250–259

255



5. Discussion

5.1. Effects on behavior

Our research question focused on how CA conversational skill af-
fects behavioral responses—operationalized here as response latency
and hesitations in typing—during truthful and deceptive communica-
tion. We operationalized CA conversational skill with tailored responses
and variety in responses. We see a main effect of tailored responses and
an interaction between responses and deception on response latency.
We did not, however, find any effect on hesitation time.

In our testing of H1, we showed a statistically significant difference

in the direction opposite our hypothesis. The reason for the significance
in the opposite direction is likely largely because participants inter-
acting with the low skill CA received four questions, but they were the
same four generic questions each time. Participants in the tailored
condition had a much more engaging conversation, which required
more thought as they read and thought about the follow-up questions.

Our post-hoc analysis revealed one additional outcome that gives
insight into the differences in behavior between the two conditions: the
presence of response latencies below zero. Negative latency occurs
when the user begins typing an answer to a question before the message
from the CA is presented to them it. In interpersonal communication, it
is a violation of conversational norms to talk over someone, or to an-
swer questions while they are still being asked. The same is not true of
most human-computer interactions, or even computer-mediated inter-
personal interactions, where turn-taking behavior is different than in
oral communication (Garcia & Jacobs, 1999; Herring, 2013). As might
be expected, negative response latency was more prevalent with the
low skill CA, since, after just a few interactions, people knew what
questions would be asked before they were displayed. Out of the 4275
response latencies collected for this analysis, 378 (8.8%) were negative.
Of the responses with negative latency, 313 (82.8%) were from people
in the generic condition, while only 65 (17.2%) came from people in
the tailored condition, even though they still had two repeated ques-
tions for each image.

The driving force behind the response latency difference is the dif-
ference in the richness of the conversation. In the low skill condition,
the CA was essentially nonconversational. Since there was no re-
ciprocity in the conversation, participants treated the chat as a trans-
actional interaction to be completed as quickly and efficiently as pos-
sible—they treated the CA like a computer system rather than as a
social actor. On the other hand, the more skilled CA contributed to the
conversation by following Grice's maxim of relation. The responses
given by the CA provided feedback that the agent understood what the
user said and wanted to know more. In this way, it created a dialogue,
as opposed to the question-prompted monologue of the generic CA.

We find that for those in the skilled CA condition, response latency
is lower during deception, while for the low skill CA response latency
increases slightly relative to each condition's truthful baseline. These
findings are particularly interesting as the statistical interaction sug-
gests that the tailored CA questions led to strategic behaviors to avoid
detection. Participants with the tailored CA took less time to formulate
deceptive responses than truthful ones in an attempt to maintain a
natural flow of conversation. This result is in line with IDT, which
suggests that deceivers in interpersonal communication engage in
strategic behavior to mask their deception (Buller & Burgoon, 1996).
We see no such strategic behavior in the presence of the generic CA. We
suggest that the reason for this finding is that participants in the generic
CA condition felt they could take additional time to formulate their
deception without being detected, since they were almost certainly
interacting with a computer. Those in the tailored chatbot condition felt
more pressured to respond in such a way as to avoid detection, since
they were possibly interacting with a human.

We find no support for our hesitation hypothesis with deception
(H2b). Similarly, prior research with spoken communication has shown
inconsistent results for hesitations during deception (DePaulo et al.,
2003). Our study does not find any support for any meaningful effect on
pauses in typed communication with a CA.

5.2. Implications

Our results have implications for the development of systems where
detecting deception is important. Automated screening systems are
being developed for a variety of applications, including border cross-
ings (Higginbotham, 2013; Nunamaker et al., 2011) and job interviews

Fig. 4. Means plot of response latency.

Fig. 5. Means plot of hesitation length.

Fig. 6. Means plot of response latency for three CA types.
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(HarQen, 2017). Significant research effort is being directed toward
making CAs more engaging and humanlike, for example, Google's Du-
plex system to conduct phone calls (Lomas, 2018). While interacting
with a chatbot that gives more tailored responses may be more enga-
ging, this effect may be counterproductive in deception detection ap-
plications. Our results indicate that tailored responses, as would be
present in a more skilled CA, encourage strategic deception behavior.
Therefore, it may be beneficial for developers to create CAs that are less
humanlike in scenarios where the detection of deception is important.
For example, if a company wanted to make a job screening CA that
could detect deception, the findings here indicate that the conversa-
tional skill of the CA will be a factor influencing the behavior of re-
spondents. While our results cannot be used to create a predictive
model for deception, we have shown that CA behavior influences
human behavior in important, measurable ways.

The CA technology described in this paper also paves the way for
future advancements in the design of commercial and research-oriented
CAs. While humans consider both the content of the message and the
nonverbal behaviors accompanying the message when crafting a re-
sponse (Burgoon, Guerrero, & Floyd, 2009), the current state of the art
for CAs is to rely primarily on the content of the message for for-
mulating responses, neglecting the extra behavioral information that
may be helpful to interpret messages. Although CAs may not have ac-
cess to the wide range of cues that humans use to infer meaning in
messages, they do have access to novel cues that are not readily
available to human observers. With enhancements to the CA described
in this manuscript, a system could analyze the behavioral responses
(response latency and hesitations) in real time and use this information
to further inform the CA's responses.

There are also implications for the design of conversational agents
for the completion of repetitive tasks. While the same number of
questions were asked in both conditions, users who received the generic
questions for each image not only demonstrated more negative re-
sponse latency—indicative of their lack of engagement—but also ru-
shed through the study, spending 10% less time completing the ex-
periment (unskilled mean 17.0 min, skilled mean 18.9 min). Participant
comments following the experiment expressed displeasure and frus-
tration with the conversationally unskilled CA. The following is a re-
presentative comment from a user in the low conversational skill CA
condition:

“I understand man power takes a lot of [sic] more work and effort.
However, the chat was very boring and I probably would have felt
more emotions if it wasn't the same exact questions. Very clear it
was a generated program.”

This frustration can lead to dissatisfaction with the system or task to
be completed. For repetitive tasks such as this interview, a CA with low
conversational skill may cause a negative experience for users. On the
other hand, a CA that is created with the ability to respond in a tailored
way to user messages may provide a more engaging and overall better
conversation. Therefore, the design of the CA's conversational skill
should reflect the goals of the system.

5.3. Limitations and future research

As with any research, there are limitations to this work. First, the
deception in this study was limited by a lack of motivation for the
deceivers. They were simply told to lie, with no incentive other than the
instruction given to them. Future research should examine the impact

of motivation, or different types of deception. If the chatbot is con-
ducting an interrogation rather than a simple Q&A, there is the po-
tential that the social presence factor becomes an even greater driver.
Participants were also not invested in the content of the lie. Lying about
an image displayed on the screen is different than lying about personal
experiences, for example (DePaulo et al., 2003). Personal lies invoke
self-presentational instincts such as the desire to make a good im-
pression (Goffman, 1959). This study is also limited to spontaneous lies,
as compared to practiced lies. While we gave participants time to think
about their deception before being interviewed, the experiment does
not reflect many common deception scenarios in which individuals
have time to practice and review their responses. Further research
would need to investigate other types of lies, including those with a
deeper connection to the deceiver.

It is also possible that the CA with low conversational skill gave
responses that, through pure happenstance, were perceived by partici-
pants as demonstrating understanding. As previously described and il-
lustrated in Fig. 3b, generic follow-up questions can be appro-
priate—and even relevant—without being tailored to the conversation
at hand or intentionally demonstrating understanding. Thus our ma-
nipulation of conversational skill is not as clean as one would ultimately
desire. However, any generic response that might have conveyed un-
derstanding in the generic CA condition would only lead to a weak-
ening of our statistical results (i.e., closer means between the groups).
Thus, while future work might consider ways to address this problem,
from a practical perspective the differences between the groups are
likely more significant that what is present in the current work.

Future research can expand the work here to integrate other aspects
of social presence such as embodiment of the agent, or audio-based
communication. The current research was text-only, which provides
limited cues compared to the voice and body. Because text-to-speech
and speech-to-text technology are active areas of research, the cap-
abilities of these systems will continue to improve over the coming
years. The addition of embodiment with a face and voice could provide
a greater sense of social interaction, resulting in even greater social
responses.

6. Conclusion

This research explores the influence of human-like traits in con-
versational agents by building on Interpersonal Deception Theory to
explain the impact of a CA's conversational skill on a person's cues of
deception when engaging with the CA. We proposed and tested a model
demonstrating how a CA's adherence to Grice's maxim of relation
(Grice, 1975) affects communication behavior. We show that introdu-
cing enhanced conversational skill decreases response latency during
deception in human interviewees. The conversational skill of the CA
also increases response latency overall. Those receiving tailored re-
sponses from the CA engage in more strategic behavior to manage their
response latency during deception. Even small changes to the CA's
ability to respond appropriately to users has real and significant effects
on communication behavior.
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Appendix A. Descriptive Statistics

Table 2
Response Latency (times in ms; standard deviations in parentheses).

Truthful Deceptive Totals

Generic 2063 (2347) 2125 (2242) 2097 (2290)
Variety 2370 (2472) 2405 (2401) 2389 (2433)
Tailored 3414 (2125) 3251 (2079) 3326 (2101)
Totals 2597 (2389) 2579 (2293)

Table 3
Mean Hesitation Length (times in ms; standard deviations in parentheses).

Truthful Deceptive Totals

Generic 1141 (738) 1253 (1047) 1202 (922)
Variety 1267 (974) 1246 (875) 1255 (920)
Tailored 1221 (918) 1247 (971) 1235 (947)
Totals 1179 (831) 1250 (1011)
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