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Abstract

In oligonucleotide microarray experiments, noise is a challenging problem, as biologists now are 

studying their organisms not in isolation but in the context of a natural environment. In low 

photomultiplier tube (PMT) voltage images, weak gene signals and their interactions with the 

background fluorescence noise are most problematic. In addition, nonspecific sequences bind to 

array spots intermittently causing inaccurate measurements. Conventional techniques cannot 

precisely separate the foreground and the background signals. In this paper, we propose 

analytically based estimation technique. We assume a priori spot-shape information using a 

circular outer periphery with an elliptical center hole. We assume Gaussian statistics for modeling 

both the foreground and background signals. The mean of the foreground signal quantifies the 

weak gene signal corresponding to the spot, and the variance gives the measure of the undesired 

binding that causes fluctuation in the measurement. We propose a foreground-signal and shape-

estimation algorithm using the Gibbs sampling method. We compare our developed algorithm 

with the existing Mann–Whitney (MW)- and expectation maximization (EM)/iterated conditional 

modes (ICM)-based methods. Our method outperforms the existing methods with considerably 

smaller mean-square error (MSE) for all signal-to-noise ratios (SNRs) in computer-generated 

images and gives better qualitative results in low-SNR real-data images. Our method is 

computationally relatively slow because of its inherent sampling operation and hence only 

applicable to very noisy-spot images. In a realistic example using our method, we show that the 

gene-signal fluctuations on the estimated foreground are better observed for the input noisy 

images with relatively higher undesired bindings.
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I. Introduction

In microarray experiments, noise is increasingly becoming a problem, as biologists now are 

studying their organisms not in isolation (e.g., pure RNA from a single species grown in 

culture), but in the context of a natural environment. Namely, the amoebic RNA signal is 

more difficult to ascertain in the presence of stochastic, confounding host-RNA noise, such 

as when RNA is measured from amoebae surrounded by m liver cells (n≪m), as well as 

high background noise produced by the imaging scanner because of the low photomultiplier 

tube (PMT) voltage setting. In this paper, we develop a Gibbs-sampling method for 

estimating the foreground signal and the shape information from such noisy microarray spot 

images.

A. Oligonucleotide Microarray

Oligonucleotide microarray technology is a powerful tool for the analysis of differences in 

the gene expression levels of a multitude of genes in parallel. Hybridized oligonucleotide 

microarrays are prepared by automatically printing thousands of distinct oligonucleotides, 

each representing different genes, as several gridded, predefined spots in an array format on 

glass microscope slides [1]. Messenger RNAs present in a particular sample of cells are 

extracted and used to form fluor-tagged cDNA in vitro using the reverse transcription 

method. Tagged cDNAs are then hybridized to the array of oligonucleotides, and the gene 

expression level is quantified at the site of each immobilized cDNA [1]. Fig. 1(a) shows a 

typical oligonucleotide microarray red–green–blue (RGB) image, where each spot shows the 

gene-expression signal corresponding to a particular gene. Fig. 1(b) presents the intensity 

image of a single noisy spot. In general, processing of such images requires following three 

prior information.

Shape—During the manufacturing process, a robot finger places the oligonucleotide on the 

slide, resulting in variability in the placement. Because of surface tension, significantly less 

oligonucleotide may be deposited at the center of the target. Consequently, the center of the 

hybridized target emits fewer fluorescent photons, thereby giving the target the shape of a 

doughnut. Therefore, it is critical to consider the center hole in signal-intensity estimation 

methods, especially when the signal is weak and the center hole is large. In practice, the 

center holes have an elliptical shape (see Fig. 2) [2]. In a few cases, there may even be more 

than one hole.

Background Noise—The oligonucleotide microarray images are collected by scanning 

the signal intensities of the corresponding spots using dedicated fluorescence scanners [3]. 

The major scanner settings for increasing the spot intensities are the laser power and the 

voltage of the PMT. In almost all scanners, within a limited intensity range from 200 to 50 

000 (mean spot intensity), gene expressions are independent of the PMT voltage. This 

usable intensity range is considerably smaller than the maximum detection range of the 
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PMTs. However, spot and background intensities outside this range will produce errors in 

the measured expression levels. The brightest spots reach saturation level at high PMT 

settings, and differences in expression levels cannot be ascertained. In order to avoid 

saturation, the images are acquired at low-PMT settings. As a consequence, the captured 

images of the weakest spots become noisy [2].

Foreground Noise—In this paper, we assume that the intensity measurement of each spot 

is a function of the specific gene available within each sample. The random fluctuation in 

the foreground occurs because of the undesired binding of the host RNA. It is often difficult 

to identify the foreground gene-expression region (shape) in low signal-to-noise ratio (SNR) 

situations, since the signal is weak and there is no marked transition between the foreground 

and background noise.

B. Literature Review

In order to estimate gene-signal intensities in each spot, local segmentation of the image is 

used to distinguish foreground pixels (signals) from the background. In conventional 

software, this segmentation method creates a local target mask [see Fig. 3(a)] on the gene-

signal region comprising a set of foreground pixels for every spot. Then, quantification is 

performed to extract raw data intensities from the signal areas and their relative 

backgrounds. The image-processing challenge is to extract the shape of the spot [denoted as 

the target site in Fig. 3(a)] emitting the gene signals. Most software resources assume during 

the processing that the target mask itself contains the gene signals. Some others use the 

Mann–Whitney (MW) test to differentiate the target site from the target mask [1].

The existing literature abounds in methods for automatic segmentation of the microarray 

images. In [4], the authors propose Markov random field (MRF) and active-contour-based 

methods. In [5], the authors explore an order-statistics-based technique. A correlation-

statistics-based method is proposed in [6]. In a complementary work, the authors use a 

wavelet-denoising method for microarray image enhancement [7]. In [8], the authors 

propose a noise-reconstruction-based method. A k-means clustering-based microarray 

image-segmentation method is described in [9]. The main disadvantage of the preceding 

methods is that they perform well only for high SNR images. In addition, conventional 

adaptive-thresholding techniques are unsatisfactory in low-SNR microarray spot images 

since it is difficult to differentiate the foreground and the background for such cases [see 

Fig. 3(b) and (c)]. Standard morphological methods also fail to capture the shape 

information because of the weak signal.

In a recent work [10], the researchers present an expectation maximization (EM)/iterated 

conditional modes (ICM)-based method for processing noisy microarray spot images. In 

their work, the authors do not assume any spot-shape information for processing images. In 

this paper, we present an improved and simplified version of their method by introducing a 

priori spot-shape information for the microarray spots using parametric doughnut shapes.

Estimating the gene-signal intensity accurately is essential for its use in biological analysis. 

For example, in ratio-based expression analysis, often the gene-signal intensity of a control 

may be transcribed poorly (say, with a value of 0) using conventional software at low SNR. 
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However, in the experiment let the gene be transcribed with a value of ten. Hence, the gene 

is inactive in the control, but active in the experiment, which should be considered 

significant. In these instances, however, generating a fold ratio is impossible since 10/0, the 

ratio of the gene signal intensities, is undefined. Therefore, a more analytically based 

estimation is necessary.

C. Overview of Our Method

In this paper, we consider the following analytical strategy for estimating gene-signal 

intensities from oligonucleotide microarray spot images:

• a parametric doughnut-shape model for the spot shape and location;

• a parametric model for the foreground and background signals;

• a Gibbs sampling-based algorithm for estimating the unknown shape and signal 

parameters from a given spot image.

We test our proposed algorithm numerically and compare the results with the existing MW- 

and EM/ICM-based methods [1], [10]. Our proposed method significantly outperforms these 

existing methods at low SNR. Our algorithm performs better because it contains prior spot-

shape information, whereas the other methods (MW and EM/ICM) do not have that 

flexibility. Namely, we observe that the performance of the center-hole estimation is overly 

sensitive using the EM/ICM algorithm in very low SNR images, whereas our proposed 

method does not have that limitation. In a realistic example using our proposed method, we 

show that the gene-signal fluctuations at the estimated foreground are better observed as 

host redundancy increases in the noisy input images. Our research verifies the fact that 

statistical signal processing can play a significant role in estimating noisy microarray image 

data.

One application of our proposed work is in infectious disease research where many amoebic 

genes produce very low-intensity signals in the measurement. Biologists often discard such 

noisy spot measurements because no existing methods guarantees the desired segmentation 

performance [11]. However, our proposed approach performs better than the existing 

methods. Note that our method is slower than the existing algorithms. Hence, we propose 

using conventional methods for segmenting high-SNR spot images and our proposed 

method for segmenting very noisy spot images.

The paper is organized as follows. In Section II, we present our proposed method for 

modeling microarray spot shapes and signals. Then, we describe the measurement model 

with noise. In Section III, we present a Gibbs sampler for estimating the shape and signal 

parameters of a given spot. In Section IV, we review existing MW- and EM/ICM-based 

methods. In Section V, we present our results using real data on Entamoeba oligonucleotide 

microarrays that were collected at the Washington University School of Medicine 

Microarray core facility [11]. In Section VI, we present numerical examples for quantitative 

and qualitative comparison of the parameter estimation using our proposed, MW-, and EM/

ICM-based methods for low-SNR images. Finally, we conclude in Section VII.
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II. Spot Shape and Signal Modeling

In this section, we first present a gridding method to obtain a rough estimate of the position 

of each spot in the microarray by finding a rectangular grid. Then, we discuss our proposed 

parametric model of the spot shape and location. Finally, we present the statistical 

measurement model comprising the foreground and background signal.

Gridding

We adopt a similar method to that proposed in [12] for gridding. We manually select the 

image portion of interest from the microarray. We project this image onto the x and y axes. 

The projection looks like a series of peaks separated by off-peaks. Finally, the grid is formed 

by plotting a line in each off-peak. We present an illustration of the gridding algorithm in 

Fig. 4.

Spot-Shape modeling

We model the spot shape using a parametric circle with an elliptical center hole resembling a 

doughnut shape. Parametric formulation of the spot introduces prior information in the gene 

signal estimation algorithm, as we show in the next section. In most cases, microarray spot 

shapes are circular without any center hole. The remainder are mostly doughnut shaped. 

Spots with more than one center hole are possible, but very rare in practice. Hence, we 

confine ourselves to modeling the spots using a single center hole.

We assume that the signal region R(τ) is given by

(1)

where r = [x, z]T and r0 = [x0, z0]T denotes a pixel location and the center of the circle and 

the ellipse in Cartesian coordinates, respectively; “T” is a matrix transpose operation; r1 is 

the radius of the circular spot; and Σ(d, A, ϕ) is defined as

(2)

where d > 0 is an axis parameter, A > 0 the area, and ϕ ∈ [−π/4, π/4] the orientation 

parameter (in radians) of the ellipse. Here, d and A/dπ are the axes of the elliptical hole. The 

inverse of Σ (·) (is defined as .

We denote the unknown shape-parameter vector as τ = [r0
T, d, A, ϕ, r1]T, the rectangular 

grid containing the kth spot Rk(τ) and its neighborhood as  as , where ∪ 
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denotes the union operation. It is worth mentioning that our proposed spot-shape model can 

be extended to the more general case using multiple overlapped center holes.

Signal Modeling

The gene signal in the kth spot, ignoring the background noise in , is given by

(3)

where yk(r; τ) is the measurement and fk(r) the kth gene’s expression. For notational 

convenience, we will omit the subscript k in the remainder of this paper, since we present a 

generalized analysis of the gene signal estimation for each spot location. The measurement-

noise model is given by

(4)

where θ = [μ, σ]T is the vector of unknown foreground spot signal parameters and f(r; θ) the 

independent identically distributed (i.i.d.) Gaussian random variable in R(τ) with unknown 

mean μ and variance σ2 [13]. The parameter σ denotes the gene expression level and σ2 

signifies the random fluctuation as caused by the undesired binding of the host. The local 

background noise values w(r) in  are modeled as independent from pixel to pixel 

and identically distributed additive Gaussian random variables with known mean μw and 

variance . We assume that f(r; θ) and w(r) are independent of each other at every pixel 

location. Hence, the unknown spot shape, location, and signal parameters are ψ = [τT, θT]T.

Data Preprocessing

We estimate the background-noise parameters locally from the noise-only data. Then, we 

subtract the estimated μw from the available data in . In this way, the local 

background noise w(r) in  become i.i.d. Gaussian random variables with zero 

mean and known estimated variance .

Summary

We adopt a shape bounded by a circle with an elliptical center hole and also take into 

account the Gaussian signal and noise models. Similar frameworks are applicable to other 

analysis fields as well [14]. We ignore the randomness along the periphery for modeling the 

oligonucleotide deposition spot. The elliptical shape model for the center hole is well suited 

to random horizontal and vertical axes. In [13], a more general modeling of the periphery 

considering a random variation is assumed; however it requires a larger number of 

parameters and, as a consequence, the solution to the reverse problem becomes more 

computationally intensive.
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III. Estimation

In this section, we discuss a Bayesian approach for estimating the unknown parameters in ψ. 

The Bayesian approach is based on the Gibbs sampling method as discussed in [14] for 

nondestructive evaluation (NDE) defect signal analysis.

We denote the probability density function (pdf) of a Gaussian random variable a with mean 

α and variance β2 as p(a) =  (a;α, β2) and the conditional pdf of a random variable a given 

random variable b as p(a | b). Then, the conditional pdf of any observation y (·) given ψ is

(5)

We assume the available measurements are {y(x, z; 1 ≤ x ≤ L, 1 ≤ z ≤ M} and the vector 

form of the lumped measurements is y. The likelihood L(y|ψ) of the measurement y given ψ 

is

(6)

where N(τ) = ∑r∈R(τ) 1.

• Prior specification: We denote the prior pdf of a random variable a as πa(a). We 

assume the parameters in ψ are independent a priori and we assume uniform 

distribution priors for all the parameters, e.g., i) πμ(μ) = uniform(0,μMAX); ii) πσ(σ) 

= uniform(0,σMAX); iii) πx0(x0) uniform(x0,MIN, x0,MAX); iv) πz0 (z0) = 

uniform(z0,MIN, z0,MAX); v) πd(d) = uniform(0,dMAX); vi) πA(A) = uniform(AMIN, 

AMAX); vii) πσ(σ) = uniform(σMIN,σMAX); viii) πr1(r1) = uniform(0,r1,MAX). 

Hence, the joint prior distribution of the parameters in ψ is given by

(7)

• Posterior pdf of ψ given y: Hence, the posterior pdf of ψ given the observations in y 
is

(8)

We draw samples to estimate the unknown parameters in ψ from the posterior pdf 

in (8).

Sarder et al. Page 7

IEEE Trans Nanobioscience. Author manuscript; available in PMC 2016 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Sampling the parameters in ψ : Sampling from (8) is a large dimensional problem. 

This motivates us to draw samples from the joint posterior using a Gibbs sampling 

method [15]. The sequence (see, for example, [14]) is as follows:

1. We first draw σ(t) from p(σ |μ(t−1), τ(t−1), y) using rejection sampling [15].

–

– Rejection sampling:

a. We draw σ from πσ(σ) = uniform(0,σMAX);

b. We draw u from uniform(0,1);

c. We repeat steps a) and b) until u ≤ (q(σ |μ, τ, y)/m(μ,τ)), where

and

2. We then draw μ(t) from p(μ |σ(t), τ(t−1), y), which is a truncated Gaussian 

distribution [16]. The pdf p(μ |σ, τ, y) is equivalent to 

, where μ̂ = (∑r∈R(τ) y (·)/N(τ)).

3. Finally, we draw τ(t) from p (τ |σ(t), μ(t),y) using a shrinkage slice sampling 

[17].

– p(τ |θ(t), y) ≈ πτ(τ) L(y |τ, θ(t)).

a. We define the starting hyperrectangle as follows: x0,L = x0,MIN; 

x0,U = x0,MAX; z0,L = z0,MIN; z0,U = z0,MAX; dL = 0; dU = 

dMAX; AL = 0; AU = AMAX; ϕL = −π/4; ϕU = π/4; r1,L = 0; r1,U 

= r1,MAX.

b. We draw an auxiliary random variable u(t) from uniform(0,L(y |

τ(t−1), θ(t))).
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c. We draw τ = [x0,z0,d,A, ϕ, r1]T from uniform(x0,L, x0, U), 

uniform(z0,L, z0,U), uniform(dL, dU), uniform(AL, AU), and 

uniform(ϕL, ϕU), uniform(r1,L, r1,U), respectively.

d. If τ is within the starting hyperrectangle, i.e., L(y|τ, θ(t)) ≥ u(t), 

we return τ(t) = τ. Otherwise we shrink the original 

hyperrectangle as follows:

— if , we set x0,L = x0; otherwise we set x0,U 

= x0.

— if , we set z0,L = z0; otherwise we set z0,U 

= z0.

— if d ≤ d(t−1), we set dL = d; otherwise we set dU = d.

— if A ≤ A(t−1), we set AL = A; otherwise we set AU = A.

— if ϕ ≤ ϕ(t−1), we set ϕL = ϕ; otherwise we set ϕU = ϕ.

— if , we set r1,L = r1; otherwise we set r1,U 

= r1.

— we repeat from step c.

– Any floating-point underflows that occur while evaluating the 

expression L(y|τ, θ) in MATLAB are adjusted numerically.

4. We repeat from Step 1 until a sufficient number of samples (T0) have been 

drawn.

The samples ψ(0), ψ(1), ψ(2), … produce a guaranteed stationary (invariant) posterior 

distribution of p(ψ |y) [18].

• Sampling the signals f(r;θ : We estimate the signals for f (r; θ) each pixel using a 

composition sampling from the posterior pdf p(f (·) |y) = ∫ p(f(·) | ψ, y)p(ψ, y)dψ as 

mentioned in [14]. The process is as follows:

1. We draw ψ(t) as mentioned before.

2. We draw f(·)(t) from p(f (·) |ψ(t), y) such that

– for r ∈ R(τ(t)) we draw f(·)(t) from

– for r ∈ Rc(τ(t)) we set f(·)(t) = 0.

Samples f(·)(0), f(·)(1), f(·)(2), … yield a Markov chain with a stationary posterior 

distribution equal to p(f(·)|y).
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• Estimating ψ and f(·):We define t0 as the burn-in period. Hence, the minimum 

mean-square estimates (MMSE) of ψ and f(·) are computed as follows:

(9)

(10)

where τ̂ is the MMSE of τ as defined in (9).

IV. Comparison of MW, EM/ICM, and our Proposed Estimation Methods

In this section, we first present the MW-test-based segmentation method [1] analytically. 

Then, we present the EM/ICM-based method as proposed by Gottardo et al. [10]. Finally, 

we present a comparative study of MW, EM/ICM, and our proposed estimation methods.

A. Mann–Whitney Segmentation Method

In [1] the authors propose a MW-test-based segmentation method for gene-signal 

estimation. First, the independent measurements X1, X2, …, Xn and Y1, Y2, …, Ym are 

collected from two random variables X and Y with sample means μX and μY, respectively. 

The rank-sum statistic W is defined as the sum of ranks of all the X samples in the combined 

ordered sequence of the X and Y samples. The testing problem is defined as follows:

(11)

Rejection of H0 occurs when W ≥ wϑn,m, the critical value corresponding to the significance 

level ϑ [19].

A predefined target mask is used to identify a portion of the image of the spot and its 

background that contains the target site. Eight samples are randomly selected from the 

known background (outside the target mask) as Y1, Y2, …, Y8, and the lowest eight samples 

are picked within the target mask as X1, X2, …, X8. The rank-sum statistic W is calculated 

and, for a given significance level ϑ, compared with wϑ,n,m. Under the null hypothesis, we 

have

(12)

if both m and n are large [19]. If the null hypothesis is not rejected, then one sample is 

discarded at random from the eight potential target region’s samples and the lowest eight 
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remaining samples are selected from the target mask. The Mann–Whitney test is repeated 

until the null hypothesis is rejected. When H0 is rejected, the target site is decided, with 

significance level ϑ, to be the eight samples causing the rejection, together with all pixels in 

the target mask whose values are greater than or equal to the minimum value of the eight. If 

the null hypothesis is never rejected, then we conclude that there is no significant signal at 

the target site. Once a target site is determined, gene expression is measured by the median 

of the target site minus the median of the background area (outside the target mask area).

B. Gottardo Segmentation Method [10]

We summarize briefly the segmentation method as proposed by Gottardo et al. (see [10] for 

more information on this method). For a given spot, the measurement model at every pixel 

location is proposed as [10]

(13)

where (·) denotes a pixel location, η is the background effect, ι quantifies the gene signal 

corresponding to the spot, x(·) is 1 to classify the pixels as belonging to the spot and 0 

otherwise, ε (·) follows (ε((·);0,1/λε), and ν(·) follows a Gamma distribution, (κ/2,κ/2). 

The random variables ε(·) and ν(·) are independent of each other and i.i.d. from pixel to 

pixel. Hence,  follows a t-random variable with κ degrees of freedom and 

variance λε. A modified symmetric first-order Ising model is used to estimate the pixel 

classification level x(·). The spot pixels are forced to lie within a circle of fixed radius rg and 

center cg. The lumped vector forms of x(·), ε(·), and ν(·) are x, ε, and ν. In [10], the authors 

propose an EM/ICM-based microarray spot-image segmentation algorithm for estimating 

the unknown parameters [η, ι,xT, λε, cg, νT]T assuming κ and rg values are known.

C. Comparison

Our proposed parametric method is clearly an improvement over the existing nonparametric 

MW-test-based segmentation method which only works well at high SNR. We justify this 

claim in Section VI where we show that both the MW- and EM/ICM-based segmentation 

methods do not perform as well as our proposed method in very low-SNR images. Since our 

proposed method is an improved and simplified version of the EM/ICM-based segmentation 

method, we confine ourselves to compare with that method in the rest of this subsection. The 

segmentation method as proposed by Gottardo et al. is a pixel-by-pixel process whereas our 

method is more parametric. The forward model (13) is not analytically tractable for 

developing a user friendly MCMC-based signal-estimation algorithm. The EM/ICM-based 

algorithm was developed for multiple-center-hole case. Our proposed method can be 

extended to such case at the cost of added computational load. Note that cDNA microarray 

spots with more than one center hole are very rare in practice.

Gottardo et al. assume the radius of the spot is fixed and known, whereas we assume that the 

circular outer-periphery radius is an unknown parameter. As an advantage, if the signal level 

in a spot is insignificant, the spot-outer-periphery radius parameter r1 in (1) is expected to be 

estimated as a value near to zero using our algorithm.
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In our analysis we take into account the random fluctuation of the gene signal in the spots by 

modeling the undesired binding of the host. As a consequence, we estimate the signals in 

each spot-pixel location using a composition sampling method, assuming random fluctuation 

of the gene signals. On the other hand, the Gottardo et al. segmentation method does not 

account for that in their analysis and models the gene signal in the spot as a deterministic 

constant.

We observe that estimation of the center holes using the EM/ICM method is overly sensitive 

to the initialization of the unknown parameters in very low-SNR images. Namely, such 

sensitivity occurs because the EM/ICM algorithm employs a pixel-by-pixel processing. In 

contrast, our proposed method can overcome such a problem because of the realistic and 

parametric spot-shape information that we employ in our analysis. As a consequence, more 

accurate prior knowledge is employed during the initialization of the estimation using our 

method. In general, our algorithm is time intensive and hence we propose using 

conventional methods for segmenting high-SNR spot images and our method for segmenting 

very noisy spot images.

V. Results Using Real Data

A 70-base-pair oligonucleotide microarray designed to analyze 6242 genes from the 

protozoan human gut parasite Entamoeba histolytica was used for image signal analysis 

[11]. The average computed melting temperatures for all oligos was 80.8C, with a standard 

deviation of 2.73 (range 70.5–95.5C). The oligonucleotides were manufactured by Illumina 

(San Diego, CA) and were printed in triplicate on 100-cell-associate epoxy slides (Santa 

Clara, CA) by the Washington University School of Medicine Microarray core facility. 

RNA was isolated from approximately 5 × 106 log-phase Entamoeba histolytica 

HM-1:IMSS grown in 15-ml glass flasks using the Qiagen RNeasy kit (Valencia, CA) 

following the manufacturer’s protocol, including a DNase treatment. Past studies suggested 

that in amoebae more than 30% of genes are transcribed at detectable levels when grown in 

culture [20], [21]. RNA quantity and quality were obtained from an absorbance ratio at 260 

nm and 280 nm. RNA quality was confirmed for each sample using an Agilent 2100 

bioanalyzer (Palo Alto, CA) according to the manufacturer’s instructions. Cy3- and Cy5-

labeled cDNA was created using the Genisphere 3DNA array350 kit (Hatfield, 

Pennsylvania). Slides were scanned using a ScanArray Express HT scanner (Perkin Elmer, 

Boston, MA) to detect Cy3 and Cy5 fluorescence. Laser power was kept constant, and PMT 

was varied for each experiment to achieve optimal signal intensity with lowest possible 

background fluorescence. In order to differentiate expression levels among highly expressed 

genes, the data were collected at low-PMT settings. We applied our proposed estimation 

algorithms to noisy parts of the microarray image data

In Fig. 5(a) and (b), we show intensity images of two different parts of the raw data from 

Cy3 and Cy5 fluorescence, respectively. In most regions, gene signals are hardly visible 

compared with those of the few highly expressed genes’ signals in some spots. We use two 

randomly chosen spots and their neighboring regions for analysis (see elliptical dash-dotted 

regions in Fig. 5(a) and (b), respectively).
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We denote the randomly chosen spots and their neighboring regions as data-sets A and B, 

respectively. The images have dimensions of 35 × 35 pixels in each. Realistic and 

parametric modeling of the spot-shapes allows us to initialize the prior shape-parameter 

pdf’s accurately. We chose prior pdf’s with μMAX = maximum({yi ∀ i ∈ (1, LM)}), σMAX = 

2σw, ϕMIN = −π/4, ϕMAX = π/4. We chose x0,MIN, x0,MAX, z0,MIN, and z0,MAX around the 

neighborhood of {x0 = 0, z0 = 0}.We picked r1,MAX ~ 12 pixels using a prior knowledge 

from the high SNR spots. The size parameters of the center hole ellipse, dMAX AMIN, and 

AMAX, are chosen to span inside the outer periphery. Note that Markov chain calculation 

may not converge to a true value for too small an AMIN value.

We used a Intel dual-core CPU (Clocks: 2.4 GHz and 1.58 GHz; RAM: 1.99 GB) for all the 

computer simulations in this paper. We compare the estimated spot-shapes after running 

individual Gibbs samplers for 10 000, 1000, 500, and 100 cycles, all starting with different 

initialization points, while evaluating our proposed MCMC-based MMSE estimation. We 

discarded 8000, 800, 400, and 80 samples, respectively; therefore the burn-in periods were t0 

= 8000, 800, 400, and 80, respectively. We estimated the MMSE of posterior pdf’s p(ψ|y) 

and p(f(·)|y) as well as the unknown parameters of ψ using (9) and (10) from the last 2000, 

200, 100, and 20 samples of the respective Gibbs samplers. We eliminated the weak-

estimated signals to zero values if , where the threshold 

0.75 was chosen arbitrarily. We introduced this step in our analysis for making a rough 

estimate of other center-holes (if they at all exist).

In Figs. 6 and 7 we present the signal estimation results for these data-sets using our method. 

We computed the sample estimates of the background noise mean μw and variance  as 

(120.59, 122.58) and (119.91, 181.74), respectively. In these figures, we present the noisy 

images and our estimated images for data-sets A and B, respectively. Here, we ran separate 

Gibbs samplers of 10 000, 1000, 500, and 100 cycles for each data-set. In Fig. 8, we present 

convergence plots of the Markov chains for data-set A with 100 draws for parameters a) x0, 

b) z0, c) r1, d) d, e) A, f) ϕ, g) μ, and h) σ. We computed the SNRs of the data-sets A and B 

as 2.9 dB and −21.52 dB, respectively, using (14) (see Section VI). Note that the estimated 

center hole might not be very accurate for the data-set B since this data-set is overly noisy. 

In Table I we present the estimated gene signal means and computation times for data-sets A 

and B with 10 000, 1000, 500, and 100 Markov draws.

We conclude that our method: i) clearly segments the foreground spot shapes from the 

respective backgrounds and ii) also estimates the foreground signals using Gibbs sampler 

with 1000 runs. The data-set A is less noisy and hence the estimation performance using this 

data-set does not vary much (see Table I and Fig. 6). However, the data-set B is very noisy 

and estimation performances with 500 and 100 draws using this data-set do not appear very 

satisfactory (see Table I and Fig. 7). Despite of this deficiency, we cannot use long time in 

real-life analysis for a single-noisy spot since the whole microarray might contain thousands 

of such spots. Hence, we recommend using 500-cycle Gibbs sampler that takes around 

reasonable 10 min to process images of dimension 35 × 35 pixels. We justify this claim 

using a numerical example in Section VI.
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VI. Numerical Examples

In this section we present two numerical examples. In Example 1, we compare the 

estimation accuracy of our proposed method with MW- and EM/ICM-based methods. This 

analysis is performed for a spot shape with two elliptical nonoverlapping center holes using 

the estimation method we proposed in Section III. In Example 2, we address a more realistic 

example where we generate noisy data for parasitic amoebae surrounded by a host of 

varying amount. Here, we generate the spot shape considering a more realistic model as 

proposed in [13].We qualitatively compare the estimated image using this data with the ideal 

amoeba image data.

Example 1

In this example we aim to show that at low SNR our method outperforms the existing 

methods. We generated the simulated image of dimensions 25 × 25 pixels, assuming the 

spot shape with two elliptical nonoverlapping center holes [see Fig. 9(a)]. We used the 

foreground signal mean μ = 20, which resembles the gene signal, and variance σ2 = 3. In 

Fig. 9(b), we present the noisy version of this image with noise variance . Here we 

use noise mean μw = 0 without loss of generality. In Fig. 9(c), we present the estimated 

image from this noisy image using the EM/ICM algorithm. Here, the estimated foreground 

signal mean is μ̂ = 15.98. In Fig. 9(d), we present the estimated image using the MW-test-

based image segmentation method with ϑ = 0.05. We observe that the separation of the 

foreground and background is impossible.

In Fig. 9(e), (f), (g), and (h), we present the segmentation results using our proposed method 

as outlined in Section III with a priori spot-shape information, assuming two elliptical 

center holes, with the flexibility that the center holes can merge with each other. We drew 

4000, 1000, 500, and 100 samples, respectively, for evaluating our proposed Gibbs sampler. 

In these figures, we estimated the foreground signal means μ̂ = 19.02, 19.25, 19.49, and 

15.38, respectively. Note that here we present the estimated  directly unlike 

eliminating the weak signals as we performed in Section V. Here we used a similar 

initialization strategy as described for the real-data case. In Table II we present estimated 

gene signal means and computation times for different simulations that we performed in this 

example. From this result (see Table II and Fig. 9), we conclude that our proposed method 

performs very well using the 500-cycle Gibbs sampler that takes around 6.21 min to process 

images of dimensions 25 × 25 pixels. Such a result is ascertained given that we initialize our 

algorithm with good starting points. We already discussed in Section V that accurate 

initialization is always feasible in our analysis for the case of real data.

In Fig. 10, we present a quantitative comparison of the estimation accuracy of these three 

methods. We define the SNR as follows:

(14)
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In our analysis we define mean-square error (MSE) as , where E(·) denotes 

the statistical mean. We perform 20 realizations per SNR. We vary the background noise 

level to obtain noisy images with different SNR values. Though the MW-test-based method 

performs worst in the beginning, starting from −20 dB it starts outperforming the EM/ICM-

based method. Our proposed method performs the best.

The EM/ICM cannot efficiently estimate the spot shape in large noise. Also this algorithm is 

very sensitive in estimating the center holes because of employing a pixel-by-pixel 

processing. In conclusion, though our method is time intensive than compared to existing 

methods but outperforms them with significant margins. In our future work we aim at 

developing a fast version of our proposed algorithm.

Example 2

In this example we qualitatively show how our proposed method is useful in a more realistic 

environment. For this analysis, we consider the case of clinically measured human gut 

parasite Entamoeba histolytica data. In such data, host RNA obscures the ground-truth. As a 

result, the measured Entamoeba RNA image varies measurably from the truth. Our 

motivation in this example is to show that the application of statistical signal processing can 

decrease that variance from the truth.

In this example we generate data using the spot shape model as we proposed in Section II. 

We further distort the true spot shape to make it more realistic. In order to do that, we i) 

eliminate one chord using a randomly chosen chord length and position and ii) introduce an 

edge noise effect in the spot by randomly keeping or removing the spot pixels along the spot 

edge [13].

We generate data by assuming that the truth attached to the gene-signal quantification level 

is 5a in the spot where a is a known constant (see Fig. 11, first row). This spot can be 

assumed as an outcome of a purified Entamoeba RNA image. Human RNA is sticky and 

binds weakly/intermittently to the spot, causing fluctuations/false readings in the foreground 

signal. In general, the host RNA quantity is large in the measured clinical sample, reducing 

the amount of labeled Entaomeba RNA hybridizing to the spot. As a result, the 

measurement image becomes noisy. We generate noisy image data at SNRs of 5 dB, 0 dB, 

and −5 dB, respectively. Such images are generated assuming the following mixtures: i)a 

amount of Entamoeba and 4 a amount of host; ii) 0.5 a amount of Entamoeba and 4.5 a 

amount of host; and iii) 0.25 a amount of Entamoeba and 4.75 a amount of host. We vary 

the foreground signal variance in the images as σ2 = c/100 where c is the host amount in the 

clinical mixtures. We estimate the unknown parameters for these images using our proposed 

method. Then, we compare the uncorrected and signal-processed samples with the original 

pure Entamoeba sample.

In Fig. 11 we present the analysis result. The ground-truth is shown in the first row. In the 

second row we present the estimation results at 5, 0, and −5 dB, respectively, for the mixture 

i) image data. The results for mixtures ii) and iii) are presented in the third and fourth rows, 

respectively. Our proposed method estimates the spot shapes efficiently for all the generated 
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noisy images of all the mixtures. In addition, we notice that the signal fluctuations at the 

estimated foreground are better observed as the host redundancy increases in the input noisy 

images (see Fig. 11, last row). On the other hand, when the host redundancy is less, the 

estimated foreground signal fluctuation is not well observed at low SNR (see Fig. 11, second 

and third rows). We estimate the means of the foreground signals satisfactorily in these nine 

cases. We conclude that statistical signal processing can play a significant role in estimating 

spot shapes and signals in noisy microarray image data as we present in this example.

VII. Conclusion

We have presented a novel mechanism for microarray image analysis that has several 

potential advantages for biological investigators. The drastic reduction in stochastic noise 

will increase the accuracy of all measured ratios compared to the methods currently used for 

signal quantification. Most significantly, oligonucleotide and similar microarray images 

analyzed with our algorithm can experience log increases in gene-expression dynamic range 

by expanding the lower limit. This will be accomplished by decreasing noise from spots that 

would otherwise be excluded from microarray analysis due to SNRs that are too low for 

reliable quantification. The drastic reduction in noise and accurately defined area of signal 

will additionally result in a more accurate quantification, and therefore a more accurate 

resultant ratio, from spots where at least one channel has low SNR. Other researchers, using 

less rigorous algorithms, have found that the quality of measured ratios from low expression 

spots is unreliable. By differentiating low SNR spots from no-signal spots, microarray and 

other similar images could be more reliably employed in sensitive biodetection assays [22]. 

In addition, by combining more accurate signals from differentially stringent hybridization 

conditions, off-target hybridization thermodynamic estimates could then more accurately 

suggest the degree of sequence misidentification. Our algorithms for microarray analysis 

should make these applications feasible.

In our future work we will apply our proposed method to the real microarray image data of a 

mixture of Entamoeba RNA and host human RNA to determine the effects of interference. 

We have already analyzed a soft version of this experiment in Example 2 in Section VI. This 

RNA mixture will vary significantly from amoebic RNA isolated without any host cells. 

One would expect some true transcriptional difference to exist based on the organism’s 

adaptation to its environment; however, we do not anticipate that the true biological 

transcriptional profile would be as distinct as the dual-source RNA profile of the host and 

the amoeba.

Our algorithm is relatively slow but is more accurate than existing methods. In order to 

analyze the total-genome-microarray images of any organism, we propose using our method 

for processing low-SNR spot images and conventional methods for processing high-SNR 

spot images. In our future computational development, we aim at increasing the 

computational speed of our method.
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Fig. 1. 
(a) RGB image of a oligonucleotide-based microarray. (b) Intensity image of a single spot 

where the circular outer periphery and the elliptical center hole are shown using dashed 

lines.
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Fig. 2. 
A schematic view of a oligonucleotide-based microarray spot with an elliptical center hole.
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Fig. 3. 
Gene signals from (a) high and (b) low signal-to-noise ratio spots. (c) The intensity image of 

(b) with the signal intensities represented by height along the pixels on the focal plane.
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Fig. 4. 
Illustration of the gridding algorithm [12]. The image is projected onto the x axis and y axis. 

The off-peaks in the two projections define the lines of the grid.
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Fig. 5. 
Two different regions of Entamoeba microarray intensity image data exhibiting gene signals 

in low signal-to-noise ratio. Signals in the dash-dotted regions in (a) and (b) are not visible 

and the corresponding genes’ expressions cannot be discerned.
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Fig. 6. 
Estimation results using our proposed algorithm of Markov chain Monte Carlo-based 

minimum mean-square error algorithm for the data-set A. (a) Noisy data. (b)–(e) estimated 

shape, signals, and location after 10 000, 1000, 500, and 100 draws, respectively. The 

estimated images are presented using the methodology described in Section V.
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Fig. 7. 
Estimation results using our proposed algorithm of Markov chain Monte Carlo-based 

minimum mean-square error algorithm for the data-set B. (a) Noisy data. (b)–(e) estimated 

shape, signals, and location after 10 000, 1000, 500, 100 draws, respectively. The estimated 

images are presented using the methodology described in Section V.
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Fig. 8. 
Convergence plots of the Markov chain for parameters a)x0, b) z0, c) r1, d) d, e) A, f) ϕ, g) μ, 

and h) σ, respectively, using data-set A.
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Fig. 9. 
(a) Simulated image of dimensions 25 × 25 pixels with the foreground signal mean μ = 20 

and variance σ2 = 3. (b) The noisy version of this image with noise variance  and 

mean μw = 0. (c) The estimated image from the noisy image using EM/ICM algorithm. The 

estimated foreground signal mean is μ̂ = 15.98. (d) The estimated image using MW-test 

based image segmentation method using ϑ = 0.05. (e)–(h) The segmented images using our 

proposed method after running individual Gibbs samplers for 4000, 1000, 500, and 100 
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cycles, respectively. The estimated foreground signal means are μ̂ = 19.0219.25, 19.49, and 

15.38 respectively.
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Fig. 10. 
A quantitative comparison of the mean-square-error of the estimated μ ̂ using our proposed 

MCMC-based, MW-test-based, and EM/ICM-based methods. We use ϑ = 0.05 for 

evaluating the MW-test-based segmentation method.
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Fig. 11. 
Row 1: Simulated spot-image of purified Entamoeba RNA with the truth attached as the 

gene signal quantification level is 5 a in the spot where a is a known constant; Row 2: 

Segmented images using our proposed method for the clinical mixture composed of a 

amount of Entamoeba and 4 a amount of host at SNRs 5 dB, 0 dB, and −5 dB; Row 3 and 

Row 4: Similar analysis result as shown in Row 2 for clinical mixtures composed of 0.5 a 
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amount of Entamoeba and 4.5 a amount of host (Row 3) and 0.25 a amount of Entamoeba 

and 4.75 a amount of host (Row 4), respectively.
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TABLE I

Estimated Gene Signal Means and Computation Times (in Minutes) for Data-Sets A and B After 10 000, 

1000, 500, and 100 Markov Draws Using Our Proposed Method

Draws 10000 1000 500 100

Data-set A: μ ̂ 40.24 40.19 39.98 38.83

Computation time (min) 226.94 21.76 10.57 1.99

Data-set B: μ̂ 30.63 30.45 27.8 27.12

Computation time (min) 230.01 21.23 10.27 1.68
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TABLE II

Estimated Gene Signal Means and Computation Times in Example 1

Methods MCMC MCMC MCMC

Draws 4000 1000 500

μ̂ 19.02 19.25 19.49

Computation time 49.7min 12.51min 6.21min

Methods MCMC EM/ICM MW

Draws 100 – –

μ̂ 15.38 15.98 –

Computation time 1.09min 16.23sec 0.05sec
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