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The graph problem

Given a weighted graph, a source vertex, a single-source
shortest paths (SSSP) tree, and a batch of graph edge insertions
and deletions, update the SSSP tree.
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Inputs

The graph problem

Given a weighted graph, a source vertex, a single-source
shortest paths (SSSP) tree, and a batch of graph edge insertions
and deletions, update the SSSP tree.

An SSSP tree rooted at vertex a

Graph updates

Insert edge [a, f] of weight 1
Insert edge [c, d] of weight 4
Delete edge [a, c]

Delete edge [a, b]
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The naive approach

Recompute from scratch
Generate new graph after updates, perform SSSP again

Can we do better than recomputing from scratch?
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Contributions

A new two-step parallel algorithm for updating the SSSP
optimizations to Improve scalability
optimizations to reduce redundant/wasteful computation

Correctness proof (see paper)

Empirical evaluation to demonstrate speedup over
recomputing SSSP from scratch

S. Srinivasan, S. Riazi, B. Norris, S. K. Das and S. Bhowmick, "A Shared-Memory Parallel Algorithm for
Updating Single-Source Shortest Paths in Large Dynamic Networks," 2018 IEEE 25th International

2/25/2019 Conference on High Performance Computing (HiPC), Bengaluru, India, 2018, pp. 245-254.



Why dynamic SSSP?

Many applications
Maps and GPS
nternet routing
Path planning for robots
Discrete event simulations
Centrality analysis in complex networks
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Related Work

Parallel algorithms, implementations for SSSP in static graphs
e.g., Delta-stepping, DSMR

Libraries for dynamic data/graph analysis
e.g., Sandia PHISH, Georgia Tech Stinger

Dynamic graph algorithms
e.g., Ramalingam-Reps, Narvez et al.
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Assume batched updates

Consider a sequence of insertions and deletions

Edge operations considered

Vertex insertions and deletions can be modeled by adding and
deleting edges
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Observations about graph updates

Updates may only affect a subgraph and the complete graph
need not be analyzed

Not all updates affect the property (SSSP in this paper)
updates can be processed in parallel

Not all updates affect the same subgraph
affected subgraphs can be processed in parallel
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A template for parallel dynamic graph
algorithms

Sparsification
Preprocessing step before graph updates

Selection
Identify vertices and edges affected by graph updates
Can be parallelized for each update

Updating
Update set of key edges according to changes
Might require multiple iterations for convergence
Previously-unaffected entities may also be affected
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New algorithm for dynamic SSSP

Sparsification: use rooted SSSP tree

Selection: identify affected vertices and edges with a simple
distance label check

Updating: propagate changes, iterate until convergence
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Selection step
Assume dist(s, v) > dist(s, u)

An edge insertion update [u, v, w(u, v)] affects the SSSP tree if

dist(s, v) > dist(s, u) + w(u, v). If this condition is met, v is
marked as affected.

An edge deletion update [u, v, w(u, v)] affects the SSSP tree if
the edge is present in the SSSP tree. v's distance label Is set to
Infinity.

2/25/2019 12



Selection step

Graph updates

Insert edge [a, f] of weight 1
Insert edge [c, d] of weight 4
Delete edge [a, c]
Delete edge [a, b]
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Updating step

The effect of each inserted edge can percolate to a large
subgraph, possibly the entire graph

Reduces to edge relaxations from affected vertices

Relaxations can be performed concurrently. Convergence when
there are no more affected vertices.
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Updating step with single edge insertion
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Shared-memory parallelization

The Selection step is easy to implement and shows good load
balance

The parallel performance of the Updating step is dependent on
the number of affected vertices and the size of the subgraphs
th%y ?lter Vertex degree distributions can cause further load
Imbalance.

Asynchronous updates: can process longer paths instead of just
neighbors. Reduce number of synchronization steps.
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Empirical results

Results on a 36-core Intel Haswell system with 256 GB memory

OpenMP implementation
Comparison to SSSP implementation in Galois v2.2.1

Synthetic RMAT-G (skewed degree distribution) and RMAT-ER
(normal degree distribution) graphs, three real-world graphs
from SNAP
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Comparison to recomputation-based

approach
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Strong scaling (synthetic graphs)
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Strong scaling (real-world graphs)
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Strong scaling (vertex insertion/deletion)

Scalability Results for Vertex Insertion-Deletion
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Empirical evaluation summary

For low thread counts, update algorithm is significantly faster

than recomputation. However, recomputation shows better
scaling.

Possible parallel scaling bottlenecks

Set of changed edges not known apriori
Redundant work in parallel setting
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Brainstorming on how Brainstorming on how Solved SSSP, SC18(Accepted
to analyze dynamic to update MSTand @ HIPC 18)
networks SSSP.

m Dec 2016 March 2018

Solved Connected
Components. Presented in Solved MST, Presented in SIAM CS17,

IPDPS 2016 and IPDPS (Ph.D.forum) 2017. IEEE
Transactions on Big data Journal
(Accepted at 06/2018)
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Conclusions and Future Work

New shared-memory algorithm for updating SSSP in dynamic
networks

Performance results demonstrate up to a 4X performance
Improvement over a parallel recomputation-based SSSP code

Plan to extend the general approach to centrality algorithms

Future GPU and distributed-memory implementations
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~ Thank you!
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Questions?

Corresponding author: Sriram Srinivasan,
sriramsrinivas@unomaha.edu

github.com/DynamicSSSP/HIPC18
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