A shared-memory algorithm for
updating single-source shortest paths
In large weighted dynamic networks

Presented by
Sriram Srinivasan (University of Nebraska at Omaha)

sriramsrinivas@unomaha.edu,
github.com/DynamicSSSP/HIPC18



mailto:sriramsrinivas@unomaha.edu
https://github.com/DynamicSSSP/HIPC18

The graph problem

Given a weighted graph, a source vertex, a single-source
shortest paths (SSSP) tree, and a batch of graph edge insertions
and deletions, update the SSSP tree.

2/25/2019 2



Inputs

The graph problem

Given a weighted graph, a source vertex, a single-source
shortest paths (SSSP) tree, and a batch of graph edge insertions
and deletions, update the SSSP tree.

An SSSP tree rooted at vertex a

Graph updates

Insert edge [a, f] of weight 1
Insert edge [c, d] of weight 4
Delete edge [a, c]

Delete edge [a, b]

2/25/2019



The naive approach

Recompute from scratch
Generate new graph after updates, perform SSSP again

Can we do better than recomputing from scratch?

2/25/2019



Contributions

A new two-step parallel algorithm for updating the SSSP
optimizations to Improve scalability
optimizations to reduce redundant/wasteful computation

Correctness proof (see paper)

Empirical evaluation to demonstrate speedup over
recomputing SSSP from scratch

S. Srinivasan, S. Riazi, B. Norris, S. K. Das and S. Bhowmick, "A Shared-Memory Parallel Algorithm for
Updating Single-Source Shortest Paths in Large Dynamic Networks," 2018 IEEE 25th International

2/25/2019 Conference on High Performance Computing (HiPC), Bengaluru, India, 2018, pp. 245-254.



Why dynamic SSSP?

Many applications
Maps and GPS
nternet routing
Path planning for robots
Discrete event simulations
Centrality analysis in complex networks

2/25/2019



Related Work

Parallel algorithms, implementations for SSSP in static graphs
e.g., Delta-stepping, DSMR

Libraries for dynamic data/graph analysis
e.g., Sandia PHISH, Georgia Tech Stinger

Dynamic graph algorithms
e.g., Ramalingam-Reps, Narvez et al.

2/25/2019



Assume batched updates

Consider a sequence of insertions and deletions

Edge operations considered

Vertex insertions and deletions can be modeled by adding and
deleting edges

2/25/2019



Observations about graph updates

Updates may only affect a subgraph and the complete graph
need not be analyzed

Not all updates affect the property (SSSP in this paper)
updates can be processed in parallel

Not all updates affect the same subgraph
affected subgraphs can be processed in parallel

2/25/2019



A template for parallel dynamic graph
algorithms

Sparsification
Preprocessing step before graph updates

Selection
Identify vertices and edges affected by graph updates
Can be parallelized for each update

Updating
Update set of key edges according to changes
Might require multiple iterations for convergence
Previously-unaffected entities may also be affected

2/25/2019

10



New algorithm for dynamic SSSP

Sparsification: use rooted SSSP tree

Selection: identify affected vertices and edges with a simple
distance label check

Updating: propagate changes, iterate until convergence

2/25/2019

11



Selection step
Assume dist(s, v) > dist(s, u)

An edge insertion update [u, v, w(u, v)] affects the SSSP tree if

dist(s, v) > dist(s, u) + w(u, v). If this condition is met, v is
marked as affected.

An edge deletion update [u, v, w(u, v)] affects the SSSP tree if
the edge is present in the SSSP tree. v's distance label Is set to
Infinity.

2/25/2019 12



Selection step

Graph updates

Insert edge [a, f] of weight 1
Insert edge [c, d] of weight 4
Delete edge [a, c]
Delete edge [a, b]

2/25/2019

13



Updating step

The effect of each inserted edge can percolate to a large
subgraph, possibly the entire graph

Reduces to edge relaxations from affected vertices

Relaxations can be performed concurrently. Convergence when
there are no more affected vertices.

2/25/2019 14



Updating step with single edge insertion

2/25/2019 15



Shared-memory parallelization

The Selection step is easy to implement and shows good load
balance

The parallel performance of the Updating step is dependent on
the number of affected vertices and the size of the subgraphs
th%y ?lter Vertex degree distributions can cause further load
Imbalance.

Asynchronous updates: can process longer paths instead of just
neighbors. Reduce number of synchronization steps.

2/25/2019 16



Empirical results

Results on a 36-core Intel Haswell system with 256 GB memory

OpenMP implementation
Comparison to SSSP implementation in Galois v2.2.1

Synthetic RMAT-G (skewed degree distribution) and RMAT-ER
(normal degree distribution) graphs, three real-world graphs
from SNAP

2/25/2019 17



Comparison to recomputation-based

approach

80

2/25/2019

Graph RMAT24-G 100% Insertions

L]
M
]
’ ”n
,,,,,

A Galois
r SSSP Initial Update

* SSSP Complete Update

o SSSP Total

16 32 48 64
Threads

72

New algorithm is up to
4X faster.

18



Strong scaling (synthetic graphs)

350
o .

300 100% Insertions o,
250 3 a RMAT24-G
S + RMAT24-ER
8200 > * RMAT25-G
2150 & *. e RMAT25-ER
= 100 "

50
0

1 2 4 8 16 32 64
Threads

2/25/2019

300 :

75% Insertions Graph
0. a RMAT24-G
‘5200 % + RMAT24-ER
& P + RMAT25-G

—150 T
O L e RMAT25-ER

1 2 4 8 16 32 o064
Threads

19



Strong scaling (real-world graphs)

80 300

o H ] i
20 100% Insertions . aph 50% Insertions Graph
, 250 % .

680 A Live Journal ’ A Live Journal
G50 * + Youtube 5200 % + Youtube
@ @ *

%40 . 9 450 . #« Pokec
£ 30 .
= 20 .
10 ®=muw.,
D .*---h--*.-#-__‘

1 2 4 8 16 32 64 1 2 4 8 16 32 64
Threads Threads

2/25/2019 20



Strong scaling (vertex insertion/deletion)

Scalability Results for Vertex Insertion-Deletion

*05.59
100 - \
b Y
= \
S - \
L b "
d w774
© @ b -8= REMATZ4-G
£ N, =@ RMAT24-E
= N
=
1= 56
s 40 - ﬂh‘
B o558
= ool =~ J5.98
L e e
~gd 20 ~a
20 - -~ - 05
~m— e s S
I I I I I I
1 7 4 8 16 32
Number of Threads

2/25/2019 21



Empirical evaluation summary

For low thread counts, update algorithm is significantly faster

than recomputation. However, recomputation shows better
scaling.

Possible parallel scaling bottlenecks

Set of changed edges not known apriori
Redundant work in parallel setting

2/25/2019

22



Brainstorming on how Brainstorming on how Solved SSSP, SC18(Accepted
to analyze dynamic to update MSTand @ HIPC 18)
networks SSSP.

m Dec 2016 March 2018

Solved Connected
Components. Presented in Solved MST, Presented in SIAM CS17,

IPDPS 2016 and IPDPS (Ph.D.forum) 2017. IEEE
Transactions on Big data Journal
(Accepted at 06/2018)

2/25/2019

23



Conclusions and Future Work

New shared-memory algorithm for updating SSSP in dynamic
networks

Performance results demonstrate up to a 4X performance
Improvement over a parallel recomputation-based SSSP code

Plan to extend the general approach to centrality algorithms

Future GPU and distributed-memory implementations

2/25/2019 24



Acknowledgments & Collaborators

Dr. Sajal Das,
Missouri S&T

Dr. Boyana Norris,
University of Oregon

2/25/2019

25



~ Thank you!

E : If 15011 Wa11t to 80 e

8o together.

~African proverhb

Questions?

Corresponding author: Sriram Srinivasan,
sriramsrinivas@unomaha.edu

github.com/DynamicSSSP/HIPC18

2/25/2019


mailto:sriramsrinivas@unomaha.edu
https://github.com/DynamicSSSP/HIPC18

