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ABSTRACT 

Major depressive disorder is a common and debilitating illness for which there is a 

notable lack of efficient, effective treatment.  While currently available 

pharmacotherapies typically take eight weeks to take effect and fail to do so at all for 

about a third of patients, the N-methyl-D-aspartate (NMDA) receptor antagonist 

ketamine has shown a much more favorable effectiveness profile, including improvements 

in symptoms within hours of administration, even for many patients who do not respond 

to typical antidepressants.  Ketamine, as a modulator of glutamate signaling in the brain, 

has a distinct mechanism of action from the serotonin and norepinephrine modulators 

that are currently the mainstay of depression treatment.  This dissertation seeks to 

contribute to the understanding of this unique mechanism, and particularly the brain 

circuits affected.  Rodent studies have shown that ketamine induces a burst of 

glutamatergic activity in the medial prefrontal cortex (mPFC), which is necessary to 

produce its antidepressant effect.  The downstream targets of this glutamatergic activity 

that are relevant to the ketamine antidepressant effect are unclear, but recent research 

has suggested a role for the dorsal raphe nucleus (DRN), which contains most of the 

brain’s serotonin-producing cells.  In this thesis, I first provide a synthesis of the literature 

on the mechanism of ketamine’s antidepressant effect and the neural circuits that might 

underlie it.  I then investigate the projection from the mPFC to the DRN using 

optogenetic stimulation of mPFC-originating axon terminals in the DRN, finding that 

activation of this pathway produces an antidepressant effect on the forced-swim test 

(FST), which measures “behavioral despair” induced by a stressful environment, but not 

on other measures of depression-like behavior.  I also perform immunohistochemical 

studies of the DRN, which indicate that both serotonergic and non-serotonergic cells are 
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activated by this stimulation.  I then find additional support for this behavioral selectivity 

using a pharmacological approach: by inhibiting serotonin release during ketamine 

administration, I find that DRN activity is needed for the antidepressant effect of 

ketamine on the FST but not on other behavioral tests.  Finally, I interrogate the 

projection from the mPFC to the nucleus accumbens using the same optogenetic 

approach as before.  These experiments show that activation of the mPFC-to-DRN 

pathway produces an antidepressant effect on a particular subset of depression-like 

behavior and supports a role for serotonin signaling in the behavior measured by the 

FST. 
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CHAPTER 1: The neural and molecular mechanisms of the 

antidepressant effect of ketamine 

 

This chapter contains a modified version of material that appeared in the 

author’s publication: Alexandra Thomas & Ronald Duman. 2017. Novel 

rapid-acting antidepressants: molecular and cellular signaling mechanisms. 

Neuronal Signaling, 1(4): 1-10. 

 

1.1. Brain pathology in depression 

Major Depressive Disorder (MDD) affects an estimated 5% of the 

global population at any given time, and it is the leading cause of disability 

worldwide (Ferrari et al., 2013). In addition to the high toll of personal 

suffering it exacts, depression drains over $50 billion per year from the US 

economy alone in lost work productivity and medical costs (P. S. Wang, 

Simon, & Kessler, 2003).  Despite the widespread need for effective 

treatment, currently available antidepressants often take 6-8 weeks to take 

effect, and only one-third of patients respond to their first trial on any given 

drug.  One-third of depressed patients never get relief from typical 

antidepressants, even after multiple trials (Gaynes et al., 2009).  Perhaps the 

biggest obstacle to the development of better medications has been the lack of 

understanding of the molecular mechanisms that underlie antidepressant 
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effects. But several innovations in the past two decades have begun to reveal 

answers to this puzzle.   

First, the drug ketamine, which had long been used in high doses as an 

anesthetic, was found to have a rapid antidepressant effect in low, sub-

anesthetic doses (Berman et al., 2000).  It relieves symptoms within hours, 

even in many patients who have not responded to typical antidepressants.  

Notably, it acts primarily through a different neurotransmitter, glutamate, 

than do all currently available antidepressants, which primarily affect the 

transmission of serotonin and/or norepinephrine.  The discovery of the rapid 

antidepressant action of ketamine and a handful of other drugs has spurred a 

rethinking of fundamental questions about how antidepressants work, and 

especially about the role of glutamatergic signaling in antidepressant 

mechanisms.  To aid in this reassessment, new tools in neuroscience have 

shed light on the intracellular signals and neuronal networks that underlie 

the effects of rapid-acting agents.   

In order to understand how antidepressants relieve the symptoms of 

depression, it is helpful to understand how the brains of depressed people 

differ from those who are not depressed.  This question has been difficult to 

study due to the wide diversity of clinical presentations that meet criteria for 

MDD according to the Diagnostic and Statistical Manual of Mental Disorders 

(DSM) (American Psychiatric Association, 2013). Derangements in a variety 

of biological processes have been imputed to lead to depression, including 

inflammation (Iwata, Ota, & Duman, 2012), metabolism (Abdallah et al., 
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2014), and stress-response pathways (Duman, 2014), and it is possible that 

these mechanisms interact in different ways in different subgroups of 

patients with MDD.  But despite the probable heterogeneity of MDD 

mechanisms, there seem to be several common features of the depressed state 

that serve as hallmarks of the depressed brain. 

Human neuroimaging studies have consistently demonstrated reduced 

brain volume in key areas associated with mood regulation, including the 

frontal cortex, cingulate cortex, and hippocampus (Arnone, McIntosh, 

Ebmeier, Munafò, & Anderson, 2012). Most of the volume reduction occurs in 

gray matter, and evidence in both humans and animals suggests that loss of 

glia accounts for most of this effect, and  reduction in the size of neurons also 

plays a role (Rajkowska et al., 1999; Treadway et al., 2015).  Reduction in 

synapse number in the prefrontal cortex has also been found in postmortem 

tissue of depressed subjects and may also contribute to decreased cortical 

gray matter volume (Kang et al., 2012).  Glial loss may be a consequence of 

several aspects of the stress response, including excessive release of 

glutamate caused by high levels of corticosteroids, decreased expression of 

neurotrophic factors, and increased activation of apoptotic signaling 

pathways (Banasr, Dwyer, & Duman, 2011). 

Glia are key regulators of glutamate neurotransmission, and their 

disruption leads to derangements in glutamatergic signaling that may be 

ameliorated by rapid-acting antidepressants. Specifically, glia inactivate 

glutamate signaling by sequestering glutamate after it is released into the 
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synapse.  With that function compromised, extracellular glutamate levels are 

elevated (Krystal, Sanacora, & Duman, 2013).  This excess glutamate, if 

present at high enough levels, will bind not only to the post-synaptic α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-

aspartate (NMDA) receptors that are its primary target, but also to 

presynaptic metabotropic glutamate receptors (mGluRs).  Activation of these 

presynaptic metabotropic receptors inhibits synaptic glutamate release, 

which leads to reduced post-synaptic glutamatergic signaling and ultimately 

reduced synaptic connectivity (Bonansco et al., 2011).  This idea of excess 

glutamate leading to reduced connectivity accords well with human 

neuroimaging studies, which have found elevated glutamate levels and 

reduced functional connectivity in the anterior cingulate cortex (Horn et al., 

2010).  In addition, depressed patients have higher levels of activity in 

cingulate area 25, which normalizes after successful treatment with deep-

brain stimulation (Mayberg et al., 2005). 

Excess extracellular glutamate may also have deleterious effects on 

connectivity by activating extrasynaptic NMDA receptors.  Stimulation of 

these receptors initiates a signaling cascade that may be involved in the 

mechanism of rapid-acting antidepressants.  Key components include the 

phosphorylation of eukaryotic elongation factor-2 (eEF2) and reduction of 

brain-derived neurotrophic factor (BDNF) levels, which lead to dendritic 

atrophy and dendritic-spine loss (Krystal et al., 2013).   Induction of REDD1, 

a negative regulator of the mammalian target of rapamycin complex 1 
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(mTORC1) pathway, which is involved in synaptic protein synthesis, has 

been reported in postmortem PFC of depressed subjects and in rodent chronic 

stress models and may also contribute to loss of synapses (Ota et al., 2014). 

The degeneration of dendritic structure is a consistent finding in animal 

models of depression and corresponds to human studies showing loss of 

synapses and neuronal atrophy in MDD patients (Kang et al., 2012). This 

model of glial loss leading to a decrease in connectivity and synaptic function 

provides important insights into the mechanism of action of rapid-acting 

antidepressants, which ameliorate those same deficits (Figure 1.1). 

1.2. Mechanism of action of currently available antidepressants 

The research that would eventually lead to the development of the 

antidepressants in wide use today began in the 1950s, when it was noted that 

drugs that prevented the reuptake of monoamine neurotransmitters had 

antidepressant activity, though the exact mechanism remained unclear.  As 

all of these drugs increased synaptic levels of serotonin, norepinephrine, 

dopamine, or some combination of the three, the prevailing hypothesis was 

that the increase in monoamine levels was the key to their effectiveness.  

Based on this monoamine hypothesis, pharmacologists have been able to 

improve upon the monoamine-oxidase inhibitors and tricyclic 
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antidepressants, which were the first monoaminergic antidepressants in use 

but which often had burdensome side effects due to their relatively non-

selective binding profile.  The first selective serotonin-reuptake  inhibitors 

(SSRIs) were released in the late 1980s, and they along with selective 

norepinephrine-reuptake inhibitors (SNRIs) have remained the first-line 

agents in the treatment of depression (López-Muñoz & Alamo, 2009). 

Figure 1.1. Mechanisms of synapse loss in depression   
Stress-induced loss of glia leads to excess extracellular glutamate, as glia normally 
remove glutamate from the synapse after an action potential.  Glutamate then binds 
to presynaptic metabotropic glutamate receptors (mGluR) to inhibit further synaptic 
glutamate release, which would normally promote strengthening of synapses by 
binding postsynaptic AMPA receptors (AMPAR).  Glutamate binding to extrasynaptic 
NMDA receptors (NMDAR) leads to phosphorylation of elongation factor 2 (ElF-2), 
which inhibits synthesis of brain-derived neurotrophic factor (BDNF), a key promoter 
of synaptic growth.  Stress also leads to induction of REDD1, which inhibits the 
mammalian target of rapamycin complex 1 (mTORC1).  mTORC1 is needed to 
promote the translation of synaptic proteins necessary for new dendrite formation.  
Each of these pathways contributes to the loss of synapses and dendritic spines seen in 
depression. 
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Though the monoamine hypothesis became the basis for most drug-

discovery efforts in the ensuing forty years, it had shortcomings that were 

difficult to resolve before advances in the understanding of depression 

pathophysiology began to emerge over the past two decades.  Notably, the 

most frustrating clinical aspect of monoaminergic drugs, the 6-to-8-week-long 

delay in the onset of their antidepressant activity, cannot be adequately 

explained by the monoamine hypothesis, given that the drugs increase 

monoamine availability after a single effective dose (Sanacora, Treccani, & 

Popoli, 2012). Clearly, some additional mechanism besides increased 

monoamine levels mediates the effectiveness of these drugs.  The discovery of 

the rapid-acting antidepressant activity of ketamine, a glutamatergic agent, 

forced the field to move beyond the monoamine hypothesis to integrate what 

is known about deficits of plasticity and connectivity in the depressed brain 

and the effect of rapid-acting agents on these pathways. 

1.3. Mechanism of action of ketamine 

Ketamine, the best-characterized rapid-acting antidepressant, marks a 

dramatic improvement over monoaminergic agents not only because of its 

speed of onset but because it often relieves symptoms of depression even in 

patients who have not responded to other modalities, even including those 

who do not respond to electroconvulsive therapy and are considered 

treatment-resistant (Ibrahim et al., 2011). However, it does have drawbacks 

that limit widespread use. Specifically, it produces dissociative and 

psychomimetic side effects in the immediate post-administration period (1 to 
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2 hours) in a substantial proportion of patients (Berman et al., 2000), and it 

has abuse potential (especially in higher doses) (Zhang et al., 2014). Even 

more concerning, users of frequent, high doses of ketamine suffer cortical 

atrophy and neurotoxicity as assessed by MRI (C. Wang, Zheng, Xu, Lam, & 

Yew, 2013). In order to harness the impressive antidepressant profile of 

ketamine, it is important to understand how it functions in the brain in order 

to apply that knowledge to develop new therapies that are safe for 

widespread use.   

Ketamine is an antagonist of the NMDA receptor, which is an 

ionotropic glutamate receptor and one of the most abundant transducers of 

glutamate signaling in the brain.  Rodent studies have demonstrated that 

ketamine induces a transient increase in extracellular glutamate in the 

medial prefrontal cortex (mPFC) shortly (30 to 60 minutes) after 

administration (Moghaddam, Adams, Verma, & Daly, 1997). Blockade of 

AMPA receptors blocks the drug’s antidepressant effect, providing evidence 

that glutamate-AMPA activity is necessary to produce the effect (Maeng et 

al., 2008). The first challenge in explaining ketamine’s mechanism of action is 

reconciling how a drug that blocks a glutamate receptor leads to an increase 

in glutamate signaling.  The key to this apparent paradox may be the fact 

that ketamine preferentially binds to the NMDA receptor when its ion 

channel is in the open conformation (Figure 1.2).  Interneurons have a 

higher tonic firing rate than pyramidal neurons and thus their NMDA 

receptors are more likely to have an open channel at any given time, so it is 
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hypothesized that low doses of ketamine preferentially bind to NMDA 

receptors on l-aminobutyric acid (GABA) interneurons.  Blockade of the 

NMDA receptor blocks the function of these inhibitory cells, which in turn 

disinhibits the activity of glutamatergic pyramidal cells, whose activity is 

tonically inhibited by interneurons (Duman, 2014).  This disinhibition 

hypothesis explains the observed glutamatergic effects of ketamine, and it 

also explains why ketamine does not induce a glutamate burst or an 

antidepressant effect at higher doses (Moghaddam et al., 1997): higher 

concentrations of ketamine are able to bind to NMDA receptors on both 

interneurons and pyramidal neurons, so at higher doses of ketamine NMDA 

receptor blockade on pyramidal neurons interferes with the interneuron-

mediated glutamate neurotransmission necessary to achieve an 

antidepressant effect.  
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The glutamate burst induced by disinhibition of pyramidal neurons 

initiates post-synaptic signaling cascades that affect both local networks in 

the prefrontal cortex and a wide range of other brain regions to which the 

Figure 2. Signaling pathways involved in the response to rapid-acting 
antidepressants   
In the GABA interneuron: Ketamine blocks activity of the NMDA receptor (NMDAR), 
which prevents GABA release and thus disinhibits the firing of the glutamatergic cell, 
resulting in a transient burst of glutamate release.  In the postsynaptic cell: The glutamate 
burst activates synaptic NMDARs and AMPA receptors (AMPARs).  AMPAR activity 
triggers the opening of voltage-gated calcium channels (VDCC); the resulting calcium 
influx triggers the release of BDNF, which binds to TrkB and induces mammalian 
target of rapamycin complex 1 (mTORC1) signaling. SSRIs also increase the 
expression of BDNF after chronic administration.  Ketamine exerts a pro-growth 
effect by blocking extrasynaptic NMDARs, especially those containing the GluN2B 
subunit.  These receptors activate elongation factor 2 kinase (EF2k), which inhibits 
elongation factor 2 (elF-2); their blockade induces brain-derived neurotrophic factor 
(BDNF) synthesis and other protein synthesis via ElF-2.  mTORC1 promotes protein 
synthesis via multiple mechanisms.  Protein synthesis is necessary for formation of new 
synapses, which enables the plasticity that marks a successful antidepressant response. 
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pyramidal neurons project.  The primary target of synaptic glutamate is the 

post-synaptic AMPA receptor; if AMPA receptors are inhibited, ketamine’s 

antidepressant effect is blocked as well (Maeng et al., 2008).  AMPA receptor 

activation causes its ion channel to open and depolarizes the post-synaptic 

cell.  In turn, depolarization leads to the opening of L-type voltage-gated 

calcium channels (VDCCs), which promotes the release of brain-derived 

neurotrophic factor (BDNF) (Lepack, Fuchikami, Dwyer, Banasr, & Duman, 

2014), binding of BDNF to its receptor tropomysin receptor kinase B (TrkB), 

and TrkB-mediated activation of the mTORC1 signaling pathway (Jourdi et 

al., 2009; N. Li et al., 2010).  Each of these molecular signals is necessary for 

the antidepressant action of ketamine and ultimately promotes the dendritic-

spine growth and synaptic plasticity that are the hallmarks of ketamine-

induced antidepressant activity.   

The signaling cascades that lead to and proceed from BDNF release 

and mTORC1 activation are dense and interconnected, as each is involved in 

different facets of the regulation of energy metabolism and cellular growth 

(Duman & Voleti, 2012) (Figure 1.2).  Several important mediators of these 

pathways have been identified and their relevance to the antidepressant 

effect of ketamine confirmed.  Autry and colleagues have shown that 

ketamine promotes the induction of BDNF synthesis in hippocampus through 

an additional mechanism by preventing the activation of eukaryotic 

elongation factor 2 kinase (eEF2K), which normally phosphorylates its target 

protein, eukaryotic elongation factor 2 (eEF2), in response to spontaneous 
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synaptic glutamate release (as distinct from action-potential-evoked release) 

(Autry et al., 2011). NMDA receptors bind to spontaneously released 

glutamate and trigger the activation of eEF2K, so the blockade of NMDA 

receptors by ketamine prevents the transmission of this signal.  Because 

phosphorylated eEF2 inhibits BDNF synthesis, ketamine’s NMDA 

antagonism removes this inhibition (Monteggia, Gideons, & Kavalali, 2013). 

This effect of NMDA receptor antagonism is distinct from the pyramidal-cell 

disinhibition hypothesis, but may represent a complementary mechanism.  In 

contrast to our lab’s previous studies as well as reports from multiple other 

research groups (N. Li et al., 2010; Liu et al., 2017), Autry et al. (2011) and 

Zanos et al. (2016) have reported no effect of ketamine on mTORC1 signaling.  

This contradiction may be due to multiple factors, including uncontrolled 

stress of the animals, species (rat vs. mouse), brain region and dissection, and 

tissue preparation (crude homogenates vs. synaptosome-enriched 

preparations), that could influence the phosphorylation of mTORC1 signaling 

proteins, a process that is dynamic and state-dependent.   

Further supporting the idea that ketamine derives at least part of its 

antidepressant efficacy by blocking the response to spontaneous glutamate 

release, numerous studies have investigated an important role of NMDA 

receptors containing the GluN2B subunit, which is selectively activated by 

spontaneous glutamate release (in contrast to GluN2A subunits, which 

respond to action-potential-evoked glutamate). Pharmacological studies 

report that GluN2B-selective antagonists produce rapid antidepressant 



 
13 

effects in depressed patients (Preskorn et al., 2015) and in rodent models (N. 

Li et al., 2010; Maeng et al., 2008).  Using a conditional knockout to remove 

the GluN2B subunit selectively from cortical pyramidal neurons, Hall and 

colleagues found that GluN2B-selective inhibition produces a robust 

antidepressant response that occludes the antidepressant effect of ketamine; 

however, these knockout mice also display hyperlocomotor activity making it 

difficult to interpret these behavioral findings (Miller et al., 2014).  In 

addition to activating in response to different patterns of glutamate release, 

GluN2B subunits transmit a different set of intracellular signals than do 

GluN2A subunits and may be most prevalent at a different part of the 

postsynaptic neuron (Hardingham & Bading, 2010). GluN2B-mediated 

signals, particularly at extrasynaptic NMDA receptors, appear to act as a 

brake on the plasticity-promoting effects of glutamate neurotransmission.  

The conditional knockout of GluN2B removes this impediment to BDNF 

synthesis and mTORC1 activation in a way that occludes the effects of 

ketamine on both of these signaling pathways (Miller et al., 2014).  Though 

ketamine does not selectively bind to one GluN2 isoform over the other, 

inhibition of overactive extrasynaptic NMDARs that contain GluN2B may 

have a unique set of behavioral consequences. 

Ketamine also interacts with at least one additional facet of the 

plasticity-regulating machinery through the glycogen synthase kinase (GSK) 

pathway (Figure 1.2).  GSK controls the degradation of b-catenin, which is a 

necessary substrate for most forms of cellular growth and plasticity, 
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including the formation of new dendritic spines.  Phosphorylation of GSK 

renders it inactive, thus increasing the availability of b-catenin (Duman & 

Voleti, 2012).  Ketamine rapidly promotes GSK phosphorylation, and this 

activity is necessary for its antidepressant effect (Beurel, Song, & Jope, 

2011). The mechanism of this effect is not clear, but it may be a downstream 

consequence of BDNF release, which activates Akt, a protein that 

phosphorylates GSK; or it may result from mTORC1 activity, which activates 

S6 kinase, which also phosphorylates GSK (Duman & Voleti, 2012).   

A recent line of research has called into question the conclusion that 

NMDA antagonism is the functional mechanism of ketamine at all, based on 

the finding that one particular metabolite of racemic (R,S) ketamine, (2R,6R)-

hydroxynorketamine (HNK), is sufficient to produce a robust antidepressant 

response, even though it was reported that this metabolite does not show 

binding affinity for the NMDA receptor (Zanos et al., 2016).  This enantiomer 

of HNK does induce a rapid, transient increase in glutamate signaling along 

with insertion of AMPA receptors in cell membranes, which racemic 

ketamine has previously been shown to do (Wohleb, Gerhard, Thomas, & 

Duman, 2016).  However, recent evidence from another laboratory indicates 

that HNK may in fact act at NMDA receptors, although at higher doses 

(Suzuki, Nosyreva, Hunt, Kavalali, & Monteggia, 2017). Nevertheless, even if 

HNK acts via NMDA receptors the reduced side effects in rodent models 

indicate that it has the potential to be better tolerated by depressed patients 

than ketamine itself is. 
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Ketamine has numerous points of interaction with signaling pathways 

that lead to increased synaptic plasticity and dendritic spine growth via new 

translation of the proteins needed to form new synapses, including the AMPA 

receptor subunit GluA1 (Duman, Aghajanian, Sanacora, & Krystal, 2016). 

Rodent models of depression induced by chronic stress have shown that loss 

of dendritic spines is a key feature of the depressed brain, which ketamine 

reverses within 24 hours of administration (N. Li, Liu, Dwyer, Banasr, Lee, 

Son, Li, Aghajanian, & Duman, 2011a).  Both BDNF release and mTORC1 

activation, two of the necessary components of ketamine’s antidepressant 

effect, promote synaptogenesis (Duman & Aghajanian, 2012). The restoration 

of synaptic plasticity appears to be the critical mechanism on which the many 

signaling pathways affected by ketamine converge. 

1.4. Neural circuits involved in the function of rapid-acting 

antidepressants 

As the intracellular signaling pathways activated by antidepressants 

come into sharper and more detailed focus, the circuit level effects of 

antidepressants are beginning to be understood, thanks to new tools like 

optogenetics that enable the manipulation of specific brain circuits.  The 

mood-regulating parts of the human brain have long been studied as an 

interrelated cortical-limbic system, and research efforts have identified 

correlates of these areas in non-human primates and rodents(Price & 

Drevets, 2009).  A key regulator of the limbic system is the mPFC, which 

exerts top-down influence over other emotion-related areas.  In humans, the 
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mPFC is thought to be involved in self-evaluation and other self-referential 

activities, including emotional ones (Beer, Lombardo, & Bhanji, 2010). 

Depression causes marked deficits in self-evaluation, including feelings of 

guilt and worthlessness, which may stem from prefrontal dysfunction.   

The involvement of the mPFC in depression has been studied 

extensively in the field of deep-brain stimulation (DBS) research, in which 

permanent electrodes are placed within brain tissue and set to continuously 

stimulate at a high frequency in order to relieve depression and other 

cognitive and affective symptoms.  The most consistently effective electrode 

placement has proven to be the subgenual cortex, an mPFC area that is 

overactive in depressed patients compared to controls as assessed by fMRI 

(Holtzheimer & Mayberg, 2011; Mayberg et al., 2005).  DBS inactivates 

targeted axons by depleting the presynaptic neurotransmitter pool; when 

delivered to the cortex, it reduces the excess glutamate associated with 

depression (Iremonger, Anderson, Hu, & Kiss, 2006). 

Our lab has recently shown that optogenetic stimulation of 

glutamatergic neurons in the mPFC of rats, with a time course and intensity 

similar to that of ketamine, produces a robust and long-lasting ketamine-like 

synaptic and antidepressant behavioral response.  Further, we demonstrated 

that infusion of ketamine directly into the rat infralimbic prefrontal cortex 

(ilPFC), thought to be a correlate of the human mPFC, was sufficient to 

produce an antidepressant effect similar to what is achieved when the drug is 

given systemically, and pharmacological silencing of infralimbic PFC blocks 
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the effect of systemic ketamine (Fuchikami et al., 2015). This thesis builds on 

these studies, which demonstrate the critical role of glutamatergic neurons in 

the mPFC to the antidepressant effect of ketamine.   

1.5. Aims 

The goal of this thesis is to expand the understanding of how ketamine 

acts as an antidepressant on a circuit level.  It builds on previous work 

showing the importance of the medial prefrontal cortex to the ketamine 

antidepressant response and defines a role for the dorsal raphe nucleus 

(DRN) in mediating this effect.  The second chapter describes the optogenetic 

stimulation of axon terminals projecting from the medial prefrontal cortex to 

the dorsal raphe nucleus and its behavioral effects.  In the third chapter, this 

circuit is pharmacologically silenced in order to test its effect on systemic 

ketamine administration.  In the fourth chapter, the effect of optogenetic 

stimulation of mPFC-originating axon terminals in the nucleus accumbens is 

compared to the antidepressant effects of DRN-terminal stimulation 

described in chapter two.  
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CHAPTER 2: Optogenetic stimulation of mPFC-originating axon 

terminals in the dorsal raphe nucleus produces an antidepressant 

effect 

2.1. Introduction 

Previous work in our lab showed that optogenetic stimulation of 

glutamatergic cells in the rat infralimbic PFC produced an antidepressant 

effect that lasted up to 17 days after a single hour-long stimulation treatment 

(Fuchikami et al., 2015).  Because ketamine induces a rapid increase in ilPFC 

glutamatergic activity that is necessary for its antidepressant effect (Wohleb 

et al., 2016), we hypothesized that this stimulation mimics the 

antidepressant action of ketamine.  The important downstream target areas 

affected by the stimulated cells remain unclear, as the ilPFC projects widely 

throughout the rat brain, including dense connections to nuclei in the rest of 

the medial PFC as well as to the hypothalamus, thalamus, amygdala, and 

brainstem; and less-dense connections to many regions, including the lateral 

habenula (LHB), nucleus accumbens (NAC), and dorsal raphe (DRN) (Vertes, 

2004).  I verified that the viral vector we used produces channelrhodopsin 

expression in mPFC-originating axon terminals in a similar distribution of 

areas (see 2.3.1). 

Several of these target sites, including the latter three, have been 

found to be directly involved in mood regulation.  For example, optogenetic 

stimulation of mPFC-originating axon terminals in the lateral habenula 

leads to a depression-like phenotype (Warden et al., 2012), as does induction 



 
19 

of activity by increased expression of bCaMKII (K. Li et al., 2013).  Ketamine 

has been found to produce an antidepressant effect by directly blocking burst 

activity in the LHB (Yang et al., 2018).  The effect of the mPFC-to-LHB 

projection, and ketamine’s modulation of it, remain unclear: it may augment 

ketamine’s direct effect on the LHB by acting as an inhibitory projection (if 

those glutamatergic axons synapse onto inhibitory cells in the LHB), or it 

may mitigate ketamine’s direct effect by stimulating LHB activity.   

In contrast to the pro-depressive output of the LHB, the dopaminergic 

projection from the ventral tegmental area (VTA) to the NAC is a key part of 

the brain’s reward pathway (and is inhibited by glutamatergic projections 

from the LHB) (Russo & Nestler, 2013).  The NAC also receives substantial 

input from the mPFC, which conveys reward-related information that 

modulates the activity of NAC medium spiny neurons (H. Hu, 2016).  

Optogenetic stimulation of mPFC-originating axon terminals in the NAC 

ameliorated social avoidance and sucrose-preference deficits, but not anxiety-

like behavior, in a mouse model of social-defeat stress (Vialou et al., 2014).  

This selective effect suggests that particular aspects of depression-like 

behavior may be controlled by different mPFC projection pathways.  In 

addition, the evidence from optogenetic stimulation of axon terminals in the 

LHB and NAC suggest that the effect of any one projection from the mPFC 

cannot be predicted from the overall antidepressant effect of mPFC 

pyramidal-cell stimulation, because mPFC axons reach brain areas that drive 

both depressive and anti-depressive behaviors. 
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The mPFC projection to the DRN presents an interesting avenue to 

further investigate our observed antidepressant effect, and potentially by 

extension the circuitry on which ketamine acts.  The DRN has been shown to 

regulate depression-like behavior and is the primary source of the brain’s 

serotoninergic output (H. Hu, 2016), which was long thought to constitute the 

key neurotransmitter system involved in depression.  Because ketamine 

targets glutamatergic receptors, its mechanism was thought to be distinct 

from that of SSRIs.  However, recent investigations have shown that 

ketamine’s antidepressant effect is blocked by systemic depletion of serotonin 

(Fukumoto, Iijima, & Chaki, 2015), and that ketamine promotes behavioral 

resilience to depression via modulation of the PL-DRN projection (Amat et 

al., 2016).  These studies suggest the DRN may be an important part of the 

circuitry underlying ketamine’s antidepressant effect. 

The interconnections between the dR and the mPFC are highly 

complex and may be inhibitory or excitatory depending on the context of their 

activation, and especially on the rate of serotonin release and the distribution 

of serotonin receptors within the nucleus (Celada, Puig, Casanovas, Guillazo, 

& Artigas, 2001).  Warden et al. (2012) demonstrated that optogenetic 

stimulation of terminals in the dorsal raphe induced an antidepressant effect 

on the forced-swim test (FST) and sucrose-preference test (SPT) that is 

observable in real time as the stimulation is turned on or off.   This paradigm 

showed the immediate effect of the activation of the DRN terminals, but it 

remained unclear how relevant the effect was to longer-lasting 
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antidepressant treatments, if at all.  To investigate this question, I 

optogenetically activated mPFC-originating axon terminals in the DRN and 

observed effects on behavior and immunohistochemistry.  

2.2. Methods  

2.2.1. Animal care and surgery 

Adult male Sprague-Dawley rats (Charles River Laboratories) 

weighing 200-300 g were pair-housed on a 12-h light/dark cycle (lights on 

07:00) with food and water available ad libitum. All procedures were done in 

accordance with guidelines for the care and use of laboratory animals and the 

Yale University Institutional Animal Care and Use Committee. Rats were 

anesthetized with an intraperitoneal injection of ketamine 80 mg/kg + 

xylazine 6 mg/kg.  (This anesthetic dose of ketamine does not produce 

antidepressant behavioral or molecular changes.(N. Li et al., 2010))  They 

were then injected with AAV2/CaMKIIa-ChR2(H134R)-eYFP (University of 

North Carolina Vector Core) 0.5 µL per side at a rate of 0.1 µL/min into the 

infralimbic PFC (+3.0 mm AP; ±0.6 mm ML; -5.0 mm DV).  An optical fiber 

(Doric Lenses) with a fiberoptic attachment port was then inserted at a 30° 

angle and cemented in place, with the tip of the fiber targeted just dorsal and 

lateral to the DRN (-7.8 mm AP; +3.1 mm ML; -4.7 mm DV).  Animals had 4 

weeks after surgery to recover and to ensure adequate viral expression. 
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2.2.2. Optogenetic stimulation 

A fiberoptic cable (Doric Lenses) was attached to the port on the 

animal’s head, and the laser was turned on (for the stimulated group) or left 

off (for the control group).  Stimulation was conducted over the course of one 

hour: pulse width, 15 ms; frequency 10 Hz; intensity, 5 mW; 473 nm blue 

light; each minute of laser on time was alternated with one minute of laser 

off time to avoid any possibility of tissue damage.  The 10 Hz frequency is a 

significant elevation from baseline and has been shown in vivo to produce 

reliable pyramidal-neuron action potentials at the same frequency, so the 

risk of depolarization block or excitotoxicity is low (Ji & Neugebauer, 2012).  

2.2.3. Behavioral tests 

 The sequence of testing was as follows:  

- Day 1: pre-swim 

- Day 2: optogenetic stimulation 

- Day 3: FST/NSFT/FUST (some groups had additional testing done 

at later days, where specified) 

Forced-swim test (FST): The FST is a measure of an animal’s ability to 

cope with a stressful situation, with the primary output, immobility, being 

interpreted as behavioral despair (Porsolt, Anton, Blavet, & Jalfre, 1978).  

Rats were placed in 25°C water in a clear Plexiglas cylinder (65 cm height, 30 

cm diameter) initially for a 15-minute “pre-swim” to acclimate them to the 

procedure.  Afterward, rats were removed and dried with a cloth. Twenty-four 
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hours later, rats underwent optogenetic stimulation as described above. 

Twenty-four hours following treatment, rats were again placed in the 

swimming cylinders for a 10-min test swim. All sessions were video recorded 

and data were analyzed by measuring the amount of time the animal spent 

immobile (making only movements necessary to keep afloat). Data points 

from minutes 2-6 of the swim were used (5 minutes total).  

 Novelty-suppressed feeding test (NSFT): Novel environments provoke 

anxiety in rodents, which delays their normal feeding behavior when food-

deprived; ketamine and other antidepressants reduce the latency to feed (N. 

Li et al., 2010). Rats that had been deprived of food for 16-20 hours were 

placed in an open field (76.5 cm × 76.5 cm × 40 cm; acrylic) with a small 

amount of their normal chow in the center. Animals were allowed to explore 

the open field for up to 20 min. The output measured was time elapsed before 

approaching and taking a bite of the food. Time elapsed before taking a bite 

of food in the home cage (home-cage feeding, HCF) was measured as a control 

immediately after testing.  

 Female-urine sniffing test (FUST): Anhedonia is an important feature 

of depression in humans (American Psychiatric Association, 2013).  The 

FUST is a measure of hedonic behavior in rodents and is sensitive to SSRI 

treatment (Malkesman et al., 2010). After 45 minutes of habituation to the 

testing room, animals were allowed to briefly sniff a cotton swab dipped in 

water, which was then affixed to the inside of the cage; their interaction with 

the swab was recorded for 3 minutes.  Urine was then collected from adult 
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females on the tips of cotton swabs, one for each animal being tested. 45 

minutes after the water-swab test, animals were exposed to the urine-soaked 

swab and again recorded for 3 minutes.  Videos were scored for time spent 

sniffing the swab. 

 Locomotor activity (LMA): The NSFT was video-recorded and later 

analyzed for distance traveled in the first 5 minutes after placement in the 

chamber, using AnyMaze software. 

2.2.4. Immunohistochemistry 

Rats were anesthetized (chloral hydrate, 250 mg/kg, i.p.) and 

transcardially perfused with ice-cold PBS followed by freshly prepared 4% 

paraformaldehyde.  Brains were removed and placed in the same fixative for 

48–72 h at 4 °C and then cryoprotected in 20% glycerol-PBS for 48-72 h. 

Sections (40 µm) were cut using a sliding microtome. Cannula placements 

were verified in sections, and animals with incorrect placement were not 

included in any studies.  

Slices were placed in PBST (PBS + 0.1% Triton X-100) with 5% (wt/vol) 

normal goat serum for 3 hours and then incubated overnight with primary 

antibody (rabbit anti-c-Fos 1:500, Santa Cruz Biotechnology; chicken anti-

GFP 1:1000, Abcam; 1:500 goat anti-TPH2, Abcam) and PBST at room 

temperature. After three washes in PBS, slices were incubated with 

secondary antibody (1:500 donkey anti-rabbit Cy3, Millipore; 1:500 donkey 

anti-chicken, Jackson Laboratories; 1:100 donkey anti-goat 488, 

ThermoFisher Scientific) in PBST for 2 h at room temperature, followed by 
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three more washes in PBS.  Sections were then mounted on a polarized glass 

slide and allowed to dry completely.  They were then covered in DPX 

mounting medium (Sigma-Aldrich) and covered in a glass coverslip.   

Sections were collected at approximately bregma -7.8mm. The 

boundaries of each area for counting were manually drawn and were held 

constant between sections. Tissue was visualized using a fluorescent 

microscope (Zeiss) using standard FITC and TRITC filters.  c-Fos expression 

was determined using image-analysis software (ImageJ64 1.49o, National 

Institutes of Health).  The software calculated mean pixel value and standard 

deviation of background staining. The mean background pixel values of all 

sections were within 2-3 SD, so a threshold was set at four SDs above the 

mean of background; only the brightly stained cells exceeding that threshold 

were counted. These parameters produced a close agreement between manual 

and computer-counted c-Fos-positive cells.  Mean number of positive cells in 

each section was computed and averaged among 2-3 sections per subject.  

Data are expressed as average c-Fos positive cells per section per subject. 

2.2.5. Data analysis 

For behavioral testing and c-Fos quantification, control vs. stimulated 

groups were compared using a two-tailed t-test.  To analyze TPH2 reactivity 

x stimulation status, a two-way ANOVA with LSD post-hoc test was used.  

Significance was determined at p < 0.05. All data are represented as mean ± 

SEM.  
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2.3. Results 

2.3.1. Survey of brain regions with mPFC-originating axon terminals 

My first step was to examine the expression of GFP throughout the 

brain after injection of the channelrhodopsin-containing viral construct into 

the ilPFC.  The ChR2 protein is transported into axons and axon terminals, 

allowing identification of distant target regions of the cells expressing the 

protein (Han, 2012).  The distribution of GFP-tagged terminals generally 

                              

                

                

                

 Figure 2.1. Distribution of GFP-labeled ChR2 throughout the brain  
GFP fluorescence was found in the following regions, captured at 10X magnification: 
(A) bed nucleus of the stria terminalis (bregma -0.3mm); (B) medial dorsal caudate-
putamen (bregma +1.6mm); (C) mediodorsal thalamus (bregma -2.3mm); (D) lateral 
posterior thalamus (bregma -3.3mm); (E) nucleus reuniens (bregma -2.8mm); (F) 
basomedial and central amygdala (bregma -2.8mm); (G) lateral habenula, medial part 
(bregma -3.14mm); (H) nucleus accumbens, core and shell (bregma +1.6mm). 

A. 
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H. 
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matched that found in retrograde tracer studies of ilPFC target sites (Vertes, 

2004).  Notable areas of ChR2 expression include the bed nucleus of the stria 

terminalis, caudate-putamen, mediodorsal and lateral posterior thalamus, 

nucleus reuniens, basomedial and central amygdala, LHB, and NAC (Figure 

2.1); and the DRN (Figure 2.4).   

All of these areas present potential stimulation targets, though some 

would be difficult to selectively target due to the presence of other GFP-

expressing areas nearby (e.g., LHB or central amygdala); and some areas 

may have significant GFP expression in fibers of passage rather than axon 

terminals (e.g., thalamic nuclei), which would complicate interpretation.  For 

these reasons, as well as the important mechanistic questions described in 

the introduction, I targeted the DRN first.  

2.3.2. Optogenetic stimulation of mPFC-originating axon terminals in the 

DRN produces an antidepressant effect on the FST 
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 To test the hypothesis that the projection from the mPFC to the DRN 

is involved in the mPFC-mediated antidepressant effect described in 

Fuchikami et al. (2015), I injected ChR2-containing virus into the mPFC 

targeting the infralimbic region (Figure 2.2.B)(Paxinos & Watson, 1998).  

The virus, AAV2, enters all neurons, but the CamKII promoter associated 

 

A.        B. 

 

 

 

 

C.       D. 

 

 

 

 

 

 

 
Figure 2.2.  DRN axon-terminal stimulation produces an antidepressant 
effect on the FST 
Illustrations showing the target area of bilateral virus injection into the  ilPFC (bregma 
+3.2 mm; dotted pattern), position of the implanted fiberoptic (solid line in-plane, 
dotted line out-of-plane), and target area of light exposure (bregma -7.8 mm; solid gray 
fill) {Paxinos:1998ui}22 in (A) sagittal (0.4mm lateral) and (B) coronal sections.  (C) 
Reduction of immobility on the FST induced by stimulation of ChR2-expressing axon 
terminals in the DRN (*p = 0.01, t-test).  Minutes 2-6 of the FST were analyzed.  (D) 
Stimulation had no significant effect on locomotor activity. n = 12-13 per group.   
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with the ChR2 gene ensures that the protein is expressed predominantly in 

excitatory neurons (McDonald, Muller, & Mascagni, 2002).  I then stimulated 

ChR2-expressing axon terminals in the DRN (Figure 2.2.A) with a fiberoptic 

positioned dorsal and lateral to the target area so that it would not damage 

DRN cells.  I used the same stimulation protocol that had produced the 

antidepressant effect when used on the cell bodies in the infralimbic PFC; the 

control group received no stimulation.  On the FST 24 hours after 

stimulation, animals showed a significant decrease in time spent immobile 

(t23 = 2.8, p = 0.01) (Figure 2.2.C). Immobility is used as a measure of 

behavioral despair, and many antidepressant drugs reliably decrease 

immobility on this test, which makes it one of the most reliable and facially 

valid tests for assessing depression-like behavior in rodents (Porsolt, 

Brossard, Hautbois, & Roux, 2001).  The effect was not explained by a 

difference in locomotor activity between the two groups (t26 = 0.9, p = 0.4) 

(Figure 2.2.D).   

2.3.3. DRN axon-terminal stimulation did not produce an antidepressant 

effect on other behavioral measures or at a longer time point 

Using the same viral-injection and stimulation protocols, I then tested 

separate groups of animals on two other behavioral measures, the NSFT and 

FUST, which measure different aspects of depression-like behavior.  In the 

NSFT, latency to feed on pellets placed in an open field is used as a measure 

of anxiety.  Chronic SSRI administration treatment decreases latency to feed 

in this model (Bodnoff, Suranyi-Cadotte, Aitken, Quirion, & Meaney, 1988), 
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as did a one-hour optogenetic stimulation of ilPFC glutamatergic cell bodies 

(Fuchikami et al., 2015).  Time spent sniffing female urine is a measure of 

hedonic behavior in male rodents which is improved by acute ketamine 

treatment in serotonin-depleted rats (Malkesman et al., 2011).  On neither 

the NSFT (t15 = 1.0, p = 0.3) nor the FUST (t11 = 0.9, p = 0.4) was there a 

difference between the groups at 24 hours post-stimulation (Figure 2.3.A 

and C), indicating that the antidepressant effect of DRN axon-terminal 

stimulation was narrower in scope than the antidepressant effect induced by 

stimulating cell bodies in the infralimbic PFC.  There was no difference in 

appetite as measured by home-cage feeding behavior (t25 = 0.4, p = 0.7) 

(Figure 2.3.B), which is a common confound of behavior in the NSFT.  I also 

tested a cohort on the FST one week after stimulation, and there was no 

difference between stimulated and non-stimulated animals (t16 = 0.002, p = 

1.0) (Figure 2.3.D), indicating that the antidepressant effect observed at 24 

hours dissipated more quickly than the antidepressant effect induced by 

infralimbic PFC cell body stimulation, which lasted at least 17 days 

(Fuchikami et al., 2015).   
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2.3.4. DRN axon-terminal stimulation results in increased local neuronal 

activity but mPFC activity is not affected  

To understand the effects of this stimulation on a cellular level, I 

sectioned tissue and stained for GFP, which was tagged to the 

channelrhodopsin protein; c-Fos, a marker of neuronal activation; and/or 

TPH2, an enzyme found in serotonin-releasing cells.  I could also verify 

cannula placements from the DRN sections (Figure 2.4.A).  >75% of 

A.      B. 

 

 

 

 

 
C.       D. 
 

 

 

 

 

 

Figure 2.3. DRN axon-terminal stimulation had no effect on the NSFT, 
FUST, or 7-day post-stimulation FST 
(A) DRN terminal stimulation had no effect on the NSFT, conducted 24 hours after 
stimulation.  (B) Those groups showed no difference in home-cage feeding.  (C)  DRN 
terminal stimulation did not significantly affect behavior on the FUST, conducted at 24 
hours post-stimulation on a separate cohort.  (D) There was also no effect on the FST at 
7-days post-stimulation. All comparisons analyzed by t-test.  n = 5-13 rats per group. 
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cannulas were in the targeted area; all animals with off-target cannulas were 

removed from the study.  GFP staining in the mPFC verified accurate 

placement of the virus (Figure 2.4.B and C).  In every instance, virus was 

concentrated in the infralimbic PFC, where it was targeted, and it also 

typically spread dorsally to the prelimbic PFC.  Though stimulation of cell 

bodies in the prelimbic did not produce an antidepressant effect in our 

previous study (Fuchikami et al., 2015), the prelimbic PFC does project to the 

DRN (Vertes, 2004), so the potential involvement of prelimbic-originating 

axon terminals in this behavioral effect cannot be ruled out. 

To estimate neuronal activity as a result of stimulation, I perfused and 

fixed brain tissue 90 minutes after a 20-minute stimulation using the same 

parameters as with the behavioral tests.  After complete fixation, I sectioned 

and stained the brains for c-Fos, which is induced in response to neuronal 

activity.  Stimulation significantly increased c-Fos expression in the DRN (t11 

= 5.5, p = 0.0002), as would be expected of stimulation of glutamatergic axon 
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terminals (Figure 2.5.A and B).  Stimulation did not have a noticeable effect 

on c-Fos expression in the mPFC as compared to unstimulated controls, 

meaning that the stimulation did not trigger action potentials back-

propagating to mPFC cell bodies to an extent significant enough to trigger 

expression of c-Fos.  This finding indicates that the behavioral results 

A. 
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Figure 2.4.  Cannula placement and viral expression in the mPFC 
and DRN   
(A) Cannula placement locations for the experiments described in Figure 2.2; Os  
are correctly placed and Xs are misses.  The blue box indicates the target area 
for the tip of the cannula that would ensure light exposure to the DRN.  Misses 
were excluded from results.  Three additional incorrect placements were out of 
plane and not shown.  (B) Representative viral expression in the mPFC. (CC: 
corpus callosum) (C) Representative viral expression in the DRN. (Aq.: cerebral 
aqueduct) 
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resulting from this stimulation are likely the result of its effects on cells in 

the DRN rather than on the mPFC or other PFC target areas.   

Co-staining for c-Fos and TPH2 showed that stimulation induced a 

non-significant upward trend in the percentage of TPH2-reactive cells that 

colocalized with c-Fos immunoreactivity (t11 = 1.7, p = 0.1) (Figure 2.6.A and 

B).  However, the vast majority of the increase in c-Fos expression induced by 

DRN stimulation was not colocalized with TPH2.  Comparison of the effect of 

stimulation on c-Fos expression that was TPH2-colocalized versus non-TPH2-

colocalized showed a significant positive effect of stimulation (F1,22 = 26.7, p < 

0.0001) and TPH2 non-reactivity (F1,22 = 18.9, p = 0.0003) as well as an 

interaction between the two (stimulation x TPH2 interaction F1,22 = 6.4, p = 

0.02) in a two-way ANOVA.  This was not accounted for by a difference in the 

number of TPH2+ cells between the non-stimulated and stimulated groups 

(mean TPH2 count in non-stimulated animals was 195 vs. in stimulated 

animals 211; difference between the means was 16 ± SEM of 35).  This result 

suggests that mPFC projections to the DRN may activate predominantly non-

serotonergic cell populations. 
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A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         B. 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5. c-Fos activation is increased in the DRN but not in the ilPFC in 
response to DRN axon-terminal stimulation 
(A) Representative images of c-Fos expression in the DRN and ilPFC either without 
stimulation or 2 hours after a 20min stimulation of mPFC-originating axons in the 
DRN.  Scale bar = 100µm.  (B) Quantification of c-Fos+ cells in the DRN showed a 
significant increase after stimulation (*p = 0.0002, t-test).  c-Fos expression was 
similarly sparse in the mPFC in both conditions (not quantified).  n = 6-7 animals per 
group, 2-3 sections per brain area per animal. 
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2.4. Discussion 

These results help clarify the mechanism of the antidepressant effect 

induced by mPFC glutamatergic-cell stimulation, which is designed to mimic 

A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
B.        C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6. Stimulation induces c-Fos expression in non-TPH2-expressing 
cells 
(A) Representative images from non-stimulated and stimulated conditions stained for 
both c-Fos (red) and TPH2 (green); cells stained with both are marked with a white 
arrow.  Scale bar = 100µm.  (B) Percentage of TPH2+ cells that also expressed c-Fos 
was non-significantly increased by stimulation (p = 0.1, t-test).  (C) Stimulation increased 
non-colocalized c-Fos expression (*p < 0.0001; Fisher’s LSD) but did not significantly 
increase c-Fos expression colocalized with TPH2 (p = 0.08, Fisher’s LSD).  n = 6-7 
animals per group, 2-3 sections per animal. 
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the glutamatergic activity induced by ketamine.  The antidepressant effect 

found in these studies, induced by stimulating mPFC-originating axon 

terminals in the DRN, differs from the effect of stimulating mPFC neurons in 

two important ways.  First, it persists for a shorter time; second, it only 

affects a subset of depression-like behavior. 

The first difference is not unsurprising given the likely mechanism of 

the antidepressant effect.  In order to endure for over two weeks, as the 

behavior described in Fuchikami et al. (2015) did, the effect must be 

mediated by durable changes at the cellular level.  These changes included 

the formation of new dendritic spines and strengthening of synaptic 

connections, for which we found electrophysiological evidence.  Stimulation of 

the cell bodies may have induced changes in gene expression or activity, as 

these processes requires protein translation, which could explain their 

duration.   

However, long-lasting changes based on gene expression may not be 

triggered by axonal stimulation, especially if there is minimal back-

propagation of action potentials, as suggested by the c-Fos staining in the 

mPFC shown in Figure 2.5A.  Protein translation does occur locally within 

axons using pre-existing mRNA (Van Driesche & Martin, 2018), so it is 

plausible that axonal stimulation could trigger the formation of new synapses 

or changes in synaptic strength.  Without nuclear involvement, these local 

changes may be sufficient to produce behavioral effects lasting a few days but 

not to induce the longer-lasting changes produced by somatic stimulation. 
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The nature of the behavioral changes induced by axonal stimulation is 

a property of the particular projection being stimulated, which may differ 

from the net effect of stimulating cell bodies and their multitude of axonal 

targets.  In this case, stimulation affects the activity of the brain’s primary 

serotonergic output source.  Which cells within the DRN are targeted and the 

net effect of mPFC input on serotonin release has been a matter of debate, 

and the results from this chapter may help clarify the former question, as 

most of the cells activated by mPFC axon stimulation were not TPH2-

expressing, i.e., not serotonin neurons.  Most of the non-serotonergic cells in 

the DRN are GABAergic interneurons (Maier & Watkins, 2005) (though the 

rostral part of the DRN contains a small population of dopaminergic neurons 

as well (Hale & Lowry, 2011)).  Axons from the rat mPFC may regulate DRN 

activity by synapsing onto subpopulations of both 5HT and GABA neurons, 

as they do in mice (Weissbourd et al., 2014).  The findings from Figure 2.6 

are not inconsistent with this idea, though there was a clear predominance of 

c-Fos activity in non-TPH2-expressing cells.  An additional consideration is 

that previous studies in mice have found that mPFC axons overlap with both 

serotonergic and GABAergic portions of the DRN in different rostrocaudal 

planes (Challis, Beck, & Berton, 2014).  Though similar studies have not been 

conducted in rats, that finding raises the possibility that the results from this 

study, taken from a single rostrocaudal plane, may not reflect the activity 

that was occurring in other parts of the DRN.   
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Understanding the relationship between mPFC glutamatergic activity 

and DRN cellular subpopulations has relevance for the larger question of how 

the mPFC affects the functional output of the DRN.  Modulation of the 

serotonin system is recognized as an important feature of SSRIs, but it had 

not been linked to the antidepressant effect of ketamine or other rapid-acting 

antidepressants until recently.  Ketamine has been shown to increase 

serotonin release from DRN neurons into the mPFC (Nishitani et al., 2014).  

Further, its antidepressant effect in mice requires activation of serotonin 

neurons in the DRN (Fukumoto et al., 2015).  (That study found that 

ketamine administration into the mPFC induced c-Fos activation in TPH2-

expressing cells, which is at odds with the results from Figure 2.6.  Those 

differences may be due to a number of factors, including neuroanatomical 

differences between rats and mice, differences in the effect of axon terminal 

stimulation compared to intra-PFC ketamine administration, or differences 

in the particular part of the DRN sampled for the colocalization studies.)  

Finally, experiments in mice have shown that serotonin release in the mPFC 

is necessary for ketamine’s antidepressant effect (Fukumoto, Iijima, 

Funakoshi, & Chaki, 2017).  Given that serotonergic and glutamatergic 

projections overlap in many areas of the brain (Russo & Nestler, 2013), and 

this recent evidence strongly suggests that ketamine’s antidepressant effect 

requires activation of an mPFC-to-DRN-to-mPFC circuit, in which mPFC 

glutamatergic activation of the DRN triggers serotonin release in the mPFC. 
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A different set of neuroanatomical questions is raised by the 

behavioral results from this chapter, specifically that stimulation of the 

mPFC-to-DRN projection selectively affects one specific aspect of depression 

behavior but not others.  MDD is a heterogenous illness, and the wide range 

of features that can characterize its clinical presentation include changes in 

emotionality, irritability, hedonic appraisal, sleep, appetite, concentration, 

energy, motivation, and psychomotor tone (American Psychiatric Association, 

2013)—functions that could plausibly signify changes in a large number of 

neural pathways.  Each of these features may be modulated by a unique set 

of brain areas and circuits.  The FST is designed to capture behavioral 

despair (immobility) and escape behavior (swimming and climbing) in 

rodents; these behaviors may be analogous to certain features found in 

human depression (especially changes in energy and motivation), but likely 

have little relevance to other features (Cryan, Valentino, & Lucki, 2005).  The 

selective effect of DRN axon-terminal stimulation on FST behaviors, but not 

on NSFT or FUST behaviors, may reflect the reality that each of these 

tests—and the circuitry that modulates the tested behaviors—only capture a 

small subset of the rodent behavioral analogues of symptoms of human 

depression.  It is reasonable to hypothesize from Figures 2.2 & 3 that the 

mPFC-to-DRN projection mediates the motivation and energy an animal has 

available to navigate stressful situations, which is not relevant to the tasks 

measured by either the NSFT—in which an animal can avoid engaging with 

the stressful open field altogether by forgoing the food offered (Bodnoff et al., 
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1988)—nor the FUST, which involves only a rewarding stimulus (the smell of 

female urine) but nothing aversive or stressful (Malkesman et al., 2010).  

Only the FST requires an animal to engage with a stressful situation, and so 

only the FST will capture those particular aspects of depressive behavior.   

In summary, the implication of the behavioral pattern seen in these 

studies is that the mPFC-to-DRN projection modifies the expression of 

behavioral despair and escape behavior, but it is not involved in balancing 

anxiety with a drive for food as measured by the NSFT or hedonic activity as 

measured by the FUST.  Further, I would hypothesize that other projections 

from the mPFC may mediate these different facets of the antidepressant 

response but leave the FST unaffected, a topic that will be explored in more 

detail in Chapter 4.  To the extent that the stimulation protocol used here 

mimics the effects of ketamine, this pathway may play a similarly selective 

role in the ketamine antidepressant response, which will be explored in the 

next chapter. 
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CHAPTER 3: Inhibition of DRN serotonin release blocks the 

antidepressant effect of ketamine 

3.1. Introduction 

The optogenetic stimulation described in the last chapter was designed 

to mimic the effect of ketamine on glutamatergic neurons in the mPFC.  

Ketamine has been shown to induce a burst of glutamate release in the 

mPFC  starting within an hour of local administration and fading by about 90 

minutes post-administration (Moghaddam et al., 1997).  This activation 

appears to critical to its antidepressant function, because blocking excitation 

in the infralimbic PFC negates ketamine’s behavioral effects (Fuchikami et 

al., 2015).  After this initial burst of activity, a single administration of 

ketamine induces long-lasting changes in protein expression and neuronal 

structure in rodent brains, including activation of mTOR and increased 

dendritic-spine density (N. Li et al., 2010).  Both the initial burst of 

glutamate and the longer-term changes—notably increased spine density 24 

hours after stimulation—are reproduced by the optogenetic stimulation of 

infralimbic PFC neurons (Fuchikami et al., 2015).  I hypothesized that 

optogenetic stimulation of DRN axon terminals would also mimic the effect of 

ketamine on this circuit, and thus that part of ketamine’s antidepressant 

effect would require mPFC glutamate release in the DRN.   

This hypothesis could be tested directly by blocking the effect of this 

pathway during ketamine administration.  Glutamatergic input to the DRN 

would be expected to stimulate serotonin release, given that the primary 
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neurotransmitter in a large majority of DRN neurons is serotonin 

(Weissbourd et al., 2014).  It was important to block serotonin release 

transiently in order not to interfere with animal behavior during testing in 

the following days, as permanent DRN blockade can lead to changes in 

appetite and body temperature regulation, among other effects (Breisch, 

Zemlan, & Hoebel, 1976).  To do this, I used 8OH-DPAT, a 5-HT1a agonist.  

5-HT1a receptors are autoreceptors, which bind serotonin (usually released 

by the cell on which they are located or by nearby cells) and inhibit further 

serotonin release, providing a built-in brake on serotonin activity.  8OH-

DPAT induces the blockade of serotonin release without disabling the 

serotonin system in the longer term.  By microinfusing 8OH-DPAT into the 

DRN during systemic ketamine administration, I was able to analyze which 

aspects of the ketamine antidepressant response required DRN serotonin 

activity. 

3.2. Methods 

3.2.1. Animal care and surgery 

Adult male Sprague-Dawley rats (Charles River Laboratories) 

weighing 200-300 g were pair-housed on a 12-h light/dark cycle (lights on 

07:00) with food and water available ad libitum. All procedures were done in 

accordance with guidelines for the care and use of laboratory animals and the 

Yale University Institutional Animal Care and Use Committee. Rats were 

anesthetized with an intraperitoneal injection of ketamine 80 mg/kg + 
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xylazine 6 mg/kg.  (This anesthetic dose of ketamine does not produce 

antidepressant behavioral or molecular changes.(N. Li et al., 2010)).  They 

were then implanted with a guide cannula (Plastics One) inserted at 30° with 

the tip of the cannula dorsal and lateral to the DRN (-7.8 mm AP; +3.1 mm 

ML; the cannula was lowered along the DV axis until the 6mm cannula was 

flush with the skull).  The internal cannula, when inserted during infusion, 

extended 1 mm beyond the end of the guide cannula.  The cannula was held 

in place with a cement cap that was stabilized with two screws.  Animals 

were given one week to recover from surgery before testing. 

3.2.2. Drug administration 

8-hydroxy-n,n-dipropylaminotetralin (8OH-DPAT; Abcam) was 

administered through the implanted cannula at a concentration of 1 mg/mL.  

A total of 1 µL was infused over the course of 1 minute, and the internal 

cannula remained in place for an additional 2 minutes to allow diffusion.  

Half the animals received 8OH-DPAT, and half received PBS solution.  

Fifteen minutes after the start of the infusion, ketamine (Sigma) 10 mg/kg 

was injected intraperitoneally.  Half the animals received ketamine and half 

received 0.9% saline solution, in a 2x2 design (infusion x injection).  Animals 

were then returned to their home cages; no testing was done on the day of 

drug administration. 
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3.2.3. Behavioral tests 

The sequence of testing was as follows.  The antidepressant effect of 

ketamine is detectable in rats for several days post-administration (N. Li, 

Liu, Dwyer, Banasr, Lee, Son, Li, Aghajanian, & Duman, 2011b), so each 

cohort of animals did multiple tests over the course of several days. 

- Day 1: pre-swim 

- Day 2: drug administration 

- Day 3: FST 

- Day 4: food deprivation starts 

- Day 5: NSFT 

- Day 6: FUST 

Forced-swim test (FST): Rats were placed in 25°C water in a clear 

Plexiglas cylinder (65 cm height, 30 cm diameter) initially for a 15-minute 

“pre-swim” to acclimate them to the procedure.  Afterward, rats were 

removed and dried with a cloth. Twenty-four hours later, drugs were 

administered as described above. Twenty-four hours following treatment, 

rats were again placed in the swimming cylinders for a 10-min test swim. All 

sessions were video recorded and data were analyzed by scoring each 5-

second time bin as being primarily one of three behaviors: immobility 

(making only movements necessary to keep afloat), swimming, or climbing. 

Data points from minutes 2-6 of the swim were used (5 minutes total).  The 

number of bins in each condition was then multiplied by 5 seconds to 

estimate total time spent on each behavior. 
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 Novelty-suppressed feeding test (NSFT): Rats that had been deprived 

of food for 16-20 hours were placed in an open field (76.5 cm × 76.5 cm × 40 

cm; acrylic) with a small amount of their normal chow in the center. Animals 

were allowed to explore the open field for up to 20 min. The output measured 

was time elapsed before approaching and taking a bite of the food. Time 

elapsed before taking a bite of food in the home cage (home-cage feeding, 

HCF) was measured as a control immediately after testing.  

 Female-urine sniffing test (FUST): After 45 minutes of habituation to 

the testing room, animals were allowed to briefly sniff a cotton swab dipped 

in water, which was then affixed to the inside of the cage; their interaction 

with the swab was recorded for 3 minutes.  Urine was then collected from 

adult females on the tips of cotton swabs, one for each animal being tested. 45 

minutes after the water-swab test, animals were exposed to the urine-soaked 

swab and again recorded for 3 minutes.  Videos were scored for time spent 

sniffing the swab. 

 Locomotor activity (LMA): The NSFT was video-recorded and later 

analyzed for distance traveled in the first 5 minutes after placement in the 

chamber, using AnyMaze software. 

3.2.4. Data analysis 

Data were analyzed using a two-way ANOVA (injection x infusion) 

with LSD post-hoc tests where appropriate.  Significance was determined at 

p < 0.05. All data are represented as mean ± SEM. 
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3.3. Results 

3.3.1. Blockade of serotonin release prevents the antidepressant effect of 

ketamine on the FST 

To test the hypothesis that ketamine requires DRN activation for the 

antidepressant behaviors measured on the FST, I infused 8OH-DPAT into 

the DRN to block the release of serotonin 15 minutes before the 

administration of systemic ketamine (Figure 3.1.A).  Four test groups were 

compared, varying by infusion and injection: PBS-saline, PBS-ketamine, 

DPAT-saline, and DPAT-ketamine.  Ketamine reduced immobility when 

paired with a PBS infusion, but the group that received ketamine with an 

8OH-DPAT infusion had a higher immobility time similar to controls; a two-

way ANOVA showed a significant interaction between ketamine and 8OH-
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Figure 3.1. 8OH-DPAT blocks the antidepressant effect of ketamine on 
the FST 
(A) The location of the guide cannula and target area for infusion (bregma -7.8) 
{Paxinos:1998ui}. (B) Systemic ketamine injection reduced immobility time when 
PBS was infused (p = 0.04, Fisher’s LSD), but 8OH-DPAT blocked this effect (p = 
0.02, Fisher’s LSD).  Data are expressed as time spent immobile during minutes 2-
6 of the test. n = 7-8 per group. 

 * 
         ** 
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DPAT (injection x infusion interaction F1,26 = 5.0, p = 0.03).  Neither infusion 

status (F1,26 = 1.6, p = 0.2) nor injection status (F1,26 = 0.8, p = 0.4) had a 

significant main effect on immobility by two-way ANOVA.  Consistent with 

results from the optogenetic stimulation of the mPFC to DRN projection, 

ketamine does not exert an antidepressant effect on the FST in the absence of 

DRN serotonin release. 

3.3.2. The variation in immobility time induced by ketamine with or without 

8OH-DPAT is accounted for by changes in swimming, not climbing 

Escape behavior on the FST consists of two distinguishable behaviors: 

swimming, in which the animal moves around the tank with mostly lateral 

forelimb movements; and climbing, in which the animal moves the forepaws 

perpendicular to the water against the side of the tank.  Comparison of the 

effects of serotonergic and noradrenergic compounds has shown that climbing 

behavior, occurring mostly in the first few minutes of the test, is mediated by 

noradrenergic stimulation, while swimming, which predominates in the 

second half of the test, is mediated by serotonergic stimulation (Bogdanova, 

Kanekar, D'Anci, & Renshaw, 2013).  Given that DRN serotonin release is 

required for the antidepressant effect of ketamine seen in Figure 3.1, I 

hypothesized that the difference in immobility would be due to increased 

swimming in the PBS-ketamine animals.  Indeed, ketamine increased time 

spent swimming in PBS-infused animals, which was significant by post-hoc 

testing though the two-way ANOVA did not show a significant effect of 

injection (F1,26 = 1.8, p = 0.2), infusion (F1,26 = 0.07, p = 0.8), or interaction 
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(F1,26 = 3.0, p = 0.09) (Figure 3.2.A).  There was no difference by any 

measure in climbing behavior (injection F1,26 = 0.2, p = 0.6; infusion F1,26 = 

1.6, p = 0.2; interaction F1,26 = 0.5, p = 0.5).  Though not conclusive, the 

observed effect of ketamine on swimming time supports the conclusion that 

the its antidepressant effect as measured on the FST is mediated by 

serotonin release rather than norepinephrine. 

A.           B. 
 
 
 
 
   
  
 
 
 
 
Figure 3.2.  Ketamine increases swimming, not climbing, on the FST 
(A) Swimming behavior in minutes 2-6 of the FST, measured in number of 5-
second bins in which each behavior predominated, multiplied by 5 seconds.  
Ketamine increased swimming time when paired with a PBS infusion (*p = 0.04, 
Fisher’s LSD).  (B) Climbing behavior in minutes 2-6 of the FST showed no 
significant differences with ketamine treatment.  n = 7-8 per group. 
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3.3.3. Blockade of serotonin release did not significantly change the effect of 

ketamine on other behavioral tests 

Next, I ran behavioral tests to assess whether 8OH-DPAT affected the 

ketamine-induced antidepressant effect on other behavioral dimensions: the 

NSFT, which measures anxiety behavior, or the FUST, which measures 

hedonic behavior (as discussed in Section 2.4 above).  DPAT did not appear to 

change the effect of systemic ketamine injection on the NSFT, as there was a 

significant effect of the injection (F1,26 = 5.8, p = 0.02) but not the infusion 

(F1,26 = 0.004, p = 0.9) nor any interaction between the two (F1,26 = 0.07, p = 

  A. 
 
 
 
 
 
 
 
 
B. 
 
 
 
 
 
 
 
 
Figure 3.3. 8OH-DPAT does not interfere with the effect of ketamine on 
the NSFT 
(A) Ketamine led to a downward trend in time to first bite on the NSFT (p = 0.07, 
Fisher’s LSD), which did not appear to be affected by 8OH-DPAT (p = 0.8, Fisher’s 
LSD).  n = 7-8 per group. (B) Ketamine did not significantly increase urine-sniffing 
time on the FUST, nor did 8OH-DPAT induce a significant effect.  n = 6-9 per 
group. 
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0.8) by two-way ANOVA (Figure 3.3.A).  The variability on the FUST was 

too high to discern a significant effect of ketamine, so those results cannot be 

interpreted conclusively.  

3.3.4. Animals show more baseline depression-like behavior when drug 

administration is performed by a male experimenter than by a female 

experimenter  

One additional factor was found to influence the expression of 

ketamine’s antidepressant effect: the sex of the experimenter administering 

the drugs.  In order for animals to show a significant antidepressant response 

to ketamine, they have to exhibit some degree of baseline depression-like 

behavior.  With a female experimenter, the behavior of both control and 

ketamine-exposed animals on the FST (Figure 3.4.A) and NSFT (Figure 

3.4.C) was similar to that of animals who had received ketamine from a male 

experimenter (Figure 3.4.B and D).  However, control animals had a higher 

level of depression-like behavior on both measures when the experiment was 

performed by a male, and thus there was separation between ketamine and 

control groups only with a male experimenter.  Tests were initially performed 

with a female running all parts of the experiment; the higher-baseline results 

were obtained with a male performing only the drug administration with a 

female performing the behavioral tests. 
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3.4. Discussion 

These results, using pharmacological tools to examine the mPFC to 

DRN pathway in relation to the antidepressant effect of ketamine, echo the 

results from the previous chapter, which used optogenetic stimulation to 

interrogate the same pathway.  Both sets of experiments suggest that the 

mPFC to DRN projection modulates depression-like behavior on the FST and 
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Figure 3.4.  Depression-like behavior is higher in control groups when 
drugs are administered by a male experimenter than by a female 
experimenter 
(A) FST results from a female experimenter; (B) from a male experimenter 
(reproduced from Figure 3.1.B).  Measured in seconds of immobility in minutes 2-6 
of the test.  (C) NSFT results from a female experimenter; (D) from a male 
experimenter (reproduced from Figure 3.3.A). 
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that ketamine activates this pathway to produce an antidepressant effect on 

the FST. 

Because ketamine directly affects glutamate signaling through 

NMDAR antagonism, it is considered a glutamatergic antidepressant, in 

contrast to the serotonergic and noradrenergic agents that are currently used 

clinically to treat depression.  However, the interconnections between these 

neurotransmitter systems may facilitate changes in nuclei that primarily use 

different neurotransmitters from the one most directly affected by a given 

drug.   The mPFC to DRN projection has been implicated in numerous 

aspects of depression-related behavior, which may represent a link between 

the glutamatergic actions of ketamine and the serotonergic actions of 

commonly used SSRIs.  Notably, activation of this pathway has been found to 

reduce stress-induced depression behavior (Amat et al., 2005).  There is also 

evidence that some of ketamine’s antidepressant actions are mediated by this 

pathway (Amat et al., 2016).  The results described here are consistent with 

the idea that the mPFC exerts control over the expression of depression-

related behaviors on the FST via its connection to the DRN and that 

ketamine utilizes this pathway for some of its antidepressant actions.   

The exact nature of the changes that mPFC activation induces within 

the DRN is a matter of some debate, especially regarding whether the net 

effect is to stimulate or inhibit DRN output and which target areas of the 

DRN are affected in turn (Chaki, 2017; Maier & Watkins, 2005).  The DRN 

projects widely, including to the basolateral amygdala (BLA) and mPFC.  
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Different studies have shown that ketamine reduces serotonin input to the 

BLA (Amat et al., 2016) and increases serotonin input to the mPFC 

(Fukumoto et al., 2017), which may indicate that various subpopulations of 

DRN cells are differentially affected by mPFC input. 

It is important to note that ketamine ameliorates stress-induced 

behaviors, and that its effect may be attenuated or changed in the absence of 

stress.  The production of stress hormones induced by male scent was found 

to be a necessary condition for ketamine to exert an antidepressant effect in 

mice, and female scent blocked this effect (“Human experimenter modulates 

mouse behavioral responses to stress and to the antidepressant ketamine,” 

2018).  Rats  also respond to male olfactory cues with a stress response (Sorge 

et al., 2014), and males may handle rats differently on average than females.  

Both of these factors may contribute to a greater baseline stress response in 

rats exposed to a male experimenter, which would induce changes in the 

DRN and elsewhere that ketamine can reverse.  The DRN in particular 

undergoes numerous molecular and synaptic changes under stressful 

conditions (Amat et al., 2005), without which ketamine might not have the 

same function. Without the added stress of a male experimenter, rats may 

not be sufficiently stressed to display a depression-like phenotype that would 

distinguish controls from ketamine-exposed animals. 
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CHAPTER 4: Optogenetic stimulation of infralimbic-originating 

terminals in the nucleus accumbens does not produce an 

antidepressant effect 

4.1. Introduction 

Among the many targets of mPFC glutamatergic axons, several have 

been implicated in the pathogenesis of depression in addition to the DRN.  

Perhaps the best-studied of these is the nucleus accumbens (NAC), a key part 

of the brain’s reward circuitry due to the extensive dopaminergic input it 

receives from the ventral tegmental area (VTA)(Russo & Nestler, 2013).  The 

NAC, especially its ventral portion, also receives substantial input from the 

mPFC, which is thought to stimulate GABAergic, inhibitory outputs of the 

NAC.  Activation of this pathway correlates with improved MDD symptoms 

(Mayberg et al., 2000), which indicates a possible role in the mediation of 

some of the antidepressant effects induced by mPFC stimulation.  However, 

the role that mPFC-mediated inhibition of the NAC may play in depression 

remains unclear, as NAC inhibitory output has also been implicated in 

depression-associated synaptic remodeling (Golden et al., 2013).  In addition 

to this literature on the potential effects of mPFC stimulation, the NAC is 

also an interesting target because ketamine is known to increase synaptic 

plasticity in the NAC after stress (Belujon & Grace, 2014).  

I provided evidence in chapter 2 that the projection from mPFC to 

DRN is required for FST-related antidepressant behavior, but those data 

could not establish whether the effect was specific to the DRN and raised the 
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question of which brain areas might be important for the other aspects of the 

antidepressant response induced by stimulation of ilPFC pyramidal neurons.   

To address that question, I stimulated mPFC-originating axon 

terminals in the NAC.  These studies both provide a comparison to establish 

whether the effects of DRN axonal stimulation were specific to that region, 

and they may shed light on the unclear role of the mPFC to NAC projection 

in mediating depression-like behavior.  Specifically, stimulation of ilPFC 

glutamatergic cells produced an antidepressant effect on both the NSFT and 

FUST that was not reproduced by stimulation of mPFC-originating terminals 

in the DRN.  Given the central role of the NAC in mediating behavioral 

responses to reward (H. Hu, 2016), the NAC might be involved in mediating 

the behavioral response captured by the FUST, which measures hedonic 

reward-seeking (Malkesman et al., 2010), either selectively or in combination 

with other behavioral responses. 

4.2. Methods 

4.2.1. Animal care and surgery 

Adult male Sprague-Dawley rats (Charles River Laboratories) 

weighing 200-300 g were pair-housed on a 12-h light/dark cycle (lights on 

07:00) with food and water available ad libitum. All procedures were done in 

accordance with guidelines for the care and use of laboratory animals and the 

Yale University Institutional Animal Care and Use Committee. Rats were 

anesthetized with an intraperitoneal injection of ketamine 80 mg/kg + 
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xylazine 6 mg/kg.  (This anesthetic dose of ketamine does not produce 

antidepressant behavioral or molecular changes.(N. Li et al., 2010))  They 

were then injected with AAV2/CaMKIIa-ChR2(H134R)-eYFP (University of 

North Carolina Vector Core) 0.5 µL per side at a rate of 0.1 µL/min into the 

infralimbic PFC (+3.0 mm AP; ±0.6 mm ML; -5.0 mm DV).  Bilateral optical 

fibers (Doric Lenses) with fiberoptic attachment ports were then inserted at a 

9° angle with the tip of the fiber positioned at the dorsal edge of the nucleus 

accumbens (AP +1.6 mm, ML ±1.0 mm, DV -6.2 mm), so both shell and core 

were exposed to laser light.  Animals had 4 weeks after surgery to recover 

and to ensure adequate viral expression. 

4.2.2. Optogenetic stimulation 

A fiberoptic cable (Doric Lenses) was attached to the port on the 

animal’s head, and the laser was turned on (for the stimulated group) or left 

off (for the control group).  Stimulation was conducted over the course of one 

hour: pulse width, 15 ms; frequency 10 Hz; intensity, 5 mW; 473 nm blue 

light; each minute of laser on time was alternated with one minute of laser 

off time to avoid any possibility of tissue damage. 

4.2.3. Behavioral tests 

 The sequence of testing was as follows:  

- Day 1: pre-swim 

- Day 2: optogenetic stimulation 

- Day 3: FST 
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- Day 4: food deprivation starts 

- Day 5: NSFT 

- Day 6: FUST 

 Forced-swim test (FST): Rats were placed in 25°C water in a clear 

Plexiglas cylinder (65 cm height, 30 cm diameter) initially for a 15-minute 

“pre-swim” to acclimate them to the procedure.  Afterward, rats were 

removed and dried with a cloth. Twenty-four hours later, drugs were 

administered as described above. Twenty-four hours following treatment, 

rats were again placed in the swimming cylinders for a 10-min test swim. All 

sessions were video recorded and data were analyzed by scoring each 5-

second time bin as being primarily one of three behaviors: immobility 

(making only movements necessary to keep afloat), swimming, or climbing. 

Data points from minutes 2-6 of the swim were used (5 minutes total).  

 Novelty-suppressed feeding test (NSFT): Rats that had been deprived 

of food for 16-20 hours were placed in an open field (76.5 cm × 76.5 cm × 40 

cm; acrylic) with a small amount of their normal chow in the center. Animals 

were allowed to explore the open field for up to 20 min. The output measured 

was time elapsed before approaching and taking a bite of the food. Time 

elapsed before taking a bite of food in the home cage (home-cage feeding, 

HCF) was measured as a control immediately after testing.  

 Female-urine sniffing test (FUST): After 45 minutes of habituation to 

the testing room, animals were allowed to briefly sniff a cotton swab dipped 

in water, which was then affixed to the inside of the cage; their interaction 
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with the swab was recorded for 3 minutes.  Urine was then collected from 

adult females on the tips of cotton swabs, one for each animal being tested. 45 

minutes after the water-swab test, animals were exposed to the urine-soaked 

swab and again recorded for 3 minutes.  Videos were scored for time spent 

sniffing the swab. 

 Locomotor activity (LMA): The NSFT was video-recorded and later 

analyzed for distance traveled in the first 5 minutes after placement in the 

chamber, using AnyMaze software. 

4.2.4. Data analysis 

Behavioral data were analyzed using a two-tailed t-test to compare control vs. 

stimulated conditions.  Significance was determined at p < 0.05. All data are 

represented as mean ± SEM.  
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4.3. Results 

4.3.1.  ChR2 is expressed in axon terminals in both shell and core of the NAC  

Neurons in the mPFC send axons to both the shell and the core of the 

NAC, with prelimbic synapses outnumbering infralimbic ones  (Vertes, 2004).  

The shell and core regions have distinct functions in reward processing, but 

any differential role in mood regulation is unclear (Price & Drevets, 2009).  

Interestingly, the brain area in humans that is most sensitive to deep-brain 

NAC shell 
NAC core 

LV 

A.    B. 
 
 
 
 
 
 
 
 
C.      D. 
 
 
 
 
 
 
 
Figure 4.1. ChR2 expression in the nucleus accumbens after viral 
injection into the mPFC 
The target area of virus injection in the ilPFC (bregma +3.2mm; dotted pattern); and 
the location of the bilateral implanted fiberoptics (dark gray dotted line out-of-plane, 
solid line in-plane) and target area of light stimulation in the NAC (bregma +1.6mm)  
in (A) sagittal section and (B) coronal section {Paxinos:1998ui}2.  (C) Representative 
GFP-tagged ChR2 expression in the NAC.  (LV: lateral ventricle).  (D) Cannula 
placement locations for the experiments described in Figure 4.2; Os  are correctly 
placed and Xs are misses.  The blue box indicates the target area for the tip of the 
cannula that would ensure light exposure to both shell and core of the NAC.  Misses 
were excluded from results.  One additional incorrect placement was out of plane and 
not shown.   
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stimulation, Cg25 (Mayberg et al., 2005), projects directly the NAC shell 

(Price & Drevets, 2009).  The fiberoptics in this experiment were place so that 

both the shell and core received photostimulation in order to activate the 

greatest number of axons (Figure 4.1.A).  As with the previous experiments, 

the infralimbic PFC was targeted for viral expression (Figure 4.1.B), but 

there was substantial expression in the prelimbic region as well.  Staining 

revealed robust ChR2 expression in both shell and core (Figure 4.1.C).  The 

nearby caudate/putamen also had significant virus expression, but the angle 

of the fiberoptic and the ventral-facing tip should minimize light exposure to 

that region. 

4.3.2. Photostimulation of axon terminals in the NAC did not produce an 

antidepressant effect  

Using the same protocol as with the DRN-stimulation experiments, 

axon terminals in the NAC were stimulated and behavioral testing begun the 

following day.  No significant effects were found on the FST (t11 = 1.0, p = 0.3) 

(Figure 4.2.A), in contrast to DRN stimulation.  There were no significant 

behavioral differences as measured by the NSFT (t9 = 0.4, p = 0.7) or FUST 

(t10 = 1.0, p = 0.3) (Figure 4.2.B and C).  Stimulated animals spent a non-

significantly greater amount of time sniffing the urine swab than non-

stimulated controls did, but variability was too high to draw any conclusions 

from this finding. 
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4.4. Discussion 

These results provide a basis for comparison to the effects of DRN 

stimulation.  Activation of the mPFC to NAC projection does not produce an 

antidepressant effect on the FST, indicating that the antidepressant effect of 

DRN terminal stimulation is a specific property of that pathway.  This result 

is also further evidence that the effect of DRN terminal stimulation is not 

mediated by back-propagating action potentials activating mPFC cell bodies, 

A.      B. 
 
 
 
 
 
 
 
 
 
 
        C. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2. Stimulation of mPFC-originating NAC axon terminals does 
not produce an antidepressant effect 
No significant effect of stimulation on the (A) FST (p = 0.3, t-test), (B) NSFT (p = 0.7, t-
test), or (C) urine-sniffing time on the FUST (p = 0.3, t-test).  n = 4-9 per group. 
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because stimulation of a different set of terminals does not produce the same 

effect.   

The negative results do not rule out the possibility that the mPFC to 

NAC projection is involved in the antidepressant effect induced by mPFC 

stimulation.  There are several possible reasons that NAC terminal 

stimulation might not affect behavior on these tests.  First, the behavioral 

effect might be too subtle to have been detected under the conditions of these 

experiments, especially given the relatively high variability of results.  Most 

notably, the non-significant increase in sniffing time in the FUST might be 

due to the well-established involvement of the NAC in processing hedonic 

reward.  Changes in the strength of excitatory synapses in the NAC are 

required for anhedonia (Lim, Huang, Grueter, Rothwell, & Malenka, 2012).  

Excitatory input to specific NAC subtypes also modulates response to social-

defeat stress (Francis et al., 2015).  High-frequency stimulation of PFC 

terminals in the NAC reversed social avoidance after stress, though it is 

unclear whether the higher frequency might affect cells differently or induce 

back-propagating action potentials to explain that finding (Vialou et al., 

2014).  In summary, though it has not been conclusively established whether 

those excitatory inputs include axonal projections from the mPFC, they are 

likely to contribute to at least part of those effect based on the volume of 

input from the mPFC to the NAC and the known involvement of both areas 

in the stress response (Mitra Heshmati, 2015). 
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Another factor that might obscure a potential antidepressant effect of 

stimulation of the mPFC-NAC circuit is the lack of specificity in the cells 

being stimulated.  The shell and core regions of the NAC have differing or 

even opposing actions in some functions, including instrumental conditioning 

(Corbit, Muir, & Balleine, 2001) and drug seeking (Ito, Robbins, & Everitt, 

2004).  In the learned-helplessness model of depression, electrical stimulation 

of shell and core produced opposite responses on spike probability (Belujon & 

Grace, 2014).  The function of the NAC may also depend on the cell type 

being stimulated, especially in D1 versus D2-expressing medium spiny 

neurons (MSNs).  Excitatory input to D1-MSNs has been found to increase 

resilience to social-defeat stress, while excitatory input to D2-MSNs increases 

social avoidance (Francis et al., 2015).  Given that both subtypes of cells and 

both subregions of the NAC were likely activated by the optogenetic 

stimulation done in these experiments, the net effect may have been negative 

even if more specific stimulation would have affected behavior. 
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CHAPTER 5: Conclusions and future directions 

5.1. Summary 

In this dissertation, I have used optogenetic and pharmacological 

techniques to gain a better understanding of the projection from the mPFC to 

the DRN and its role in antidepressant function.  The results help define a 

relationship between glutamatergic antidepressants and the brain’s 

serotonergic system.  These insights can inform the development of new and 

better antidepressants, which ideally would combine the fast-onset and 

efficacy of glutamatergic drugs like ketamine with the safety and tolerability 

of today’s commonly prescribed serotonergic agents. 

My data indicate that a particular subset of depression-associated 

behavior, which in rats is expressed as immobility on the FST, can be 

alleviated by the activity of mPFC axons in the DRN.  The behavioral 

difference was accounted for by an increase in swimming behavior in the 

stimulated animals, indicating an increase in serotonergic drive (Cryan et al., 

2005).  This function specifically alleviated behavioral despair while leaving 

other depression-related symptoms, notably anxiety as measured on the 

NSFT, unaffected.  This dichotomy is helpful in considering how to 

disaggregate the disparate symptoms that often get lumped together in an 

MDD diagnosis, which likely involves changes to numerous neural pathways 

that may have distinct etiologies and require different treatments. 

Immunohistochemical analysis of DRN axon-terminal stimulation 

showed that activation of these terminals increased c-Fos expression in both 
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TPH2-expressing and non-TPH2-expressing cells in the DRN.  This finding 

helps make sense of previous conflicting reports about the DRN targets of 

mPFC axons (Amat et al., 2005; Chaki, 2017), and supports neural tracing 

studies done in mice (Challis et al., 2014) that suggest that mPFC 

glutamatergic drive regulates DRN activity in a complex pattern involving 

synapses on both serotonergic and GABAergic neurons. 

I also found that ketamine requires DRN serotonin release to produce 

an antidepressant effect on the FST.  Given that ketamine also requires 

glutamatergic signaling in the mPFC to produce an antidepressant effect 

(Maeng et al., 2008), it is likely that the mPFC to DRN glutamatergic 

projection mediates ketamine’s antidepressant action on the FST.  This 

connection helps characterize the effects of ketamine downstream of the 

mPFC, which is important in trying to understand how to harness the 

advantages of ketamine without its limiting side-effect profile. 

Finally, I have investigated the role of the mPFC to NAC pathway in 

the antidepressant effect of mPFC glutamatergic stimulation.  In contrast to 

DRN axon-terminal stimulation, stimulation of mPFC-originating axon 

terminals in the NAC does not produce an antidepressant effect on the FST, 

indicating that these projections have distinct functions.  Though it was not 

possible to discern a specific antidepressant role for NAC stimulation, the 

negative results on the FST highlight the specificity of the DRN axon-

terminal effect.   
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5.2. Implications for the function of the DRN and its role in the 

antidepressant effect of ketamine 

The FST-specific effect of DRN terminal stimulation suggests that the 

DRN mediates a particular aspect of antidepressant behavioral change that 

is captured by that test but has no significant influence on the NSFT or 

FUST.  The interpretation of swimming behavior on the FST thus has 

important implications for understanding the function of the DRN.  The test 

was designed to measure behavioral despair, a concept that has direct 

relevance to human depression (Porsolt et al., 1978).  Several alternative 

interpretations have been proposed, including that immobility is a learned 

behavior in response to the impossibility of escaping the water tank (West, 

1990) or that it is a passive coping strategy that increases the odds of 

survival in the face of a severe stressor (Molendijk & de Kloet, 2015).   

These explanations do not necessarily exclude relevance to human 

depression; indeed, it has similarly been argued that aspects of human 

depression are adaptive responses to stress (Sloman, Price, Gilbert, & 

Gardner, 1994).  Regardless of the particular interpretation, it seems clear 

that immobility on the FST represents a decrease in effort to mitigate the 

circumstances of an acutely stressful situation, which mirrors the loss of 

motivation seen in many (but not all) cases of human depression (American 

Psychiatric Association, 2013).  My results suggest that human studies of this 

subset of depressed patients should examine the connection of that phenotype 

to glutamatergic control of midbrain serotonergic output. 
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The issue of motivation in the face of a stressor that cannot be 

overcome has been explored from a different angle in the literature on 

controllable versus uncontrollable stress, which have been shown to induce 

distinct sets of molecular and synaptic changes (Maier & Watkins, 2005).  

There is evidence that ketamine acts specifically to mitigate the effects of 

uncontrollable stress, including in the DRN (Amat et al., 2016).  These 

studies used a learned-helplessness model, which exposes animals to 

uncontrollable stress repeatedly in contrast to the acute stressor of the FST; 

they also find a key role for the prelimbic PFC rather than the infralimbic, in 

contrast to Fuchikami et al. (2015).  These differences may indicate that 

distinct but interconnected PFC to DRN projections mediate responses to 

acute and chronic uncontrollable stress. 

5.3. Future directions 

My work represents one small part of a much larger project to map the 

disparate symptoms of depression onto the specific neural circuits that 

modulate them (Woody & Gibb, 2015).  The function of two neural circuits in 

particular have recently been shown to affect the action of ketamine, which 

gives a sense of the promising results this approach can yield. 

The pathway connecting the mPFC and the ventral hippocampus has 

been found to be an essential mediator of the antidepressant effect of 

ketamine.  A recent study used DREADDs (designer receptors exclusively 

activated by designer drugs) to mimic ketamine’s antidepressant effect by 

stimulating the ventral hippocampus to mPFC pathway.  Further, the 



 
69 

pharmacological or optogenetic inactivation of this pathway was found to 

block ketamine’s effect (Carreno et al., 2016). These results are consistent 

with studies showing that mTORC1 and BDNF are both upregulated in the 

rat hippocampus as well as PFC after ketamine administration, indicating 

that ketamine produces plasticity enhancements in the hippocampus that are 

similar to what has been reported for the PFC (Zhou et al., 2014).   

The connection between the mPFC and lateral habenula has also been 

examined for a role in depression.  Stimulation of the mPFC to lateral 

habenula (LHb) projection was found to induce depression-like behavior in 

rats (Warden et al., 2012).  Ketamine has been found to reduce burst firing in 

the lateral habenula by direct effect on LHb NMDA receptors, which is 

necessary for its acute antidepressant effect (one hour after administration) 

(Yang et al., 2018).  In an interesting example of human correlation to rodent 

circuit studies, an analysis of positron-emission tomography after ketamine 

administration found that the antidepressant action of ketamine in human 

patients is correlated to changes in activity of both mPFC and lateral 

habenula (Carlson et al., 2013). 

The effort to understand depression and antidepressant action at a 

circuit level is in its infancy, but there is reason to hope that a more granular 

understanding of depression will lead to better targeted, more effective 

treatments for this common yet poorly understood disease.   
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