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Identifying Quantitative Enhancement-based Imaging Biomarkers in Patients with 
Colorectal Cancer Liver Metastases undergoing Loco-regional Tumor Therapy 
Mansur A. Ghani,

 
Julius Chapiro, and Todd Schlachter. Section of Interventional 

Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 
New Haven, CT  
 

The purpose of this study was to test and compare the ability of radiologic 
measurements of lesion diameter, volume, and enhancement on baseline magnetic 
resonance (MR) images to be predictors of overall survival (OS) and markers of 
treatment response in patients with liver-dominant colorectal cancer metastases 
undergoing loco-regional tumor therapies.  
 

This retrospective study included 88 patients with colorectal cancer (CRC) liver 
metastases, treated with transarterial chemoembolization (TACE) or Y90 transarterial 
radioembolization (TARE) between 2001 and 2014. All patients received contrast-
enhanced MRI prior to therapy. Semi-automated whole liver and tumor segmentations of 
three dominant lesions were performed on baseline MRI to calculate total tumor volume 
(TTV) and total liver volumes (TLV). Quantitative 3D analysis was performed to 
calculate enhancing tumor volume (ETV), enhancing tumor burden (ETB, calculated as 
ETV/TLV), enhancing liver volume (ELV), and enhancing liver burden (ELB, calculated 
as ELV/TLV). Overall and enhancing tumor diameters were also measured. Response 
assessment was analyzed in a subset of 63 patients who received 1-month MRI follow-up 
imaging using RECIST, mRECIST, change in ELV (DELV), vRECIST and qEASL.

 
A 

modified Kaplan-Meier method was used to determine appropriate cutoff values to 
stratify patients based on these metrics. The predictive value of each parameter was 
assessed by Kaplan-Meier survival curves as well as univariate and multivariate cox 
proportional hazard models (statistical significance defined as p < .05).  
 

In baseline imaging analysis, all methods except ELB achieved statistically 
significant separation of survival curves. Multivariate analysis showed a HR of 2.1 (95% 
CI 1.3-3.4, p=0.004) for enhancing tumor diameter, HR 1.7 (95% CI 1.1-2.8, p=0.04) for 
TTV, HR 2.3 (95% CI 1.4-3.9, p<0.001) for ETV, and HR 2.4 (95% CI 1.4-4.0, p=0.001) 
for ETB. Among treatment response assessment methods, only vRECIST achieved 
statistically significant separation of survival curves and gave a HR of 2.1 (95% CI 1.1-
4.0, p=0.02). 
 

In conclusion, tumor enhancement of CRC liver metastases on baseline MR 
imaging is strongly associated with patient survival after loco-regional tumor therapy, 
suggesting that ETV and ETB are better prognostic indicators than non-enhancement 
based and one-dimensional based markers. However, while volumetric-based methods 
are superior to 1D methods, enhancement-based methods of treatment response 
assessment were not successful in predicting survival. A potential implication of these 
findings as novel staging markers warrants prospective validation. 
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Introduction 
 

Colorectal cancer (CRC) is the third most common cancer in the world and the 

second leading cause of cancer-related deaths worldwide, resulting in 700,000 deaths per 

year (1). The mortality rate from CRC has dropped over the last several decades due to 

increased screening and prevention as well as more effective treatment options; the 1-

year and 5-year survival of patients with CRC have improved to 83.2 and 64.3% 

respectively. However, the occurrence of CRC metastases to distant organs drops the 5-

year survival to 11.7% (2). The liver is the most common site of metastatic disease, 

present in approximately 25% of patients at diagnosis with a prevalence of nearly 65% 

during the course of disease (3). Although surgical resection of the primary tumor and 

liver metastases is currently the most effective treatment option, this is generally feasible 

if there are £5 metastases per liver lobe, at least two adjacent tumor-free segments, and a 

liver remnant after surgery >20% (4). Only 10 to 25% of patients with hepatic metastases 

from CRC are candidates for hepatic resection at diagnosis (5). The remainder are treated 

with systemic chemotherapy with the goal of improving survival and, in some, 

downsizing to allow for liver resection (6). However, this is unable to prevent the 

development of progressive disease in the majority of patients (7). As a result, liver-

directed loco-regional treatments for patients with unresectable hepatic metastases, in the 

form of image-guided intra-arterial therapies (IAT), including yttrium-90 (90Y) 

transarterial radioembolization (TARE), conventional transarterial chemoembolization 

(cTACE), or drug-eluting bead TACE (DEB-TACE), are often indicated for palliative 

therapy (8–10). 
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Current guidelines by the National Comprehensive Cancer Network (NCCN) 

recommend that IATs may be used in patients with liver dominant metastatic disease 

(³80% of tumor burden located in the liver) and when the level of hepatic involvement is 

not greater than 60% (11). Compared with systemic therapies, IATs can result in 

significantly higher concentrations of drugs within the tumor as well as a lower incidence 

of systemic toxicities and adverse events (12). In general, IATs mitigate drug toxicity and 

yield more robust local tumor control by targeting the mostly arterially supplied tumor 

tissue while sparing non-tumoral liver parenchyma, which is mainly fed through the 

portal vein (13). Three common IATs include cTACE, DEB-TACE and TARE. 

Conventional TACE delivers an emulsion of conventional chemotherapeutic agents 

carried by Lipiodol to the tumor-feeding artery. Lipiodol is an iodinated poppy seed oil-

based medium that works as an effective drug carrier, partial embolic agent and contrast 

agent which is easily visualized under fluoroscopy and computed tomography (CT), 

helping to confirm targeting and complete tumor coverage (14). Polymer-based drug-

eluting beads (DEBs) were developed with the hopes of delivering higher concentrations 

of chemotherapy to the tumor while improving systemic toxicities caused by cTACE 

(15). DEB-TACE results in a controlled release of chemotherapeutics over several hours 

to days after injection (16). TARE involves delivery to the tumor of radioactive 

microspheres that emit b-radiation into the surrounding tissue. It is also a safe and 

effective treatment for unresectable, chemorefractory colorectal cancer metastases to the 

liver (17).  

 The success of IATs in clinical trials has firmly established these interventional 

techniques as mainstays in palliative therapy for advanced hepatic metastatic disease, and 
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research efforts to improve the efficacy of these modalities continue to grow. However, 

currently there is no agreed upon prognostic staging system that can give accurate 

prognostic information regarding patients with advanced CRC (18). A number of studies 

have proposed classification and staging systems based on a variety of variables 

including the number of metastatic nodules, size of metastases, unilobar versus bilobar 

involvement, the extent of liver involvement, performance status, and serum alkaline 

phosphatase, but none of these systems have gained universal acceptance (19–23).   

Instead, much current work has centered on the accurate assessment of treatment 

response. The primary clinical purpose of follow-up imaging is to be able to determine 

responders and non-responders with the purpose of informing therapeutic decisions. 

Several standard guidelines have been established to evaluate tumor morphology for this 

purpose. The two most common protocols are Response Evaluation Criteria in Solid 

Tumors (RECIST) and World Health Organization (WHO) criteria, which measure tumor 

diameters in one and two dimensions, respectively (24). However, these measures are 

poor indicators of response following IATs, as these procedures usually rely on 

embolization of tumor-feeding arteries resulting in necrosis of the tumor without 

immediate effects on overall size (25). 

Due to this shortcoming, modified RECIST (mRECIST) and European 

Association for the Study of the Liver (EASL) criteria, which measure enhancing tumor 

diameter on contrast-enhanced MRI in one dimension or two dimensions, respectively, 

were developed.  However, these 1D and 2D image assessment techniques are susceptible 

to inherent inaccuracies, including limited reproducibility and inability to quantify 

heterogeneous tumors (26). As a result, three-dimensional quantitative image analysis 
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techniques including volumetric RECIST (vRECIST) and quantitative EASL (qEASL) 

have been developed to more accurately quantify tumor response via volumetric tumor 

measurements and enhancing tumor volume (27). Preliminary studies have demonstrated 

the superiority of these techniques in predicting survival after intra-arterial therapy (28–

30). Two recent studies determined that baseline 3D enhancement-based tumor burden 

analysis in hepatocellular carcinoma (HCC) patients better predicted survival than 

diameter- and non-enhancement-based measurements (31,32).  

While assessment of treatment response is certainly beneficial in helping guide 

therapeutic decision-making, it may take anywhere from one to six months after the first 

IAT session to determine response depending on what assessment guidelines are used. A 

prognostic staging system is advantageous in its ability to inform clinical decision-

making at the time of diagnosis. Tumor enhancement on imaging may be an important 

component of such a staging system. However, to date, no studies have investigated 3D 

enhancement-based analysis in CRC liver metastases prior to TACE or TARE. 

Additionally, there is a desirability to utilize a whole-liver approach to quantitative 

response. Currently available means of quantitating tumor enhancement requires 

segmentation of the tumor to delineate tumor borders from normal liver parenchyma. 

This can be a time-intensive process and the accuracy varies with the expertise of the 

operator. A whole-liver approach, on the other hand, quantitates the enhancement in the 

entire liver volume. This method only requires segmentation of the whole liver, which is 

much faster to generate, eliminates the subjectivity associated with lesion-based analysis, 

and accounts for tumor heterogeneity (29). It is important to address these gaps in 

knowledge to validate the use of 3D quantitative imaging techniques as indicators of 
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therapeutic efficacy in an increasing number of clinical trials and to inform clinical 

treatment recommendations for patients with hepatic metastases of CRC.  

The purpose of our study was to (1) determine whether 3D whole-liver and tumor 

enhancement features can serve as a staging biomarker in patients with CRC metastases 

to the liver and (2) determine if a whole-liver approach can be used to measure treatment 

response.  

Methods 
 
Study cohort 

This single-institution study was conducted in compliance with the Health 

Insurance Portability and Accountability Act and approved by the institutional review 

board. Between 2001 and December 2014, a total of 126 patients with liver-only or liver-

dominant metastatic colorectal cancer (mCRC) underwent their first session of IAT 

within our institution and received contrast-enhanced MR imaging within 60 days 

following IAT. Patients were excluded if their baseline imaging was missing from the 

database (N=20). Additional patients were excluded if imaging was truncated or poor 

quality (e.g., motion artifact) (N=17). One patient was excluded because of failure of 

registration between the pre-and post-contrast images. The remaining 88 patients, treated 

with cTACE, DEB-TACE, or TARE, were included in the final analysis. 

Of these 88 patients, 70 received one month post-procedure follow-up MR 

imaging. Seven were missing imaging from our patient database, resulting in 63 patients 

included for follow-up analysis (Fig. 1). 
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Fig. 1 Flowchart for patient selection process and exclusion criteria 

Evaluation and staging 

All included patients underwent a full clinical examination and baseline 

laboratory tests (liver function; serum albumin, prothrombin time, total bilirubin, 

aspartate transaminase, alanine transaminase). Eastern Cooperative Oncology Group 

(ECOG) performance status was recorded in all patients.  

Intra-arterial therapy  

Experienced interventional radiologists performed all procedures. A consistent 

approach according to our standard institutional protocol was used. Initially, all patients 

126 Patients 
(2001-2014) 

 

88 Patients 
Included for Baseline 

Analysis 
 

63 Patients 
Included for Follow-up 

Analysis 

 
- Missing imaging 
- Poor image quality 
- Failure of registration 

 
- Did not receive 
follow-up imaging 
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underwent a diagnostic angiogram to define the hepatic arterial anatomy and to determine 

portal venous patency. Patients undergoing cTACE were treated with selective (lobar or 

segmental) injections. A solution containing 100 mg of cisplatin, 50 mg of doxorubicin 

and 10 mg of mitomycin C in a 1:1 mixture with Lipiodol (Guerbet, France) was infused 

and followed by administration of 100- to 300-µm-diameter microspheres (Embospheres, 

Merit Medical, USA). Substantial arterial flow reduction to the tumor was defined as the 

technical end point of the procedure. Patients undergoing DEB-TACE received 

chemoembolization using LC Bead-M1 (70-150 µm), loaded with 100mg irinotecan 

(BTG, UK). The beads were mixed with a non-ionic contrast media in the vial 

immediately prior to use according to the instructions and delivered into the artery slowly 

(in 1 ml aliquots followed by saline over an approximately 3-5 min period). Patients 

treated with TARE were subjected to angiographic evaluation and, if required, 

embolization of collateral arteries was performed to avoid off-target radiation injury. In 

order to evaluate the degree of hepato-pulmonary shunting and to detect gastrointestinal 

deposition, 5–6 mCi of 99mTC-labelled macroaggregated albumin was injected into the 

hepatic artery. This shunt study preceded the treatment by at least 1 week. Depending on 

the extent of the disease within the liver, patients received either unilobar or bilobar (right 

and left) treatment in multiple sessions. In order to avoid liver injury, no whole liver 

single session infusion was performed. The administration of Y90 microspheres 

(TheraSpheres®, MDS Nordion, Ottawa, Canada) was performed in accordance with 

institutional radiation safety guidelines. All patients who received cTACE or DEB-TACE 

were admitted overnight. Patient who received TARE were discharged the same day of 

the procedure after clinical monitoring in the recovery area.  
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MR imaging technique  

All patients included in this study underwent a standardized MRI protocol before 

treatment. MRI was performed on a 1.5-Tesla scanner (Siemens Magnetom Avanto, 

Erlangen, Germany) using a phased array torso coil. The protocol included breath-hold 

unenhanced and contrast-enhanced (0.1 mmol/kg intravenous gadopentetate; Magnevist; 

Bayer, Wayne, NJ) T1-weighted three-dimensional fat-suppressed spoiled gradient-echo 

imaging (repetition time ms/echo time ms, 5.77/2.77; field of view, 320–400 mm; matrix, 

192×160; slice thickness, 2.5 mm; receiver bandwidth, 64 kHz; flip angle, 10°) in the 

hepatic arterial phase (20 s), portal venous phase (70 s) and delayed phase (3 min). 

Image Analysis 

Two radiology residents with 2-3 years of experience performed tumor 

radiological measurements. All measurements made by the two readers were done using 

standardized electronic calipers using Digital Imaging in Communications and Medicine 

(DICOM) files. Prior to the measurements, images were examined in axial, coronal and 

sagittal reconstructions to visually identify the largest tumor dimension (for diameter and 

enhancement, respectively). The respective slice with the largest dimension of the tumor 

was then used for individual manual measurements. Native T1 images as well as triphasic 

contrast-enhanced T1 images were used to visually distinguish tumor enhancement from 

false-positive hyperintense T1 signal (e.g. from hemorrhage) and measurements were 

performed on the portal venous phase images (33). The portal venous phase was selected 

because it is the phase in which hypo-vascular liver metastases such as from lung, breast, 
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stomach, and colorectal cancer are most conspicuous . The three largest lesions were 

selected for analysis. The sums for overall tumor diameter and enhancing tumor diameter 

of the three largest lesions were determined. 

3D quantitative image analysis was performed by research medical student MG 

who had 1 year of experience with the software prototype used in the study (Medisys, 

Philips Research, Suresnes, France) (27) and was verified by a radiology resident with 2 

years of experience. The accuracy and reader-independent reproducibility of the 

semiautomatic tumor segmentation as well as the radiological–pathological correlation of 

the technique was described and verified in previous papers (34–37). First, portal venous 

phase images were registered to the pre-contrast image using an affine transformation 

method in the BioImage Suite software (Fig. 2a) (38). Then, whole-livers were 

segmented in three-dimensions using the semi-automatic segmentation software (Fig. 

2b). The total liver volume (TLV) was calculated on the basis of this segmentation. The 

software performed semi-automatic 3D tumor segmentation on the portal venous phase, 

contrast-enhanced MRI (Fig. 2c). The total tumor volume (TTV) was directly calculated 

on the basis of this segmentation. Enhancing volumes were determined using the qEASL 

calculation based on image subtraction (Fig. 2d) (27,39). In brief, the 3D segmentation 

mask was transferred onto the subtraction image and a region of interest (ROI) was 

placed into extratumoral liver parenchyma as a reference to calculate the relative 

enhancement values within the tumor. The patient-specific, average signal intensity 

within the ROI was then defined as a threshold to estimate enhancement within the 3D 

mask. Subsequently, enhancing regions were expressed as a percentage of the previously 

calculated overall tumor volume and visualized using a color map overlay on the portal 
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venous phase MRI scan. qEASL analysis of both the whole-liver and tumor segmentation 

mask gives enhancing liver volume (ELV) and enhancing tumor volume (ETV), 

respectively. ELV divided by TLV gives enhancing liver burden (ELB). ETV divided by 

TLV gives enhancing tumor burden (ETB). Tumor response after IAT was determined by 

calculating the change between baseline and one month follow-up imaging in the 

measured parameters of the same lesions (lesion diameter for RECIST, enhancing lesion 

diameter for mRECIST, enhancing liver volume for DELV, total tumor volume for 

vRECIST and enhancing tumor volume for qEASL. Table 1 gives a glossary of terms 

used in this study and Fig. 3 gives an overview of all anatomic and enhancement-based 

methods. 
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Fig. 2 Image processing workflow. a) Portal venous phase images were registered to the 
pre-contrast image using an affine transformation method in the BioImage Suite software. 
b) Whole-livers were segmented in three-dimensions using semi-automatic segmentation 
software. c) Another software performed semi-automatic 3D tumor segmentation. d) The 
3D segmentation mask was transferred onto the subtraction image and a region of interest 
(ROI) was placed into extratumoral liver parenchyma as a reference to calculate the 
relative enhancement values within the tumor.  

a) b
) 

c) d
) 
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Table 1 Glossary of terms 

Term Abbreviation Definition 

Total Tumor Volume TTV Volume of tumor based on tumor 
segmentation mask 

Total Tumor Burden TTB TTV divided by liver volume 

Enhancing Liver Volume ELV Volume of enhancement on whole-liver 
segmentation mask 

Enhancing Liver Burden ELB ELV divided by liver volume 

Enhancing Tumor Volume ETV Volume of enhancement on tumor 
segmentation mask 

Enhancing Tumor Burden ETB ETV divided by liver volume 

Change in Enhancing Liver 
Volume 

DELV Percentage change in ELV between 
baseline and follow-up image 

Response Evaluation 
Criteria In Solid Tumors 

RECIST Percentage change in tumor diameters 

Modified RECIST mRECIST Percentage change in enhancing tumor 
diameters 

Volumetric RECIST vRECIST Percentage change in TTB between 
baseline and follow-up image 

Quantitative EASL qEASL Percentage change in ETV between 
baseline and follow-up image 
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Fig. 3 MRI assessment techniques. a) Measurements of one-dimensional overall 
diameter. b) One-dimensional measurement of enhancing tumor diameter. c) Red outline 
shows liver segmentation that gives total liver volume (TLV). Subsequent qEASL 
analysis gives enhancing liver volume (ELV). ELV/TLV gives enhancing liver burden 
(ELB). d) Red outline shows tumor segmentation which gives total tumor volume (TTV). 
Subsequent qEASL analysis gives enhancing tumor volume (ETV). ETV/TLV gives 
enhancing tumor burden (ETB).  

 

Statistical analysis  

All statistical computations were performed using the commercial statistical 

software SPSS (IBM, version 23.0, Armonk, NY, USA). The summary of data was 

performed using descriptive statistics. Count and frequency were used for categorical 

variables. Mean and range were used for continuous variables. A non-Gaussian 

distribution was confirmed and a non-parametric Wilcoxon matched-pair test was used. 

OS was defined from the date of the IAT session until death or last available follow-up.  
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In order to stratify patients into two groups based on baseline imaging parameters 

and 3D response assessment methods, the modified Kaplan-Meier method proposed by 

Contal and O’Quigley was used to determine optimal thresholds (40). In brief, this 

method tests each unique value that exists for the given variable as a potential cut-off 

point.  For each potential cut-off point, a Kaplan-Meier analysis and a log-rank test 

statistic is performed. The lowest p-value and greatest log-rank test statistic is selected as 

the cut-off point.  

Survival curves were estimated with the Kaplan–Meier method and plotted for 

each stratifying parameter. The median OS and the 95 % confidence interval (CI) for low 

tumor burden and high tumor burden were calculated for every method. The predictive 

value of each radiological technique was assessed using Cox proportional hazard ratios 

(HR). This was followed by a univariate and multivariate analysis, which was performed 

in two steps. In the first step, a univariate Cox regression model was used to evaluate the 

association of overall survival with clinical factors assessed on baseline: age, race, sex, 

number of lesions, treatment type, bilirubin level, existence of extrahepatic metastases, 

synchronous disease, previous surgery of primary tumor, and previous hepatic resection. 

In the second step, adjusted hazard ratios for all radiological measurements were 

estimated from the Cox regression model which simultaneously included the respective 

radiological method as well as clinical factors that were found to be significantly 

predictive of overall patient survival (p < 0.05) (41).  
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Results Part I: Baseline MR Imaging Analysis 
 
Patient characteristics and clinical outcome 

Baseline patient characteristics are summarized in Table 2. The average age of the 

cohort at the time of treatment was 59.3 ± 11.4 years. Table 3 gives disease 

characteristics and treatment history. A majority of patients (N=68, 77.3%) had 

multifocal disease. The majority of patients (96.6%) received previous colorectal 

resection, but only one patient received previous hepatic resection. The cohort is 

approximately evenly split between those who received TARE (N=47, 53.4%) and those 

who received TACE (N=41, 46.6%). All IATs were technically successful and no major 

toxicities were reported. The mean interval between baseline imaging and IAT was 19.8 

days (range, 1-60 days). Median OS of the cohort was 7.6 months (95% CI 6.1-9.0), and 

by the end of the study observation date (December 1st, 2016), a total of 79 patients 

(89.8%) were deceased. 
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Table 2 Baseline Patient and Tumor Characteristics 
Parameter N (%) 

Demographics  
Age  
   <65  61 (69) 
   ≥65 years 27 (31) 
Sex  
   Male 60 (68) 
   Female 28 (32) 
Race  
  White 68 (77) 
  African-American 14 (16) 
  Other 6 (7) 
ECOG Score  
   0 59 (67) 
   1 26 (30) 
   2 3 (3) 
Bilirubin (mg/dL)  
   £1.2 77 (88) 
   >1.2 11 (12) 
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Table 3 Disease Characteristics and Treatment History 
Parameter N (%) 

Number of lesions/patient  
   1 20 (23) 
   2 13 (15) 
   3 8 (9) 
   ≥4 47 (53) 
First IAT Received  
   TARE 47 (53) 
   TACE 41 (47) 
Synchronous disease  
   Yes 52 (59) 
   No 36 (41) 
Extrahepatic metastases  
   Yes 31 (35) 
   No 57 (65) 
Tumor location  
   Bilobar 68 (77) 
   Unilobar 20 (23) 
Previous Systemic 
Chemotherapy  

   Yes 77 (88) 
   No 11 (13) 
Previous Surgery of Primary 
Tumor  

   Yes 85 (97) 
   No 3 (3) 
Previous Hepatic Resection  
   Yes 1 (1) 
   No 87 (99) 
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Image Analysis 
 

Liver and tumor characteristics as well as the results of 1D and 3D measurements 

are summarized in Table 4. One-dimensional analysis gave a mean overall tumor 

diameter of 15.6±6.8 cm and an enhancing tumor diameter of 8.9±4.1 cm. As for 3D 

analysis, mean liver volume was 2165±778 cm3 (range 862-4583 cm3). Whole-liver 3D 

assessment gave an ELV of 818±433 cm3 (range 104-2262 cm3) and an ELB of 

38.1±16.4% (range 10.1-79.3%). Three-dimensional measurements acquired from the 

tumor segmentations gave an ETV of 94.7±163 cm3 (range 0.01- 886 cm3) and an ETB of 

3.6±19.4% (range 0.01-24.3%). Table 5 gives the threshold value used to stratify the 

cohort into high and low burden groups for each parameter based on the modified 

Kaplan-Meier method as already described.  
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Table 4 Tumor/Liver Characteristics and 1D and 3D measurements 
Parameter  

Liver Volume (cm3)  
   Mean 2165 
   Range 862-4583 
1D Measurements  
Overall Tumor Diameter (cm)  
  Mean 15.6 
  SD 6.8 
Enhancing Tumor Diameter (cm)  
   Mean 8.9 
   SD 4.1 
3D Measurements  
Enhancing Liver Volume [ELV] 
(cm3)  

   Mean 818 
   SD 433 
Enhancing Liver Burden [ELB] 
(%)  

   Mean 38.1 
   SD 16.4 
Total Tumor Volume [TTV] 
(cm3)  

   Mean 499 
   SD 626 
Total Tumor Burden [TTB] (%)  
   Mean 19 
   Range 0.2-99 
Enhancing Tumor Volume [ETV] 
(cm3)  

   Mean 94.7 
   SD 163 
Enhancing Tumor Burden [ETB] 
(%)  

   Mean 3.6 
   Range 0.01-24.3 
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Table 5 Optimal cutoff values for high and low tumor burden 
Image Parameter Cutoff 
 
Overall tumor diameter 
 

 
11.5 cm 

Enhancing tumor diameter 8.0 cm 
 

Total tumor volume (TTV) 335 cm3 

 

Total tumor burden (TTB) 15% 
 

Enhancing liver volume (ELV) 1060 cm3 

 

Enhancing liver burden (ELB) 32% 
 

Enhancing tumor volume (ETV) 60 cm3 

 

Enhancing tumor burden (ETB) 3.2% 
 
 
Survival Analysis 
 

Univariate analysis of baseline clinical parameters identified a significant 

correlation between the lobar distribution of disease (bilobar disease, hazard ratio [HR] 

2.12 [95 % CI 1.22-3.7], p=0.01), ECOG score (ECOG >0, HR 1.79 [95% CI 1.09-2.9], 

p=0.02), bilirubin level (bilirubin >1.2 mg/dL, HR 1.9 [95% CI 1.1-3.6], p=0.05), and 

previous systemic chemotherapy (HR 0.48 [95 % CI 0.24-0.97], p=0.04) with OS. The 

other baseline characteristics included for univariate analysis (age, race, sex, number of 

lesions, treatment type, existence of extrahepatic metastases, synchronous disease, 

previous surgery of primary tumor, and previous hepatic resection) did not show 

significant correlation with OS.  

For the diameter-based thresholds, the log-rank test demonstrated that survival 

curves showed good separation when stratified both by overall tumor diameter (p=0.004) 
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and enhancing tumor diameter (p<0.001). 68% of patients were classified into the high 

tumor burden group for overall tumor diameter, and these patients had a median OS of 

6.0 months (95% CI 3.9-8.0). 56% of patients were classified into the high tumor burden 

group for enhancing tumor diameter, and had a median OS of 5.8 months (95% 4.8-6.9).  

In terms of volume-based thresholds, both TTV (p=0.003) and TTB (p=0.004) 

demonstrated good separation of survival curves based on the log-rank test. A minority of 

patients were classified into the high tumor burden group based on TTV (40%) and had a 

median OS of 5.8 months (95% CI 3.3-8.4), while about half of patients were based on 

TTB (45%) and had also had a median OS of 5.8 months (95% CI 3.2-8.4).  

As for 3D enhancement based-criteria, ELV (p=0.03), ETV (p<0.001) and ETB 

(p=0.001) all demonstrated good separation of Kaplan-Meier curves, but ELB did not 

(p=0.09) (Fig. 4). A minority of patients were classified into the high tumor burden group 

based on ELV (26%), and this group had a median OS of 4.6 months (95% CI 1.6-7.7). 

33% of patients were in the high tumor burden group based on ETV, and had a median 

OS of 4.4 months (95% CI 2.9-5.8). Finally, only 30% of patients were classified into the 

high burden group based on ETB, and this group had a median OS of 4.6 months (95% 

CI 2.2-7.1).   
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Fig. 4 Kaplan-Meier survival curves plotted for each image assessment technique. ELB 
was the only parameter that did not demonstrate significant separation of curves. 
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Multivariate Analysis  
 

When adjusting for bilobar disease, ECOG score, bilirubin level and previous 

systemic chemotherapy, significant correlation with OS was no longer seen with overall 

diameter, TTB, or ELV. As shown in Table 6, patients in the high tumor burden group for 

enhancing tumor diameter had a hazard ratio of 2.1 (95% CI 1.3-3.4, p=0.004). Patients 

stratified into the high tumor burden group based on TTV had a HR of 1.7 (95% CI 1.1-

2.8, p=0.04). The greatest hazard ratios were achieved when patients were stratified on 

the basis on ETV (HR 2.3, 95% CI 1.4-3.9, p<0.001) and ETB (HR 2.4, 95% CI 1.4-4.0, 

p=0.001).  
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Table 6 Statistical analysis of median overall survival 

 
 
  

  
Survival analysis Univariate analysis Multivariate analysis 

Method N (%) Median (95 % CI) HR (95 % CI) P 
value HR (95 % CI) P value 

Overall Diameter       

≤11.5 cm 28 (32) 9.1 (4.9-13.3) 
2.1 (1.3-3.4) 0.004 1.34 (0.8-2.3) 0.3 

>11.5 cm 60 (68) 6.0 (3.9-8.0) 
Enhancing Diameter       
≤8 cm 39 (44) 11.1 (7.5-14.7) 

2.3 (1.4-3.7) <0.001 2.1 (1.3-3.4) 0.004 
>8 cm 49 (56) 5.8 (4.8-6.9) 

TTV       
≤335 cm3 53 (60) 8.9 (7.2-10.5) 

2.0 (1.3-3.2) 0.003 1.7 (1.1-2.8) 0.04 
>335 cm3 35 (40) 5.8 (3.3-8.4) 
TTB       
≤15% 48 (55) 8.9 (5.4-12.3) 

1.9 (1.2-3.0) 0.006 1.4 (0.8-2.5) 0.2 
>15% 40 (45) 5.8 (3.2-8.4) 
ELV       
≤1060 cm3 65 (74) 8.0 (6.5-9.5) 

1.7 (1.0-2.9) 0.03 1.6 (0.9-2.7) 0.08 
>1060 cm3 23 (26) 4.6 (1.6-7.7) 
ELB       
≤32% 34 (39) 5.6 (5.0-6.2) 

0.7 (0.4-1.1) 0.09 
  

>32% 54 (61) 9.0 (7.1-10.9)   
ETV       
≤60 59 (67) 9.0 (7.0-11.0) 

2.4 (1.5-3.9) <0.001 2.3 (1.4-3.9) <0.001 
>60 29 (33) 4.4 (2.9-5.8) 
ETB       
≤3.2% 62 (70)  8.6 (6.5-10.6) 2.3 (1.4-3.8) 0.001 2.4 (1.4-4.0) 0.001 
>3.2% 26 (30) 4.6 (2.2-7.1) 
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Results Part II: Treatment Response Assessment  
 
Patient characteristics and clinical outcome 

Patient characteristics for this smaller follow-up cohort are again summarized in 

Table 7 and Table 8. No statistically significant differences exist in demographic and 

treatment history characteristics between the baseline analysis cohort and follow-up 

analysis cohort. The average age of the cohort at the time of treatment was 59.6 ± 11.4 

years. The mean interval between baseline imaging and IAT was 19.6 days (range, 1-50 

days). The mean interval between IAT and follow-up imaging was 34.3 days (range, 22-

51 days). Median OS of the cohort was 9.0 months (95% CI 7.5-10.6), and by the end of 

the study observation date (December 1st, 2016), a total of 57 (90.5%) were deceased. 

The OS is greater than that of the baseline analysis cohort. This could be partly explained 

by the fact that patients who died before they could receive follow-up imaging were not 

included in this cohort. However, the difference is not significant (p=0.584). 
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Table 7 Follow-up Cohort Patient and Tumor Characteristics 
Parameter N (%) 

Demographics  
Age  
   <65  42 (67) 
   ≥65 years 21 (33) 
Sex  
   Male 45 (71) 
   Female 18 (29) 
Race  
   White 49 (78) 
  African-American 10 (16) 
  Other 4 (6) 
ECOG Score  
   0 40 (64) 
   1 19 (30) 
   2 3 (5) 
Bilirubin (mg/dL)  
   £1.2 57 (90) 
   >1.2 6 (10) 
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Table 8 Follow-up Cohort Disease Characteristics and Treatment History 

Parameter N (%) 

Number of lesions/patient  
   1 15 (24) 
   2 12 (19) 
   3 4 (6) 
   ≥4 32 (51) 
First IAT Received  
   TARE 33 (52) 
   TACE 30 (48) 
Synchronous disease  
   Yes 37 (59) 
   No 26 (41) 
Extrahepatic metastases  
   Yes 20 (32) 
   No 43 (68) 
Tumor location  
   Bilobar 48 (76) 
   Unilobar 15 (24) 
Previous Systemic 
Chemotherapy  

   Yes 57 (90) 
   No 6 (10) 
Previous Surgery of Primary 
Tumor  

   Yes 62 (98) 
   No 1 (2) 
Previous Hepatic Resection  
   Yes 1 (2) 
   No 62 (98) 
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Survival Analysis 

Univariate analysis of baseline clinical parameters again identified a significant 

correlation between OS and lobar distribution of disease (bilobar disease, hazard ratio 

[HR] 2.45 [95 % CI 1.25-4.781, p=0.01) and ECOG score (ECOG >0, HR 1.87 [95% CI 

1.06-3.28], p=0.03). However, previous systemic chemotherapy (HR 0.54 [95 % CI 0.21-

1.39], p=0.20) and bilirubin level (HR 1.0 [95 % CI 0.4-2.4], p=0.90) did not have a 

significant correlation in the follow-up cohort with OS. The other baseline characteristics 

included for univariate analysis (age, race, sex, number of lesions, treatment type, 

existence of extrahepatic metastases, synchronous disease, previous surgery of primary 

tumor, and previous hepatic resection) also again did not show significant correlation 

with OS.  

Single MR Image Analysis: Baseline and Follow-up Images 

 To perform direct head-to head comparisons of the strength of the various 

measurement techniques as both staging biomarkers as well as surrogates for treatment 

response, imaging analysis for this smaller cohort was repeated for the baseline images 

and also performed on the follow-up images. Whole-liver analysis was not repeated as 

Part I did not demonstrate success using these criteria. Table 9 summarizes survival 

analysis and univariate and multivariate Cox proportional hazard model analysis for the 

baseline images of this cohort while Table 10 summarizes these findings for the follow-

up images. 
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Table 9  Statistical analysis of median overall survival based on baseline imaging analysis 

 
 

 
Survival analysis Univariate analysis Multivariate analysis 

Method N (%) Median (95 % CI) HR (95 % CI) P 
value HR (95 % CI) P value 

Overall Diameter       

≤11.5 cm 23 (36) 9.1 (4.1-14.1) 
1.4 (0.816-2.4) 0.2   

>11.5 cm 40 (63) 8.1 (5.9-10.4) 
Enhancing Diameter       
≤8 cm 34 (54) 10.8 (6.7-15.0) 

1.7 (1.0-2.9) 0.06   
>8 cm 29 (46) 7.4 (5.4-9.4) 

TTV       
≤335 cm3 41 (65) 9.1 (6.6-11.6) 

1.3 (0.98-1.7) 0.08 1.42 (1.1-2.9) 0.24 
>335 cm3 22 (35) 7.6 (4.3-10.3) 
TTB       
≤15% 37 (59) 10.6 (6.0-15.2) 

1.6 (0.9-2.7) 0.08   
>15% 26 (41) 7.6 (4.0-11.2) 
ETV       
≤60 45 (71) 10.6 (8.1-13.1) 

2.1 (1.2-3.7) 0.02 1.9 (1.1-3.6) 0.03 
>60 19 (29) 7.6 (4.2-10.9) 
ETB       

≤3.2% 46 (73)  10.6 (8.0-13.2) 
2.1 (1.1-3.7) 0.02 

 
2.2 (1.2-4.1) 0.01 

>3.2% 17 (27) 7.6 (4.4-10.7)   
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1D Measurements 

 For this smaller cohort, diameter-based measurements on baseline imaging were 

not successful at stratifying patients by survival. 63% of patients were classified into the 

high tumor burden group for overall tumor diameter, and these patients had a median OS 

of 8.1 months (95% CI 5.9-10.4), which was not statistically significant from the low 

tumor burden group. 46% of patients were classified into the high tumor burden group for 

enhancing tumor diameter, and had a median OS of 7.4 months (95% CI 5.4-9.4). The 

log-rank test demonstrated a marginal statistically significant difference in the survival 

Table 10  Statistical analysis of median overall survival based on follow-up imaging analysis 

  
Survival analysis Univariate analysis Multivariate analysis 

Method N (%) Median (95 % CI) HR (95 % CI) P 
value HR (95 % CI) P value 

Overall Diameter       

≤11.5 cm 20 (32) 9.1 (4.7-13.5) 
1.3 (0.7-2.2) 0.4   

>11.5 cm 43 (68) 8.1 (6.2-10.1) 
Enhancing Diameter       
≤8 cm 45 (71) 9.1 (7.0-11.2) 

1.6 (0.9-2.9) 0.1   
>8 cm 18 (29) 7.4 (4.8-10.0) 

TTV       
≤335 cm3 37 (59) 10.6 (6.2-15.0) 

2.0 (1.2-3.4) 0.01 1.7 (0.98-3.0) 0.06 
>335 cm3 26 (41) 6.9 (4.5-9.3) 
TTB       
≤15% 36 (57) 11.1 (6.8-15.4) 

1.8 (1.1-3.0) 0.03 1.4 (0.8-2.5) 0.2 
>15% 27 (43) 6.4 (3.9-8.9) 
ETV       
≤60 47 (75) 10.8 (6.9-14.7) 

2.9 (1.6-5.4) 0.01 12.4 (1.2-4.5) <0.01 
>60 16 (25) 5.9 (2.7-9.2) 
ETB       

≤3.2% 37 (59)  12.2 (9.6-14.9) 
1.9 (1.1-3.2) 0.02 

 
1.4 (0.8-2.5) 0.2 

>3.2% 26 (41) 6.9 (4.5-9.2)   
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curves (p=0.05, survival curves not shown). Hazard ratio modeling did not demonstrate 

significance in multivariate analysis. Diameter-based measurements on follow-up images 

demonstrated similar results with neither overall diameter nor enhancing diameter able to 

stratify patients by survival with statistical significance.  

For the diameter-based thresholds, the log-rank test demonstrated that survival 

curves showed good separation when stratified both by overall tumor diameter (p=0.004) 

and enhancing tumor diameter (p<0.001). 68% of patients were classified into the high 

tumor burden group for overall tumor diameter, and these patients had a median OS of 

5.2 months (95% CI 3.8-7.4). 56% of patients were classified into the high tumor burden 

group for enhancing tumor diameter, and had a median OS of 5.0 (95% 3.4-6.9).  

3D Measurements 

 For volume-based measurements, neither TTV (p=.07) nor TTB (p=.08) 

demonstrated statistically significant separation of survival curves based on the log-rank 

test on baseline images. However, both criteria resulted in good separation of survival 

curves on follow-up images (p=.01 and p=.03, respectively), although these differences 

were not significant when controlling for other risk factors (ECOG score and unilobar vs. 

bilobar). 

 In terms of 3D, enhancement-based criteria, both ETV and ETB again 

consistently resulted in good separation of survival curves for both baseline and follow-

up images. These differences remained when controlling for other risk factors for all 

criteria except ETB in follow-up images (HR 1.4 [95% CI 0.8-2.5], p=0.2). 
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Response Assessment 

 The mean changes between baseline and 1 month follow-up images based on 

various 1D and 3D measurement criteria are given in Table 11 as well as the thresholds 

used to separate patients into responders (R) and non-responders (NR). For, RECIST and 

mRECIST, patients were classified as R if the overall diameter or enhancing diameter, 

respectively, decreased by 30% or more, as per RECIST and mRECIST guidelines (42). 

Enhancing liver volume increased on average by 13.8% (range -83.2-262%). Patients 

were categorized as R if the percent change in ELV (DELV) was negative and classified 

as non-responders if DELV was positive. Change in ELB was not included in response 

assessment as it is related to DELV (ELB = ELV/TTV). Total tumor volume on average 

increased by 31.8% (range -50.6-551%). Patients were classified as R if the volume 

decreased or did not increase by more than 50%. Finally, enhancing tumor volume 

increased on average by 69.4%. Patients were classified as R if enhancing tumor volume 

decreased by more than 65% (range -99.5%-2219%).  
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Table 11 Response assessment measurements 

Parameter  

Liver Volume (cm3)  
   Mean 2210 
   Range 848-5034 
1D Measurements  
RECIST (%)  
  Mean 0.04 
  Range -33.4-64.5 
  Threshold -30 
mRECIST (%)  
   Mean -11.1 
   Range -100-73.0 
   Threshold -30 
3D Measurements  
Enhancing Liver Volume 
Change [DELV] (%)  

   Mean 13.8 
   Range -83.2-262 
   Threshold 0 
Change in total tumor volume 
(vRECIST) (%)  

   Mean 31.8 
   Range -50.6-551 
   Threshold 50 
Change in Enhancing Tumor 
Volume (qEASL) (%)  

   Mean 69.35 
   Range -99.5-2219 
   Threshold -65 
  
  

1D Measurements 
 

Table 12 gives a summary of overall survival using univariate and multivariate 

analysis. When using RECIST measurements, only 1 patient was classified as a 

responder. Therefore, OS analysis was not performed based on RECIST criteria. Using 

mRECIST criteria, 20 patients (32%) were classified as R and had an OS of 9.8 months 
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(95% CI 5.9-13.7) and 43 patients (68%) were classified as NR with an OS of 7.4 months 

(95% CI 4.7-10.1). Stratifying Kaplan-Meier curves based on mRECIST criteria did not 

achieve statistical significance (p=0.1) (Fig. 5a).   

 

3D Measurements 

  When quantifying tumor response with DELV, 31 patients (49%) were classified 

as R and 32 patients (51%) were classified as NR. Stratifying Kaplan-Meier curves using 

this stratification method did not demonstrate good separation of survival curves (Fig. 5b, 

p=0.3). When using the vRECIST technique, 48 patients (76%) were R and had a median 

Table 12 Statistical analysis of median OS based on response assessment measurements  

   
Survival analysis Univariate analysis Multivariate analysis 

Method R/NR N (%) Median (95 % CI) HR (95 % CI) P 
value 

HR (95 % 
CI) 

P 
value 

RECIST        

³30% decrease R 1 (2) - 
    

<30% decrease NR 62 (98) 9.1 (7.4-10.7) 
mRECIST        
³30% decrease R 20 (32) 9.8 (5.9-13.7) 

1.5 (0.9-2.7) 0.1   
<30% decrease NR 43 (68) 7.4 (4.7-10.1) 

DELV        
<0% R 31 (49) 11.8 (9.4-14.2) 

1.3 (0.8-2.3) 0.3   
³0% NR 32 (51) 6.6 (4.3-8.8) 
vRECIST        
<50% increase  R 48 (76) 9.8 (7.5-12.0) 

2.1 (1.1-4.0) 0.02 2.1 (1.1-4.0) 0.03 Greater than 
³50% increase NR 15 (24) 6.4 (5.2-7.6) 

qEASL        
³56% decrease R 19 (30) 14.3 (10.0-18.6) 

1.7 (0.9-3.0) 0.08   
<56% decrease NR 44 (70) 8.0 (5.6-10.4) 
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OS of 9.8 months (95% CI 7.5-12.0) while 15 patients (24%) were NR and had a median 

OS of 6.4 months (95% CI 5.2-7.6). The log-rank test demonstrated good separation of 

survival curves (p=0.02, Fig. 5c). Univariate Cox regression also demonstrated poorer 

survival in the NR group (HR 2.1 95% CI 1.1-4.0, p=0.02). This was unchanged when 

controlling for other risk factors in multivariate analysis. When using the qEASL method, 

19 patients (30%) were classified as R and had a median OS of 14.3 months (95% CI 

10.0-18.6), while 44 patients (70%) were classified as NR and had a median OS of 8.0 

(95% CI 5.6-10.4). However, separation of survival curves was not significant by this 

method (p=0.08, Fig. 5d).  
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Fig. 5 Kaplan-Meier survival curves plotted for response assessment methods. vRECIST 
was the only method to demonstrate good separation of survival curves based on the log-
rank test. 

 
  

a) b) 

c) d) 
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Discussion 
 

The major finding of this study was that enhancing tumor volume (ETV) was the 

best candidate tested for a novel prognostic staging imaging biomarker. Enhancing tumor 

burden (ETB) was also able to predict survival on baseline imaging, but was not 

significant when used on follow-up imaging and controlling for other risk factors. While 

enhancing diameter and non-enhancement volumetric methods were also predictors of 

survival, they were inferior to ETV and ETB. Prior to the current study, it could be 

hypothesized that since greater enhancement suggests greater tumor vascularity, tumor 

enhancement should be a good prognostic indicator, as it would allow greater penetration 

of the tumor by therapeutic agents delivered by IATs. However, the data presented here 

instead suggests that greater tumor vascularity indicates a more aggressive tumor 

phenotype, which has a negative effect on patient survival. This idea has also been 

corroborated in other non-CRC etiologies of liver cancer (28,29,31,32). Intuitively, it 

could be reasoned that ETB should be superior to ETV, since ETB places the volume of 

enhancing tumor in relation to the volume of normal tumor parenchyma. However, ETB 

and ETV demonstrated similar results in this study. A larger sample size may be 

necessary to help differentiate these two parameters.   

Currently, there is no satisfactory staging method for advanced colorectal cancer 

(18). The current system (AJCC, 8th edition) utilizes the TNM staging system for 

colorectal cancer, which groups all metastatic disease as stage IV. However, extensive 

variation in prognosis and treatment patterns exists among this group. The 5-year survival 

expectancy of metastatic disease that is resectable with curative intent is about 20-45%, 

while it is less than 5% when not (43).  Depending on number, size and location of liver 
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metastases, treatments can range from surgical resection, ablation, chemotherapy, TACE 

and radioembolization (43–45). This study demonstrates that volumetric, enhancement-

based criteria such as ETV or ETB, combined with clinical data, such as liver function 

tests, KRAS gene mutation status and performance status, may be the basis of a 

prognostic staging system for patients with liver dominant colorectal cancer metastases. 

Such a staging system may be analogous to the Barcelona Clinic Liver Cancer (BCLC) 

used to guide management of patients with hepatocellular carcinoma (46). A combined 

imaging and staging system for advanced colorectal cancer may help standardize 

treatment guidelines and help patients make informed treatment decisions.  

In terms of whole-liver analysis, ELV and ELB were not found to be significant 

predictors of survival in univariate and multivariate analysis. This is contrary to a study 

of neuroendocrine liver metastases which found that whole liver enhancing tumor burden 

was a good predictor of survival (29). There are several potential explanations for this. 

First, colorectal cancer metastases, like most liver metastases, are relatively hypovascular 

tumors (47). This, in turn, results in relatively less enhancement from the tumor in 

relation to other sources of enhancement, such as blood vessels, that makes it difficult to 

truly distinguish high enhancing burden from low enhancing burden. Another source of 

false-enhancement in this study was the bias field, which is a low-frequency intensity 

variation that occurs in MR images due to the imperfection of the magnetic field and 

inhomogeneity of the scanned object (48). While bias field correction algorithms exist, 

these are not yet sophisticated enough to correct the bias field without also altering 

tumor-related enhancement. The development of a whole-liver approach to enhancement 

analysis and staging is attractive because whole-liver segmentation is much less time-
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intensive than tumor segmentation. It also removes much of the subjectivity that arises 

from segmentations between different readers. In order to overcome the current 

shortcomings with whole-liver analysis, there is a need for automatic segmentation 

software that can classify tissue into normal parenchyma, tumor, and vessel. The advent 

of intelligent machine-learning algorithms may be the solution for this technological 

barrier that needs to be taken in order to make whole-liver enhancement a useful method 

for staging (49).  

In terms of response assessment measurement methods, vRECIST was 

successfully able to stratify patients by OS, while DELV and qEASL were not. The 

reasons DELV was not a good marker of treatment response were likely the same as the 

reasons given above for why ELV was not a good staging marker. The results of this 

study are in contrast to another study of a smaller cohort of patients with colorectal 

cancer metastases to the liver treated with IATs which found that qEASL was able to 

predict survival (28). An explanation for why ETV had good performance as a staging 

marker, but qEASL was not successful as a response marker in this study may be related 

to the significant effect the selection of the ROI has on the calculated ETV. Although 

care was taken to select similar regions of the liver as the ROI in the baseline and follow-

up image for each patient, changes in the bias field or overall enhancement characteristics 

of normal parenchyma resulted in large changes in ETV that may not be related to tumor 

physiology. Again, a machine learning approach may serve to improve the use of qEASL 

as a response assessment tool. If normal liver parenchyma can be automatically 

segmented, then the average signal intensity of the entirety of normal parenchyma can be 
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used to normalize the relative enhancement within the tumor, rather than only a 10 cm3 

region of interest selected by the ROI. 

This study has several limitations. This is a single-institution retrospective study 

that is susceptible to selection bias. Additionally, the thresholds used to stratify the cohort 

in this study were determined from statistical analysis and may not be broadly applicable. 

It is worth noting, however, that the threshold used for ETV (60 cm3) and TTV (3.2%) 

are similar to values used in studies of different cohorts (31,32). Another limitation in this 

study is that patients who received cTACE or DEB-TACE were grouped and analyzed 

together since few patients in this cohort received DEB-TACE (~8%). However, DEB-

TACE has an important technical difference from cTACE, notably that cTACE is 

performed until near stasis of flow in the selected tumor-feeding artery is achieved, while 

stasis is not an endpoint of DEB-TACE when using irinotecan. Future studies should aim 

to recruit a larger cohort of DEB-TACE patients to determine if a difference in the 

accuracy of staging or response assessment imaging biomarkers exists. Finally, as this 

retrospective analysis was performed on prospectively collected data, not all risk factors 

could be controlled for. For example, the status of KRAS mutation in these patients, 

which is correlated to poor response to certain anti-epidermal growth factor receptor 

therapies, is unknown (50). 

In summary, our findings support the use of volumetric and enhancement-based 

biomarkers in baseline MR imaging in patients who will be undergoing TACE or TARE. 

The association between tumor enhancement and patient survival warrants further 

investigation for possible inclusion in a new staging system for colorectal cancer 

metastases to the liver. Additionally, a volumetric approach to treatment response 
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assessment is superior to the currently established one-dimensional methods. However, 

enhancement-based, volumetric treatment response methods such as DELV and qEASL 

need further refining before they can be utilized in patients with colorectal cancer 

metastases to the liver being treated with IATs. The currently accepted one-dimensional 

and two-dimensional criteria were developed at a time when computer-assisted imaging 

analysis was much less sophisticated than it is today. To meet the changing nature of 

imaging technology and take advantage of the advent of semi- and fully-automated 

volumetric measurements, an update to staging and response criteria may be warranted.  
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