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“Before I came here, I was confused about this subject. Having listened to your lecture, I am

still confused – but on a higher level.”

Enrico Fermi

“Thanks to my solid academic training, today I can write hundreds of words on virtually any

topic without possessing a shred of information, which is how I got a good job in journalism.”

Dave Barry
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YALE SCHOOL OF MEDICINE

Abstract
Dr. Richard Andrew Taylor

Doctor of Medicine

Medically Applied Artificial Intelligence: From Bench to Bedside

by Nicholas CHEDID

The intent of this thesis was to develop several medically applied artificial intel-

ligence programs, which can be considered either clinical decision support tools or pro-

grams which make the development of such tools more feasible. The first two projects

are more basic or "bench" in focus, while the final project is more translational. The first

program involves the creation of a residual neural network to automatically detect the

presence of pericardial effusions in point-of-care echocardiography and currently has

an accuracy of 71%. The second program involves the development of a sub-type of

generative adverserial network to create synthetic x-rays of fractures for several pur-

poses including data augmentation for the training of a neural network to automat-

ically detect fractures. We have already generated high quality synthetic x-rays. We

are currently using structural similarity index measurements and Visual Turing tests

with three radiologists in order to further evaluate image quality. The final project

involves the development of neural networks for audio and visual analysis of 30 sec-

onds of video to diagnose and monitor treatment of depression. Our current root mean

square error (RMSE) is 9.53 for video analysis and 11.6 for audio analysis, which are

currently second best in the literature and still improving. Clinical pilot studies for this

final project are underway. The gathered clinical data will be first-in-class and orders

of magnitude greater than other related datasets and should allow our accuracy to be

best in the literature. We are currently applying for a translational NIH grant based on

this work.

HTTPS://MEDICINE.YALE.EDU/
https://medicine.yale.edu/emergencymed/people/richard_taylor.profile
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Chapter 1

Deep Learning for the Detection of

Pericardial Effusions in the

Emergent Setting

1.1 Introduction

1.1.1 Ultrasound for Pericardial Effusion

The first ultrasound was introduced in the 1950s but would not become widely uti-

lized in clinical practice until the 1970s [1]. Real-time ultrasound was developed in the

1980s, which allowed for adoption in emergent settings [1]. Since then, Point-of-Care

Ultrasound (POCUS) has become an increasingly important diagnostic tool utilized in

the emergency department, and there has been significant research towards improving

ultrasound techniques for the evaluation of a wide variety of clinical conditions [1, 2, 3].

One such condition for which ultrasound has been utilized is pericardial effu-

sion. Ultrasound is the preferred diagnostic tool for pericardial effusion given it is fast,

accurate, widely available, and non-invasive [4].

However, while some physicians have specific extended training using ultra-

sonography, there is concern regarding diagnostic variability between those who have
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this training compared to those who do not. This raises the concern for potential for er-

ror in the diagnosis of pericardial effusion in the emergency room. In a study published

in Academic Emergency Medicine, residents and faculty from an emergency medicine

training program at a Level 1 trauma center were asked to view ultrasound clips in pa-

tients with chest trauma [5]. The overall sensitivity was 73% and specificity was 44%.

Given the possible emergent nature of pericardial effusion and the importance of rapid

and accurate diagnosis, a diagnostic or clinical decision support tool to reduce error

would likely be of significant benefit. A form of artificial intelligence (AI) increasingly

used for imaging purposes called a convolutional neural net (CNN) may be able to

serve as such a tool.

1.1.2 Use of Neural Networks in Medical Imaging

Medical imaging can be broken down into two basic components: image acquisition

and image interpretation. Image acquisition has improved greatly over the past decades

with significantly increased acquisition speed and accuracy; however, improvements

to image interpretation have been much slower to manifest. This is particularly due to

the fact that the image interpretation process has primarily been a human not a tech-

nologically driven process with most interpretations performed by physicians. This

comes with many of the limitations associated with a human-driven process such as

subjectivity, human error, fatigue, limited interpretation speed, and significant vari-

ability among providers. Technological aids to the image interpretation process have

only recently begun to be developed.

One such aid is machine learning (ML). ML is an application of AI that allows

systems to automatically learn and improve from experience without being explicitly

programmed. Machine learning has been increasingly used for medical imaging tasks

particularly in the fields of radiology and pathology [6]. A specific machine learn-

ing technique called a deep convolutional neural network (CNN) has become the new

gold-standard machine learning technique in medical imaging research [7].
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Neural networks are inspired by the structure and function of a biological ner-

vous system. A neural network is composed of neuronal layers just as a nervous sys-

tem is composed of layers of neurons. Each neuron in a neural network is connected to

neurons in the prior and subsequent neuronal layer but not to neurons within the same

layer. Each of these connections is associated with a certain weight value. Each neuron

can be thought of as a logistic regression function. Each time the model runs forward

it ends with a final error value. The model then runs backward in order to attach new

weights to each of the parameters based on the error. This process is repeated until

the error stabilizes at a minimum value. Once a neural network has been optimally

trained on a set of images to have maximal accuracy in identifying them correctly, it is

then tested on a completely novel set of images to see if its predictive capabilities can

generalize to fresh images.

Neural networks have been used for a wide variety of medical applications in-

cluding classification of skin cancer from pathology images [8], detection of pneumonia

on chest X-rays [9], and detection of polyps during colonoscopy [10].

The use of neural networks in ultrasounds is much less developed due to sev-

eral difficulties associated with ultrasound. Ultrasound can be more complex than

other imaging modalities, which often contain a single still frame, because it consists

of video containing many frames, with very little labeled information. Ultrasound

also has decreased resolution compared to other imaging modalities such as CT and

MRI. Additionally, for echocardiograms in particular, measurements and the visible

anatomy can vary significantly with the beating of the heart. Preliminary work using

neural networks for echocardiography has been performed showing an ability to de-

tect hypertrophic cardiomyopathy and cardiac amyloidosis with C-statistics of 0.93 and

0.84 [11]. However there has been very little work conducted on ultrasound acquired

in the point-of-care setting.
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1.1.3 Need for Data: a Call for Multicenter Collaboration

Perhaps the most important variable in creating a high performing neural network is

the sheer quantity of labeled data needed, for example, ultrasounds labeled as effusion

present or absent. A larger dataset provides more material for the neural net to learn

from enabling greater final accuracy.

Given the vast amount of data necessary to train high performing machine

learning algorithms, the quantity of data needed often quickly outstrips that available

at a single institution; this has led to some in the field calling for increased multicenter

collaborations [12, 13].

In this paper, we aim to demonstrate a proof-of-concept neural network for

a clinical decision support tool for pericardial effusion in the emergent setting while

highlighting the need for increased multicenter collaboration for the development of

high performing neural networks.

1.2 Methods

1.2.1 Image Acquisition and Classification

Image acquisition and classification was done primarily by Nicholas Chedid.

Echocardiograms in the DICOM format were manually gathered using the Emer-

gency Department’s picture archiving and communication system (QPath). Ultrasounds

were chosen sequentially from all adult patients (≥ 18 years) who had an ED echocar-

diogram performed within the period March 2013 to May 2017. These ultrasounds

were interpreted and labeled by the resident or attending physician who acquired

them. Only echocardiograms taken in the parasternal long axis view were included

(for optimal visualization of a wider range of cardiac pathology). Additionally only

echocardiograms with at least two documented readings by physicians (including at
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least one by an attending physician) were included. All echocardiograms and interpre-

tations were also reviewed by me for inclusion. These DICOMs selected for inclusion

were saved in a Yale Secure Box folder. Additionally, an Excel spreadsheet was cre-

ated to organize information relevant to each DICOM. Each DICOM was recorded nu-

merically and several associated characteristics were manually transcribed including:

medical record number (MRN), account number, accession number, date of the study,

effusion status (present or absent), equality status (presence or absence of strain), exit

status (dilated or normal), ejection fraction status (depressed, <50%, normal, 50 - 65%,

hyperdynamic >65%), and number of studies associated with each encounter. This re-

sulted in a dataset consisting of 1545 videos from 1515 patients. For this study, only

those videos that specifically commented on the presence or absence of pericardial ef-

fusion were included. This resulted in 272 videos.

These videos were then fed through an image preprocessing Docker package

created by collaborator Adrian Haimovich. Preprocessing included anonymization

by stripping of all identifying metadata and splitting into still frames. Our utlimate

dataset consisted of 12,942 still frames. Our training dataset consisted of 80% of these

frames (10,299) and our test dataset consisted of the remaining 20% (2643).

1.2.2 ResNet 20

Work for building and tuning the ResNet architecture was done primarily by Nicholas

Chedid

A neural network was developed using Python scripts and programs using

Keras packages running on a Theano backend. Specifically the subtype of convolu-

tional neural network created was a 20-layer residual network, a gold-standard neural

network for image classification and computer vision tasks, which won the Imagenet

challenge in 2015 (ResNet-20) [14]. Plain deep networks can be difficult to train be-

cause of vanishing and exploding gradients. By using stacked Residual Blocks, which
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use skip connections that take activations of one layer and feed them to much deeper

layers, ResNets are able to be built much deeper.

Our network has 20 weighted layers with shortcut connections inserted. Our

convolutional layers mostly have 3x3 filters and are designed so that: (1) for the same

output feature map size, the layers have the same number of filters; and (2) if the fea-

ture map size is halved, the number of filters is doubled so as to preserve the time

complexity per layer. Downsampling was performed directly by convolutional lay-

ers with a stride of 2. The network ends with a global average pooling layer and a

1000-way fully-connected layer with softmax. L2 regularization was utilized to reduce

overfitting. Batch normalization was used to speed up training and increase accuracy.

Activation functions primarily consisted of recitified linear units (ReLU) except for the

softmax classifier layer.

Many different training iterations were run for hyperparameter tuning in order

to optimize the neural network’s accuracy on the test set. Tunable variables included:

number of epochs, ResNet Model (i.e. number of layers), learning rate, L2 Regular-

ization coefficient, batch size, and data augmentation features including: featurewise

center, samplewise center, featurewise standard normalization, samplewise standard

normalization, zca whitening, rotation range, width shift range, height shift range, hor-

izontal flip, and vertical flip.

The optimal neural net was one in which epochs were set to 50, ResNet Model

(i.e. number of layers) was set to 20, learning rate was set to 0.001, L2 Regularization

coefficient was set to 1.00E-03, batch size was 16, and the following data augmentation

features were set to: featurewise center = off, samplewise center = off, featurewise

standard normalization = off, samplewise standard normalization = off, zca whitening

= off, rotation range = 180, width shift range = 0.15, height shift range = 0.15, horizontal

flip = on, and vertical flip = on.

Training was performed over nearly 19 hours on a desktop computer with 3

Titan X NVIDIA graphics cards with 8 GB RAM each.
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The number of layers and the batch size were not able to be further increased

due to system constraints . Fortunately deepening of the ResNet past 20 layers did not

seem to significantly improve tests accuracy across 200 epochs (accuracy remained at

92%) from ResNet20 to ResNet110 as seen in He et al. [14]. Code availability: ResNet is

publicly available on Github.

1.3 Results

After running the aforementioned ResNet for 200 epochs, we were able to achieve a

final test accuracy of 71%. Our results can be seen in Table 1.1.

The table is organized into three columns with percentage of our total dataset

used for training in the left column, our final test accuracy in the middle column, and

our final train accuracy in the right hand column. The final train accuracy remained

fairly consistent ranging from 74 - 81%. More importantly, it can be seen that the test

accuracy improved from 49 to 71% as the amount of data used to train our ResNet

increased from 20 to 80% illustrating the continual improvement associated with in-

creasing available training data.

TABLE 1.1: Neural Network Performance in Identifying Presence or Ab-
sence of Pericardial Effusion

% of dataset used Final Test Accuracy Final Train Accuracy

25% of 80 = 20% 49% 75%
50% of 80 = 40% 42% 81%
75% of 80 = 60% 57% 78%

Full(80%) 71% 74%

1.4 Discussion

We have demonstrated the creation of a proof-of-concept neural network for a clinical

decision support tool for pericardial effusion in the emergent setting with an accuracy
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of 71% compared to a sensitivity of 73% and specificity of 44% for the detection of peri-

cardial effusions by academic emergency medicine physicians [5]. We are currently in

the process of writing code that would allow us to assess the sensitivity and specificity

of our program as well.

The accuracy of our neural network showed step-wise improvement as we used

increasing percentages of our available data. Given the fact that our training data came

from one of the highest volume EDs in the United States (Yale New Haven Hospital

has a very high volume ED with the 3rd most ER visits in 2016 [15]) and our results

suggest likely continual improvement with even more data, this highlights the need

for multicenter collaboration to aggregate sufficient training data to train very high

performance algorithms that can aid in clinical decision making.

Future steps include writing code that would allow us to assess the sensitivity

and specificity of our program as well as several steps that may help improve our

accuracy further such as incorporating transfer learning from a ConvNet pre-trained

on ImagNet, reformatting input data from still frames to short video clips as this may

improve performance, using a Generative Adversarial Network (GAN) instead of a

ResNet, and using segmentations to improve performance.
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Chapter 2

Fracture X-Ray Synthesis with

Generative Adversarial Networks

2.1 Introduction

2.1.1 Fractures in the Emergency Department

Fractures are among the most common reasons for emergency department visits. While

some fractures are easily discernible on x-ray, many others are subtle enough to require

a radiologist’s inspection for a definitive diagnosis. In the fast-paced environment of

the emergency department, the subtleties in fracture diagnosis can sometimes be over-

looked or misinterpreted, leading to medical error. This phenomenon has been quanti-

fied before: A four-year study in a busy district general emergency department found

953 diagnostic errors, of which 760 (79.7%) were missed fractures [16]. The primary

reason for diagnostic error in 624 of 760 (82.1%) of these patients with fractures was a

failure to interpret radiographs correctly [16].

The annual incidence of fractures has been estimated to be as high as 100.2 per

10,000 in males and 81.0 per 10,000 in females [17].
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Additionally delay in appropriate diagnosis may lead to worsened clinical out-

comes and increased healthcare costs. Medical errors cost the United States $17 billion

in 2008 [18].

A technology that can automatically detect fractures has the potential to reduce

emergency department medical errors, costs, and waiting times. However, training im-

age analysis algorithms often requires hundreds or thousands of manually annotated

examples. The process of annotating these examples can be labor and time intensive.

The process of developing automatic fracture detectors is even more burden-

some given that there are many different types of fracture, which would require train-

ing many different types of detectors. Hundreds to thousands of images would have

to be manually annotated to train each of these detectors. Fortunately, here we de-

scribe a method to greatly simply the training of a multitude of automatic fracture

detectors. This method entails the creation of synthetic x-rays from procedurally gen-

erated segmentations, thereby creating annotated datasets with minimal human time

expenditure.

Data augmentation is the process of increasing the total information provided

by a training dataset by generating many variants of datapoints within the dataset.

In the context of images, this often involves simple transformations such as rotation,

scaling, and translation. Training an algorithm on many examples of the same images

that are rotated by different amounts can teach that algorithm rotational invariance;

training it on many resized examples of an image can teach invariance to scale and so

on.

However simple image transformations are unable to teach invariance to more

subtle features. Generating synthetic images to augment training data sets may im-

prove invariance to these more subtle features. In this work, we demonstrate that it

is possible to generate synthetic x-ray images using image-to-image synthesis for the

purpose of data augmentation.
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2.1.2 Image-to-Image Synthesis

Image-to-Image synthesis is the process of converting an image from an element of one

domain to an equivalent image from an element of another domain.

Training image-to-image synthesis algorithms is notoriously difficult because

image-to-image synthesis is an underconstrained problem. There are many correct so-

lutions to any image-to-image synthesis problem.

A generative adversarial network (GAN) is a generative model that is trained in

an adversarial process between two sub-networks: a generative model G and a discrim-

inative model D. G learns to generate synthetic simulations of images from a particular

domain while D learns to discriminate between true images from that domain and syn-

thetic imitations generated G. This is an adversarial process in the sense that these two

networks are trained in opposition. Generally optimization of one’s network’s perfor-

mance will lead to deterioration of the other’s. Thus an ideal, unique solution exists

where G recovers the training data distribution and D is equal to 1
2 everywhere.

2.1.3 Prior Work

Chuquicusma et al. [19] used generative adversarial networks (GANs) to create syn-

thetic lung cancer nodules and place them in computed tomography (CT) images. The

overall quality of these synthesized nodules was then evaluated using a “Visual Turing

test,” which consisted of having two radiologists evaluate images with either real or

synthetic nodules and try to distinguish between the two. The creation of synthetic

lung nodules via GANs was a novel concept. Possible next steps might include: us-

ing quantitative measures of image synthesis such as a structural similarity index in

addition to the qualitative Visual Turing test, using the pix2pixHD method which may

be an interesting way of generating higher resolution images, and generating entirely

synthetic images as opposed to a component within the image (e.g. lung nodules).
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Korkinof et al. [20] used GANs to generate synthetic mammograms. The overall

quality of these synthetic images was evaluated qualitatively by comparing them vi-

sually to real mammograms. The creation of synthetic high-resolution mammograms

via GANs was a novel concept. Possible next steps might include: using more rigorous

qualitative assessments of image synthesis such as the Visual Turing Test by experts

used by Chuquicusma et al., using quantitative measures of image synthesis such as

a structural similarity index, and by using the pix2pixHD method which may be an

interesting way of generating even higher resolution images.

2.2 Methods

2.2.1 Network Architecture

This work uses the pix2pixHD network architecture described by Wang et al. [21]. The

pix2pixHD method improves upon GANs by introducing a coarse-to-fine generator

and multi-scale discriminator architecture which allows for image generation at a much

higher resolution with an order of magnitude less memory.

The coarse-to-fine generator consists of a global generator network G1 and a

local enhancer network G2. The architecture of the global generator G1 is that pro-

posed by Johnson et al. [22]: a convolutional front-end, a set of residual blocks, and

a transposed convolutional back-end. The architecture of the local enhancer network

G2 is the same except that the input to the residual blocks consists of the element-wise

sum of not only the feature maps from the convolutional front-end of G2 but also the

last feature map of the transposed convolutional back-end of G1, which helps integrate

information from the global network.

The coarse-to-fine moniker describes the training method of the generator. First,

G1 is trained on lower resolution versions of the original training images, then G2 is ap-

pended to G1, and finally the two networks are trained together on the full resolution,
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original images.

Utilizing the coarse-to-fine generator to produce higher resolution synthetic im-

ages poses a novel challenge however. Traditional GAN discriminator design does

not perform as well on these higher resolution images because to distinguish between

higher resolution real and synthetic images it would be necessary to use a discrimina-

tor with a large receptive field. This could be accomplished by either using a deeper

network or larger convolutional kernels both of which could potentially cause overfit-

ting and would require significantly more memory for training. This was addressed by

Wang et al. in the design of their multi-scale discriminator consisting of three discriminators—

D1, D2, and D3—with identical network structures but organized in a pyramid struc-

ture in which each discriminator operates at different image scales funneling from

lower to higher image resolutions as seen in Figure 2.1.

FIGURE 2.1: Multi-scale Discriminator: D1, D2, and D3 are the three dis-
criminators that make up the multi-scale discriminator. Each has the
same architecture. They are multi-scale in that they form a pyramid
structure with each operating at a smaller scale with correspondingly

smaller receptive fields from D3 to D1.
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2.2.2 Image Acquisition and Preprocessing

Image Acquisition and preprocessing work was done primarily by Nicholas Chedid.

50 x-rays of femoral fractures were downloaded from an internet search. Using

a small initial dataset of 50 images aligns with the goals of this work to show how a

pix2pixHD pipeline could allow for a rapidly scalable tool to aid in data augmenta-

tion of many fracture types while reducing manual work and the need for very large

databases. The difficulty in acquiring and the manual work necessary to use a dataset

of this size is much less than what would be needed to acquire and label a traditional

dataset of several hundred to thousands of images for training a single fracture detec-

tion algorithm. Not only might time and manual labor be significantly reduced via the

creation of a pix2pixHD pipeline, but the training of accurate neural networks that may

have previously been hampered by a lack of original data may be possible.

The 22 highest quality images were then chosen for training and testing pur-

poses. Afterwards, artifacts and labels were removed from these 22 x-rays using the

GNU Image Manipulation Program (GIMP). Segmentations of these images were cre-

ated using the GIMP software package by drawing arcs and lines to represent bones

and soft tissue. Both the x-ray images as well as the segmentations were then converted

to squares and resized to 1024 x 1024 pixels in order to be input into the pix2pixHD

model. The segmentations were further processed by having their RGB pixels pro-

grammatically converted to all 0s and 1s as the final step in order to utilize them as

input to the pix2pixHD model. This work can be seen in Figures 2.2 and 2.3.

2.2.3 Training

Coding, debugging, and training of the pix2pixHD neural network was done by both

Nicholas Chedid and collaborator Praneeth Sadda.

Given our limited dataset of 22 x-rays and in order to improve the accuracy of

our pix2pixHD model, we utilized the leave-one-out cross-validation method, which is
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FIGURE 2.2: X-ray Preprocessing: The first row contains the original x-
ray images. The second row contains x-rays that were cleaned of artifacts
and labels by using the GIMP software package. The third row contains
the final version of the x-rays that have been programmatically resized
into 1024 x 1024 pixel squares in order to be input into the pix2pixHD

model.
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FIGURE 2.3: Segmentation Preprocessing: The first row contains the
bone and soft tissue segmentations of the x-ray images created using the
GIMP software package. The second row contains segmentations that
have been programmatically resized into 1024 x 1024 pixel squares. The
final row contains the resized segmentations, which have had their RGB
pixels programmatically converted to all 0s and 1s in order to be input

into the pix2pixHD model.
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commonly used in machine learning research to improve accuracy for models trained

on smaller databases [23, 24].

The leave-one-out cross-validation method works in the following manner. The

machine learning model, pix2pixHD in our case, is trained on all data points (images

in our case) except one which is reserved for testing. This process is then repeated

until every data point has been used for testing. So in our case, we utilized 21 im-

ages for training while reserving 1 for testing. This process was repeated for a total

of 22 variations in order to utilize every image as a testing image. This method helps

improve performance when one’s dataset is smaller by increasing the computational

burden. Namely, the parameters of the model are re-calculated repeatedly according to

the number of data points in the dataset. This means that if a machine learning model

such as pix2pixHD were to need a certain number of calculations (n) proportional to

the dataset size, then utilizing the leave-one-out cross-validation method would in-

stead require n2 calculations.

Fortunately this is the optimal method for this project since we are aiming to

show the scalability of our method for many fracture types and are therefore intention-

ally more data limited than computationally limited.

Another advantage of the leave-one-out cross-validation method is that, by us-

ing nearly the complete dataset for training for each iteration, it is believed to give the

most accurate estimate of the parameters, and, accordingly, the best estimation for how

the model would perform on new data (generalizability) [24].

The training data was assembled by pairing the segmentations with their asso-

ciated x-ray images while leaving one out for testing in the method described above.

Our networks were trained over 200 epochs. A learning rate of 0.0002 was used

for the first 100 epochs. The learning rate was then decayed in a linear manner to zero

over the next 100 epochs. Weights were initialized randomly following a Gaussian

distribution with a mean of 0.
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2.2.4 Postprocessing: Denoising

In order to further improve image quality and reduce noise artifacts, the images pro-

duced by the pix2pix model will then be input into a convolutional denoising autoen-

coder before being assessed for quality via the Visual Turing Test and the Structural

Similarity Index Measurement Algorithm. Convolutional denoising autoencoders have

already shown great utility for the denoising of medical images [25].

2.2.5 Visual Turing Test

Recruitment of radiologists into this study was done primarily by Nicholas Chedid.

Code for displaying real vs synthetic x-rays to radiologists for assessment was written

by my collaborator Praneeth Sadda.

A Visual Turing Test for assessment of synthetic image quality produced by

GANs was proposed by Chuquicusma et al. [19]. We follow a similar methodology

here to evaluate our synthetic images.

We designed 10 Visual Turing Test experiments. Our experiments will be con-

ducted with three radiologists (one resident and two attendings). A radiology resident

and two attending MSK radiologists including the division chief have been recruited

The code for displaying the x-rays in these experiments has already been written.

Our experiments consist of 5 experiments of all generated x-rays and 5 of mixed

generated and real x-rays. Each experiment contains 9 images in a 3 by 3 grid. Radiolo-

gists will be allowed to zoom in or change the view of the image. For each experiment

the radiologists will be informed that the presented grid of images could consist of all

generated, all real, or a mixture of images. Radiologists will then be asked to identify

which images are real and which are generated. It is estimated that the total time for

each radiologist to complete these experiments will be less than 30 minutes.
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We will quantitatively measure the results from our Visual Turing Test and

therefore the quality of our synthetic x-rays by measuring inter-observer variations,

False Recognition Rate (FRR), and True Recognition Rate (TRR).

2.2.6 Structural Similarity Index Measurement (SSIM)

Assessment of pix2pix accuracy using the structural similarity assay will be done pri-

marily by Nicholas Chedid.

A more quantitative assessment of image synthesis quality can be performed

using a structural similarity index measurement (SSIM) as described by Wang et al. [26].

The SSIM is an objective method for assessing perceptual image quality. Previous

methods for assessing image quality such as mean squared error (MSE) and peak

signal-to-noise ratio estimate absolute errors, while SSIM is a quantitative model that

predicts perceived image quality, which is of more value given our work.

Once post-processing using a convolutional denoising autoencoder is completed,

I will run the SSIM.

2.3 Results

Our work has progressed through several stages. In my initial work I used plain GANs

to synthesize x-ray images from segmentations. In order to further improve this work,

we moved on to using the pix2pixHD method. This preliminary work utilized the

pix2pixHD method without the leave-one-out method and was also prior to removal

of artifacts and labels via the GIMP software package.

I presented these preliminary qualitative results (i.e. our synthetic x-ray images

without the leave-one-out method, with minimal preprocessing, without postprocess-

ing, and without the Visual Turing tests or SSIM data) as a poster titled, Deep-Learned

Generation of Synthetic X-Rays from Segmentations, at the International Conference on
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Medical Imaging and Case Reports in Baltimore, Maryland. These results can be seen

in Figure 2.4. It can be seen that synthetic x-rays closely resembling their associated

segmentations were able to be generated. However, ideally both improved resolution

and reduction in artifacts could be achieved. To this end, I have increased our dataset

from 13 to 22 x-rays and their segmentations and have removed artifacts and labels

from the original x-rays. Additionally as mentioned in Section 2.2.3, I am now imple-

menting the leave-one-out method and postprocessing using a denosing concolutional

autoencoder.

Preliminary results incorporating these changes can be seen in Figure 2.5. As

can be seen in said figure, artifacts have been decreased and resolution increased. Ide-

ally current work on postproccessing should further increase image quality.

FIGURE 2.4: The top row displays our previous programmatically gen-
erated segmentations from x-ray tracings and the bottom row displays
the corresponding synthetic x-rays generated from these segmentations
using the pix2pix method prior to our implementation of the leave-one-
out method and prior to the clean up of artifacts and labels from our

x-ray images.
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FIGURE 2.5: Examples of Generated X-rays: Here is a random selection
of the synthetic x-rays generated using the pix2pix method with imple-
mentation of the leave-one-out method. Following the completion of

postprocessing, quality should improve even further.
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Given valuable feedback from that conference, I also decided to incorporate

both the Visual Turing Test and the SSIM for evaluation of results.

2.3.1 Visual Turing Test

Once postprocessing using a convolutional denoising autoencoder is completed, these

updated synthetic x-rays will be used to conduct our Visual Turing Tests as outlined in

section 2.2.5. Code to conduct these tests has already been written. One of the 3 by 3

grids of generated vs real x-ray images to be used in the Visual Turing Test can be can

be seen in Figure 2.6.

We envision displaying our results from the Visual Turing Test experiments

(including FRR) in a manner similar to Chuquicusma et al.
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FIGURE 2.6: Generated vs Real X-rays Visual Turing Test Grid: This is
one of the 3 x 3 grids that will be utilized in the Visual Turing Tests. It
consists of both generated and real x-ray images. For illustrative pur-
poses here (i.e. in order to compare real and generated x-rays), the gen-

erated x-ray images have been given a pink highlighted outline.
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2.3.2 Structural Similarity Index Measurement (SSIM)

Once post-processing using a convolutional denoising autoencoder is completed, I will

implement a SSIM to quantitatively evaluate the perceptual similarity of these updated

synthetic x-rays to the original x-rays as described in section 2.2.6.

SSIM results will be reported in the format seen in Table 2.1.

Algorithm Avg. MSE Avg. SSIM
pix2pixHD 97.1 ± 34.6 97.1 ± 34.6

TABLE 2.1: Example table for SSIM results.

2.4 Discussion

It is possible to synthesize realistic x-rays from procedurally generated segmentations

with the pix2pix method. This can be seen qualitatively when comparing the syn-

thesized x-rays to the original x-rays. The quality of these synthesized x-rays will be

further quantified by our Visual Turing Test experiments and SSIM. Our study will be

the first to quantify generated medical images to such a rigorous extent.

This is the first work that we know of to quantify synthetically generated med-

ical images with a SSIM as well as the first to generate entire, synthetic x-ray images de

novo using the pix2pixHD method (a higher resolution modality) as well as the first to

measure the quality of entire, synthetic x-ray images using the Visual Turing Test.

We envision several ways in which the image synthesis method we have demon-

strated may be useful in improving automated fracture detectors. Neural networks

depend on supervised learning and are therefore limited by the availability of labeled

data. As mentioned above, image synthesis can be useful for data augmentation. For

example, when a fracture detector fails at classifying an image (e.g. as fracture present

or absent), one would wish to ideally retrain that detector on multiple closely related
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examples to improve its accuracy. Unfortunately one is limited by available data. For-

tunately using image synthesis would allow to generate closely related examples to

retrain the detector. Additionally our method could be a valuable way of generating

training data for x-ray segmentation algorithms.

Additionally the generation of synthetic examples using GANs has been used

for improving out of domain or novelty detection, meaning the ability of a classifier

to recognize unknown inputs, which could be another way to utilize our method for

improving automated fracture detectors particularly their generalizability.

Our trained synthesizer can also be used to better describe images (e.g. by learn-

ing features from the trained synthesizer).

Finally, these results were achieved by using only a small dataset compiled from

readily accessible data from an internet search. This was done to address our goal of

demonstrating how a pix2pixHD pipeline could be utilized as a rapidly scalable tool

to aid in data augmentation of automated fracture detectors for many fracture types

while reducing manual work and the need for very large databases.

The difficulty in acquiring and the manual work necessary to use a dataset of

this size is far less than what would be needed to acquire and label a traditional dataset

of several hundred to thousands of images for training a single fracture detection algo-

rithm. Additionally, this tool can easily be used for different fracture types with much

less work needed to switch between fracture types compared to the aforementioned

traditional methods.

An interesting next step would be to train several neural networks at different

tasks first by using small to moderately sized original databases and then by using

those same databases further augmented with synthetic images generated via rapidly

iterable customized versions of this pix2pixHD pipeline and then observe whether neu-

ral network performance was improved via this time and manual labor saving method.
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Chapter 3

Neural Networks for Depression

Screening & Treatment Monitoring

3.1 Introduction

3.1.1 Depression and it’s Diagnosis

Depression is a disease with tremendous impact upon the human race. Globally, over

350 million individuals suffer from depression per year [27], and The Substance Abuse

and Mental Health Services Administration estimates that approximately 16.2 million

adults in the United States had at least one major depressive episode in 2016 [28]. One

in five US adults are estimated to have experienced depression in their lifetime [29].

This problem is compounded in certain populations such as high functioning adults

with demanding careers (such as medical trainees or professionals), adolescents, and

the chronically ill [30].

In addition to being widespread, depression is associated with significant suf-

fering, disability, and mortality. It is estimated that depression accounts for more “years

lost” from disability than any other chronic disease by a wide margin [27]. This in-

cludes traditionally disabling conditions such as back pain, lung disease, and alcohol

abuse. Recent studies have also demonstrated those with depression have higher rates



Chapter 3. Neural Networks for Depression Screening & Treatment Monitoring 27

of obesity, heart disease, and diabetes [31, 32]. Finally, untreated major depression is

well known to be the highest risk factor for suicide [33, 34].

While many psychopharmacologic and psychotherapeutic treatments exist to

treat depression, self-recognition and diagnosis remain a formidable challenge. It is

estimated that around two-thirds of all cases of depression in the United States are

undiagnosed [35]. First, the diagnoses of depression and most psychiatric conditions

are based on clinical assessment by a physician, leaving potential for bias and inter-

physician variability. For example, according to the field trials of the Diagnostic and

Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) there was high variabil-

ity between physicians even when assessing the same patient for depression with an

intraclass Kappa of 0.28 (95% CI: 0.20–0.35) [36, 37, 38]. Secondly, a formal diagno-

sis of depression requires a visit with a clinician, and individuals with limited access

to healthcare have higher levels of undiagnosed depression [39]. Finally, the subjec-

tive nature of the assessment of depression and infrequent or difficult to obtain mental

health appointments may lead to difficulties in longitudinal tracking of incremental

changes or declines in psychiatric state.

After diagnosis, one complexity in the treatment of major depressive disorder

is tracking response to therapy. After initiating a treatment, clinicians have to wait

weeks in order to assess the effectiveness of that specific therapy. This often leads to

lapses in care, and unfortunately even those with significant depression symptoms can

be unintentionally neglected. It is estimated that over a quarter of those who complete

suicide are undergoing treatment for their disease [33]. Clearly there remains an unful-

filled need to carefully monitor patients who are not so ill as to qualify for mandatory

inpatient admission.

Given the prevalence and severity of undiagnosed and undertreated depres-

sion, readily available and widely-implemented screening tools to recognize depres-

sion symptoms are vital to enhance overall public health. Acknowledging this issue,



Chapter 3. Neural Networks for Depression Screening & Treatment Monitoring 28

the U.S. Preventive Services Task Force (USPSTF) has recommended routine depres-

sion screening in primary care clinical practices [40]. Survey-based methods such as

the Patient Health Questionnaire (PHQ)-2 and PHQ-9 are the most commonly used

screening tools in the primary care setting [41]. However, these surveys take time, rely

upon patient interaction with a primary care doctor, and do not adequately address

the risk of developing depression symptoms in between often infrequent clinical vis-

its. They also do not allow for monitoring of treatment in between difficult-to-obtain

clinical visits. What is needed, and does not currently exist, is a solution to depression

screening that is scalable, easy to administer, timely, and allows continual assessment.

Here, we propose a digital tool that uses an AI-powered facial and language

recognition algorithm to screen for depression. The technology will use a 30-second

video of a face, which will be recorded by the user, and notably can be integrated into

any smartphone with a front-facing camera. The AI algorithm will then analyze the

video and audio samples to provide a real-time measurement of that user’s depression

risk. Those who are found to be at high risk for a major depressive episode will be

provided appropriate resources and/or a possible referral to a clinician or telepsyhi-

atry service for follow-up care. The technology will be user-friendly, accessible, and

accurate.

3.1.2 Prior Work

Even though major depression is a tremendous public health concern, it has lagged far

behind other diseases in recognition and strategy for research and cure. The study of

artificial intelligence is a rapidly growing field and, while its use has been explored

broadly in medicine, only recently has its use been directly studied to improve mental

health. Experienced psychiatrists rely on microexpressions and auditory cues when

evaluating patients for mental health disease; our hypothesis is that machine learning

can detect similar patterns to add to the growing armamentarium of screening tools
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in mental health. Others have suggested AI analysis can predict and diagnose depres-

sion [42], but most applications focus on using only a single modality, such as audio or

text and do not track changes in mood longitudinally.

Previous work on automatic depression detection has been conducted on the

Audio-Visual Emotion recognition Challenge (AVEC) datasets [42, 43, 44, 45, 46]. AVEC

is currently the only available source of audiovisual data with associated depression

ground truth labels. AVEC 2013 and 2014 provide video samples with corresponding

BDI-II scores, while more recent AVEC challenges provide interactive video samples

and transcriptions associated with PHQ-8 scores. We are focused on the BDI-II survey

(thus the AVEC 2014 dataset), as it is the depression survey used most commonly for

research purposes and because it is more granular (0-63 range of BDI-II scores versus 0-

23 range on PHQ-8; these additional questions provide a possible source of metadata).

The AVEC 2014 dataset consists of 150 interviews designed to evaluate patients

for depression. The dataset is divided into a 50 video training set, a 50 video develop-

ment set, and a 50 video testing set. Each video is associated with a BDI-II score that

can range from 0 to 63. The actual scores in the dataset range from 0 to 45, highlighting

the skew towards non-depressed patients. A higher BDI-II score is correlated with a

greater risk of depression. A depression cutoff of 14 has been used in our preliminary

studies, per NIH guidelines (NINDS).

However, the accuracy of previous approaches using AVEC to study depres-

sion were limited by the use of outdated techniques. These methods require inefficient

feature engineering, such as combining speech style, eye activity and head pose modal-

ities in a Support Vector Machine [47], inputting hand-engineered features to Random

Forests [48], using facial movement, head movement dynamics and vocal prosody with

logistic regression [49], and utilizing topic modeling-based learning [50].

Neural networks have shown far greater accuracy than the aforementioned

methods at analyzing complex behaviors, and our hypothesis is that the same will hold
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true in depression. Thus, we believe that they may outperform these previous tech-

niques in screening for depression. While, the advent of neural networks has offered

a novel opportunity to improve accuracy, current approaches using neural nets have

methodological flaws of their own. Two recent papers have used neural networks to

predict PHQ-8 scores over audio, text and visual data with a best reported Root Mean

Square Error (RMSE) of 5.4 on a 27 point scale [51, 52]. RMSE can be simply under-

stood as the average distance of a predicted value from the true value. For example, an

RMSE of 6 on a 27 point scale would indicate that the values predicted by the neural

network are on average 6 points away from the true values. Using text and audio anal-

ysis, Hanai and colleagues [53] achieved an RMSE of 6.7 on the same scale. By leaving

out video analysis, their peak RMSE and ability to expand to other areas of application

is limited. Additionally the decision to use PHQ-8 as the ground truth misses out on

the the granularity inherent to the more comprehensive BDI-II. The best predictive re-

sults were achieved by Jan et al. [54]. They used a multi-modal approach (video and

audio), used BDI-II as ground truth, and have achieved the best RMSE in the literature

(7.4 for the 63 point BDI-2 scale). However, further improvement for clinical utility will

require an algorithm to reach an RMSE of 5 or less since a BDI-II change of five points

is considered "minimally clinically significant" [55]. We believe that further improve-

ment is hampered by the small size of the AVEC training set and that the way forward

is not only refinement of the algorithm but also the creation of larger and more robust

datasets.

3.1.3 Proposed Solution

We are developing multi-modal deep neural networks to predict BDI-II scores. We in-

corporate visual and audio neural networks into a single master neural network which

combines the features and/or predicted scores of each individual model. We will also

be incorporating text-based NLP analysis in the future as well. Crucially, our models
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will make predictions using longitudinal data from multiple sessions, taking into ac-

count previous history and predictions, a novelty in this area of work. Additionally,

our data collection will alleviate data sparsity problems associated with current deep

learning models and enable more expressive models to be developed.

Our proposed technology seeks to integrate multiple inputs for predictive ca-

pability and will track individual user mood changes over time. Our approach will

improve predictive power by accounting for intra-user variation by allowing each par-

ticipant to serve as his or her own control and will help reduce the subjectivity and

inter-user variability inherent to psychiatric diagnosis.

Our work is particularly significant because, while not everyone has access to

psychiatric care or even knows if they have a developing mental health disorder, 75%

of Americans use a smartphone [56]. With minimal intrusion into individuals’ daily

lives, we believe our solution can assess mood changes longitudinally, predict signs

of an upcoming major depressive episode, monitor efficacy of treatment, and appro-

priately offer connections to care when needed. The technology will allow for more

frequent assessment of disease status than possible with often infrequent clinic visits,

and, by providing a readily available system, we can democratize mental healthcare to

the most in-need populations. This technology has the potential to significantly impact

the epidemic of undiagnosed depression.

Our technology may reveal novel insights into treatment efficacy, disease seg-

mentation, and alleviating and exacerbating environmental factors. This may be par-

ticularly useful during evaluation of patients undergoing clinical trials of novel agents.

Additionally, after developing an algorithm that can use a multimodal inputs to detect

signs of depression, we hope to expand towards screening and treatment monitoring

for other mental health disorders including burnout, bipolar disorder, schizophrenia,

Alzheimer’s, and Parkinson’s Disease. Additionally, our active methodology innova-

tion will allow us to expand our technology to the clinic and acute care settings. In
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the clinic, we imagine our active video analysis functionality to provide valuable, non-

invasive immediate diagnostic and clinical support information useful during telepsych,

telemedicine, and in-person clinical encounters. Passive tracking, such as monitoring

weeks of phone activity, will not be able to do this.

In addition to our goal of developing a "state-of-the-art" neural network to pre-

dict depression, we are also excited to develop a longitudinal audio-visual database

correlated with depression scores. This sort of data would be the first in existence,

since it has historically been very difficult to obtain. Obtaining videos that are tied to

ground truth will generate a promising source of information that can be used in later

studies outside of our own, and we believe that it could be the source of significant

academic and translational productivity both for our project and others to come.

3.2 Methods

3.2.1 Overview

As described in the introductory sections, our overall neural network analysis can cur-

rently be split primarily into video and audio analysis.

Current input data consists of videos (including audio in German) from the

academic AVEC 2014 database. It is a dataset of 150 videos (50 for training, 50 for

testing, and 50 for development) of individual people speaking to a webcam. Each

video is labelled with an individual’s BDI-II score (0-63). As mentioned before, the

actual scores range from 0 to 45, highlighting the skew towards non-depressed patients.

Currently we have two separate networks for audio and for visual data. We

are planning to output a final score by learning a weight between the scores of the two

networks and the desired BDI-II score. Another option we are considering exploring

is to see how we can combine the audio features and the video features into a single

neural network which combines features to learn BDI-II score.
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The primary future aim of this work is to obtain orders of magnitude more data

to significantly improve accuracy beyond that seen in the literature. Not only will the

quantity of data be significantly increased (one of the best ways to improve neural net

performance), but the quality will also be higher than anything previously gathered as

will be further described in section 3.2.4.

3.2.2 Video Analysis

Work for building and tuning the video neural net architecture was done primarily by

my colleague Michael Day.

A neural network was developed using Python scripts and programs using

Keras packages running on a TensorFlow backend. Specifically the neural net created

was a 19-layer convolutional neural network, a gold-standard neural network for im-

age classification and computer vision tasks.

Our network has 19 weighted layers. We apply three sets of three convolu-

tion layers with each followed by 2x2 max-pooling layer. Our 2D convolution layers

apply a 3x3 convolution with 32, 64, and 128 output filters. Then we flatten our 3D

feature maps to a 1D feature vector, and feed those vectors through two 64-node fully-

connected dense layers with 20% dropout each. The network ends with a single-node

dense layer that will output a single predicted BDI-II score per set of inputs. Dense

layers perform classification on the features extracted by the convolutional layers and

downsampled by the pooling layers. Faces are extracted from input images using Haar

cascade classifiers, and the faces are reduced to 48x48 grayscale images to improve run-

times and normalize inputs across different resolutions (per state-of-the-art practices).

The model is compiled using an Adam optimizer and measures mean squared error

as its loss metric. Activation functions primarily consisted of recitified linear units

(ReLU).
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Many different training iterations were run for hyperparameter tuning in order

to optimize the neural network’s accuracy on the test set. Tunable variables included:

number of epochs, batch size, number of samples taken per video, and data augmen-

tation features including: minimum face size, Haar cascade classifier scale factor, Haar

cascade classifier minimum number of neighbors, horizontal flip, face image rescale

size.

The optimal neural net was one in which the epochs were infinite and the model

ceased training after no improvements were made in many (unsure of number) epochs.

Only the best models having the lowest mean squared error were saved. The following

parameters were ultimately used: batch size = 128, 500 samples taken per video, mini-

mum face size = 30x30, Haar cascade classifier scale factor = 1.1, Haar cascade classifier

minimum number of neighbors =5, horizontal flip = off, face image rescale size = 48x48.

Training was performed over 781 epochs for more than 72 hours on a desktop

computer with one NVIDIA 980ti graphics card with 6 GB RAM.

3.2.3 Audio Analysis

Work for building and tuning the audio neural net architecture was done primarily by

my colleague Alexander Fabbri.

Currently the audio architectures extracts MFCC features based on the Fourier

transform of a speech signal (13 features per timestep) from the entire audio stream;

additional features including Mel-frequency cepstral coefficients (MFCCs) will be ex-

tracted moving forward. Feature selection is then completed to determine the most

relevant features. The features are then fed into a Gated Recurrence Unit (GRU) of

dimension 100 as part of a Gated Recurrence Neural Network. By training on audio

data labeled with BDI-II, our networks learn to output BDI-II scores for our test set.

Regarding the datasets, we have data split into train, development and test sets.
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Alex is currently implementing the following techniques to further improve ac-

curacy. We plan to use cross validation to examine the results of our algorithms. In the

cases where our data is skewed, we plan to explore undersampling and oversampling

methods. We will also explore binning the samples to alleviate data sparsity. However,

our end goal is to be able to perform fine-grained analysis of the spectrum of depres-

sion. Additionally, we plan to use L1 regularization, L2 regularization, their combina-

tion (also known as Elastic Nets) as well as dropout to allow better generalization of

our neural networks. We will use standard optimization techniques such as gradient

descent and its variants (Adam, AdaGrad, Nesterov gradient descent, RMSprop) as

well as cutting-edge optimization techniques such as super-convergence and 1-cycle

learning rate scheduling. Related to combining various modes of input, we would like

to analyze textual input related to BDI-II scores, either by converting speech to text and

then using Natural Language Processing techniques or through additional meta-data.

More generally, we want to explore the effect of “out of domain” data on our neural

network; how training with additional data taken from a different setting or pilot study

affect our results. We would like to see how we can unbiasedly identify subgroups of

patients. Also, we want to be able for our algorithms to continually learn and not have

to re-train our algorithms every single time a new data point is added.

3.2.4 Pilot Studies for Gathering of First-in-Class Data

Work for designing and implementing these pilot studies was done primarily by Nicholas

Chedid.

3.2.5 Need for Additional Data

The only currently openly available audiovisual datasets correlated to depression come

from AVEC and this data has several significant weaknesses, which highlight many of

the needs for additional data in this space.
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1) The AVEC datasets correlated to BDI-2 scores consist of only 150 videos; it is

a generally accepted maxim in machine learning that increasing training data is one of

the most effective ways to improve algorithm performance.

2) The audio in these videos is only in German; having audio in several lan-

guages could enhance the generalizability of our algorithms.

3) This dataset, similar to many in medical research and the facial recognition

space, consists of a relatively racially and ethnically monolithic participant popula-

tion; facial recognition algorithms and medical research in general are hampered by

non-diverse data which limits generalizability and applicability of such research. For

example, prior studies show that the accuracy of facial recognition algorithms is sensi-

tive to the demographic composition of both training and test data [57, 58]. Numerous

papers describe the importance of diverse patient populations in medical studies in

general as well [59, 60, 61]. Inclusion of minority participants in NIH funded research

continues to be an ongoing issue; for example, since the NIH passed the Revitalization

Act in 1993 to address this, less than 2% of the greater than 10,000 cancer clinical tri-

als funded by the National Cancer Institute included sufficient minority participants to

meet the NIH’s own criteria [60].

4) The AVEC database does not contain longitudinal data i.e. multiple videos

and BDI-2 scores from participants over time. We hypothesize that audiovisual data

collected longitudinally allows for more accurate prediction of BDI-II compared to data

from a single encounter. One possible reason for improved performance would be the

ability to measure a patient’s delta or relative change from assessment to assessment as

opposed to relying on just an absolute BDI-2 score.

5) The AVEC dataset lacks extreme BDI-2 scores particularly at the higher end

of scoring with the majority of scores clustered in the low to intermediate range. This

lack of data significantly hampers the ability of any algorithms trained on this data to

detect more significant depression.
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We are in the final stages of IRB approval to begin our first pilot study at Ponce

Health Sciences University in Puerto Rico to address many of these shortcomings as

seen in section 3.2.7. We are also in the process of beginning several other pilot stud-

ies to further address these issues with emergency room patients (section 3.2.8) and

medical residents (section 3.2.6).

3.2.6 Pilot Study with Medical Residents

I will begin with the development of our pilot studies with medical residents because

this was the original motivation to develop an artificial intelligence mental health screen-

ing technology. As a medical student, it was easy to see the epidemic of depression

and burnout among medical trainees. The evidence is sobering. In a meta-analysis

of 54 studies by Mata et al. published in JAMA, the estimated prevalence of depres-

sion among resident physicians was 28.8% [62]. In another multicenter-study focusing

on surgical residents by Williford et al. and published in JAMA surgery, the estimated

prevalences of burnout and depression among surgical residents were 75% and 39%

respectively [63]. For context, the estimated prevalence of depression among the gen-

eral population is approximately 9% and, more specifically, between 12-13% in adults

of residency age (25-34) [64]. Additionally, the Accreditation Council for Graduate

Medical Education (ACGME) has recently rolled out new Common Program Require-

ments that require every residency program to address physician well-being, burnout,

self-care, and mental health issues including requirements to improve mental health

screening of residents.

In addition to the aforementioned significant need for work improving mental

health in medical trainees, a pilot in this population would also address many of the

shortcomings of the AVEC dataset as described in section 3.2.5. Specifically, it would

allow us to greatly increase the quantity of our data, have data in English in addition to

German, increase ethnic and racial diversity of our data, obtain longitudinal data, and

likely gather more more varied data with possibly higher BDI-2 scores given that the
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prevalence of depression in medical trainees is more than double that of their same-age

peers (29% vs 12-13%) as described above within this same subsection.

Realizing this, I met with Dr. Rosemary Fischer, Director of Resident and Fel-

low Well-Being at Yale New Haven Hospital, to discuss implementing a pilot study to

gather additional training data to improve the accuracy of our neural networks. Fol-

lowing these discussions, I went on to give an oral presentation of our proposed pilot

study and technology at the Yale Innovation Summit where I also presented a poster

titled, Artificial Intelligence for the Detection of Psychiatric Disease, which won Best Tech

Poster.

The feedback from these presentations was invaluable. Incorporating this feed-

back, I then gave an oral presentation titled, An AI-enabled mobile gaming platform for the

early detection of psychiatric disease, at the Stanford Medicine X ED conference. There I

was fortunate to meet with the President of Ponce Health Sciences University (PHSU)

in Puerto Rico to discuss our work. Given our mutual interest in conducting a pilot

study at PHSU, he invited me to present a pilot proposal to the Deans of PHSU. This is

further discussed in section 3.2.7.

Our specific aims are:

• Specific Aim 1: Confirm that our algorithm is capable of accurately predicting

whether an individual has mild depression or greater, as defined by the BDI-II

instrument. Criteria for Acceptance: Our algorithm will achieve a sensitivity of

75% and specificity of 85% in predicting a BDI-II score greater or equal to 14.

– Rationale:

∗ A BDI-II score of 14 or greater corresponds to depression ranging from

mild to severe

∗ Primary care physicians have a sensitivity of 51% and specificity of 87%

at detecting depression without an instrument [65]
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∗ The most common screening instrument (PHQ-9) has a sensitivity of

74% and specificity of 91% at detecting depression [66]

∗ Given the above three points, we are aiming to maintain comparable

specificity while exceeding PHQ-9 and primary care sensitivity, which

is our primary focus given that we are initially developing a screening

technology

• Specific Aim 2: Demonstrate that longitudinal analysis of a user’s audiovisual

data can detect clinically important BDI-II changes. Criteria for Acceptance: Our

algorithm will predict BDI-II scores with a root mean square error (RMSE) of less

than 7.

– Rationale:

∗ The ability to measure changes over time is essential to identify at-risk

subjects who transition between depressive and non-depressive states

and monitor improvement in depressed patients undergoing treatment

∗ An approximate 5-point change in the BDI-II score corresponded to a

minimal clinically meaningful change in severity according to DSM-

IV [55]

∗ Given that a corresponding RMSE of 5 in real-world data is so far above

current standards, we are aiming for an RMSE < 7 at the conclusion

of Phase 1 of our STTR grant with the goal of reaching RMSE5 twelve

months after concluding Phase 1

Eligible participants for this study include all residents at Yale New Haven Hos-

pital. Recruitment will follow a consecutive sampling strategy with a recruitment goal

of 150 residents. We aim to have 100 medical residents complete this study, with com-

pletion defined as completing one survey per month. Participants will be reimbursed

upon completion of the study.
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Study participants will be directed to download the Sol application via an email

link. For participants who do not use a smartphone, a link to a weekly Qualtrics survey

will be provided. Via the Sol app or Qualtrics, participants will be asked to record their

answer to a simple question like, “How was your day yesterday?” There will be both

a Spanish and English version of the application and survey. Users can choose which

language they prefer. Care will be made to not ask questions that could be potentially

triggering to participants. Following completion of the video response and successful

upload (either automatically via the Sol app or manually uploaded through Qualtrics),

each participant will be presented with a BDI-2 survey. Each response will be tagged to

the associated video and delivered to secure, HIPAA compliant servers for subsequent

analysis by the predictive AI algorithms.

We are currently applying for an NIMH STTR grant to fund this pilot and the

Emergency Department pilot. Our aim is to begin this pilot in October as funds from

the grant disburse. Pilot duration will be 12 months: 3 months enrollment, 6 months

data collection, and 3 months data analysis.

3.2.7 Pilot Study at Ponce Health Sciences University

As mentioned in section 3.2.6 , I was invited to give an oral presentation to the President

and Deans of PHSU in Puerto Rico to discuss a pilot study proposal. I presented this

as: An AI technology for the screening of depression in healthcare students.

Recognizing the strong need for improved mental health among healthcare

trainees and excited by our proposal, PHSU was excited to collaborate. Two psychol-

ogy PhD students were recruited to administer and run the pilot study locally with Dr.

Nydia Ortiz, Dean of the School of Behavioral and Brain Sciences and the former Di-

rector of the Puerto Rico Mental Health and Substance Abuse Administration, serving

as the site PI.
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The data gathered from the PHSU pilot will serve to further address the weak-

nesses of the AVEC dataset and also strengthen areas of our resident pilot. Specifically,

it will allow us to increase our data size beyond what would be possible with the resi-

dent pilot, to add Spanish data to our English and German data, to even more signifi-

cantly increase the racial and ethnic diversity of our data particularly among Hispanic

participants, to obtain longitudinal data, and to likely gather more varied data with

higher BDI-2 scores than found in AVEC. The resident pilot would still likely allow

for gathering of higher BDI-2 scores given the high prevalence of depression among

resident trainees.

Our pilot is titled: An AI-enabled mobile application for the rapid assessment and risk

stratification of depression in medical professionals.

Our objectives are:

• Objective 1: Collect audiovisual data which can be used to identify patterns of

facial and linguistic expression, as well as other relevant predictors, useful in the

identification of depression in the study population

• Objective 2: Compare the effectiveness of an AI-powered facial and linguistic

analysis algorithm to detect signs of depression as compared to a BDI-2 question-

naire.

• Objective 3: Validate the feasibility and utility of rapid, automated psychiatric

risk stratification via a mobile interface

Eligible participants for this study include any healthcare students aged 21 or

older, the legal age of medical consent in Puerto Rico, enrolled at Ponce Health Sciences

University (PHSU). Recruitment will follow a consecutive sampling strategy with an

estimated sample size of 300 - 400 students. We aim to have 150 students complete

the study with completion defined as completing one survey per month. There will

be two primary arms to this study that will have equal numbers of participants: one

conducted in English and the other conducted in Spanish.



Chapter 3. Neural Networks for Depression Screening & Treatment Monitoring 42

Study participants will be directed to download the Sol application via an email

link. The application is a simple touch-based interface that will allow for the video

recording of a user. For this study this app is meant to be a data gathering tool and

not a diagnostic tool. For participants who do not use a smartphone, a link to a weekly

Qualtrics survey will be provided. There will be both a Spanish and English version

of the application and survey. During study registration, users will answer a 5-point

Likert language proficiency question for both English and Spanish, with scores ranging

from basic to native. Users who score 3 and above in only one language will complete

the study in that language. Those who score 3 and above in both English and Spanish

will be randomized and complete the study in either language.

Via the Sol app or Qualtrics, participants will be asked to record their answer

every other week to a simple question such as, “How was your day yesterday?” Care

will be made to not ask questions that could be potentially triggering to participants.

Participants will also be asked each week if they are clinically diagnosed with depres-

sion or are in treatment for depression. Following completion of the video response and

successful upload (either automatically via the Sol app or manually uploaded through

Qualtrics), each participant will be asked to complete a BDI-2 survey We anticipate the

entire interaction with the application will take approximately 5 minutes.

Each response will be tagged to the associated video and delivered to secure,

HIPAA compliant servers for subsequent analysis by the predictive AI algorithm. Servers

are specifically run through Amazon Web Services on their HIPAA secure platform.

Only the study programmers will have access to the information on these servers, as

they will use the data to improve the AI algorithm.

The IRB is in the final stages of approval. We aim to begin recruitment this

March. Pilot duration will be 6 months.
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3.2.8 Pilot Study with Yale Emergency Department Patients

As we prepared our NIMH STTR grant, we realized that one limitation of the AVEC

data was still not being sufficiently addressed by our other two pilot studies: the lack

of more extreme BDI-2 scores particularly at the higher end of scoring. This lack of

data could significantly hamper the ability of our algorithms to detect more significant

depression.A pilot study in the emergency department would allow us to selectively

recruit depressed patients to address this.

One drawback of a pilot in the emergency department would be the lack of

longitudinal data. Fortunately, this ability to provide longitudinal data is a strength of

the two previously described pilot studies. This drawback can also be seen to provide

some benefit. Namely, given the non-longitudinal nature of participation in this pilot,

which would allow for lower reimbursement per participant, it will be much easier

to have a significantly higher number of participants. So while the data may not be

longitudinal, there is benefit to be gained from having a much greater variety of faces

and voices for analysis.

Our specific aim is the same as specific aim 1 in section 3.2.6, since both pilots are part

of the same NIMH STTR grant application:

• Specific Aim 1: Confirm that our algorithm is capable of accurately predicting

whether an individual has mild depression or greater, as defined by the BDI-II

instrument. Criteria for Acceptance: Our algorithm will achieve a sensitivity of

75% and specificity of 85% in predicting a BDI-II score greater or equal to 14.

– Rationale:

∗ A BDI-II score of 14 or greater corresponds to depression ranging from

mild to severe

∗ Primary care physicians have a sensitivity of 51% and specificity of 87%

at detecting depression without an instrument [65]
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∗ The most common screening instrument (PHQ-9) has a sensitivity of

74% and specificity of 91% at detecting depression [66]

∗ Given the above three points, we are aiming to maintain comparable

specificity while exceeding PHQ-9 and primary care sensitivity, which

is our primary focus given that we are initially developing a screening

technology

Eligible participants for this study include all patients in the Yale New Haven

Hospital Emergency Department and Crisis Intervention Unit (CIU) over the age of 18

with a clinic suspicion of depression. Exclusion criteria: excessive agitation or a his-

tory of schizophrenia or schizoaffective disorder. Enrollment and data collection peri-

ods will occur simultaneously as each participant will immediately complete the study

after being enrolled (i.e. recording a video response to a question and completing the

BDI-II survey). Completing those steps will take less than 5 minutes. Participants will

be reimbursed upon completion of the study. The enrollment goal is 400 participants.

The simultaneous enrollment and data collection periods will last for 7 months.

Study participants will be directed to complete a survey on either the Sol app

or Qualtrics on one of the Emergency Department iPads designated for research. Par-

ticipants will be asked to record their answer to a simple question like, “How was your

day yesterday?” There will be both a Spanish and English version of the application

and survey. Users can choose which language they prefer. Care will be made to not

ask questions that could be potentially triggering to participants. Following comple-

tion of the video response and successful upload, each participant will be presented

with a BDI-2 survey. Each response will be tagged to the associated video and deliv-

ered to secure, HIPAA compliant servers for subsequent analysis by the predictive AI

algorithms.

We will be submitting an NIMH STTR translational grant on April 1st to fund

this pilot and the medical resident pilot. Our aim is to begin this pilot in October as
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funds from the grant disburse. Pilot duration will be 12 months: 9 months simultane-

ous enrollment and data collection and 3 months data analysis.

3.3 Results

Currently, several pilot studies have been designed. The first, our pilot study at Ponce

Health Sciences University in Puerto Rico, is aimed at acquiring more diverse data.

We are in the final stages of IRB approval and are aiming to begin recruiting in March.

Using this new data, we hope to update our neural network results prior to the start of

our other pilot studies.

Additionally, after several presentations and the associated feedback and the

formation of the several collaborations over time, we have designed two other pilot

studies incorporating medical residents and ED patients, which we are applying for an

STTR grant for in April.

The measure most commonly used to test the accuracy of a neural network is

root-mean-square error (RMSE), which is a measure of the average difference between

a predicted and actual value (BDI-II score in this case). Our previous best results are

displayed in 3.1. Our video neural network had an RMSE of 10.1 and our audio neural

network had an RMSE of 11.6 with accuracies of 74% and 70% respectively. When

considering these RMSE values, it is important to remember that the range of BDI-II

scores is from 0 to 63. In addition, what is more important than getting the BDI-II score

exactly correct is knowing clinically which individuals need help. Using a BDI-II score

of 20–which indicates moderate depression–as a cutoff, our video analysis correctly

binned users 74% of the time, and the audio analysis correctly binned users 70% of the

time.

Since then we have improved our video neural network to an RMSE of 9.53

giving us the second best values in the literature. Currently we are implementing new

architectures for our audio and video algorithms in the next few weeks and are aiming
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to begin enrollment of participants in our Puerto Rico pilot this March; these updates

will allow us to further improve our accuracy.

Another next step will be the submission of our NIMH STTR grant in April,

which has already undergone many drafts.

FIGURE 3.1: Video and Audio Neural Networks Accuracy

3.4 Discussion

Regarding, improving the performance of our neural nets: increasing the amount of

input data as our pilot studies progress would likely result in an improved model from

an increased quantity of data, quality of data (longitudinal, more diverse participants,

and more diverse BDI-2 scores including more extreme values). Future enhancements

may include a similar approach for change in pupil size over time, change in emotional

sentiment over time, minimum and maximum emotional sentiment of an entire video,

and other techniques including incorporating other meta-data such as time of day or

location or lighting when video is taken. We also plan to incorporate natural language

processing analysis of text from our audio recordings to ideally further improve accu-

racy.
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As previously described, we will be creating the first longitudinal audio-visual

database correlated with depression scores. Given the critical importance of data in

machine learning and the fact that just our Puerto Rico pilot study will provide an order

of magnitude more data than the non-longitudinal AVEC database, we are confident

that we will be able to significantly outperform current best prediction tools. We also

currently plan to incorporate the longitudinal data from our pilots studies in two ways.

First, we plan to assess not just absolute BDI-2 scores but relative changes to the delta of

their scores as another possible way for predicting depressive episodes. Additionally,

a user’s scores to any and all of these neural nets may be considered as a time-series.

For example, considering the same user’s video score over a period of weeks as they

take the test multiple times.

In summary, we aim to develop a digital biomarker for depression. Develop-

ing such a digital biomarker for depression can serve as proof of concept for AI-based

diagnosis, disease segmentation, and monitoring of other mental health disorders and

of non-psychiatric diseases. Our platform will allow us to identify objective nuances in

subjectively established psychiatric disease categories and facilitate personalized treat-

ment regimens. Currently, the evaluation of chronic diseases such as depression relies

on longitudinal evaluation. The active, video nature of our technology offers the po-

tential to rapidly assess depression and other diseases instantaneously unlike current

passive techniques. Furthermore, audiovisual samples may yield valuable insights into

complex disorders such as burnout, bipolar disorder, schizophrenia, Alzheimer’s Dis-

ease, and potentially non-psychiatric conditions including Parkinson’s Disease, cere-

brovascular accidents, and myocardial infarctions. Finally, our platform could be use-

ful for screening, diagnosis, treatment monitoring, and patient selection and monitor-

ing in clinical trials of novel agents.
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