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GENETICS OF CHEMOTHERAPY RESPONSE IN TRIPLE 
NEGATIVE BREAST CANCER 
 
Li and Lifton. Department of Genetics, Yale School of Medicine, New Haven, CT 
 
Abstract 
 
Triple Negative Breast Cancer (TNBC) encompasses a wide range of treatment 

responses, however there are no predictive biomarkers approved for clinical use 

to target therapy. With a novel exome analysis method, we discovered that the 

overall proportion of the homologous recombination repair (HRR) genes affected 

by structural variation can accurately predict both positive and negative 

chemotherapy response prior to initiation of therapy in the large majority of 

patients in our cohort.  

 

We analyzed exome sequences of unpaired tumor samples, collected prior to 

ACT chemotherapy, in 17 TNBC patients who exhibit complete pathologic 

response to neoadjuvant chemotherapy (pCR) and 15 patients who had 

extensive residual disease (RD). 

 

In the process, we created one of the first analytical pipelines capable of 

performing comprehensive integrated analysis of somatic point mutations and 

structural variation in unpaired tumor exome samples. Validation on tumor-
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normal matched samples demonstrated >95% specificity for point mutations, 

LOH, and CNV calling compared to standard tumor-normal somatic analysis. 

 

When applied to the TNBC cohort, our somatic mutation caller identified multiple 

damaging somatic mutations in genes linked to EMT. LOH analysis showed 

significantly greater LOH in pCR (Complete Response) than RD patients 

(Residual Disease) (p=6.5E-12). The five regions with greatest LOH difference 

between pCR and RD subgroups each contained a HRR gene locus. Overall 

high LOH burden was associated with the presence of TP53 point mutations 

(p=0.002). 

 

By integrating data from all three methods, we found significantly more pCR 

patients with high mutation burden (including CNV and LOH) in homologous 

recombination repair genes than RD patients (83% vs 20%). With this metric, we 

can predict 83% of positive response and 80% of negative response based on 

our patients’ genomic profiles prior to chemotherapy initiation (OR=18.7, 95% 

CI= 3.2 to 110.3, p=0.0012). 

 

This result offers a potential significant improvement in our ability to personalize 

therapy in TNBC and may facilitate development of targeted PARP inhibitor 

therapeutics. 
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Chapter 1: Introduction 
 
Breast cancer is one of the most prevalent types of cancers and a leading cause 

of morbidity and mortality for women both young and old. In 2016, there were 

an estimated 246,660 new cases of breast cancer, comprising 14.6% of total 

cancer cases, and an estimated 40,450 deaths from breast cancer, comprising 

6.8% of total cancer deaths. Over a lifetime, a woman has a 12.4% chance of 

being diagnosed with breast cancer. 1 

 

In the past decade, breast cancer treatment has been revolutionized by new 

therapies designed to target specific molecular profiles allowing for treatment to 

be personalized for most eligible patients.  

 

The subsequent improvement in outcomes has led to a beacon of hope in a 

devastating disease. While new cases of breast cancer have remained relatively 

constant between 1992 and 2013, the death rate has decreased significantly 

from 31/100,000 women to 20.7/100,000.1 

 

In an early example of personalized medicine in oncology, clinicians found the 

first targetable subgroup within breast cancer with the discovery that endocrine 

therapy appeared effective in treating breast cancer in patients who overexpress 

ER/PR. Tamoxifen, a high effective breast cancer treatment that specifically 

targets ER, was shown to decrease breast cancer recurrence by 47% in patients 
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with ER+ breast cancer and reduce mortality by 26%, changing the prognosis 

for thousands of patients to come. 2 

 

However, endocrine therapy is rarely effective in patients without estrogen 

receptor and progesterone receptor. Additionally, tumors which lose expression 

of estrogen receptor and progesterone receptor during metastases were found 

to be similarly resistant to endocrine therapy.3 

 

A third marker, HER2+, was first discovered as a proto-oncogene amplified in 

30% of breast tumors. Subsequent studies found that amplification of HER2 

predicted poor survival in breast cancer. Based on this, trastuzumab, a 

monoclonal antibody targeting HER2, was developed and then found to reduce 

risk of death by 33% in patients who overexpress HER2.4 

 

All targeted therapies share the trait of working exceedingly well in patients who 

express the targeted molecular profile while showing minimal effects in patients 

lacking expression. When tested in breast cancer as a whole, without regard to 

patients’ molecular profiles, the average benefit of any of these therapies is 

greatly reduced. 

 

As such, breast cancer patients routinely undergo molecular profiling as part of 

their diagnostic work-up. The 85% of cases who express at least one marker 
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are directed towards first-line therapeutics targeted towards their individual 

tumor characteristics.  

 

Section 1A – Introduction to TNBC 

Triple Negative Breast Cancer by definition lack all 3 markers used today to 

personalize treatment. Without a targeted therapy available, TNBC patients have 

a worse prognosis than other subtypes with reduced overall survival and greater 

recurrence.5 

 

However, as a diagnosis of exclusion, tumors in TNBC are not necessarily a 

single disease, and in fact demonstrate great diversity in histopathologic 

features 6 and genetic profiles. A Cancer Genome Atlas (TCGA) study of 510 

exome-sequenced breast tumors found TP53 to be the only gene in which there 

were point mutations in the majority of TNBC tumors, with 80% of patients 

harboring a mutation. PIK3CA was found to be the next most commonly 

mutated gene with 8% of patients harboring mutations. Most other somatic 

mutations were scattered among a multitude of genes at low frequency.7 

 

Clinically, TNBC patients have a wide range of outcomes and chemotherapy 

responses. While TNBC has a worse prognosis than other types of breast 

cancer, patients who achieve pathologic complete response (pCR) after 

chemotherapy, as defined by complete absence of residual tumor tissue on 

pathologic examination, have a similar progression free survival to patients of 
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other breast cancer types. Conversely, patients with Residual Disease (RD) 

burden have significantly worse survival. 8 

 

Section 1B-Introduction to Next Generation Sequencing: 

The emergence of next generation sequencing as a key tool the lab and clinic 

has transformed the way we test and diagnose patients. Gene sequencing has 

been a key component of genetics since the discovery of Sanger Sequencing in 

19779 which sequences genes one base at a time in series. While exceedingly 

accurate, Sanger Sequencing becomes impractical for more than a small set of 

targets. As such, it has been most useful in studying single gene diseases such 

as Cystic Fibrosis and Huntington’s Disease. 10 

 

This approach becomes particularly problematic in understanding complex 

phenotypes involving multiple genes, such as hypertension, autism, and cancer. 

In such diseases, it can be difficult to narrow down a list of likely causal genes 

prior to sequencing. Diseases which have been thoroughly sequenced with other 

methods have demonstrated that there is often a broad range of genetic variation 

contributing to pathogenesis. 11 12 

 

Next Generation Sequencing utilizes a parallel sequencing approach to 

exponentially increase sequencing output. Rather than sequence single bases, 

next generation sequencing analyzes millions of bases at once.13 This has led to 
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a dramatic decrease in cost and has made whole exome sequencing of large 

cohorts feasible. 

 

In practice, the accessibility of next generation sequencing has allowed clinicians 

and scientists alike rapidly obtain data on the nearly complete genomic 

landscape of patients, and has enabled the discovery of novel and often times 

unexpected mechanisms of disease in both Mendelian disease and cancer.  

 

Section 1C- Impact of Genomics in Oncology 

In oncology, next generation sequencing (NGS) has had a particularly profound 

impact. Despite its recent discovery, the vast trove of data produced by next 

generation sequencing has already impacted the way we understand, diagnose, 

and treat cancer. 

 

Prior to the advent of next generation sequencing, imatinib proved the concept 

of targeting a specific mutation to treat cancer by rationally designing an 

inhibitor for the BCR-ABL fusion protein found in most CML patients. 14  

 

Next generation sequencing has greatly accelerated this process of discovering 

new targetable mechanisms and driver mutations.  

 

Section 1D – Genomics in Oncology: Discovery of New Mechanisms 
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One of the key advantages of next generation sequencing lies in its ability to 

sequence an entire exome or genome. For rare and poorly understood diseases 

in which we do not have known mechanisms, whole exome sequencing can 

reveal entirely novel and unexpected disease mechanisms.  

 

As an example, in fibrolamellar hepatocellular carcinoma (FHC), a rare liver 

tumor, sequencing has led to the rapid development of a new targeted therapy. 

The first study of its kind sequenced 15 patients with FHC, and found that all 

patients harbored a novel chimeric transcript: DNAJB1-PRKACA.15 Based on 

this research, a compound targeting one of the components of the chimeric 

protein is currently in clinical trials less than 2 years after discovery.  

 

Similarly, small cell carcinoma of the ovary, hypercalcemic type, had long been 

a poorly understood disease that often went undiagnosed due to a lack of 

reliable specific markers for diagnosis. Exome sequencing revealed to be driven 

by SMARCA4, previously not implicated in this disease, as 30/32 cases in the 

study contained SMARCA4 mutations. This discovery has not only led to new 

insights on the pathogenesis of this disease, but also a possible diagnostic 

marker and direction for therapeutic research.16  

 

Section 1E – Genomics in Oncology: Personalizing Therapy 

For better studied diseases in which we already have an understanding of the 

pathophysiology, gene sequencing can be used to characterize new molecular 
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subtypes that can serve as a basis for personalizing current therapies to fit a 

patient’s molecular profile and as a basis for discovery of new treatment 

strategies.  

 

In non-small cell lung carcinoma, the discovery of key driver mutations has led to 

a new treatment paradigm guided by a patient’s somatic mutation landscape. 

Patients with somatic mutations in EGFR were found to respond well to Gefitinib, 

a drug targeting EGFR. (Lynch, 2004)17 Based up on the discovery of a second 

recurrent somatic mutation, the EML4-ALK fusion protein, a new treatment was 

developed specifically to target this mutation.18 

 

In the near future, it may in fact be feasible to target the mutation profile of a 

patient rather than cancer type. The National Cancer Institute identified 24 gene 

mutations with targeted treatments, and is currently undertaking a clinical trial to 

evaluate the efficacy of treating patients with at least one of these 24 mutations 

based on their molecular profiles rather than cancer type. 19 

 

Section 1F - Genomics in Oncology: Improving upon existing therapeutics  

For patients who do not respond to therapy or who develop resistance, gene 

sequencing has been used to discovery mechanisms behind drug resistance. 

 

In melanoma, next generation sequencing has been used to discover multiple 

mechanisms of resistance in patients treated vemurafenib, a BRAF targeted 
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therapy, including novel amplifications, 20 downstream mutations 21, and 

activation of alternate pathways. 22 

 

For melanoma patients treated with anti PD-1 immunotherapy, exome 

sequencing was used to discovery mechanisms of resistance even prior to FDA 

approval. 3/4 patients who had developed resistance in clinical trials were 

sequenced and found to have acquired mutations in genes involved in 

interferon-receptor signaling and antigen presentation upon relapse. 23 

 

These discoveries not only demonstrate the potential of next generation 

sequencing to rapidly discover mechanism of resistance, they also set the 

foundation for development of second line therapy and next generation targeted 

therapies. 

 

Chapter 2: Development of Methods 
 
All methods described in this section were coded and validated by the author, 
under the close guidance of Dr. Lifton. 
 
Section 2A – The Challenge of Analyzing Unpaired Tumors:  

In order to perform comprehensive analysis on this cohort of unpaired TNBC 

tumor samples and enable analysis of other unpaired tumor exome samples, 

we’ve developed a novel method which conducts specific analysis of point 

mutations, loss of heterozygosity, and copy number variations in unpaired tumor 

exome data. 



	 13	

 

 Current gold standard algorithms rely on differences between tumor and normal 

samples to distinguish somatic mutations and germline mutations. In the absence 

of paired normal samples, we’ve developed and validated novel algorithms that 

rely on prior distributions to specifically call somatic point mutations and 

structural variation. 

 

Tumor biopsies have been routinely obtained for diagnosis and cancer grading 

for decades. 24 Thousands of samples are currently stored in tissue banks and 

may contain many new insights in their somatic mutation landscapes. 25 26 

 

However, among the many routine biopsies obtained annually, few have 

matched blood controls. 27 Most samples contain only tumor tissue, from which 

we can obtain limited data with today’s genomic tools.  As a result, TNBC and 

many other tumors have fallen behind the full potential of next generation 

sequencing to understand their biology and potential therapeutic strategies. 

 

A reliable method analyzing unpaired tumor samples can enable exome 

sequencing to unlock genomic insights in thousands of unmatched tumor 

samples which are unanalyzable with today’s methods.  

 

Section 2B – Challenge of Calling Somatic Point Mutations  
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Somatic mutations and germline mutations play important yet distinct roles in 

pathogenesis of cancer.  Whereas germline mutations affect cancer 

predisposition, somatic mutations drive the complex evolution and biology of a 

tumor. The Hallmarks of Cancer, as famously outlined Hanahan and Weinberg, 

define essential capabilities for tumor cells to survive and proliferate. While 

certain germline mutations may contribute to this process, these capabilities are 

typically acquired during the evolution of tumor cells.28 Thus, sensitive and 

specific identification of somatic mutations is essential for understanding the 

biology of malignant transformation, treatment resistance, and molecularly 

profiling of tumors. 

 

However, there are significant challenges in reliably detecting and calling 

somatic mutations. Germline variants within most tumors vastly outnumber 

somatic variants as somatic point mutations tend to occur at low frequency.29 

Additionally, minor allele frequencies of somatic mutations are highly variable 

due to tumor heterogeneity and presence of sub-clones within a tumor. 30 

 

Even in highly conserved tumor suppressor genes such as TP53, variants within 

a tumor sample can include somatic driver mutations acquired in tumorigenesis 

as well as benign germline variants present since birth. 31 32 

 

Current methods overcome these challenges by comparing the sequence of a 

tumor sample to that of a non-tumor sample from the same patient to call 
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somatic mutations. Since somatic mutations by definition arise in the tumor, 

mutations detected only in the tumor sample are most likely somatic. Nearly all 

somatic mutation callers today use variations of this approach33 which precludes 

analysis of non-paired cohorts, such as this TNBC cohort.  

 

In order to reliably analyze this cohort and other unpaired tumor cohorts, we 

developed and validated a novel somatic mutation caller that only requires a 

tumor sample. 

 

Section 2C – Development of Bayesian Classification Algorithm 

Tumor samples typically contain a mix of tumor cells and contaminating normal 

cells, including stromal cells and immune cells34. As such, we expected and 

observed that the distribution of germline mutation minor allele frequencies 

centers around 0.5, as both alleles are present in equal proportions in both 

normal cells and tumor cells in the absence of LOH, whereas somatic MAFs 

should have a maxima lower than 0.5 as these are only present in the tumor 

cells as shown in Figure 1. 
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Noisy LOH Plot

 
Figure 1: Germline vs Somatic Minor Allele Frequency – Minor allele frequencies of Germline 
and Somatic mutations from a tumor-normal paired sample exhibit distinct distributions. 
 
Based upon this concept, we applied a Bayesian inference based algorithm 

(Figure 2) to accurately calculate the probability of mutation to be germline, with 

probability of being somatic calculated as the complement. (1-p(germline)) 

 
 

€ 

p(g |maf ) =
p(maf | g)p(g)

p(maf )
 

Figure 2: Bayesian Equation to determine probability of germline mutation - Probability of a 
germline mutation given a minor allele frequency p(g|maf) is calculated with the distribution of 
minor allele frequency of rare variants in normal samples represented in p(maf|g), the estimated 
proportion of germline variants in the sample p(g), and the overall distribution of minor allele in 
the tested sample, p(maf). 
 
The prior distribution of germline variants, p(g), was collected from novel 

germline variants in a panel of normal controls from other cohorts. We estimated 

the prior probability of a germline variant within the cohort by clustering minor 

allele frequencies with a parameterized Gaussian mixture model. 35 
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The use of the prior probability is important for accurate calling as somatic 

mutation counts vary significantly between tumors.  We expect that the 

probability of a mutation to be a somatic is lower in a tumor with few somatic 

mutations than a tumor with a hyper mutation phenotype at any given minor 

allele frequency. 

 

Once all the parameters are inputted, the algorithm calculates posterior 

probability of germline vs somatic origin for each minor allele frequency and 

calls somatic mutations based off of a probability cutoff. 

 

One key challenge in calling somatic mutations with minor allele frequency (MAF) 

is loss of heterozygosity. MAFs of germline variants within regions of LOH can 

be altered to similar values as somatic variants MAFs. (Figure 3) 

 

Therefore, we developed an automated algorithm to filter calls in LOH regions. 

To strike a balance between maintaining high specificity while not losing 

potential driver mutations, we first analyzed non-LOH calls with the Bayesian 

Algorithm to generate a list of high confidence somatic mutations. We then used 

novel variants found in LOH regions to inform our rankings and analysis of these 

genes. 
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Figure 3: Minor Allele Frequency in High LOH Sample – LOH in this sample alters minor allele 
frequencies of germline variants, which can mask somatic calls and reduce specificity, 
particularly in a sample with few somatic point mutations such as this sample. By filtering out 
variants in LOH regions, we can maintain high specificity in tumors with high LOH. 
 
 

Section 2D – Validation of Bayesian Classification Algorithm 

We validated the Bayesian Algorithm against GATK and Mutect2, the two most 

commonly used germline and somatic mutation calling methods today. These 

samples are paired samples were randomly selected from an ongoing ovarian 

cancer exome sequencing project. Samples without significant somatic 

mutation burden, and with extremes of tumor purity were excluded to maintain 

comparability between the validation cohort and the TNBC cohort.  

 

In each pair, the normal sample was removed and the remaining tumor-only 

sample was analyzed with the Bayesian Algorithm. As a gold-standard 

comparison, we called known somatic variants with the Mutect2 somatic variant 

caller and called known germline mutations by analyzing only normal samples 

with GATK. 
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Compared to Mutect2 paired calling, tumor-only analysis with the Bayesian 

Algorithm achieved 87% sensitivity and 98% specificity.  

 

Sample	# True	Positive False	Positve True	Negative False	Negative
1 18 4 158 0
2 28 1 93 1
3 12 0 125 1
4 18 2 57 8
5 21 1 130 2
6 7 2 46 0
7 3 2 156 0
8 5 7 67 5  

 
Bayesian Algorithm Validation Cohort – A summary of the sequencing quality as output by 
GATK. On average, tumors were sequenced to high depth of coverage with a mean coverage of 
163.9, a necessity for accurate somatic mutation calling. 
 

Section 2E – Role of Loss of Heterozygosity (LOH) in Cancer  

LOH and aneuploidy are key sources of tumor genetic variation. Mechanisms 

behind LOH include chromosomal recombination, both homologous and 

nonhomologous, as well as mitotic non-disjunction for chromosome-wide 

events. 37 

 

In cancer, these mechanisms can play a key role in deleting tumor suppressors 

and creating copy number changes. As proposed in the Knudson Two-Hit 

Hypothesis, certain key transformations in cancer require two separate mutation 

events, particularly if a single healthy allele can maintain tumor suppressor 

function as seen in retinoblastoma. 38 LOH can serve as the second event by 

removing the healthy allele and over expressing the disease allele leading to 



	 20	

cancer. 39 As such, in Li-Fraumeni Syndrome, where patients have a deleterious 

germline mutation in TP53, patients with tumors often demonstrate LOH at TP53 

alongside germline mutations in TP53. 40 

 

Other studies have shown that LOH plays a key role in the oncogenesis of 

multiple types of cancer, including loss of VHL in Renal cell carcinoma41 and 

LOH in PTEN in multiple cancers including breast cancer, endometrial cancer, 

and thyroid cancer.42 Additionally, LOH in specific loci have been proposed as 

markers for cancer risk prediction based on correlation with clinical 

characteristics. 43 

 

Section 2F - Current challenges in LOH Calling 

Current algorithms for LOH calling, including ExomeCNV44 and ExomeAI45, call 

LOH by comparing the difference of B allele frequency deviation from 0.5 

between case and controls.  

 

Without LOH, most SNVs have B-Allele frequencies that center around 0.5. With 

LOH, we expect heterozygous mutations to have B allele frequencies to form a 

bimodal peak at <0.5 and >0.5. This difference is a key metric used for calling 

LOH and is quantified as the absolute deviation from expected B allele 

frequencies: |BAF – 0.5| Current methods call LOH by filtering for regions where 

the average deviation in the tumor is greater than the average deviation in the 

control.  
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Manual calling, or visual calling, can be used to call LOH as well. However, this 

presents challenges in consistent calling and may be prone to experimenter bias 

without proper blinding. 

 

Section 2G – Development of Novel LOH Calling Method 

With unpaired samples, we found that relying on average deviation alone risks 

overcalling LOH, particularly in tumor samples which have high variability in B 

allele frequencies due to tumor heterogeneity and tumor impurity. In recurrent 

regions of LOH, it can be difficult to determine whether the changes in BAF 

deviation (|BAF-0.5|) are due to a recurrent artifact or a true significant mutation 

(Figure 4). 

 

Noisy LOH Plot
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Figure 4: Effect of Variance on LOH Calling - We created a simulated a dataset to demonstrate 
the effect of variance in false-positive LOH calls. Neither of these two regions have LOH, given 
the presence of expected heterozygous alleles. However, the average deviation from expected B 
allele frequency, as measured by distance from 0.5, is markedly different between these 
samples. Based on this metric alone, as most methods use, the high variance sample may be 
indistinguishable from actual LOH, particularly in impure tumor samples. 
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Current algorithms avoid false positive calls by using a paired control to filter 

effects of local variance. To accurately call LOH without paired normal samples, 

we developed a novel method that accounts for the observed evidence as well 

as the prior distribution of expected B allele frequencies.  

 

Similar to current methods, we use the presence of deviated B allele frequencies. 

However, we also incorporate the absence of expected heterozygous B-allele 

frequencies near 0.5 to create a new metric for LOH calling.  By using both 

metrics rather than BAF deviation alone, we can increase sensitivity and 

specificity of LOH calling without a paired tumor sample. 

 

Section 2H – Validation of LOH Calling Method 

We validated our approach in 3 steps. We first confirmed that regions of LOH 

called with our algorithm aligned with visual calling in a set of 10 tumor samples. 

To evaluate sensitivity and specificity, we analyzed a set of 3 tumor-normal 

breast cancer paired samples. We found that our novel algorithm was >98% 

sensitive and >98% specific when compared to paired calling.  

 

Finally, to further test the frequency of false positive calls, we tested our 

algorithm on a panel of 25 normal samples collected from multiple tumor 

projects including ovarian cancer and uterine serious carcinoma with the 
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assumption that normal samples should not contained significant LOH. In this 

test, unpaired calling was shown to be >98% specific compared to paired 

calling. 

 

Section 2I – The Role of Copy Number Variation in Cancer 

CNVs form a key component of genomic diversity in disease. 46 Compared to 

SNVs, which have a relatively constant mutation rate of 1.8–2.5 × 10-8 per base 

pair, CNVs have a highly variable mutation rate across diseases ranging from 1.7 

× 10−6 to 1.0 × 10−4. 47 In breast cancer, this rate may be even higher given the 

key role of homologous recombination repair deficiency. 

 

As such, CNVs have been found to be a key driver of several Mendelian 

diseases, including Spinal Muscular Atrophy48 and Williams syndrome 49. In 

cancer, recurrent CNVs have been found in multiple tumor types, often in 

proteins required for cancer cell survival. 50 Recurrent somatic CNVs have also 

been linked to prognosis and shown to be a necessary component for tumor 

proliferation in some cancers51.  

 

Section 2J – Summary of Current CNV Calling Methods  

Reliable calling of copy number variation in exome data faces unique challenges 

due to the nature of exome sequencing. Compared to whole genome 

sequencing and SNP Chip sequencing, exome data has far more variation of 

read depth due to differences in specificity of probes. Also, by sequencing only 
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the exome, the regions that are captured are not continuous and often have 

significant gaps.52 Therefore, reliable copy number variation analysis in exome 

data has required the development of exome specific algorithms, such as 

EXCAVATOR, ExomeCNV 44 and CoNIFER 53. 

 

Given this level of variability and the challenges in calling CNV in exome data, 

CNV calling algorithms specifically optimized for tumor CNVs, such as 

ExomeCNV and EXCAVATOR, rely on a tumor-normal pair or a case-control. 

Other pipelines such as CoNIFER use statistical methods optimized for rare 

germline CNVs to remove artifacts for unpaired calling and thus may not fully 

account for tumor specific phenomena such as aneuploidy and tumor impurity. 

 

Section 2K – Development of Novel Unpaired CNV Method 

In the absence of paired normal controls, we have developed a novel method 

that creates a simulated normal sample composed of the chromosomes from 

the same cohort of tumor-only samples with the least likelihood of containing 

CNV. We have found that this method can achieve comparable results to 

standard tumor-normal CNV calling.   

 

We observed that in CNV data called with tumor-normal read depth methods, 

chromosomes without any detectable LOH or allelic imbalance rarely contained 

copy number variation. Biologically, this is consistent with the shared structural 

variation mechanisms behind LOH and CNV. 54 
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Given the variability of read counts in exome capture, we hypothesized that in 

the absence of paired normal controls, the next best control should be a control 

sequenced in the same cohort. The samples would have nearly the same 

collection techniques, storage conditions, and would have been sequenced with 

the same machine, the same probes, and possibly even the same flow-cell. 

 

Within an entirely tumor-only cohort, we hypothesized that tumor chromosomes 

without structural variation (i.e. LOH or CNV) may be able to serve as a 

surrogate for a normal control.  

 

Therefore, we utilized the specificity of our LOH calling algorithm to estimate the 

probability of structural rearrangements in all chromosomes. For each 

chromosome in the tumor-only cohort, our algorithm picks at least three tumor 

chromosomes with the lowest likelihood of containing structural variation based 

on our LOH algorithm. We use these “clean” chromosomes to simulate a normal 

control for the cohort as a whole. 

 

To call CNV in tumor samples, we compared read counts within each exome 

capture probe between the tumor sample and each of the control samples, all 

normalized to overall median coverage to account for differences in average 

sample coverage. 
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At each region, we selected the median coverage ratio between all control 

samples to remove possible outliers and undetected structural variation under 

the observation that read counts in most controls are closely aligned and that 

any undetected structural variation should be excluded as an outlier. 

 

The combined relative read-count data for each sample, containing estimated 

log2 coverage ratios for each of the >80,000 regions, was segmented with a 

CBS algorithm.55 

 

All results within each group were analyzed with GISTIC to determine 

significantly mutated recurrent regions of CNV across the cohort.56 While we 

used an in house script based on methods previously described57, this method 

can be used to adapt any tumor-normal calling pipeline for tumor-only CNV 

calling. 

 

Section 2L – Validation of Novel CNV Method  

We compared the performance of our tumor-only CNV calling pipeline to tumor-

normal paired calling on a cohort of 29 tumor-normal pairs from an ongoing 

ovarian cancer exome sequencing project.  Our tumor-only pipeline 

demonstrated high specificity as 95% of CNVs called by the unpaired pipeline 

were true positive calls found in the tumor-normal paired pipeline results. 

Additionally, we observed an improved signal-to-noise ratio in tumor only calling, 
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with the preservation of significant CNV calls and a reduction of nonsignificant 

CNV calls. 

 

In validating our method, we first confirmed that coverage ratios at individual 

probes and segmentation break points were comparable between tumor-only 

calling and standard tumor-normal paired calling. We found that the log2 ratios 

calculated in tumor-only calling and standard paired calling typically had an 

average difference lower than the standard deviation.  

 

We analyzed the results of both pipelines with GISTIC to test whether tumor-

only CNV calling can reliably call significant regions of recurrent CNV within a 

cohort.  
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Figure 5: Comparison of Deletions called by Tumor-Only Pipeline and Tumor-Normal 
Paired Pipeline – Recurrent CNV analysis was conducted with GISTIC with segmented CNV 
output from tumor-only analysis and standard tumor-normal analysis. The X-axis represents q-
value and y-axis represents chromosome location. 
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Figure 6: Comparison of Amplifications called by Tumor-Only Pipeline and Tumor-Normal 
Paired Pipeline - Recurrent CNV analysis was conducted with GISTIC with segmented CNV 
output from tumor-only analysis and standard tumor-normal analysis. The X-axis represents q-
value and y-axis represents chromosome location. 
 
Overall, the tumor-only pipeline demonstrated a 95% specificity for recurrent 

CNVs. False positive calls in tumor-only calling are usually also present in 

tumor-normal paired results, albeit at a below significant level. Therefore, these 

false calls appear to arise from differences in q-value rather than true artifacts. 

 

We prioritized high specificity in our analysis given that we are utilizing a novel 

method. By optimizing specificity, we increase the likelihood that CNV calls in 

the TNBC cohort are most likely true positive CNVs. 
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Sensitivity can be difficult to characterize given that that small differences can 

affect the q-value. We estimate a 68% sensitivity compared to tumor-normal 

calling for recurrent segments. However, this is likely an underestimate as many 

of the missed calls were “borderline” calls. Overall, most significant recurrent 

regions of CNV called in Tumor-Normal paired calling, most were captured with 

the tumor only pipeline. The specificity of our method for highly significant 

regions is further supported by our confirmation of all previously reported 

recurrent CNVs in the most comprehensive exome analysis of TNBC as shown 

in Section 3F. 

 

The differences in sensitivity may arise from the methods used to call CNVs with 

paired exome data. Current pipelines call tumor CNVs relative to coverage in the 

normal samples, therefore accuracy of CNV calling is dependent on variability in 

tumor samples as well as normal samples. High variation in normal control 

coverage as well as exome sequencing artifacts can create a false call even in 

the absence of true tumor CNV.  

 

In our novel simulated control approach, by comparing tumor coverage to a 

panel of controls samples within the same cohort, we reduce variability in the 

controls as reflected in the lower number of non-significant calls in the novel 

unpaired pipeline results compared to standard paired calling. 
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One significant weakness of this approach is the inability to distinguish germline 

from somatic CNVs. Germline CNVs are purported to contribute to cancer 

predisposition and may be present alongside somatic variants.58 Tumor-paired 

calling by design will filter out germline variation leaving only somatic variation, 

unlike our tumor-only calling method. 

 

Chapter 3 – Comprehensive Analysis of Triple Negative 
Breast Cancer 
 
All analysis was performed by the author as directed by Dr. Lifton 
 

Section 3A - Study Overview 

We analyzed a cohort of TNBC tumor-only samples with our novel methods to 

investigate genomic drivers of chemotherapy response and resistance in TNBC 

that can provide new insights into the biology of cancer treatment and novel 

markers to personalize therapy. 

 

Our cohort consists of 32 unmatched TNBC FNA biopsies collected from 

patients prior to neoadjuvant ACT chemotherapy, a regimen consisting of 

Adriamycin, cyclophosphamide, and paclitaxel. These patients were selected as 

representatives of two opposite responses to chemotherapy in TNBC: 17 

patients had complete pathologic response and 15 had extensive residual 

disease.  
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This study is part of a larger effort to examine chemotherapy response in breast 

cancer. Samples were obtained from a cohort of patients treated at the MD 

Anderson Cancer Center and used with permission from Dr. Pusztai. These 

samples originally part of a larger study analyzing predictors of chemotherapy 

response in breast cancer overall, including both TNBC and ER+ breast cancer, 

led by Dr. Lajos Pusztai. (109)  

 

All samples were exome sequenced at high depth to a mean coverage of 163.9, 

median coverage of 131. (Table 1) 

Cohort	Sequencing	Report	 Average
Read	Length: 74
Num	reads	(M): 192.8
Num	bases	(G): 14.3
Mean	coverage:		 163.9
Median	coverage: 131
PCR	duplicates:	 8.30%
Multiply	mapped: 6.00%
Unmapped:							 0.14%
Reads	on-target: 65.02%
Bases	on-target: 53.91%
Mean	error	rate: 0.37%
1x	target	base	coverage: 93.65%
2x	target	base	coverage: 92.17%
4x	target	base	coverage: 90.93%
8x	target	base	coverage: 89.60%
10x	target	base	coverage: 89.00%
15x	target	base	coverage: 87.56%
20x	target	base	coverage: 86.10%
30x	target	base	coverage: 82.97%
40x	target	base	coverage: 79.63%
50x	target	base	coverage: 76.17%
100x	target	base	coverage: 58.61%  
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Table 1: Exome Sequencing Quality Metrics – These metrics measure the quality, accuracy, 

and depth of coverage of sequencing. Most notably, these samples were sequenced to a high 

average depth of coverage with a mean coverage of 163.9, which is necessary for sensitive 

somatic mutation detection. 

 

Section 3B - Mutation Count Results 

In our initial analysis, we first calculated the overall mutation counts in the tumor 

samples, including both germline and somatic variants, and compared pCR 

(pathologic complete response) and RD (Residual Disease) patients. We filtered 

for rare and novel variants using the ExAC database which contains germline 

variants from 60,706 individuals.59 Given the size and diversity of the ExAC 

database, these criteria should filter out most common germline variants.  

 

Overall, mutation counts were similar between both cohorts. Filtering for novel 

variants leads to an increase of Nonsilent:Silent (NS/S) ratio, a measure of 

selection pressure. As driver mutations are expected to be non-silent, this 

increase in NS/S ratio in novel mutations compared to rare mutations suggests 

an enrichment of driver mutations (Table 2). 60 

 

Based on data from the TCGA Breast Cancer study, we expected to detect 

approximately 60 somatic mutations per sample. 61  Given the average novel 

mutation count of 217 (Table 3), it appears that while filtering for novel mutations 
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may enrich somatic mutations within the results, most the filtered mutations are 

still likely germline. 

 

Rare Variant	 (ExAC Freq<	0.001) pCR (n=17) RD	(n=15) Total
Mean	Mutation	Count 723 640 684
Mean	Non-Silent	Mutation	Count 471 424 449
Overall	Nonsilent:Silent	Ratio 2.12 2.08 2.10

 

Table 2: Mutation Counts and NS/S for Rare Variants (ExAC Freq <0.001) 

 

Novel Variants pCR (n=17) RD	(n=15) Total
Mean	Mutation	Count 217 210 214
Mean	Non-Silent	Mutation	Count 163 157 160
Overall	Nonsilent:Silent	Ratio 3.03 2.90 2.97  

Table 3: Mutation Counts and NS/S for Novel Variants 

 
 
Section 3C - Somatic Point Mutation Results 

We combined two strategies to analyze somatic point mutations. We first 

analyzed novel mutations in a list of 187 known cancer driver genes as published 

in the TCGA Pan-Cancer analysis and Vogelstein et al. 62 63 This approach 

focuses our analysis from the 20,000 protein coding genes to 187 genes with the 

highest probability of containing somatic driver mutations. We restricted our 

analysis to ExAC novel mutations to exclude known germline variants. 
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Gene Alleles Damaging Gene	Size
TP53 12 12 1222

NOTCH1 4 3 7804
PIK3CA 3 3 3287
ATRX 3 2 7619
ARID1B 2 1 6830
RB1 2 2 2895

 
Table 4: Cancer Gene Mutation Analysis (n=32) - Novel mutations were counted in each 
cancer gene from the Vogelstein and TCGA Pan-Cancer lists. Damaging is defined as CADD 
score > 10, which indicates that the mutation is within the most deleterious 10% of possible SNVs. 
(Kircher, 2013) Gene Size measures the size of the largest transcript of each gene. 
 
Within the top genes found in this analysis, TP53 (12/32), PIK3CA (3/32), 

ARID1A (2/32), and RB1 (2/32) have been reported as significantly mutated 

genes in breast cancer61. We also found multiple mutations in two genes which 

have not been previously reported as significantly mutated in breast cancer: 

NOTCH1 (4/32), APRX (3/32). 

 

In addition to analyzing novel mutations in cancer genes, we conducted a 

comprehensive analysis of point mutations across all genes with the Bayesian 

Algorithm. We also analyzed rare mutations occurring in regions of LOH, which 

were not included in the Bayesian analysis, as well as gene size to create a 

relative ranking of top candidates (Table 5). 
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Gene Size Somatic Incl.	LOH
TP53 1222 3 21
HELZ2 7,827 2 4
FBXL14 1265 2 3
WDR90 5411 2 5
COL18A1 4719 3 4
SEC14L3 1251 2 2
IDS 1689 2 2
VEZT 2388 2 2
DLGAP2 2972 2 2
CCDC141 4689 2 2
ADAMTS20 5889 2 3
SCAF4 3524 2 2  

Table 5: Bayesian Algorithm Somatic Mutations (n=32) - Genes with multiple somatic 
mutations as identified with the Bayesian Algorithm. Size measures the length of the transcript. 
The “Incl. LOH” column indicates number of somatic mutations in addition to novel variants found 
in regions of LOH. 
 
Consistent with previous studies, TP53 had the highest somatic burden with 

most other somatic mutations spread amongst many genes at relatively low 

abundance. Our TP53 mutation count in the Bayesian Algorithm results was 

lower than expected, likely due to the fact that TP53 occurs in a region of LOH 

in most samples and was therefore excluded from our point mutation analysis. 

Once these LOH variants were included in our integrated analysis, we managed 

to retain most TP53 mutations. 

 

Section 3D - Enrichment of EMT Related Genes 

Within the top genes identified with our Bayesian Algorithm, we found four 

candidate driver genes with known functions that may play key roles in 

Endothelial to Mesenchymal Transition (EMT). EMT, a fundamental process in 

tumor progression and a hallmark of cancer, describes the loss of adhesion in 
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epithelial cells to their neighboring cells, which enables invasion and 

metastasis64.  

  

ADAMTS20, a secreted matrix metalloproteinase, contained 2 novel damaging 

somatic mutations in TSP domains, which control substrate specificity. While 

this family of proteins have known roles in breaking down the extracellular 

matrix 65, ADAMTS20 has not been previously implicated in cancer. COL18A1, 

which had two damaging somatic mutations, forms a precursor of endothelin, a 

promotor of EMT and angiogenesis.66 VEZT, in which we found 2 damaging 

mutations, is an adherens junction, one of the 3 key cell-cell anchoring protein 

types that become disassembled in EMT.67 FBXL14, which had two somatic 

mutations a single patient, functions as an ubiquitin ligase for SNAIL1, a central 

regulator of EMT in breast cancer.68 NOTCH1, a protein shown to trigger EMT in 

breast cancer, contains three mutations identified in cancer gene analysis69. Of 

note, the NOTCH1 variants are of uncertain somatic status as they were found in 

regions of LOH. However, given that it’s a known cancer gene, we’ve included it 

in this analysis.  

 
Gene	 Alleles	 Non-Silent	 Damaging	 Gene	Size	

NOTCH1	 3	 3	 3	 7804	
FBXL14	 2	 2	 2	 1265	
COL18A1	 4	 4	 2	 4719	
VEZT	 2	 2	 2	 2388	

ADAMTS20	 2	 2	 2	 5889	
Table 6: EMT Related Genes - Analysis of NS/S and Damaging Alleles of possible EMT somatic 
mutations show that these mutations are nearly universally non-silent and damaging. (Damaging 
is defined as CADD > 10) 
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In total, 31% of our cohort contained at least one somatic mutation in genes 

possibly involved in EMT. Based on enrichment of nonsilent mutations and 

damaging mutations, there is a high likelihood that these genes may contain 

driver mutations that have undergone positive selection70. Within this group of 

genes, we found a 100% NS rate and a 92% damaging rate which is 

significantly higher than expected based on chance alone. For novel mutations, 

we expect a NS/S ratio of 3 based on our mutation count data, and 10% of 

these to meet our baseline criteria of damaging (CADD > 10) without selection. 

 

Section 3E - LOH Results 

Overall, pCR patients had a higher prevalence of LOH compared to RD patients. 

Since LOH occurs at the chromosome level, we quantified LOH burden by 

comparing the number of patients with any amount of LOH in a chromosome 

between pCR and RD subgroups.  (Table 7) 
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Chromosome pCR (n=17) RD	(n=15) p-value

1 71% 60% 0.71
2 71% 40% 0.15
3 88% 80% 0.65
4 82% 73% 0.68
5 76% 60% 0.45
6 82% 53% 0.13
7 82% 40% 0.03
8 76% 80% 1.00
9 88% 80% 0.65
10 65% 53% 0.72
11 82% 33% 0.01
12 65% 60% 1.00
13 76% 47% 0.14
14 71% 53% 0.47
15 76% 53% 0.27
16 71% 47% 0.28
17 82% 67% 0.42
18 53% 47% 1.00
19 41% 33% 0.73
20 59% 33% 0.18
21 47% 20% 0.15
22 47% 33% 0.49
24 71% 40% 0.15

Overall 68% 43% 6.45E-12
 

Table 7: Prevalence of LOH - For each chromosome, we calculated the percent of patients in 
clinical subgroups group with LOH of any length in the chromosome. P-value was calculated 
with a two tailed Fisher Exact Test.  
 
In 22/23 chromosomes (including the X chromosome), pCR patients had a 

greater prevalence of LOH than RD patients. Chromosomes 11 and 7 showed 

the highest difference in LOH burden between subgroups, with a relative LOH 

prevalence of 82% in pCR patients vs 33% in RD patients in chromosome 

11(p=0.01) and 82% vs 40% in chromosome 7 (p=0.03). 

 

To quantify overall differences in LOH prevalence, we compared the odds for a 

chromosome in a clinical subgroup to contain any length of LOH. We found that 
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68% of chromosomes in pCR patients had detectable LOH, compared to 43% 

of chromosomes in RD patients. (p < 0.001) We also calculated average 

proportion of the exome exhibiting LOH between pCR and RD patients and 

found a similarly significantly difference. 

 

To detect recurrent LOH regions, we compared LOH levels across both 

subgroups and between subgroups. As expected, both 17p and 17q had LOH 

across most samples as BRCA1 and TP53 are contained in these segments. 

Patterns of LOH appear to be similar between pCR and RD patients, with the 

exception of a few regions where pCR demonstrates a markedly higher LOH 

prevalence than RD. 

 

 
Figure 7: LOH Profile Relative abundance of LOH is plotted for both pCR (Responders) and RD 
(Non-responders) subgroups across all chromosomes. Areas of highest LOH prevalence 
difference correspond to homologous recombination repair gene loci. Key mediators of 
homologous recombination repair, as well as TP53, are highlighted in green. 
 
We cross-referenced these regions with lists of significantly mutated cancer 

genes and found that each of these 5 regions (11q, 7q, 13p, 5q, and 2q) 

contains a key mediator of homologous recombination repair. (Figure 7) 
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The recurrent region in 11q contains ATM and MLL1, both of which have been 

linked to breast cancer risk. In the presence of double stranded DNA breaks, 

ATM delays the cell cycle and activates proteins responsible for repairing double-

stranded DNA breaks.  

 

The region within 2q with the greatest difference between pCR and RD patients 

contains BARD1 which acts as a partner for BRCA1, and is believed to be 

essential for BRCA1 activation of DNA damage response mediators, including 

ATM, MSH6, and MSH2. Additionally, similar to BRCA1, loss of BARD1 leads to 

genomic instability in cells. 71 

 

Region 7q corresponds to XRCC2 and MLL3, both of which are significantly 

mutated genes in breast cancer. 72 73. Similar to BRCA1 and ATM, XRCC2 is a 

key mediator of homologous recombination repair, 74and has been shown to 

repair DNA damage from crosslinking. 75 

 

In chromosome 5, the region with greatest difference contains RAD50, a key 

mediator of homologous recombination repair that functions to sense double 

stranded breaks in DNA.76 

 

Section 3F - CNV Result Overview 

Our unpaired CNV analysis reconfirmed key regions of CNV that have been 

reported in multiple previous studies of TNBC and also found novel regions of 
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recurrent CNV across both cohorts. Additionally, we detected significant 

recurrent regions of CNV unique to pCR patients, suggesting the presence of 

possible markers and drivers of chemotherapy response in these regions. 

(Tables 8 and 9) 

 

We first compared our data to CNV data from the TCGA Breast Cancer study 

and found that all 5 characteristic CNVs of TNBC reported in the TCGA study, 

1q gain, 10p gain, 5q loss, 8p loss, and focal Myc amplification at 8q24, were 

also called as significant CNVs in our cohort as well. 61  

 

Our CNV calls also included four additional TNBC specific CNVs reported in a 

second comprehensive study of TNBC including 6p gain, 4q loss, 15q22 loss, 

and 17q25 focal gain. 77 

 

Detecting all TCGA reported CNVs for TNBC as significantly recurrent in our 

cohort, despite having a smaller sample size, further validates the sensitivity of 

our novel tumor-only CNV calling method. 
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Figure 8: GISTIC Analysis of Deletions and Amplifications Across all TNBC Samples – 
Recurrent Amplifications and Deletions from cohort-wide CNV analysis as identified by GISTIC 
based on our Novel Unpaired CNV calling method. The X-axis represents q-value and y-axis 
represents chromosome location. 
 
 
 
 
 
Significant	Amplifications	(n=32)	

Region	 q-value	 Genes	in	Region	

1q21	 5.20E-09	 MCL1,PI4KB,CTSS,	CTSK,	
MUC1	

8q24	 2.47E-04	 Myc	
15q11	 2.10E-03	 NDN	
6p22	 1.50E-02	 E2FB,	CDKAL1	
10p15	 2.90E-02	 GATA3	
17q25	 4.10E-02	 RECQL5	

 
Table 8: Cohort-wide Significant Amplifications – Purported genes were identified with GISTIC 
annotation, cross-reference with known breast cancer genes in the region. Bolded genes are 
known breast cancer genes. 
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Significant	Deletions	(n=32)	
Region	 q-value	 Genes	in	Region	
17q21	 1.19E-16	 BRCA1	
10q11	 1.18E-14	 BMP9,	BMP2	
1p36	 2.48E-11	 CHD5	
5q13	 2.90E-02	 GTF2H2	
4q13	 3.52E-07	 UGT2B15,	UGT2B17	
19q13	 1.02E-05	 	
8p23	 8.56E-04	 DLGAP1,CSMD1	
9q21	 2.38E-03	 	

11q24.2	 2.40E-03	 CHEK1	
15q11	 5.40E-03	 NDN	
6q25	 3.81E-02	 GTF2H5	
15q21	 3.81E-02	 RAD51	

 
Table 9: Cohort-wide Significant Deletions - Purported genes were identified with GISTIC 
annotation, cross-reference with known breast cancer genes in the region. Bolded genes are 
known breast cancer genes. 
 
Section 3G - Novel TNBC Associated CNVs 

In addition to the regions reported in TCGA and Begamaschi, we have found 

several novel CNVs that have not been previously linked to TNBC or pCR/RD 

status. Many of these regions have been associated with breast cancer in 

various studies, which supports their role in breast cancer pathogenesis.  

 

LOH in 1p36 and 6q25 have been reported as correlated with poorer prognosis 

in breast cancer 78 79 and LOH in region 11q24 and amplifications in 15q have 

been associated with general early onset breast cancer, both of which are 

clinical features of TNBC. 80 81  
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19q13 has been described as a Luminal B associated CNV in Begamaschi et al 

and linked to poor response to endocrine therapy in Luminal B cancer, a 

characteristic expected in TNBC patients. However, it has not been previously 

described as a TNBC specific CNV. 77 82  

 

Section 3H - 10q11 Correlation with EMT and Metastasis 

10q11 deletion, a highly significant CNV in our cohort(q=1.18E-14), has been 

previously described as a CNV preferentially expressed in brain metastasess. 

We’ve found that key genes in this locus suggest that it may be a marker for 

EMT.  

 

In a study comparing breast tumors and distal metastases to the brain, 10q11 

was found to be the most differentially expressed CNV with a 60% deletion rate 

in metastases and 3% deletion rate in primary tumors. 83 

 

In our analysis, which has a higher resolution than previous studies using 

microsatellite AI analysis, the peak of this region appears to tightly correspond 

to GDF2 (BMP-9) and GDF10(BMP-3B), two members of the TGF-beta super 

family of proteins which are the central mediators of EMT84.  Multiple in vitro and 

in vivo functional studies have demonstrated that GDF2 inhibits proliferation and 

invasion of breast cancer, consistent with the loci’s previously discovered 

correlation with metastasis and our finding of EMT-related point mutation 

enrichment.85 86  
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Section 3I - pCR/RD Specific CNVs 

To find potential markers and drivers of chemotherapy response in TNBC, we 

analyzed the pCR and RD groups separately and found that 5q (peak at 5q13) 

deletions, 8p23 deletions and a broad 6p amplification reached significance 

uniquely in the pCR cohort. (Figures 9 and 10) 

 

While 5q loss is reported as a general TNBC characteristic CNV in the TCGA 

study, we found that this CNV was exclusively enriched in the pCR group. This 

region contains RAD17, RAD50, RAP80, key mediators of BRCA1 dependent 

DNA repair, consistent with our finding of strong LOH in loci corresponding to 

homologous recombination repair genes87.  

 

Our finding of recurrent 6p22 amplification only in pCR patients correlates with a 

key clinical study of cisplatin response in TNBC which found that the 

overexpression of E2F3, which is found in the boundaries of this region, is as 

predictive of cisplatin response as BRCA1 expression88.  

 

8p23 deletion (q=0.00086) has shown to be a marker for high tumor stage and 

grade89 and invasiveness90 in general studies of breast tumors, which is 

consistent with our finding of its enrichment in TNBC overall. However, there are 

no well characterized tumor suppressors ascribed to 8p23 deletion.  
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Figure 9: Comparison of Amplifications: 6p22 (Highlighted in Blue) is significantly recurrent in 
pCR patients and nearly absent in RD patients. Analysis was conducted with GISTIC. Both 
groups and the combined group were analyzed separately. The X-axis represents q-value and y-
axis represents chromosome location. 
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Figure 10: Comparison of Deletions: 5q13 and 8p23 regions (Highlighted in Blue) were only 
found in significance in pCR Patients. Analysis was conducted with GISTIC. Both groups and 
the combined group were analyzed separately. The X-axis represents q-value and y-axis 
represents chromosome location. 
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Section 3J - Integrated Analysis of Breast and Ovarian Cancer Genes 

We integrated copy number variation, LOH, and point mutation data to analyze 

how the full spectrum of somatic variation affects key genes and pathways in 

breast cancer91. 

 
To get an initial overview of the mutation landscape of TNBC, we first analyzed a 

list of 65 genes most strongly associated with breast and ovarian cancer found 

in the BROCA list, as this list contained both predisposition genes and possible 

somatic driver genes as well for breast and ovarian cancer 92.  
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Figure 11: BROCA Cancer Predisposition – Integrated analysis of the entire cohort with 
BROCA breast/ovarian cancer predisposition genes demonstrates consistent patterns of copy 
number variation across samples. These patterns appear to match closely with previously 
published CNV patterns in breast cancer. Each column in this analysis represents a single 
sample within the cohort, columns are ordered based on mutational burden. Each line 
represents a known breast and ovarian cancer predisposition gene and is ordered based on 
prevalence within the cohort. Figure was generated with Oncoprint. 
 
As expected, TP53, BRCA1, and BRCA2 have the highest mutation burden, 

including CNVs and LOH, confirming that structural variations in this cohort 

follow expected patterns of mutation. (Figure 11) 

 

As a further validation step for this analysis, we confirmed that our results are in 

line with previously reported data. Our CNV patterns appear to align well with 

the reported CNVs in the TCGA Breast Cancer study, with 6/6 reported CNV 

genes (TP53, PTEN, RB1, MLL3, PIK3CA, and MAP2K4) showing similar 

patterns to our data.  In addition to the above 6 genes, BRCA1 was significantly 

deleted in the TCGA study (p=3.14E-09), consistent with our data. 

 
We found a high prevalence and consistency of CNV and LOH across known 

breast cancer genes. (Figure 11) Kinases such as PIK3CA and ATR are 

consistently amplified among samples with significant CNV while tumor 

suppressors such as BRCA1, BRCA2, and RB1 are consistently deleted 

suggesting that CNV and LOH in these genes may play a role in tumor 

progression by affecting these genes. 

 

Interestingly, there appears a distinct divide between samples with high CNV 

and LOH and samples with very little. This phenotype correlates strongly with 
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the presence of a TP53 mutation: 88% of high CNV samples contain a TP53 

mutation compared to 25% of low CNV samples. (p=0.0021) 

 

Section 3K - Test of TCGA Breast Cancer Somatic Mutations 

88%

82%

76%

82%

76%

82%

76%

76%

76%

82%

76%

65%

76%

59%

71%

76%

59%

65%

59%

53%

53%

6%

TCGA pCR

TP53.

RB1.

PIK3R1.

MLL3.

MAP2K4.

NCOR1.

MAP3K1.

FOXA1.

AKT1.

NF1.

GATA3.

CDH1.

PTEN.

CBFB.

PIK3CA.

PTPRD.

CDKN1B.

PTPN22.

TBX3.

RUNX1.

SF3B1.

AFF2.

0
10
20
30
40

0 510 20 30

Alternations
Amplification
Deletion
Mutation
LOH

85%

77%

69%

46%

77%

62%

62%

46%

54%

54%

54%

54%

38%

38%

46%

38%

38%

23%

31%

31%

23%

TCGA RD

TP53.

PTEN.

NCOR1.

PIK3R1.

AKT1.

MAP3K1.

RB1.

GATA3.

FOXA1.

MAP2K4.

CDH1.

CBFB.

CDKN1B.

PIK3CA.

PTPRD.

NF1.

TBX3.

MLL3.

SF3B1.

RUNX1.

PTPN22.

0
5
10
15
20
25
30

0 5 10 15 20

Alternations
Amplification
Deletion
Mutation
LOH

 

Figure 13: Integrated Analysis of Known Breast Cancer Genes – Known significantly mutated 
genes in breast cancer were analyzed with integrated analysis. CNVs followed consistent and 
expected patterns based on function. Additionally, pCR patients have a overall higher burden of 
CNV and LOH. 
 

In order to find differences between pCR and RD, we applied our integrated 

analysis to significantly mutated genes in the TCGA breast cancer study as we 

expect that much of the pCR/RD phenotype is driven by a tumor’s unique 

evolution rather than a patient’s genetic predisposition.  
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Among 23 genes identified as significantly mutated in breast cancer, TP53 and 

RB1, and PTEN showed consistently high mutation rates and deletion status 

between cohorts consistent with their known driver status in breast cancer.  

 

MLL3 showed the highest difference in mutation rates between pCR and RD, 

with 82% of pCR patients exhibiting CNV or LOH at the locus vs 23% of RD 

patients, however this may be related to its proximity to XRCC2, a homologous 

recombination repair gene. Other differentially mutated loci include GATA3 (76% 

vs 46%), which has been previously reported as a significant gene Luminal A/B 

subtypes, and NF1 (82% vs 38%).  

 

Interestingly, there appears to be a clear correlation between overall CNV and 

LOH burden and pCR/RD status. We further investigated this by focusing our 

analysis on homologous recombination repair genes, the most likely mechanism 

responsible for structural mutation burden. 

 
Section 3L - Test of Homologous Recombination Repair Mutation Burden 
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Figure 14: Integrated Analysis of Homologous Recombination Repair Genes– Known 
significantly mutated genes in breast cancer were analyzed with integrated analysis. CNVs 
followed consistent and expected patterns based on function. Additionally, pCR patients have a 
overall higher burden of CNV and LOH. (pCR – Pathologic Complete Response to 
Chemotherapy, RD – Residual Disease) 
 

Based on the key role that Homologous Recombination Repair plays in breast 

cancer pathogenesis and in creating genomic instability, we hypothesized that 

genomic aberrations may be enriched in HRR genes. 

 

Compared to our more general analysis of likely somatic genes identified by 

TCGA (Figure 13), genes involved in HRR demonstrate the clearest difference 

between pCR and RD (Figure 14). Not only is mutation burden in these genes 

correlated to pCR and RD status, there appears to be two distinct groups of 

patients that segregate to each clinical group. 	

  

Section 3M - Discriminant Analysis 
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Based on our findings in integrated analysis, we retrospectively evaluated 

whether this can be used to predict pCR and RD status prior to therapy. 
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Figure 15: Distribution of HRR Mutation Counts In nearly all pCR patients (Responders), the 
majority of homologous recombination repair genes are in regions of structural variations, 
whereas this is the case in only a minority of RD patients (Non-responders). 
 
We found that 82% of pCR patients have mutations across most HRR genes, as 

defined by >75% of HRR genes mutated, compared to 20% of RD patients. In 

addition, pCR patients demonstrate a clear cutoff at 75% of genes affected, 

with a few outliers possibly explained by lack of TP53 point mutations. With this 

metric, we can predict chemotherapy response in 82% of pCR patients and 

80% of RD patients. (OR=18.7, 95% CI= 3.2 to 110.3, p=0.0012). 

 

Currently, there are few available markers for chemotherapy response in TNBC 

and for breast cancer in general.  BRCA1/2 point mutations have been proposed 

and tested as markers for chemotherapy response 93 94and homologous 

recombination repair deficiency. However, as shown in our analysis below, 
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BRCA point mutations alone do not correlate strongly with pCR and RD status 

in our cohort.  
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Figure 16: Distribution of BRCA Point Mutation Counts – BRCA1/2 point mutations, which 
have been previously described as predictors of chemotherapy response, show a weak 
correlation to chemotherapy response in this cohort. 
 
Chapter 4 – Discussion 
 
Patients and clinicians are faced with an ever growing array of treatment options. 

Similar to HER2 status and ER/PR status, a reliable marker for response to 

specific therapies in TNBC can help direct patients to the most effective 

treatment option. With better prediction of response to ACT chemotherapy, 

patients likely to respond can prioritize ACT chemotherapy, while other patients 

can consider possibly more effective alternatives.  

 

In our study, we found that extensive CNVs and LOH significantly correlates with 

chemotherapy response, particularly in regions containing homologous 

recombination repair (HRR) genes. This suggests HRR may play a key role in 
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chemotherapy response in this cohort and supports the utility of CNV and LOH 

as markers for this process. 

 

While there is a general consensus about the central role of HRR in breast 

cancer95, and chemotherapy response 96 97, no clear marker has been found 

beyond BRCA1/2 deficiency despite many efforts 98 99. A clinical test using three 

broad measures of genomic instability, including general LOH burden, has 

shown promise in clinical trials100. However, sensitivity and specificity is not as 

strong nor does this test utilize CNV data and specific cancer gene loci, which 

we’ve found to be more predictive than LOH alone. 

 

Based on our results, we propose that structural variation in regions containing 

Homologous Recombination Repair (HRR) genes may serve as a strong 

predictor of response to chemotherapy and targeted PARP inhibitors. 

Additionally, this may be evidence that structural variation in the form of CNV 

and LOH may contribute to HRR deficiency. 

 

Section 4A - LOH and CNVs as Driver Mutations  

There are six original Hallmarks of Cancer, key functions tumors must obtain to 

proliferate, with several more proposed28. However, the somatic point mutations 

found in this cohort do not come close to accounting for these necessary 

changes. Given the high mutation rate of CNV and LOH in our study, we 
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theorized that structural variation may be the missing link driving these required 

transformations.  

 

As demonstrated in our integrated analysis, not only do CNVs and LOH follow 

expected patterns of mutation (i.e. amplification of kinases, deletion of tumor 

suppressors), they provide the strongest correlation to response out of any 

detected genetic feature suggesting their driving role in tumor evolution. 

 

Section 4B - LOH and CNV as Predictors of Chemotherapy Response 

However, this begs the question of why tumors with this powerful ability to 

amplify kinases and delete suppressors paradoxically respond better to 

chemotherapy. 

 

The answer likely lies in the mechanism of ACT chemotherapy. High LOH and 

CNV burden has been shown to reflect higher genomic instability101. When 

already fragile chromosomes are treated with Adriamycin and 

cyclophosphamide, which function by creating damage in DNA to hindering 

DNA replication, the cells may be more likely to succumb to apoptosis hence 

the correlation LOH to chemo-sensitivity. This is consistent with evidence that 

BRCA1 mutated tumors are more sensitive to DNA damaging agents, as found 

in ACT chemotherapy. 102 
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Section 4C - Homologous Recombination Repair Deficiency in Breast 

Cancer 

Previous studies have found LOH to correlate with BRCA1/2 mutations, which 

are central genes in HRR103 104. LOH has also been shown to reflect homologous 

recombination repair deficiency in ovarian cancer105. Given the association 

between HRR deficiency and genomic instability, HRR is a likely driver of the 

abundant CNVs and LOH found in our cohort.  

 

With the significant role HRR plays in breast cancer tumor evolution and chemo-

sensitivity, there has been recent significant interest in understanding HHR 

deficiency beyond BRCA1/2 mutations95. Somatic and germline point mutations 

in HRR genes have been extensively studied as possible markers, including in a 

recent study of 560 breast cancer whole genome sequences, however no 

predictive patterns in point mutations have been found. 106 

 

Our data suggests that structural variation in HHR loci may be markers of 

genomic instability in these genes driving HHR deficiency. We hypothesize that 

defective HRR function may confer a survival advantage to cells under the 

intense selection pressure in clonal expansion by allowing cells to amplify 

kinases and delete suppressors as needed107. Therefore, the advantage of 

reduced HRR function for tumor mutagenesis may lead to selection for structural 

instability and deletions in HHR genes, as seen in our data.  
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Section 4D - Development of PARP Inhibitors  

Recognition of homologous recombination repair deficiency is particularly 

important in the context of PARP inhibitors in breast cancer, a new class of 

targeted therapies in development. 

 

PARP inhibitors have shown significant activity within BRCA1/2 deficient 

patients, however, <5% of breast cancer patients fall under this category. 

Across all breast cancer patients, this effect disappears. As such, clinical 

development has been delayed in favor of applications in ovarian cancer which 

has a 10% prevalence of BRCA1/2 deficiency108. 

 

A more sensitive and specific marker for homologous recombination repair 

deficiency will allow for more patients to become eligible for treatment and thus 

facilitate the continuation of PARP inhibitor clinical development in breast 

cancer. 

 

Our data shows that LOH and CNV provide stronger correlations with 

chemotherapy response than BRCA1/2 mutations alone, the current standard 

biomarker for PARP inhibitor response. As these variations are clustered around 

HRR genes, our metric of overall mutation burden at HRR gene loci may 

potentially serve as an improved biomarker for HRR deficiency and PARP 

inhibitor response in clinical development and therapy. 
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Section 4E - Conclusion  

In conclusion, our data provides evidence that LOH and CNV burden, 

particularly in genes of the homologous recombination repair pathway, predicts 

chemotherapy response and may contribute to the development of homologous 

recombination repair deficiency. 

 

Additionally, as one of the first comprehensive analyses of unpaired tumor 

exome samples, these data demonstrate the potential insights obtainable in 

previously unanalyzable unpaired tumor exome data with our novel analytical 

pipeline. 
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