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NOVEL APPLICATION OF UNTARGETED METABOLOMICS TO DISEASE OF 

NEUROSURGICAL SIGNIFICANCE. Alex Y. Lu, Tore Eid, Veronica L. Chiang, Ketan R. Bulsara. 

Department of Neurosurgery, Yale School of Medicine, New Haven, CT.  

 

Metabolomics, an emerging technique to study hundreds of small-molecule metabolites simultaneously, has 

been seldom applied to diseases of neurosurgical significance. We utilized metabolomics to explore two 

distinct questions: 1. to identify global metabolic changes and metabolite predictors of long-term outcome 

in aneurysmal subarachnoid hemorrhage (SAH) patients, 2. to identify differential metabolites profiles of 

radiation necrosis vs. recurrent tumor of metastatic brain lesions post-Gamma Knife radiosurgery. The first 

study applied gas chromatography time-of-flight mass spectrometry (GC-TOF) to cerebrospinal fluid 

samples collected from 15 high-grade aSAH patients (modified Fisher grades 3 and 4). Analysis was 

performed at two time points; metabolite levels at each time point were correlated with Glasgow Outcome 

Scale (GOS) of patients at 1 year post-aSAH. Of 97 metabolites identified, 16 metabolites (primarily free 

amino acids) significantly changed between the two time points; these changes were magnified in modified 

Fisher grade 4 compared with grade 3. Six metabolites (2-hydroxyglutarate, tryptophan, glycine, proline, 

isoleucine, and alanine) correlated with GOS at 1 year post-aSAH. These results suggest that specific 

metabolite changes occur in the brain during the course of aSAH and that quantification of specific CSF 

metabolites may be used to predict long-term outcomes. This is the first study to implicate 2-

hydroxyglutarate, a known marker of tissue hypoxia, in aSAH pathogenesis. The second study applied GC-

TOF to histologically-validated specimens (7 each) of pure radiation necrosis and pure recurrent tumor 

obtained from patient brain biopsies. Of 141 metabolites identified, 17 were found to be statistically 

significantly different between comparison groups. Of these metabolites, 6 were increased in tumor, and 11 

metabolites were increased in radiation necrosis. An unsupervised hierarchical clustering analysis found 

that tumor had elevated levels of metabolites associated with energy metabolism whereas radiation necrosis 

had elevated levels of metabolites that were fatty acids and antioxidants/cofactors. This is the first tissue-

based metabolomics study of radiation necrosis and tumor. Radiation necrosis and recurrent tumor 

following Gamma Knife radiosurgery for brain metastases have unique metabolite profiles that may be 

targeted in the future to develop non-invasive metabolic imaging techniques.  
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Introduction  
 
The Emergence of Metabolomics 

 During the last quarter century, the technology to investigate molecular 

mechanisms has rapidly evolved. Genomics and proteomics, the study of genome and set 

of proteins expressed by a genome respectively, have established themselves as leading 

fields of scientific inquiry. However, the study of genes and proteins without respect to 

downstream primary and secondary metabolites that they alter is limited. For example, 

when examining the most prevalent chronic diseases such as diabetes and cardiovascular 

pathology, the largest of genome-wide association studies only have described a modest 

fraction of these diseases and have provided partial insight mechanism-based intervention 

strategies1-3.  

Metabolites are defined as the small molecules such as amino acids, 

carbohydrates, nucleotides, and lipids that are transformed during an organism’s 

metabolism. Metabolites can be grouped into several categories. When metabolites are 

produced by a host organism, they are considered to be endogenous metabolites whereas 

metabolites that originate from diet or the environment are considered exogenous 

metabolites. Most endogenous metabolites are also considered primary metabolites, 

biochemical compounds that are crucial for normal growth and development of an 

organism.  

A biological sample’s complete metabolite profile is defined as a metabolome. 

Metabolomics, the study of specific metabolomes, reveals a glimpse into the chemical 

fingerprint of an organism by identifying and quantitatively measuring hundreds to 

thousands of metabolites simultaneously. While humans possess an estimated 25,000 
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genes, 100,000 transcripts, and 1,000,000 proteins3, human metabolome is estimated only 

to contain around 6,500 discrete small molecule metabolites4. While genes and proteins 

are modulated by epigenetic regulation and post-translational modifications respectively, 

metabolites represent the direct signatures of biochemical activity and therefore better 

correlate with an organism’s state-specific phenotype5. This combination of these 

benefits makes metabolomics an ideal tool for clinical diagnostics as well as drug 

discovery.  

 Metabolomics can be divided into two general study types: targeted and 

untargeted. Targeted metabolomics is defined as the study of a specific number of 

predetermined metabolites. The work flow of targeted metabolomics originates with a 

hypothesis regarding the role or function of a predetermined metabolite within a 

predetermined biochemical pathway. With this approach, targeted metabolomics is 

particularly effective when applied to pharmacokinetic studies of drug metabolism and 

influence of genetic modifications or therapeutics on specific enzymes6. However, 

targeted metabolomics studies can only validate hypotheses and are limited when 

attempting elucidate novel molecular pathways. By comparison, untargeted 

metabolomics attempts to measure as many metabolites simultaneously as possible; 

however, this method provides limited control of what types of metabolites will be 

measured. Therefore, untargeted metabolomics provides global metabolite profiles, 

providing insight to biological processes that may have been previously uncharacterized. 

As a result, untargeted metabolomics is tool for hypothesis generation rather than 

hypothesis validation like that of targeted metabolomics.  
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The techniques to conduct metabolomics have rapidly evolved over the past 

decade. The workflow to generate and analyze metabolomics datasets are uniform: data 

acquisition, metabolite identification, and statistical analysis. Until the mid-2000s, 

nuclear magnetic resonance was the method of choice for the data acquisition and 

metabolite identification steps due to its highly accurate readings; however, nuclear 

magnetic resonance’s limited metabolite sensitivity and specificity precluded global 

metabolite profiling. The current gold standard for metabolomics is mass spectrometry 

preceded by chromatographic separation (usually gas or liquid chromatography) to 

separate the highly complex mixture of metabolites in biological samples using the 

different chemical and physical properties of metabolites. Liquid chromatography uses a 

liquid mobile phase and is performed at room temperatures whereas gas chromatography 

utilizes a gas mobile phase and is performed at higher temperatures. Liquid 

chromatography has the advantage of being non-destructive to analyzed samples and can 

measure metabolites that are thermally labile. Gas chromatography can be performed 

faster, has higher resolutions, and provides higher peak resolution compared to liquid 

chromatography while also being less expensive to perform.  

Mass spectrometry is advantageous compared to nuclear magnetic resonance due 

to its high sensitivity, reproducibility and versatility7. When a sample is processed, 

chromatographic separation yields a retention time for each unique metabolite. The 

masses of these metabolites and subsequent compound fragments are then measured by 

mass spectrometry, generating a mass-to-charge ratio. The combination of retention time 

and mass-to-charge ratio allows for the identification of thousands of metabolites 

simultaneously when compared to a standardized library of metabolite. In addition, mass 
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spectrometry generates relative intensities for each metabolite, allowing for quantification 

of metabolite levels. Many different mass spectrometry methods exist, each tailored for 

specific purposes. While triple quadrupole (QqQ) mass spectrometry is used for targeted 

metabolomics due to its high chemical sensitivity and specificity, quadrupole time-of-

flight (Q-TOF) mass spectrometry is the method of choice for untargeted metabolomics 

studies.  

Statistical analysis can be one of the most challenging aspects of conducting 

metabolomics. While targeted metabolomics can utilize workflows optimized to a priori 

knowledge of specific metabolites and metabolic pathways of interest, untargeted 

metabolomics generates complex data sets that require advanced computational tools to 

identify metabolite differences between samples and to examine each metabolite’s 

relation to metabolic pathways and aberrant processes7. Some of these computational 

tools include multivariate statistical techniques (principal component analysis, partial 

least squares regression) and machine learning techniques (random forest, hierarchical 

clustering).  

Because metabolomics techniques have existed for only the past two decades, 

several limitations exist. While many compounds can be detected using current 

technologies, many of the detected mass spectroscopy spectra have yet to be correlated to 

metabolites with known chemical structures. One study suggested that only 25% of 

observed compounds have been identified8. In addition, untargeted metabolomics can 

only provide relative quantification of metabolite levels and thus does not give 

measurement in SI units.  
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The applications of metabolomics have been diverse and is increasingly growing. 

Research areas that have utilized metabolomics have included plant biology9, nutrition10, 

and winemaking11. Within medicine, the bulk of metabolomics studies have focused on 

discovering and validating biomarkers within the fields of cancer12, psychiatric disease13, 

and microbiome14. The studies presented in this thesis utilize untargeted metabolomics 

due to its ability to identify novel metabolites/pathways and represent some of the first 

published studies to utilize untargeted metabolomics within issues of neurosurgical 

interest.  

 

Subarachnoid Hemorrhage  

Despite advancements in medical and surgical therapies, the clinical outcomes of 

aneurysmal subarachnoid hemorrhage (aSAH) have remained poor. Morbidity and 

mortality from subarachnoid hemorrhage and resulting complications are unacceptably 

high. Case fatality rate has been reported to be as high as 50%15; of those who survive, up 

to 40% of patients will suffer from long-term delayed neurological deficits such as stroke, 

hydrocephalus, and other ischemia-related disease16. These issues demonstrate the need 

for prognostic biomarkers that may better direct patient care. Although some potential 

biomarkers have been identified using human serum, cerebrospinal fluid, and urine, none 

are used clinically.  

Cerebral vasospasm of large caliber vessels typically occurs between days 3 and 

14 post-subarachnoid hemorrhage and has been thought to be a major contributor to 

morbidity and mortality; thus, cerebral vasospasm has been the historic target of 

intervention and biomarker identification studies. Around two-thirds of patients will 
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demonstrate some form (clinical vs. radiographic) of cerebral vasospasm during the post-

subarachnoid hemorrhage period17. Current monitoring techniques includes frequent 

neurological examinations, transcranial Doppler ultrasonography, and computed 

tomography angiography (CTA) to examine changes in neurological status and vessel 

caliber. Therapies include oral or intra-arterial calcium channel blockers such as 

nimodipine, triple-H therapy (inducing hypertension, hypervolemia, and hemodilution), 

and balloon angioplasty. However, because cerebral vasospasm is a heterogeneous 

disease process combining pathology such as increased contraction of vascular smooth 

muscles cells, formation of microscopic thrombi in distal vessels, and inflammatory 

changes18, no cerebral vasospasm biomarkers in serum or cerebrospinal fluid have been 

validated.   

 Recent clinical trials and literature have implicated other pathophysiologic 

factors as key contributors to poor patient outcomes of aneurysmal subarachnoid 

hemorrhage19,20. These factors include early brain injury, cerebral autoregulation 

disruption, electrolyte disturbances, oxidative stress, blood breakdown products, and 

inflammatory pathways21. Among these secondary sequaelae of subarachnoid 

hemorrhage, no clinical validated biomarkers exist17. Contributing to the lack of 

clinically useful biomarkers is the lack of knowledge regarding the pathophysiology of 

subarachnoid hemorrhage. Subarachnoid hemorrhage results in the vasculature of the 

brain, which is normally surrounded by cerebrospinal fluid (CSF), to be surrounded by a 

combination of blood, blood breakdown products, and cerebrospinal fluid. This altered 

cerebrospinal fluid and blood mixture triggers a cascade of unknown metabolic events 
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that disrupts all three layers of the blood vessels beginning around day 3 after the 

aneurysmal subarachnoid hemorrhage22.  

The high throughput profiling of metabolites, metabolomics, allows for the 

systematic analysis of the unique signature that cellular processes leave behind and can 

provide a chemical phenotype to the disease state. The identification of these signatures 

have been shown to have predictive and therapeutic value in other disease states23,24. For 

example, use of troponin level measurements has been proven to be one of the diagnostic 

tests with the highest sensitivity and specificity for acute myocardial infarction. Within 

the central nervous system, S100β and neuron-specific enolase as well as cerebrospinal 

fluid biomarkers creatinine kinase brain isoenzyme and neurofilament have been 

examined within the context of acute brain injury although the results of these studies 

have been mixed25.  

The aberrant metabolic processes of subarachnoid hemorrhage are currently 

unknown. In the first portion of this study, we report the results of applying untargeted 

metabolomics using gas chromatography with time-of-flight mass spectrometry (GC-

TOF) to the cerebrospinal fluid of aneurysmal subarachnoid hemorrhage patients to 

determine global metabolic changes and metabolite predictors of long-term outcome in 

patient after aneurysmal subarachnoid hemorrhage.  

 

Radiation Necrosis vs. Recurrent Tumor Conundrum 

Gamma knife radiosurgery (GKRS) is a highly effective treatment for brain 

metastases especially when the tumors are multiple, small and surgically less accessible. 

The highly conformal delivery of radiation to the metastases results in relatively little 
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radiation exposure to the surrounding brain and preserves neurological status than the 

alterative, whole brain radiation. In a minority of cases, following an initial good 

response to GKRS treatment, the tumor being watched using magnetic resonance imaging 

(MRI) can start to regrow around 12 months after initial therapy. Radiographically, this 

appears as regrowth of the gadolinium-enhancing lesion on T1 weighted imaging 

associated with an increase in the amount of surrounding fluid-attenuated inversion 

recovery (FLAIR) signal. Histological examination of these re-growing lesions, however, 

can show either recurrent tumor or a treatment-related inflammatory process known as 

radiation necrosis. Radiation necrosis can be identified on histology by a central zone of 

coagulation necrosis surrounded inflammatory demyelination, astrocytosis, vascular 

hyalinization and reactive edema26,27.   

Despite clear histological differences and extensive research in the area, 

distinguishing radiation necrosis from recurrent tumor using non-invasive tests remains 

difficult. Currently available techniques for trying to differentiate the two entities include 

MR spectroscopy, MR perfusion, MR diffusion, and positron emission tomography 

(PET) imaging with tracers such as methionine-PET. While diagnostic accuracy rates of 

up to 80% have been reported at dedicated centers, the differentiation remains far from 

perfect when used in standard clinical practice. Differentiating the two processes, 

however, is vital to patient management decision making. Recurrent tumor may warrant 

further radiation treatment while radiation necrosis is typically managed with 

corticosteroids and other medical or surgical approaches since re-irradiation may worsen 

clinical status. To make the correct diagnosis, the current standard of care remains for 

these patients to undergo invasive brain biopsy or resection28, exposing them to avoidable 
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surgical and perioperative risks that is also associated with considerable healthcare 

spending costs.  

Given that radiation necrosis and tumor are distinct cellular processes, it would be 

expected that their metabolite profiles should also be distinguishable. The differences in 

their metabolite profiles could theoretically be used in conjunction with metabolite-based 

imaging to provide non-invasive differentiation of radiation necrosis vs. recurrent. In 

Metabolomic profiling using gas chromatography with time-of-flight mass spectrometry 

(GC-TOF) analysis allows investigators to evaluate a diverse range of low-molecular 

weight metabolites29-31. In this study, we implement GC-TOF on flash-frozen biopsy-

confirmed radiation necrosis and tumor following GKRS to identify differential 

metabolite levels between the comparison groups and compare the identified metabolites 

to those currently used in metabolite-based imaging.  

 

Statement of Purpose  

First Study  

• To identify global metabolic changes and metabolite predictors of long-term 

outcome in the cerebrospinal fluid of post-aneurysmal subarachnoid hemorrhage 

patients.  

We hypothesize that CSF metabolomics profiles of aSAH patients change during the 

course of aSAH in an unknown manner and that these changes can be correlated to 

radiographic prognosticators such as the modified Rankin Score and to long term patient 

outcomes.  
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Second Study 

• To identify differential metabolites profiles of radiation necrosis vs. recurrent tumor 

of metastatic brain lesions post-Gamma Knife radiosurgery 

We hypothesize that the underlying distinctions in pathology between radiation necrosis 

and recurrent tumor of brain metastases lead to differential metabolite profiles; the 

identified metabolites within these profiles hypothetically would be useful in non-

invasive diagnostic modalities such as imaging with magnetic resonance spectroscopy 

and positron emission tomography so that invasive testing such as brain biopsy and 

resection can be avoided.  

 

Methods 

Study Design (First Study)  

We conducted a prospective observational study in 15 patients ≥ 18 years with 

aneurysmal subarachnoid hemorrhage, graded with modified Fisher score32 and Hunt and 

Hess scale33. Aneurysms were clipped or coiled with external ventricular drains placed on 

day of admission or during surgical intervention according to instructional guidelines. 

Neurological examinations and transcranial Doppler sonography34 were performed daily 

to assess for cerebral vasospasm35, which was confirmed with CT angiography or formal 

catheter angiography. At the first year post-aSAH office visit, patients were evaluated 

using the Glasgow Outcome Scale (GOS)36. The study was approved by the Yale New 

Haven Hospital’s Institutional Review Board. Informed consent for this study was 

obtained from either patients or their relatives at the time of cerebrospinal fluid 

procurement. 
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Daily CSF samples were collected from each patient while the ventriculostomy 

was in place. All patients had CSF samples collected on admission. This was compared to 

CSF from the first day that transcranial Doppler studies suggested at least moderate 

vasospasm. This was confirmed at a minimum with CT angiography. For those patients 

who had no radiographic vasospasm, CSF samples were selected on an average of post-

bleed day 6. 

 

Sample Preparation for GC-TOF (First Study) 

After collection, CSF samples were immediately frozen and stored at -80°C until 

the time of simultaneous processing. For each sample, 5 µl of CSF were mixed with 1.0 

mL of extraction solution (acetonitrile, isopropanol, and water in proportion 3:3:2). 

Samples were vortexed for 10 seconds and shaken for 5 minutes at 4°C using an Orbital 

Mixing Chilling/Heating Plate (Torrey Pines Scientific Instruments; Carlsbad, CA). 

Samples were then centrifuged for 2 minutes at 14000 rcf. The whole aliquot was 

evaporated using a Centrivap cold trap concentrator (Labconco, Kansas City, MO) to 

complete dryness and then re-suspended with 450 µl of degassed 50% acetonitrile. After 

being centrifuged for 2 minutes at 14000 rcf, the supernatant was removed, dried, and 

submitted for derivatization.  

 

GC-TOF Methodology (First Study) 

All samples were processed simultaneously and analyzed using GC-TOF 

according to published methodology in previously published studies37. An Agilent 6890 

Gas Chromatograph (Agilent Technologies, Santa Clara, CA) with a Gerstel automatic 
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linear exchange and Gerstel cold injection system (Gerstel, Muehlheim, Germany) was 

programmed with the following temperature settings: 50°C to 275°C final temperature at 

a rate of 12 °C/s and hold for 3 minutes. The injection volume was 0.5 µl with an 

injection speed of 10 µl/s on a splitless injector with 25 seconds of purge time.  

The gas chromatograph separation columns used in this study were of a 10 m long 

integrated guard column and a 30 m long, 0.25 mm Rtx-5Sil MS column (Restek, 

Bellefonte, PA) with a 0.25 µm 95% dimethyl/5% diphenyl polysiloxane film. The 

separations parameters consisted of 99.9999% ultra-pure helium with built-in purifier 

(Airgas, Radnor, PA) as the carrier gas at a constant flow rate of 1 mL/minute. Oven 

temperature was held at a constant 50°C for 1 minute and then increased by 20°C per 

minute up to 330°C, which was then held for 5 minutes.  

The mass spectrometer used was a Leco Pegasus IV time-of-flight mass 

spectrometer with Leco ChromaTOF software (LECO Corporation, St. Joseph, MI). All 

samples were introduced at a transfer line temperature of 280°C. Electron impact 

ionization was set at 70 eV with a 250°C ion source temperature. For quality control, four 

calibrates and two blank samples were used in each run.  

 

Data Processing (First Study) 

Data processing followed previously published methodologies37. Using guidelines 

set by the Metabolomics Standards Initiative38, GS/MS were annotated only if both 

retention index and mass spectra matched. The signals reported were then exported using 

the BinBase database, consisting of quantification ion, retention index, unique database 

identifier, and a complete mass spectrum string. The result files were transformed by 
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calculating the sum of all structurally identified compounds for each sample and by 

dividing all data with each sample by the corresponding metabolite sum; this value was 

then multiplied by a constant factor to obtain values without decimal places.  

 

Data Analysis and Statistics (First Study): 

All statistical analysis was performed using “R” version 3.2.3, a modular open-

source programming suite (http://cran.r-project.org/). Data visualization was conducted 

with the “ggplot2” R-package. Metabolite levels at both time points were compared using 

principal component analysis and paired sample T-test with fold change threshold > 0.5. 

Metabolites levels at each time points were correlated with GOS using Pearson 

correlation. The significance threshold was p<0.05 with false discovery rate and 

Bonferroni corrections. The identified metabolite levels were compared with vasospasm 

development, modified Fisher grade, and Hunt and Hess scale by Mann Whitney U test 

or Pearson correlation. Metabolites that correlated with GOS were described with 

receiver operating characteristic curves to predict patients who had low disability 

(GOS=5) compared to moderate disability to death (GOS≤4).  

 

Patient Cohort (Second Study) 

 All patients undergoing Gamma Knife radiosurgery at our institution sign consent 

for the details of their radiosurgery treatment and subsequent clinical course to be entered 

prospectively into a database. The names of patients who had to undergo surgical 

resection following radiosurgery were retrieved retrospectively and any available tissue 
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from these patients was retrieved from pathology achieves for this project according to 

institutional guidelines.  

 

Collection and Pathologic Examination of Tissue Samples (Second Study) 

All patients in this study had brain metastases that were treated with GKRS at the 

Yale Gamma Knife Center using the Leksell Gamma Knife 4C machine with 

radiosurgery dosing based on lesion volume as guided by RTOG-90-05 protcol39. At the 

time of lesional regrowth as seen by gadolinium-enhanced magnetic resonance imaging 

on follow-up imaging, each case was discussed at a multidisciplinary tumor board and 

each patient was selected to undergo surgical resection for optimal control of their 

regrowing lesions.  

Immediately after surgical excision, all resected samples were bisected and 

processed in two different ways. Half of the sample was processed into formalin and 

paraffin for immediate surgical pathology diagnosis, while the other half was snap-frozen 

in optimal cutting temperature (OCT) compound. During retrospective identification of 

ideal radiation necrosis and recurrent tumor samples, sections of each sample from the 

paraffin block and frozen sections from the OCT block were concurrently examined 

histologically. Given that imaging changes after radiation can represent tumor regrowth, 

radiation injury or a combination of both, each specimen intended for metabolomics 

analysis was examined histologically first. Pure areas of radiation necrosis and pure areas 

of tumor were then separated from the resected specimens by neuropathologist Alexander 

Vortmeyer as shown in Figure 5. On histology, radiation necrosis was defined as three 

concentric rings of tissue with innermost necrosis, a middle region of reactive gliosis with 
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demyelination, and an outer ring of edema. As the distinguishing pathology, the middle 

region of reactive gliosis in the absence of tumor cells was separated from the other 

regions and sent for analysis after being matched to tumor sample of the same primary 

tumor type.   

Upon dividing the surgical samples into either radiation necrosis or tumor, tissue 

samples were sectioned at -25°C to produce OCT-free 20-micron thick tissue flakes. 

Only areas of each histological slide with uniform histologic results (either radiation 

necrosis or recurrent tumor) were submitted for metabolomics analysis at the West Coast 

Metabolomics Center (Davis, California). The research study described here was 

performed with approval of Yale Pathology Tissue Services (YPTS Tissue Banking 

Protocol HIC# 304025173).  

 

Sample Preparation for GC-TOF (Second Study) 

For each sample, 4 mg of tissue was weighed and added to 1.0mL of acetonitrile, 

isopropanol, and water (3:3:2). The samples were homogenized using GenoGrinder and 

centrifuged at 2500 rpm for 5 minutes. The samples were then evaporated in a Labconco 

Centrivap cold trap concentrator and resuspended in 500 µl of 50% acetonitrile. After 

being centrifuged for 2 minutes at 14000 rcf, the supernatant was removed, evaporated, 

and submitted for two step derivatization with methoxyamine in pyridine followed by 

silylation with MSTFA (N-Methyl-N-(trimethylsilyl) trifluoroacetamide). 

 

GC-TOF Methodology (Second Study) 
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The methodologies used were published in a previous study37. An Agilent 6890 

Gas Chromatograph was equipped with a Gerstel automatic liner exchange system and a 

Gerstel cold injection system with temperature program as follows: 50°C to 275°C final 

temperature at a rate of 12 °C/s and hold for 3 minutes. Injection volume was 0.5 µl with 

10 µl/s injection speed on a splitless injector with purge time of 25 seconds.  

The gas chromatograph separation column consisted of a 30 m long, 0.25 mm 

Rtx-5Sil MS column with a 0.25 µm 95% dimethyl/5% diphenyl polysiloxane film and 

an additional 10 m integrated guard column. For the separation parameters, 99.9999% 

ultra pure helium with built-in purifier was used as a carrier gas at a constant flow of 1 

mL/minute with oven temperature held constant at 50°C for 1 minute then increased by 

20°C per minute to 330°C, which was held constant for 5 minutes.   

A Leco Pegasus IV time-of-flight mass spectrometer controlled using Leco 

ChromaTOF software was used. The samples were introduced with a transfer line 

temperature set at 280°C. Electron impact ionization occurred at 70 eV with an ion 

source temperature of 250°C. Two blank samples and four calibrates were included in 

each run for quality control.  

 

Data processing (Second Study) 

GC/MS peaks were annotated only if identified according to Metabolomics 

Standards Intiative guidelines with both mass spectra and retention index recorded and 

matched. All signals were exported by the BinBase database, which was reported by 

quantification ion, a unique database identifier, retention index, and the complete mass 

spectrum encoded as string. 
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Result files were transformed by calculating the sum of all structurally identified 

compounds for each sample and by dividing all data associated with a sample by the 

corresponding metabolite sum. This value was multiplied by a constant factor to obtain 

values without decimal places; intensities of identified metabolites with more than one 

peak were summed to only one value in the transformed data set.  

 

Statistical Analysis (Second Study)  

Statistical testing was conducted using “R” version 3.2.3, a modular open-source 

programming suite (http://cran.r-project.org/). A principal component analysis was 

performed to check for discrimination accuracy between comparison groups using the 

“ropls” R-package. A random forest analysis utilizing the 10,000 trees was performed to 

obtain predictive accuracy metrics and a ranked list of metabolites based on importance 

to the classification scheme. The random forest analysis was conducted using the 

“randomForest” R-package.  

Univariate statistical analysis included the Mann-Whitney U test and fold change 

between the comparison groups. Positive fold change values indicate elevated levels in 

radiation necrosis whereas negative fold change values indicate elevated levels in tumor. 

Statistical significance defined as p < 0.05 and fold change > 0.5. An unsupervised 

hierarchical clustering analysis was performed to obtain metabolomics subtypes within 

global metabolomics profiles to ascertain purported metabolic pathways, conducted using 

the “heatmap.plus” R-package. All data visualization was performed with the “ggplot2” 

R-package.  
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Author Contributions (Both Studies) 

Alex Lu performed or was involved in the following:  

• First Study: study design, all statistical analysis, all figure and table generation, 

manuscript drafting, and manuscript revisions.  

• Second Study: study design, all statistical analysis, all figure and table generation, 

manuscript drafting, and manuscript revisions.  

GC-TOF was performed by the West Coast Metabolomics Center (UC Davis, Davis, 

California) through their commercial metabolomics service.  

 

Results  

Patients and Descriptive Data (Study 1):  

We enrolled fifteen patients with high-grade aneurysmal subarachnoid 

hemorrhage, defined by modified Fisher scale 3 or 4 (Table 1). The mean age was 

55.73±16.98. Eleven (73%) patients were female. The mean Hunt and Hess score was 

3.6±0.91. Nine patients (60%) developed vasospasm during their post-aSAH course. At 

one-year follow-up, 9 (60%) patients had no or low disability with Glasgow Outcome 

Score=5. Average post-bleed day collection at admission and during hospitalization were 

1.06±0.7 and 5.53±2.0 respectively (Table 2).  

 

Global Metabolite Changes:  

GC-TOF identified 97 metabolites with known chemical structures. In a principal 

component analysis, the first and second principal components captured 19.4% and 

14.5% respectively of the data variance (Figure 1). Sixteen metabolites (12 after 
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Bonferroni correction) changed significantly between the two time points (Table 3 and 

Figure 2A). In all these metabolites measured during hospitalization, the changes were 

magnified if patients had intraventricular hemorrhage and/or parenchymal extension 

(modified Fisher grade 4 vs 3), as shown in Table 3 and Figure 2B.  Of the identified 

metabolites, no significant correlations were found after multiple correlation statistical 

correction with vasospasm development or Hunt and Hess scale. 

 

One Year Outcome Predictors:  

When correlating metabolite levels at each time point and GOS score, 6 

metabolites measured during hospitalization correlated with GOS score (Table 4). 2-

hydroxyglutarate was significant after Bonferonni correction (p=4.54e-4, Pearson=-0.79). 

Lower levels of all 6 metabolites correlated with better one-year outcomes post 

aneurysmal subarachnoid hemorrhage. When predicting patients who had no or low 

disability (GOS = 5), 2-hydroxyglutarate had a sensitivity of 0.89 and specificity of 0.83. 

The receiver operating characteristic curve of 2-hydroxyglutarate had an area-under-

curve value of 0.85 (Figure 3A). The receiver operating characteristic curves for 

tryptophan, glycine, proline, isoleucine, and alanine had area-under-curve values of 0.67, 

0.81, 0.80, 0.72, and 0.78 respectively.  

At time of admission, 2-hydroxyglutarate levels in patients with GOS=5 and 

GOS≤4 were not statistically different (p=0.328) (Figure 3B). However, from time at 

admission to time during hospitalization, 2-hydroxyglutarate levels in patients with 

GOS=5 trended to decrease (p=0.22, fold change=-0.18) whereas 2-hydroxyglutarate 

levels in patients with GOS≤4 trended to increase (p=0.143, fold change=0.16), as shown 
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in Figure 4. In alpha-ketoglutarate, the precursor to 2-hydroxygluarate, alpha-

ketoglutarate levels in patients with GOS=5 also trended to decrease (p=0.337, fold 

change=-0.087) whereas alpha-ketoglutarate levels in patients with GOS≤4 trended to 

increase (p=0.278, fold change=0.32), as shown in Figure 4.  

 

Patient and Pathological Tissue Characteristics (Study 2)  

Patient demographics and pathological specimen characteristics are summarized 

in Table 5 and Table 6. The average age of patients at the time of biopsy was 53.9 years. 

Two patients (20%) were male, and 8 were female (80%). Of the 10 patients, 4 

contributed only radiation necrosis specimens, and 3 contributed only tumor specimens; 3 

patients contributed both radiation necrosis and tumor specimens. As shown in Figure 5, 

tumor samples consisted of three primary tumor types: melanoma, breast, and non-small 

cell lung cancer (NSCLC). These tumor types represent the most common primary sites 

for central nervous system metastases.  

 

Global Metabolite Analysis (Study 2) 

Our protocol applied GC-TOF for pathologically confirmed radiation necrosis and 

recurrent tumor samples. In total, we identified 141 metabolites that could be confidently 

correlated to known biochemical structures. A principal component analysis of the global 

metabolite profiles suggests high discrimination accuracy between the comparison 

groups, shown in Figure 6A. The variance of the first and second principal component 

were 43.83% and 24.86% respectively.  
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A random forest analysis yielded an overall predictive accuracy of 78.57%. The 

random forest analysis also produced a ranked list of metabolites to distinguish the 

comparison groups. The top 25 metabolites are shown in Figure 6B.  

 

Univariate Statistical Analysis of Identified Metabolites (Study 2) 

Of the 25 metabolites identified with the random forest analysis, 17 metabolites 

had levels that were significantly different between radiation necrosis and tumor samples 

(p < 0.05 by Mann Whitney U test as shown in Table 7). These metabolites included 

alpha-tocopherol, proline, citric acid, gamma-tocopherol, UDP-glucuronic acid, 

butyrolactam, 2,5-dihydroxypyrazine, arachidonic acid, elaidic acid, taurine, UDP-N-

acetylglucosamine, ribitol, adenosine-5-monophosphate, beta-sitosterol, conduritol-beta-

expoisde, lauric acid, and putrescine. Of these metabolites, 6 metabolites were increased 

in tumor, and 11 metabolites were increased in radiation necrosis; all metabolites had an 

absolute fold change > 0.5 between comparison groups.  

 

Metabolite Cluster Analysis (Study 2) 

An unsupervised hierarchical clustering analysis of the identified 17 metabolites 

shows three distinct clusters of metabolites that discriminate the comparison groups of 

radiation necrosis vs. recurrent tumor (Figure 7). The three clusters represent increased 

metabolism (elevated in tumor), fatty acid products (elevated in radiation necrosis), and 

antioxidants/cofactors (elevated in radiation necrosis). The two metabolites that were 

most significantly elevated in radiation necrosis compared with recurrent tumor were 

alpha-tocopherol and citric acid. The two metabolites most elevated in recurrent tumor 
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compared with radiation necrosis were proline and UDP-glucuronic acid). Boxplots of 

the metabolite levels between comparison groups are shown in Figure 8. The receiver-

operating curve of these metabolites have area-under-curve values of 1.00, 0.92, 0.94, 

and 0.93 respectively.    

 

Analysis of Metabolites Currently Used in MR spectroscopy and PET (Study 2) 

N-acetyl aspartate (NAA) along with creatine and choline are the metabolites 

currently used in MR spectroscopy for identification of radiation necrosis versus recurrent 

tumor. Of these 3 metabolites, only NAA was identified with this study’s methodologies. 

NAA trended but was not found to be significantly elevated in radiation necrosis compared 

to tumor (p = 0.073, fold change 1.36). The boxplot and ROC curve of NAA with AUC 

value of 0.8. 

In PET, analogs of glucose, are most commonly used although amino acids such 

methionine, phenylalanine and tyrosine have been studied at a few dedicated centers. 

Glucose and the individual amino acids were identified with this study’s methodologies. 

The first quartile, median, and third quartile values of glucose trended to be higher in 

tumor compared to radiation necrosis but did not reach statistical significance (p = 0.53). 

Methionine, phenylalanine, and tyrosine also trended to be elevated in tumor compared 

radiation necrosis but again did not reach statistical significance (p = 0.62, 0.71, and 0.80, 

fold change = -0.17, -0.36, and -0.13 respectively). The receiver operating characteristic 

AUC values of glucose, methionine, phenylalanine, and tyrosine were 0.61, 0.59, 0.55, 

and 0.57 respectively.  
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Discussion 

Study 1 

Therapies that reduce cerebral vasospasm incidence have not produced better 

patient outcomes19. Successful biomarker identification in aneurysmal subarachnoid 

hemorrhage has been limited, and none are currently used in a clinical setting. In this 

exploratory study, we report the first use of untargeted metabolomics to screen large 

numbers of metabolites without the bias of theory-driven targeted metabolomics studies 

using cerebrospinal fluid in aneurysmal subarachnoid hemorrhage patients. This is also 

the first research study to implicate 2-hydroxyglutarate, a known biomarker of 

physiologic hypoxia in all human cells including neurons, in aneurysmal subarachnoid 

hemorrhage pathogenesis.   

Our analysis identified metabolites (primarily free amino acids) that changed 

significantly during hospitalization; these changes were magnified if patients had 

intraventricular hemorrhage and/or parenchymal extension (modified Fisher grade 4 vs. 

grade 3). Similar changes in free amino acids have been identified in venous blood40 of 

aneurysmal subarachnoid hemorrhage patients but were not associated with modified 

Fisher grade. While the cause of these metabolomics changes are unknown, two possible 

explanations are that these metabolites may be markers of increased blood breakdown 

and/or increased catabolism.   

Our analysis also revealed a 6-metabolite panel that predicted long-term outcome 

independent of cerebral vasospasm development. Four of these metabolites (tryptophan, 

proline, isoleucine, alanine) significantly increased from time at admission to time during 

hospitalization. Glycine and proline are major components of collagen; induction of 
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meningeal collagen synthesis has been shown to be a pathologic hallmark of 

subarachnoid hemorrhage41.  

2-hydroxyglutarate can measured in vivo using MR spectroscopy42 and is 

produced from alpha-ketoglutarate. 2-hydroxygluarate exists as two enantiomers: L-2-

hydroxyglutarate and D-2-hydroxyglutarate. While D-2-hydroxyglutarate has been linked 

to glioma pathogenesis via mutant isocitrate dehydrogenase43, L-2-hydroxyglutarate was 

recently implicated in all human cells as a universal physiologic adaptive response to 

hypoxia44,45. Human neuronal cells have been specifically shown to preferentially 

produce high levels of L-2-hydroxyglutarate in response to hypoxic stress46. High levels 

of L-2-hydroxyglutarate inhibit alpha-ketogluarate-dependent dioxygenases to regulate 

histone methylation levels and mitigate cellular reductive stress by inhibiting glycolysis 

and electron transport44,45.  

2-hydroxyglutarate has not been previously linked to stroke or stroke outcomes. 

We demonstrated that 2-hydroxyglutarate levels measured during hospitalization 

correlated with degree of recovery and could predict patients who had low disability at 1 

year post-aSAH. While patients had similar levels of 2-hydroxyglutarate at admission, 2-

hydroxyglutarate trended to increase in patients with moderate disability to death and 

trended to decrease in patients with low disability; these findings were mirrored in alpha-

ketogluarate. Combined with previous literature, our results suggest that 2-

hydroxyglutarate may be a marker of tissue hypoxia induced by global ischemia in 

aSAH.  

This preliminary exploratory study has several limitations. The sample size and 

collection days of CSF were limited with only 15 patients with cerebrospinal fluid 
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metabolites levels measured at 2 time points reported. Future studies would benefit from 

cerebrospinal fluid measurements every day post-aSAH, allowing for increased 

resolution of metabolite levels post-aSAH. The addition of serum measurements of 

metabolite levels would also provide insight on global effects of aSAH and the 

relationship between serum and cerebrospinal fluid metabolite levels. Additional 

limitations include variability between cerebrospinal fluid collection days and no chiral 

discrimination of metabolites. Because this study design utilized untargeted 

metabolomics using GC-TOF, the data can only provide relative quantification so 

metabolites of interest would need to be measured using methods that provides SI units, 

which would be necessary to validate a clinically useful biomarker.  

These results will need to be validated in a larger prospective study with increased 

temporal resolution and chiral analysis to differentiate the different enantiomers of 2-

hydroxyglutarate. Knowledge about the specific metabolic changes in the brain during 

the course of aneurysmal subarachnoid hemorrhage may also provide important new 

insight into the pathophysiology of aneurysmal subarachnoid hemorrhage. In clinical 

practice, measurement of 2-hydroxyglutarate could be investigated as potential biomarker 

of ischemia after aneurysmal subarachnoid hemorrhage. 

Overall, this is the first study to use untargeted metabolomics of CSF samples 

collected from aSAH patients for acute disease monitoring and long-term outcome 

assessments. The metabolites identified improve the current understanding of aSAH 

pathogenesis. 2-hydroxyglutarate may be used to predict patient outcomes and may 

represent a biomarker of global ischemia.  
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Study 2 

A non-invasive method to differentiate radiation necrosis from recurrent tumor 

remains elusive but much needed today as the clinical use of radiosurgery increases47 and 

patient survival continues to lengthen48. This study aimed to evaluate currently available 

imaging metabolites and validate their use specifically in differentiating radiation 

necrosis and metastatic tumor. In addition, this study aimed to identify novel metabolites 

that may serve as alternative in vivo biomarkers for imaging that would potentially 

outperform currently used metabolite imaging biomarkers.  

In utilizing in vivo metabolite biomarkers, MR spectroscopy and PET would be 

the most promising imaging modalities. Current MR spectroscopy methods examine 

choline/creatine (Cho/Cr) and choline/N-acetyl aspartate (Cho/NAA) ratios. In this study, 

we were only able to measure NAA and therefore we were not able to make conclusions 

about the validity of using these ratios.  

Current PET radiotracer analogs include glucose, methionine, phenylalanine, and 

tyrosine in the form of fluorodeoxyglucose (FDG), L-methyl-11C-methionine (11C-MET), 

3,4-dihydroxy-6–18F-fluoro-L-phenylalanine (18F-FDOPA) and O-2-18F-fluoroethyl-L-

tyrosine (18F–FET) respectively. For all these metabolites, the underlying assumption is 

that tumor is more metabolically active than radiation necrosis and accumulates higher 

levels of these metabolites. FDG-PET has been the most studied but suffers from wide 

ranges of reported sensitivities (65%-81%) and specificities (40%-94%)49 depending on 

the institution and protocol used. Our results indicated that these 4 metabolites trended to 

be elevated in tumor compared to radiation necrosis, supporting the currently used PET 

methodology. However, the ability to discriminate between radiation necrosis and tumor 
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appear to be suboptimal compared to that of other candidate metabolites identified in our 

study.  

We identified 17 novel metabolites that may have higher diagnostic potential if 

they can be translated into imaging studies. Our results suggest that radiation necrosis had 

elevated levels of fatty acids and antioxidant/cofactor metabolites whereas tumor had 

elevated energy metabolism markers. 

In radiation necrosis, demyelination and cell death may result in increased fatty 

acid products; we identified lauric acid, ribitol, putrescine, putyrolactam, arachidonic 

acid, and elaidic acid as potential biomarkers within this group. Previous studies have 

found that oligodendrocytes are extremely sensitive to radiation50,51. In addition, MR 

spectroscopy of radiation necrosis often contains a large lipid peak, but no studies have 

resolved the involved metabolites50,52,53. The identified biomarkers in this study may 

contribute to this peak.  

In addition, radiation necrosis tissue may mobilize elevated levels of antioxidants 

in response to oxidative stress and increased cell death within the local cellular niche. 

Our study identified the metabolites gamma-tocopherol, alpha-tocopherol, beta-sitosterol, 

citri acid, and conduritol-beta-epoxide as candidate biomarkers. While it is uncertain why 

these metabolites were elevated in radiation necrosis, one external explanation could be 

bias due to unreported patient oral supplementation. However, given that 3 patients 

contributed to both tumor and radiation necrosis samples, the likelihood of this bias is 

low.   

Tumor is more anabolically active than normal tissue and likely more active than 

radiation necrosis; we found that tumor has increased levels of adenosine-5-
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monophosphate, taurine, 2,5-dihydroxypyrazine, proline, UDP-glucronic acid, and UDP-

N-acetyglucosamine. Taurine has been identified to be elevated in tissue samples of lung 

cancer tissue compared to paracancinomous tissue54. In addition, proline biosynthesis has 

been shown to augment tumor cell growth and aerobic glycolysis55. UDP-glucuronic acid 

and UDP-N-acetylglucosamine are both used by glucuronsyltransferase and 

glycosyltransferases reactions. Using UDP-N-acetylglucosamine as a substrate, multiple 

tumor types including breast, prostate, lung, liver colon, and bladder cancer have 

increased O-linked-β-N-acetylglucosamine modifications on intracellular proteins 

through the mTOR/MYC pathway56. Elevated levels of UDP-N-acetylglucosamine have 

also been found in human lung adenocarcinoma compared to nonmalignant tissue57 as 

well as in human melanoma cells implanted in mice58.   

 There are several limitations to this study. First, due to the low number of 

available tissue samples, no metabolites in the univariate statistical analysis reached 

significance with Bonferroni correction (significance threshold p = 3.54e-4). Although 

over 50 samples of resected tissue was examined, only 7 samples of radiation necrosis 

and 7 samples of recurrent tumor were pure enough in each pathology type to fit the 

criteria for study. This study was originally performed as a proof of concept study to 

determine if unique metabolites could be identified for radiation necrosis versus tumor. 

To the authors’ knowledge, the study design of using flash frozen neural tissue post-

resection in combination with metabolomics analysis has not been reported in the 

literature.  

While several metabolites have been identified, the validity of our results still 

needs to be confirmed by further studies that include a larger sample size and a larger 
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variety of metastatic tumors. In addition, there are no data from this study to suggest that 

similar metabolites should be used to differentiate primary brain tumors from radiation 

necrosis. Second, this study does not provide any correlation with currently available 

imaging changes. While this would be the ultimate goal of solving the issue of 

differentiating radiation necrosis and recurrent tumor, the metabolites identified in the 

present would have to be translated into MR spectroscopy or PET imaging to become 

clinically useful. Third, this study does not address possible metabolite changes in 

pseudo-progression as it remains unclear if the pathophysiology of early post-radiation 

change such as pseudo-progression is the same as the delayed changes of radiation 

necrosis.   

We acknowledge that these data are preliminary and that future work must be 

performed to validate these metabolites in combination with the development of in vivo 

neuroimaging modalities. If non-invasive imaging modalities can be developed 

specifically for the metabolites identified in this study, however, this may be the first step 

to robustly solving the current dilemma of distinguishing radiation necrosis and recurrent 

tumor after radiosurgery. 

In summary, this study reports the first tissue-based untargeted metabolomics 

analysis of examining differential metabolic profiles of radiation necrosis versus tumor. 

The results identify multiple candidate metabolites that may be used with imaging 

modalities such as MR spectroscopy and PET imaging for differentiating radiation 

necrosis and tumor; these candidate metabolites may have much higher binary 

classification test results compared to those of currently used metabolites in MR 

spectroscopy and PET as suggested by tissue-based metabolomics results of the present 
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study. Although promising, a prospective study using the identified metabolites with 

radiographic techniques will be needed to test the applicability of these study results. If 

such study were successful, the need to ability to differentiate radiation necrosis and 

recurrent tumor using non-invasive imaging would eliminate the need for surgical 

resection in cases presenting without mass effect on local structures.  

 

Conclusion: 

 These studies demonstrate the application of metabolomics to issues of 

neurosurgical importance. Future studies within neurosurgery may focus on the fields of 

traumatic brain injury, epilepsy, and brain cancer. Metabolomics is powerful tool to 

analyze the biochemical profile of any biological sample. The scale of high-throughput 

metabolomics is rapidly increasing. As metabolomics technology advances and 

workflows become optimized, the three areas of high-throughput metabolomics will 

increase cohort size, temporal resolution, and spatial resolution in future studies17. More 

patients will be included in these studies to allow for higher statistical power. The 

number of metabolites that can identified simultaneously will increase and the time it 

takes to analyze the high-throughput data will decrease. Finally, current metabolomics 

studies examine homogenized cell extracts or biofluids such as serum and cerebrospinal 

fluid. Future studies will be able to sample metabolome of single cells within 

subpopulation of interest.  

The future of metabolomics will also rely on its integration with the ‘omics fields 

(genomics, transcriptomics, and proteomics) into a streamlined multi-omics platform. 

While the technology for combining these tools remains rudimentary, the multi-omics 
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approach has the potential to change the landscape of biomarker identification, drug 

discovery, and personalized medicine.  
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Figure References and Legends 

Figure 1: Principal component analysis of CSF samples collected at admission vs. during  

hospitalization. 
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Figure 2: Metabolites significantly change from time at admission to time during 

hospitalization   

A. 16 metabolites significantly change between time at admission to time during 

hospitalization.  

B. Of the 16 metabolites measured at hospitalization, changes were magnified with 

higher modified Fisher grade (4 vs. 3). Nine of these metabolites had p<0.05.  
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Figure 3: Relative 2-hydroxygluarate levels and receiver operating characteristic curve of 

2-hydroxyglutarate at predicting patients with low disability (GOS=5) at 1-Year Post-

aSAH. 3A.  

• For patients with GOS=5, 2-hydroxyglutarate trended to decrease whereas for 

patients with GOS≤4, 2-hydroxyglutarate trended to increase. 3B. Area-under-

curve value of 0.85 for the receiver operating characteristic curve of 2-

hydroxyglutarate.  
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Figure 4: Patients with low disability (GOS=5) trend to have lower levels of alpha-

ketoglutarate and 2-hydroxyglutarate whereas patients with higher disability (GOS≤4) 

trend to have higher levels of alpha-ketoglutarate and 2-hydroxyglutarate during aSAH 

hospital course 
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Figure 5: Histology of Radiation Necrosis and Tumor 

• The identity of each flash frozen sample was confirmed histologically. Radiation 

necrosis at 200x (A) & 400x (B) magnification, H&E. Radiation necrosis was 

defined as inflammatory demyelination and reactive gliosis in the absence of 

tumor cells. Recurrent non-small cell lung cancer at 200x (C) & 400x (D) 

magnification, H&E. Metastatic tumors from various primary tumors were also 

identified histologically.   
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Figure 6: Principal Component Analysis Plots and Random Forest Analysis Shows High 

Discrimination Accuracy Between Radiation Necrosis and Tumor  

A) Principal component analysis score plot showing differential variance between 

tumor and radiation necrosis as well as primary tumor types. 

B) Random forest analysis identifies a ranked list of metabolites for classification of 

tumor versus radiation necrosis.  
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Figure 7: Heatmap of Significant Metabolites Reveals Metabolic Signatures of Radiation 

Necrosis and Tumor 

• An unsupervised hierarchical clustering analysis shows 3 distinct clusters of 

metabolites that discriminate radiation necrosis and tumor. Metabolites that 

represent increased metabolism were elevated in tumor. Metabolites that represent 

fatty acid products and antioxidants/cofactors were elevated in radiation necrosis. 
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Figure 8: Boxplots and Receiver Operating Characteristic Curves for Selected 

Metabolites Discriminating Between Tumor and Radiation Necrosis 

• Selected metabolites provide a high degree of discrimination between tumor and 

radiation necrosis according to the area-under-curve values of the receiver 

operating characteristic curves.  
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Tables.  

Table 1: Patient demographics and characteristics 

H&H = Hunt and Hess Scale; GOS = Glasgow Outcome Scale; A-Comm = 

anterior communicating artery; P-Comm = posterior communication artery; VA = 

vertebral artery; ICA = internal carotid artery; MCA = middle cerebral artery 

Patient 
ID Age Gender Smoking Hypertension 

aSAH 
treatment 

Aneurysm 
Site 

Cerebral 
Vasospasm 

Modified 
Fisher H&H GOS 

1 54 F + + Coiling R P-Comm + 4 4 5 

2 24 M + − Coiling A-Comm + 3 4 4 

3 63 M − − 
L VA 

Closure L VA + 3 4 5 

4 56 F − − Coiling R P-Comm + 4 4 5 

5 48 M + + Coiling A-Comm + 3 2 5 

6 57 F + − Coiling A-Comm + 4 3 1 

7 49 F − + Clipping A-Comm + 4 3 5 

8 40 F + − Clipping A-Comm + 3 3 5 

9 68 M + + Clipping A-Comm + 3 3 5 

10 28 F + − Coiling A-Comm − 3 4 4 

11 74 F + + Clipping L MCA − 4 5 3 

12 88 F − + Coiling 
L Superior 
Cerebellar − 4 4 1 

13 51 F + + Coiling 

A-Comm, L 
Supraclinoid 

ICA − 3 2 5 

14 68 F + − Clipping R MCA − 4 5 5 

15 68 F − + Coiling A-Comm − 3 4 4 
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Table 2: CSF collection listed by post-bleed day 

Patient ID 
Post-Bleed Collection Day 

(At Admission) 
Post-Bleed Collection Day 
(During Hospitalization) 

1 1 4 

2 0 5 

3 2 3 

4 1 6 

5 2 4 

6 1 7 

7 2 5 

8 0 9 

9 1 4 

10 1 6 

11 1 5 

12 0 3 

13 2 6 

14 1 10 

15 1 6 
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Table 3: Metabolites significantly change from time at admission to time during 

hospitalization 

*Significant after Bonferroni correction; KEGG ID = Kyoto Encyclopedia of 

Genes and Genomes identifier; NS = Not Significant 

Metabolite KEGG 
Nominal p-

Value 
Bonferroni 
Correction 

Fold 
Change 

Nominal p-
Value (Fisher) 

Fold 
Change 
(Fisher) 

phenylalanine C00079 2.47E-05 * 1.37 5.91E-03 0.63 

leucine C00123 3.95E-05 * 1.75 2.89E-02 0.65 

threonine C00188 4.39E-05 * 1.67 NS 0.32 

valine C00183 7.10E-05 * 1.69 2.89E-02 1.63 

tryptophan C00078 7.22E-05 * 0.82 2.05E-02 1.45 

serine C00065 8.51E-05 * 0.58 NS 0.02 

glycerol N/A 8.92E-05 * -0.96 NS -0.04 

1,5-anhydroglucitol C07326 1.38E-04 * -0.55 2.05E-02 -1.89 

methionine C00073 1.45E-04 * 1.34 4.01E-02 1.48 
beta-

mannosylglycerate N/A 2.29E-04 * -0.54 2.05E-02 -1.91 

asparagine C00152 4.31E-04 * 1.70 1.40E-02 1.83 

tyrosine C00082 5.15E-04 * 0.74 3.73E-03 1.43 

lysine C00047 1.08E-03 NS 0.75 NS 0.33 

glutamine C00064 1.10E-03 NS 0.54 NS 0.20 

isoleucine C00407 4.53E-03 NS 0.91 NS 0.46 

proline C00148 1.04E-02 NS 1.73 NS 2.12 
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Table 4: Metabolites significantly correlate with 1-year outcome post-aSAH 

*Significant after Bonferroni correction; KEGG ID = Kyoto Encyclopedia of 

Genes and Genomes identifier; NS = Not Significant 

Metabolite KEGG ID 
Nominal 
p-Value 

Bonferroni 
Correction 

Pearson's 
Correlation 
Coefficient 

2-Hydroxyglutarate C02630 4.54E-04 * -0.79 

Tryptophan C00078 7.16E-04 NS -0.774 

Glycine C00037 9.51E-04 NS -0.762 

Proline C00148 1.24E-03 NS -0.751 

Isoleucine C00407 1.61E-03 NS -0.74 

Alanine C00041 2.2E-03 NS -0.726 
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Table 5: Patient Demographics  

• Radiation necrosis and tumor specimens were obtained from 10 patients who 

underwent Gamma Knife radiosurgery 

NSCLC: non-small cell lung cancer, WT: wild type  

 

Patient 
ID Sex 

Age at 
Biopsy 

Primary 
Tumor Type 

Primary Tumor 
Subtype & Mutation 

Studies 

GKRS 
until 

Resection 
(Days) Medications at Time of Resection 

1 F 47 NSCLC 

Adenocarcinoma 
(ALK WT, AKT WT, 

BRAF WT, EGFR 
WT, ERB2 WT, 

KRAS WT, MEK1 
WT, PIK3CA WT) 295 

Kefzol (1g), Decadron (10mg), Mannitol (25g), Alprazolam 
(.5mg PRN), Chlorpheniramine-hydrocodone (8mg every 12 

hours), Colace 

2 F 66 NSCLC 

Adenocarcinoma 
(ALK WT, EGFR 

WT, KRAS Q16H) 181 

Ceftriaxone (1g), Vancomycin (1g), Mannitol (25g), 
Decadron (10mg), Vitamin C (250mg BID), Citalopram 

(10mg daily), Keppra (500mg BID), Zinc Sulfate (220mg 
daily) 

3 F 71 NSCLC 

Adenocarcinoma 
(ALK WT, AKT1 
WT, BRAF WT, 

EGFR WT, ERBB2 
WT, KRAS WT, 

MEK1 WT, PIK3CA 
WT, ROS1 WT) 496 

Acetaminophen (650mg every 6 hours), Acidophilus (1 day), 
Amlodipine (5mg), Bromday drops, Lactaid, Levothyroxine 

(150mcg daily), Lorazepam (.25mg PRN), Omeprazole 
(50mg daily), Sertraline (50mg daily), Timolol drops, Kefzol 

(1g), Keppra (500mg), Decadron (10mg), Mannitol (50g), 
Lasix (20mg) 

4 F 50 NSCLC 

Adenocarcinoma 
(EGFR WT, BRAF 

WT, AKT WT, 
MEK1 WT) 99 Kefzol (1g), Mannitol (25g), Lasix (40mg), Decadron (10mg) 

5 F 40 Melanoma BRAF V600E 98 

Kefzol (1g), Decadron (10mg), Mannitol (25g), Vemurafenib 
(750mg BID), Multivitamin, Omeprazol (20mg daily), 

Keppra (150mg BID) 

6 M 57 Melanoma BRAF WT 76 
Kefzol (1g), Decadron (10mg), Mannitol (25g), Vitamin D 

(1000U daily) 

7 F 66 Breast ER+, PR+, HER2+ -8* 

Vitamin C (1000mg daily), Colace (100mg daily), 
Metoprolol (50mg daily), Ondansetron (8mg PRN), 

Valsartan-hydrochlorothiazide (320mg daily), Vitamin D 
(50,000 units weekly). Kefzol (1g), Mannitol (25g), Lasix 

(20mg), Decadron (10mg) 

8 F 50 Breast 
ER-, PR-, HER2 

Equivocal 1604 

Decadron (10mg), Kefzol (1g), Keppra (500mg), 
Trastuzumab (every three weeks), Tykerb (250mg daily), 
Ativan (1mg PRN), Glycolax, Zolpidem (PRN), Insulin 

aspart (dates unclear) 

9 M 35 Melanoma BRAF V600E -1* 
Kefzol (1g), Decadron (10mg), Mannitol (25g), Pantoprazole 

(40mg daily) 

10 F 57 NSCLC 

Adenocarcinoma 
(KRAS G12V, EGFR 

WT) 517 
Kefzol (1g), Mannitol (.5g/kg), Decadron (10mg), Lasix 

(20mg) 
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Table 6: Pathology Characteristics  

• Multiple primary tumor types were analyzed in an attempt to generalize our 

findings. Seven samples of tumor were compared to 7 samples of demyelinating 

radiation necrosis.  

*Two samples of tumor included for metabolomic analysis were not irradiated 

prior to resection; these patients underwent GKRS after resection 

NSCLC: non-small cell lung cancer, WT: wild type  

 

 

 

 

Specimen ID Patient ID Primary Tumor Type Pathology Biopsy Location 

1 1 NSCLC Recurrent Tumor Frontal 

2 1 NSCLC Radiation Necrosis Frontal 

3 2 NSCLC Recurrent Tumor Frontal 

4 2 NSCLC Radiation Necrosis Frontal 

5 3 NSCLC Recurrent Tumor Frontoparietal 

6 3 NSCLC Radiation Necrosis Frontoparietal 

7 3 NSCLC Recurrent Tumor Frontoparietal 

8 4 NSCLC Radiation Necrosis Parietal 

9 5 Melanoma Recurrent Tumor Frontal 

10 6 Melanoma Radiation Necrosis Frontal 

11 7 Breast Metastatic Tumor Cerebellar 

12 8 Breast Radiation Necrosis Frontoparietal 

13 9 Melanoma Metastatic Tumor Right Frontal 

14 10 NSCLC Radiation Necrosis Temporal 
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Table 7: Significant Metabolites Changes Between Radiation Necrosis and Tumor 

• Identified metabolites from RF analysis were analyzed using Mann-Whitney U 

test. Positive mean fold indicates elevated levels in Radiation Necrosis; negative 

fold change indicated elevated levels in tumor. KEGG database identifiers are 

also displayed. In this analysis, 17 metabolites with known structures had p-value 

< 0.05 and fold change > 0.5.  

*KEGG ID: Kyoto Encyclopedia of Genes and Genomes identifier 

NSCLC: non-small cell lung cancer 

Metabolites KEGG ID Fold Change Nominal P-Value 

Alpha-Tocopherol C02477 2.91 5.83E-04 

Proline C00148 -3.04 4.08E-03 

Citric acid C00158 1.15 6.99E-03 

Gamma-Tocopherol C02483 2.75 6.99E-03 

UDP-Glucuronic Acid C00167 -3.81 8.66E-03 

Butyrolactam C11118 5.89 1.11E-02 

2,5-Dihydroxypyrazine NA -2.05 1.75E-02 

Arachidonic Acid C00219 1.63 1.75E-02 

Elaidic Acid C00712 0.86 1.75E-02 

Taurine C00245 -2.21 1.75E-02 

UDP-N-Acetylglucosamine C00043 -2.11 1.75E-02 

Ribitol C00474 1.94 2.13E-02 
Adenosine-5-

Monophosphate C00020 -0.87 2.62E-02 

Beta-Sitosterol C01753 1.18 2.62E-02 

Conduritol-Beta-Epoxide NA 2.13 3.79E-02 

Lauric Acid C02679 0.91 3.79E-02 
Putrescine C00134 1.47 3.79E-02 
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