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Abstract: ACTIVATION OF CYSTIC FIBROSIS MACROPHAGES IS 
DYSREGULATED 
Evan J. Levy, Cristina Barone, Emanuela Bruscia, Marie E. Egan. Department of 
Pediatrics, Yale University School of Medicine, New Haven, CT. 
 

We hypothesize that intrinsic defects in cystic fibrosis (CF) macrophages 
affect their ability to adequately respond to extracellular stimuli, affecting their 
phenotypic response and contributing to a hyper-inflammatory state. 

Peripheral blood-derived monocytes from healthy donors (HD) (n=10) as 
well as CF subjects (n=10) were differentiated into macrophages using RPMI 
media with 50 ng/mL of MCSF for 10 days. Cells were treated with 100 ng/mL of 
LPS plus 20 ng/mL of INF-gamma to activate the M1 phenotype or 20 ng/mL of 
IL-4 to activate the M2 phenotype. Cells were treated for 24 hours in preparation 
for RNA isolation and 3 hours in preparation for protein isolation. RNA was 
isolated and reverse transcribed to cDNA in preparation for qualitative, reverse 
transcription polymerase chain reaction (qRT-PCR). qRT-PCR was performed 
using IL-6, IL-1B, and TNF-alpha primers as M1 markers and TGF-B1, MRC, 
PPAR-gamma as M2 markers. Expression levels were performed in seven 
experiments, each using a different set of HD and CF subjects, utilizing 8.0 x 
10^5 to 1.0 x 10^6 cells per well, while three protein experiment were done using 
different sets of HD and CF subjects. 

Stimulation of CF macrophages induces greater phosphorylation of 
proteins that regulate macrophage activation, as compared to HD macrophages. 
When CF macrophages are challenged with LPS/INF-gamma, they show greater 
phosphorylation of STAT1 protein as compared to HD macrophages. Similarly, 
when CF macrophages are challenged with IL-4, they exhibit greater 
phosphorylation of STAT6 protein, as compared to HD macrophages. Finally, CF 
macrophages show greater phosphorylation of AKT protein as compared to HD 
macrophages when stimulated with both M1 and M2 cytokines. As expected, HD 
macrophages (n=7, experiments) demonstrated appropriate plasticity and 
polarization with increased expression of M1 markers and decreased expression 
of M2 markers in response to LPS/INF-gamma. Furthermore, they demonstrated 
modestly increased expression of M2 markers and decreased expression of M1 
markers in response to IL-4. In marked contrast, when stimulated with LPS/INF-
gamma CF macrophages (n=7, experiments) demonstrated hyper-inflammation 
with dramatically increased expression levels of M1 markers as well as aberrant 
polarization as evidenced by increased expression levels of some M2 makers. 
Aberrant polarization was further characterized by increased expression of M1 
markers in the presence of IL-4 in addition to increased expression of M2 
markers. 

These data suggest that lack of functioning CFTR in macrophages leads 
to the inability of macrophages to adequately respond to environmental cues and 
activate into appropriate phenotypes suggesting there is an intrinsic cellular 
defect. Moreover, the mechanism(s) that underlie these aberrant responses likely 
involve altered intracellular signal transduction which is currently under 
investigation. 
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1. Introduction 

 
 
 

1.1 Cystic Fibrosis 

    Cystic Fibrosis (CF) is an autosomal recessive disease caused by a mutation 

to the gene that codes for the cystic fibrosis transmembrane conductance 

regulator (CFTR) protein. The disease manifests as a chronic, degenerative 

process that affects the upper and lower respiratory tracts, the pancreas, the 

hepatobiliary tree, intestinal tract, sweat glands and the reproductive tracts [1].  

 

1-1.1 Clinical Diagnosis 

As of 2015, 59.6% of patients are diagnosed through newborn screening 

(NBS) by measuring for uncharacteristically high levels of immunoreactive 

trypsinogen (IRT) in blood spot tests [2]. High levels of IRT indicate pancreatic 

damage. High levels are not specific to CF, and infants that screen positive for 

IRT require either further genetic testing or confirmation with a sweat chloride 

test. Classically, a diagnosis of cystic fibrosis is made when clinical features of 

the disease accompany a sweat chloride concentration greater than 60 mmol/L. 

If sweat chloride concentrations fall in the intermediate range of 30-59 mmol/L, 

further DNA testing can be done [3]. NBS and early diagnosis are important, as 

early intervention allows for improved nutrition and growth, which may play an 

important role in reducing disease burden. In fact, several studies have shown a 

correlation between improved growth rates in infancy/childhood and improved 

lung function later into adolescence [4, 5]. 
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1-1.2 Clinical Presentation 

CF often presents as a classical clinical sequelae of homozygous 

mutations within Class I-III categorizations. The neonatal period is often 

significant for meconium ileus, protracted jaundice, and intestinal atresia. In 

infancy, CF patients begin to experience failure to thrive and chronic diarrhea 

from pancreatic insufficiency; cholestasis, chronic infection with Staphylococcus 

aureus (Sa), and anemia also present.  In the absence of NBS or sweat chloride 

testing, infants with CF can go undiagnosed, further exacerbating these 

manifestations. Some pathognomonic features of CF in childhood include rectal 

prolapse, intussusception, distal intestinal obstruction syndrome (DIOS), chronic 

pansinusitis or nasal polyposis, ABPA, and the beginning of liver disease. In 

adulthood, CF manifests as advanced lung disease often requiring transplant 

after 30 years of age, chronic infection with Pseudomonas aeruginosa (Pa), CF 

related diabetes (CFRD), anxiety, osteopenia, congenital bilateral absence of vas 

deferens in mails, digestive tract cancer, and advanced liver disease ([1, 3]). Due 

to the great strides made in drug development and in clinical management, more 

than 50% of CF patients are adults with the median predicted survival age up to 

41.6 years, up from around 30 years in 1987 ([2]). As a result, our understanding 

of the adult disease sequelae is evolving.  
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1-1.3 Genetic Basis of Disease 

The gene coding the CFTR protein was identified in 1989 and was 

localized to chromosome 7 ([6]). To date, over 1500 mutations have been 

identified, but the functional importance of only several mutations is understood. 

The deletion of the amino acid phenylalanine at position 508 on the CFTR protein 

(F508del) is the most common allelic mutation, with an estimated frequency of 

66% that varies within populations depending on demographics. While mutations 

in the CFTR gene are the principal cause of disease in patients with CF, even 

among patients who share the same genotype on each allele, there is great 

variability of both clinical phenotype as well as survival outcomes. This variability 

suggests that other environmental and genetic factors modify disease severity. In 

fact, this variability can be partially explained by the presence of additional 

genetic polymorphisms, such as -509 and codon 10 genotype variants of the 5’ 

end of TGFβ1, which further adversely modify disease phenotype [7].  

 

1-1.4 CFTR Protein  

Mutations in the CFTR gene lead to alterations in the synthesis, trafficking, 

and function of the CFTR protein, a selective anion channel for chloride, 

bicarbonate, and thiocyanate, that belongs to the adenine nucleotide-binding 

cassette (ABC) protein family. The protein contains five domains: two nucleotide-

binding domains (NBDs), two transmembrane domains, and a unique R domain. 

Activation of the CFTR protein involves cAMP-dependent phosphorylation of the 

R domain by PKA first, followed by binding and hydrolysis of ATP by the two 
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NBDs to induce open and closed conformational changes. The two 

transmembrane domains line the pore and regulate the conductance and 

selectivity of the pore, allowing trafficking of anions down their electrochemical 

gradient [6, 8]. This characteristic distinguishes the CFTR protein from other ABC 

transporters, as the other members of this protein family utilize ATP hydrolysis to 

transport ions up their electrochemical gradient.  

Distinct CFTR mutations affect protein function differently and can be 

further categorized into five classes. Class I mutations lead to defective synthesis 

of the protein, Class II mutations lead to defective processing/protein maturation, 

Class III mutations lead to defective protein regulation, Class IV mutations lead to 

defective ion conductance, and Class V mutations lead reduced synthesis and 

function [1].. As stated before, association between genotype and phenotype is 

incomplete as twins may display varying phenotypes, but generally speaking, 

severity of disease increases with ascending order of class mutation. 

 

1-1.5 CFTR Role in Ion Transport 

The CFTR protein is most commonly found on the apical membrane of 

epithelial cells in the airways, exocrine pancreas, gastrointestinal tract, and sweat 

ducts, where it is responsible for anion conductance, as well as regulation of 

other ion channels. This widespread distribution of protein expression explains 

the broad spectrum of clinical pathology, across numerous organ systems.  

CFTR regulates salt and water transport across epithelial membranes, and loss 

of function has been observed to cause decreased secretion of chloride and 
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bicarbonate, as well as the increased transmembrane absorption of sodium. 

Phosphorylation of the R domain activates the CFTR protein, opening the 

channel for conductance to chloride and bicarbonate secretion, which in turn 

creates an electrochemical driving force for parallel, paracellular diffusion of 

sodium and water. This mechanism for secreting fluid is physiologically vital for 

maintaining adequate airway surface liquid (ASL) and delivering exocrine 

pancreatic and antimicrobial macromolecules to luminal surfaces [9, 10]. 

 

1-1.6 Pathophysiology of Dysfunctional Ion Transport 

While the clinical manifestations of CF are diverse, around 80% of cystic-

fibrosis-related deaths are attributable to lung disease and pulmonary 

insufficiency [1]. The three hallmarks of airway disease pathophysiology in CF 

are chronic infection, dysregulated hyperinflammation, and airway obstruction. 

This pathophysiology causes lung remodeling in the form of bronchiectasis that 

leads to air trapping, hypercarbia, hypoxemia, and ultimately pulmonary 

insufficiency. Although we know that loss of CFTR function leads to this 

pathophysiology, and restoration of CFTR function corrects the underlying 

pathobiology that drives disease, we still have a limited understanding of the 

direct links between CFTR gene mutation and the pathophysiology of the 

disease.  

Several hypotheses have been proposed that link dysfunctional ion 

transport with abnormalities in ASL that lead to thickened mucus and defective 

mucociliary transport (MCT). These hypotheses propose that defective MCT and 
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thickened mucus create environments that lead to chronic infections, 

hyperinflammation, and ultimately the clinical manifestations of CF. 

 

1-1.6.1 Abnormal ASL 

ASL consists of an interface between a mucus layer and a periciliary liquid 

layer (PCL). The mucus layer is responsible for trapping inhaled particles in 

carbohydrate-rich mucins [11]. The PCL is responsible for keeping cilia fully 

extended so that they can effectively beat and drive MCT. ASL volume is tightly 

regulated in order to maintain PCL height and mucous viscosity in optimal 

ranges. Boucher and colleagues propose that dysfunctional CFTR leads to a 

dehydrated ASL that osmotically drives water out of both the PCL and mucous 

layer. As a result, mucous viscosity increases with an increase in mucin 

concentration, and PCL levels fall below the height necessary to keep cilia fully 

extended and properly beating ([12, 13]) 

 

1-1.6.2 Dehydration Hypothesis 

The “dehydration hypothesis” proposes that under physiologic conditions, 

airway epithelial cells regulate ASL volume through the coordination of luminal 

epithelial Na+ channel (ENaC) and CFTR. When ASL volume is high, increase 

absorption of luminal sodium via ENaC transport leads to increased transcellular 

H2O transport and paracellular Cl- transport from the lumen, resulting in 

increased absorption of ASL fluid. Conversely, when ASL volume is low, CFTR 

mediated Cl- secretion increases, which results in increased transcellular H2O 
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secretion and paracellular Na+ secretion into the lumen, resulting in increased 

secretion of ASL fluid. Overall, these counterbalancing processes lead to isotonic 

fluid transport [10, 11]. 

Dysfunctional CFTR disrupts the equilibrium, as CFTR-mediated ASL 

secretion decreases, and ENaC-mediated ASL absorption increases. This 

imbalance leads to a dehydration of ASL, decreasing PCL height and increasing 

mucus viscosity [14]. Mucus plaques develop and create hypoxic 

microenvironments that serve as breeding grounds for bacteria as defective MCT 

greatly hinders clearance. In this setting, the dehydrated airway leads to chronic 

infection as bacteria like Pa infiltrate the plaques, multiplying in nutrient rich 

hypoxic environments, eventually adhering to the epithelial cells as biofilms. 

Chronic infection provokes a hyperinflammatory response that can lead to lung 

remodeling, airway obstruction and pulmonary insufficiency ([11-13, 15]). 

 

1-1.6.3 High Salt Hypothesis 

The “high salt hypothesis” argues that defects in CFTR impair transcellular 

absorption of Cl- and ultimately lead to inability of epithelial cells to absorb salt. 

Consequently, ion concentration of ASL fluid increases, while volume remains 

unchanged [16]. Additionally, because CFTR regulates the secretion of 

bicarbonate into the lumen, loss of CFTR function greatly decreases ASL fluid pH 

[17].   

Welsh and colleagues found that the ASL fluid recovered from CF 

epithelia cells in culture displayed decreased bacterial killing in comparison to 
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WT cells. The ASL fluid of CF epithelia cells had higher concentrations of salt 

than WT cells, and when the fluid was diluted, the bactericidal properties were 

restored [18]. Furthermore, they found that when CFTR function was restored to 

epithelia cells, they were able to correct the high salt concentration of the ASL 

fluid, and restore bacterial killing properties [19]. 

These findings supported the concept that ASL fluid must contain anti-

microbial molecules that are essential for host defense. In the absence of 

functional CFTR, the ASL becomes more acidic and highly concentrated with 

salt, which in turn neutralizes the antimicrobial molecules [17]. This work led to 

the discovery of specific molecules, such as human β-defensins and LL-37 that 

are found in the ASL, and that exhibit gram-negative, antimicrobial properties. 

These molecules are sensitive to both pH and salt concentration, and as a result, 

become less effective in ASL fluid produced by CF epithelia cells in comparison 

to WT cells [20, 21]. Finally, some studies have shown that decreased 

bicarbonate secretion that results from loss of CFTR function, can also directly 

affect the viscosity of the mucus layer in ASL fluid by preventing physiology 

expansion and rheology of mucinous proteins [22]. In conclusion, as a result of 

decreased pH and increased salt concentration, the ASL fluid of the CFTR 

deficient airway exhibits reduced bactericidal properties and thickened mucus 

viscosity that allows bacteria to chronically colonize the airways. This defect may 

be the inciting event that leads to the pathogenesis of CF lung disease. 
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1.2 Hyperinflammation in CF 

1-2.1 CFTR Directly Causes Dysregulated Hyperinflammation 

 The CFTR protein acts principally as an anion channel. Therefore, it 

comes as no surprise that significant resources have been focused on 

elucidating the connections between abnormal ion transport and the 

pathogenesis of CF. Most of these connections assert that chronic inflammation 

is a secondary consequence that results when loss of CFTR function leaves the 

CF airway vulnerable to chronic infections. Nevertheless, a growing body of 

evidence supports the hypothesis that dysfunctional CFTR directly causes 

hyperinflammation, even in the absence of infection [23]. 

 

1-2.2 Inflammation in the Absence of Infection 

 This paradigm shift is supported by experiments that show abnormally 

increased levels of the pro-inflammatory mediator IL-8 as well as increased 

numbers of monocytes and immune cells in CF ex-vivo, uninfected human fetal 

tracheas cells [24]. Further studies examining the bronchoalveolar lavage fluid 

(BALF) of infants without evidence of infection showed increased levels of pro-

inflammatory mediators TNF-α, IL-1β, and IL-8 [25, 26]. Therefore, even in the 

absence of pathogenic bacteria and clinically observable disease, CF airways 

display hyperinflammatory phenotypes. These findings indicate 

hyperinflammation directly results from loss of CFTR function. 
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1-2.3 Exaggerated, Persistent Inflammatory Response 

 While CF cells naïve to infection show a modestly increased basal level of 

pro-inflammatory cytokines, exposure to infection causes an exaggerated 

inflammatory response followed by a persistent increased basal secretion level of 

these same cytokines. CF primary cell cultures taken from chronically infected 

individuals display increase levels of pro-inflammatory cytokines IL-6 and IL-8. 

Also, these cells tend to secrete a decreased level of the anti-inflammatory 

mediator IL-10, in comparison to healthy controls [27, 28]. BALF from CF airways 

recapitulated these findings showing increased levels of TNF-α, IL-1β, IL-6, IL-8, 

with very low levels of IL-10 [29]. Even when immortalized epithelial cell lines 

with functional CFTR are treated with CFTRinh-172, a potent and specific CFTR 

inhibitor, they express increased levels of IL-8 in response to Pa [30]. This basal-

state imbalance provides evidence of a prolonged, persistent, and exaggerated 

inflammatory state in CF, that directly results from loss of CFTR function [31].  

 

1-2.4 Altered Receptor Signaling and Intracellular Pathways Cause 

Inflammation 

  
1-2.4.1 Dysregulation of Pattern Recognition Receptors 

	
 Pattern recognition receptors (PRRs) expressed on epithelial cells are the 

sentinels of the innate immune system, but these receptors are also expressed 

on monocytes, macrophages (Mϕs), lymphocytes and neutrophils [23]. PRRs 

include multiple receptor types, including Toll-like receptors (TLRs), nucleotide-

binding oligomerization domain family, Fc receptors, and RIG-like receptors. 



16	
	

Airway epithelial cells primarily employ TLRs, expressing a variety of surface and 

intracellular iterations. Evidence shows that in CF, dysregulation of the trafficking, 

desensitization, internalization and degradation of PRRs leads to the activation of 

pro-inflammatory pathways without resolution [32]. Therefore, these receptors 

provide a link between epithelial cells, innate and adaptive immune cells, and 

systemic hyperinflammation. 

 

1-2.4.2 NFκB Pathway Drives Inflammation 

 Acting downstream of PRRs, nuclear factor-kappa B (NFκB), is a pathway 

that is also found in all the aforementioned cell lines.  TLRs are implicated in the 

activation of NFκB, which involves IκB kinases phosphorylating the inhibitory IκB 

proteins [33]. Upon activation, NFκB localizes to the nucleus and up-regulates 

pro-inflammatory cytokines. In primary cell cultures of CF cells, NFκB shows an 

increased nuclear localization in comparison to healthy donor (HD) cells [34]. 

Further studies show an increase of NFκB proteins in congruence with a 

decrease in inhibitory IκB protein and lipopolysaccharide-inducible protein A20. 

Human tracheal epithelial cells treated with CFTR inhibitors show an increased 

translocation of NFκB, followed by increased secretion of pro-inflammatory 

cytokines [35].  As mentioned before, the CF lung environment has increased 

basal levels of pro-inflammatory cytokines, such as IL-8 and decreased levels of 

IL-10. With respect to NFκB, IL-8 serves to activate the pathway, while IL-10 

serves as an inhibitor of the pathway [36]. Thus, the imbalance of these two 

cytokines in the CF airway leads to excessive, persistent activation NFκB, 
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resulting in the further overexpression of pro-inflammatory cytokines IL-6, IL-8, 

TNF-α, and IL-1β [37, 38].  

   

1-2.4.3 Other Pathways that Drive Inflammation 

 While the NFκB pathway has been well described as dysfunctional in CF, 

abnormal lipid metabolism, decreased production of nitric oxide, the misfolded 

protein stress response, and increased levels of ceramide are other immune 

pathways that are characterized as abnormal in CF [39]. 

 

1-2.5 Innate and Adaptive Immunity may Directly Contribute to CF 

As evidenced by the “High Salt Hypothesis” and the “Dehydration 

Hypothesis”, as well as ex-vivo, in-vitro, and primary cell experiments on naïve 

cells, dysfunctional CFTR in epithelial cells directly leads to hyperinflammation. 

Yet, cells of the innate and adaptive immune systems, not epithelial cells, have 

principally been described as the regulators of inflammation. The discovery that 

the promoter of the CFTR gene shared characteristics with housekeeping genes, 

inspired research exploring the expression levels of CFTR in non-epithelial cells. 

This research found that cells of the innate and adaptive immune systems 

express CFTR [40]. The confirmation of significant expression levels of CFTR in 

lymphocytes, neutrophils, monocytes, and dendritic cells (DCs) links our 

understanding of the cells that regulate inflammation and the implication that 

these cells directly cause the hyperinflammation found in CF as a result of CFTR 

loss of function. 
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1-2.5.1 Neutrophils 

1-2.5.1.1 Exaggerated Neutrophil Response 
	

As stated above, CF airway cells produce an abnormal amount of IL-8, a 

primary chemokine for attracting neutrophils. Thus, a hallmark of CF lung 

disease is increased neutrophil recruitment. Additionally, in CF, neutrophils do 

not undergo the usual cycle of recruitment, activation, phagocytosis/bacteria 

killing, and apoptosis with clearance, which leads to the accumulation of 

neutrophils [31]. As a result, CF lungs are more prone to hyperinflammation, 

ineffective bacterial clearance, and tissue damage and lung remodeling.  

 

1-2.5.1.2 Impaired Neutrophil Bacterial Killing 
	

Abnormal accumulation of neutrophils in CF has been shown in the BALF 

of naïve airways, airways infected with Pa, and the airways of adults with no 

signs of current exacerbations [25-28]. These elevated levels may result from the 

decreased effectiveness of bacterial killing. Killing deficiencies result from the 

inability of phagolysosomes in neutrophils that lack CFTR to adequately lower pH 

[32]. CF neutrophils also display decreased degranulation of antimicrobial 

proteins containing secondary and tertiary granules [37]. Impaired bacterial killing 

resulting from loss of CFTR function in neutrophils leads to the inability of the CF 

lung to clear infection and ultimately resolve inflammation.  

-–	
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1-2.5.1.3 Neutrophil Elastase is Increased 
	

Neutrophil elastase further compounds the deleterious effects of 

deficiencies in neutrophil killing. Accumulation of neutrophils leads to high 

concentrations of neutrophil elastase in CF airways. Left unchecked, neutrophil 

elastase dismantles gross lung anatomy through the degradation of collagen and 

elastin [37]. Also, elevated elastase disrupts the regulation of immune signaling 

pathways via the cleavage of plasma membrane receptors and proteins [32]. 

Clinicians have utilized this knowledge to use neutrophil elastase concentrations 

in sputum as a biomarker for decline in lung function in CF patients [41].  

 

  1-2.5.1.4 Neutrophils Drive Inflammation with ROS 
	

Neutrophils use the anti-microbial properties of reactive oxygen species 

(ROS) when activated in the lung. Due to the accumulation and protracted 

presence of neutrophils, ASL fluid collected from CF lungs contains elevated 

concentrations of ROS. These levels are further exacerbated by the metabolic 

abnormalities in CF cells that reduce their antioxidant capabilities, as well as the 

repeated release of DNA by dead neutrophils that ramp up oxidative stress.  

Similar to neutrophil elastase, low levels of ROS are protective, but ultimately 

become drivers of sustained hyperinflammation in CF lungs due to their 

persistent, high concentrations [42]. In conclusion, neutrophils help set in motion 

a cycle of inflammation, and their persistent accumulation contributes to the 

prolonged, exaggerated state of hyperinflammation in CF lung disease.  
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1-2.5.2 Lymphocytes 

1-2.5.2.1 IL-17 Response is Dysregulated in 
Lymphocytes Lacking CFTR 

 
Certain deadly pathogens like Pseudomonas Aeruginosa and A. fumigatus 

trigger the pro-inflammatory IL-17 response – an adaptive response that recruits 

neutrophils and encourages phagocytes to uptake and kill these pathogens. 

Th17 cells, a specific helper-T cell that secretes IL-17, orchestrate this response. 

While initially this response is adaptive, CF patients are unable to clear these 

infections, for reasons described earlier, resulting in a sustained IL-17 response 

in CF patients. This sustained response is associated with bronchiectasis and 

classic airway obstruction disease [43]. The sputum collected from CF patients 

shows up-regulation of IL-17 secretion [44], and these results corroborated in 

CFTR knockout mouse that showed increased levels of IL-17 in BALF when 

challenged with A. fumigatus [39, 45]. An exaggerated Th17 response in 

lymphocytes lacking CFTR leads to the pathophysiology of sustained 

hyperinflammation and tissue remodeling that leads to obstructive lung disease 

in CF. 

A deficiency in the enzyme indoleamine 2,3-dioxygenase (IDO), an 

enzyme that catabolizes tryptophan, may explain the increase of Th17 cells 

found in CF patients. IDO deficiency has been shown to be associated with 

patients homozygous for F508del [46]. CFTR knockout mice show correlations 

between IDO deficiency and an increase in Th17 cell frequency. As a result, mice 

are more susceptible to infection with A. fumigatus. When IDO is replaced in 

these mice, they show reduced susceptibility to A. fumigatus infection [46]. 
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1-2.5.2.2 CF Patients Lack Functioning T-Regulatory 
Lymphocytes 

	
Research has also recently begun on identifying defects in lymphocytes 

that can be attributed to CFTR loss of function. Studies show that CF patients 

may have both defective and overall reduced number of circulating Treg cells 

[47]. Tregs express CD4+, CD25+,Foxp3+ surface markers, and as a subset of 

CD4+ cells they are responsible for preventing autoimmunity and dampening 

down excess inflammation [48]. They also secrete anti-inflammatory cytokines IL-

10 and TFG-β1. In CF patients colonized with Aspergillus fumigatus (A. 

fumigatus), the subset of patients that develop allergic bronchopulmonary 

aspergillosis (ABPA) tend to have decreased frequency of Tregs in comparison 

to CF patients that are colonized with A. fumigatus but do not develop ABPA [48]. 

Also in association with lower Treg frequency was the proclivity for these 

patients’ cells to exhibit exaggerated Th2 and Th17 responses. Therefore, the 

lack of Treg cells helps create the imbalanced environment found in CF lungs 

that tends show exaggerated pro-inflammatory IL-8 and IL-17 responses, with 

insufficient counterbalancing anti-inflammatory IL-10 responses.  

 

1.3 Macrophages Directly Contribute To CF Pathophysiology: Importance 
of Macrophage dysfunction to CF lung disease  
	

1-3.1 Discovery of ‘Phagocytes’ 

 Eli Metchnikoff first characterized the macrophage in the late 19th century, 

describing the cells as diverse agents of inflammation and host defense that, free 
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of anatomical restrictions, are permitted to circulate throughout the body “eating 

to defend”. Thus, the “phagocytosis theory” was born. Drawing on brilliant 

scientific intuition, Metchnikoff understood that embryologic development was 

rooted in Darwinism. He used “ontogenetic recapitulation to understand 

phylogenetic development” [49], recognizing not only that macrophages were 

derived from an ancient phylogenetic origin, but also understanding that they 

represented an end point of a process of differentiation that was put in motion 

from the original embryological cell division [49]. 

 

1-3.2 Diverse Roles of Macrophages 

 These seminal discoveries serve as the foundation for our understanding 

of the innate immune system and the diverse roles of macrophages. Today, we 

understand that macrophages are more than a specialized agent of innate 

immune system responsible only for elimination of pathogens and phagocytosis. 

Macrophages serve many essential functions in tissue homeostasis and 

development, releasing growth factors and directing tissue-repair through the 

sensing of tissue damage [50]. Macrophages also support tissue homeostasis 

through removal of apoptotic cells, remodeling of extracellular matrix, and serve 

as support cells for principal cells that execute primary tissue function roles, i.e. 

alveolar macrophages’ support of alveolar epithelial cells in surfactant 

homeostasis through recycling of surfactant [50]. Finally, pathological processes 

such as cancer, fibrosis, obesity, and osteoporosis often reappropriate 

macrophages plasticity, transforming them into drivers of disease [50]. 
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 1-3.3 Origins of Macrophages 

 Macrophages have distinct roles depending on functional demand, tissue 

location, and homeostatic state of tissues. This diversity in phenotype depends 

on the different embryological origin of tissue resident macrophages, deriving 

from the yolk sac, fetal liver, and hematopoietic stem cells in the bone marrow 

[51, 52]. These macrophage populations are able to remain as distinct 

populations due to their capability of continual self-renewal throughout the 

lifespan of the organism [53]. Epigenetics and enhancer-mediated gene-

expression further distinguish distinct macrophage populations from each other in 

a tissue-specific and ontogenetic origin-specific manner. 

  

 1-3.4 Process of Differentiation 

 This background gives macrophages the flexibility to assume a diverse 

breadth of phenotypes. Deriving from different embryological backgrounds, 

arriving to tissues partially pre-programmed, macrophages undergo a process of 

activation, differentiation, and polarization [50]. Tissue-identity signals, functional-

demand signals or a combination of both directs this process through signaling 

pathways involving hierarchically organized transcriptional regulators. In the 

process of maturation, progenitor cells first undergo activation, assuming a 

specific phenotypic endpoint, followed by reversible polarization, and concluding 

with stable, irreversible differentiation [50]. Maturation transitions from reversible 
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polarization to irreversible differentiation when the signals directing transcriptional 

control become more stable and consistent. 

  

 1-3.5 Polarization of Macrophages 

 Throughout this manuscript, the term polarization refers to the process by 

which activated macrophages receive regulatory signals that alter their cellular 

biology through differential expression of genes, translation of proteins, 

regulation of metabolism, and control of signaling pathways. Initially, polarization 

was described as the process by which macrophages assume one of two 

phenotypes that occupy opposite ends of a bipolar vector: M1 macrophages and 

M2 macrophages [52]. This concept was modeled after the dichotomous 

lymphocyte system of Th1 and Th2 cells. We now understand that this model 

was oversimplified, and as a result we did not appreciate the broad spectrum of 

macrophage phenotypes [53]. New descriptions of macrophage polarization 

account for the myriad of signals that drive macrophages to become certain 

phenotypes through the activation of specific pathways (Fig 1). Therefore, the 

original dichotomous polarization model has not been discarded, but instead 

expanded. As a result, the original paradigm that described macrophages as M1 

or M2 is still used, but now adds further subdivisions for classification that 

account for the individual pathways that are activated by specific signals, as well 

as the idea that hybrid phenotypes exist [54, 55].  
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Figure 1:	Polarization of Macrophages: Specific signals determine macrophage 
polarization and create a spectrum of phenotypes that expand beyond the 
original dichotomous M1 and M2 model. 
 

 

1-3.5.1 M1 Phenotype 

 The M1 phenotype describes macrophages that express prototypic 

inflammatory responses and markers. The two most common stimuli that lead to 

the M1 phenotype are IFN-γ and LPS. IFN-γ activates the IFN-γ receptor that is 

formed by the IFNγR-1 and IFNγR-2 chains. Activation of this receptor recruits 

JAK1 and JAK2, which in turn recruits STAT1 and then activates the protein 

through phosphorylation. Phosphorylated STAT1 translocates to the nucleus 

where it is responsible for controlling the gene expression of cytokine receptors, 

cell activation markers, and adhesion molecules (Fig. 2). LPS signals TLRs that 

activate the MyD88 and TRIF proteins, which in turn activate NF-κB, IRF and AP-

1. Both IFN-γ and LPS are responsible for the increased expression of pro-
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inflammatory cytokines such as TNF-α, IL-1β, IL-6, and IL-12, as well as the 

decrease in anti-inflammatory cytokine IL-10 [55]. 

 

                                           

Figure 2: M1 Pathway: LPS and IFN-γ initiate the cascade of signaling that 
results in M1 polarization. Activation of INFγR and TLRs eventually lead to the 
phosphorylation of STAT1 which translocates to the nucleus, thereby increasing 
expression of pro-inflammatory cytokines IL-6, TNF-α, IL-1β, among other genes.   
   
 

1-3.5.2 M2 Phenotype 

 The M2 phenotype refers to macrophage phenotypes that are involved in 

resolution of inflammation and tissue repair. The most commonly described 

cytokine in this subdivision is IL-4, although IL-13, IL-10, and other ligands have 

also been characterized [55]. IL-4 activates IL-4 receptor, which activates JAK1 

and JAK3. JAK1 and JAK3 then phosphorylate STAT6, which can translocate to 

the nucleus upon phosphorylation. STAT 6 mediates the gene expression of anti-
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inflammatory cytokines as well as receptors that mitigate the effects of pro-

inflammatory cytokines [55] (Fig. 3). 

 

                                       

Figure 3: M2 Pathway: IL-4 initiates the cascade of signaling that results in M2 
polarization. Activation of IL-4R eventually leads to the phosphorylation of 
STAT6, which translocates to the nucleus, thereby increasing expression of anti-
inflammatory cytokines PPARγ, MRC-1, and TGF-β, among other genes.    
  

1-3.6 Macrophages and CF Lung Disease 

 In 1982, before the CFTR gene had even been characterized, 

macrophages were first hypothesized to be involved in the pathogenesis of CF 

lung disease [56]. Although the mediators and mechanisms characterized in the 

original paper have not been substantiated, evidence is mounting in support of 

the conclusion that macrophages directly contribute to the underlying 

pathophysiology of CF. 
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1-3.6.1 Macrophages Express Functioning CFTR 

 Monocytes and macrophages must express CFTR in order to establish 

that a causal link between monocytes and CF pathogenesis exists. In 1989 the 

CFTR gene was identified, and in 1991 Yoshimura et al. first showed that CFTR 

mRNA levels in monocytes/macrophages were comparable to levels found in 

HeLa epithelial cells [40]. Sorio et al. followed up this finding by discovering 

physiologic levels of CFTR protein in monocytes/macrophages, localizing the 

protein to the apical surface of monocytes, and showing CFTR functionality when 

stimulated with forskolin/IBMX [57].  

 

1-3.6.2 CFTR Defects Directly Affect Macrophage Function 

 Once the presence of functional CFTR in macrophages was confirmed, 

research focused on elucidating the effects of dysfunctional CFTR on 

macrophages. In vivo studies of CF alveolar macrophages taken from the BALF 

of mice show an exaggerated secretion of pro-inflammatory cytokines IL-1a, KC, 

TNF-α, IL-6 when stimulated with LPS in comparison to WT mice. These studies 

show that CF macrophages are hyperinflammatory in response to M1 cytokines 

[58].  

In order to prove that the exaggerated response is intrinsic to 

macrophages, and independent of the potentially pro-inflammatory environment 

of CF lungs, in vitro studies were performed on macrophages derived from 

peripheral blood derived monocytes of CF, heterozygote (HT), and WT mice. 

Even after naïve bone marrow-derived cells are cultured in a neutral petri dish for 
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10 days, LPS evokes an exaggerated pro-inflammatory response in CF 

macrophages in comparison to WT macrophages. These experiments show that 

hyperinflammatory secretion of cytokines by CF macrophages appears to be 

CFTR dependent, especially when considering that heterozygotes showed an 

intermediate phenotype [59]. 

This work was further supported by experiments performed on mouse 

bone marrow chimeras. By first irradiating the bone marrow of WT or CF mice, 

and then transplanting either WT or CF bone marrow, four chimeras were 

created: WT marrow-WT background animals, WT marrow-CF background 

animals, CF marrow-WT background animals, and CF marrow-CF background 

animals. The transplantation of CFTR+/+ macrophages into CFTR-/- background 

mice significantly dampened the hyperinflammatory secretion of cytokines, and 

converse is true as well. Therefore, independent of environment and background, 

hyperinflammation in macrophages appears to be intrinsic to CFTR mutations 

[59].  

 This hypothesis is also supported by work done on a conditional knockout 

model of CFTR using myeloid-targeted Cre-recombinase LysMCre transgene, 

which is exclusively expressed in neutrophils, macrophages and DCs. This 

model shows that mice with a conditional CFTR knockout in monocytes have 

worse survival outcomes, increased number of neutrophils and macrophages in 

BALF that persists 10 days after infection, decreased bacteria killing, and worse 

gross lung pathology in comparison to WT cells, even with normal epithelial cells 

[60]. In conclusion, while abnormal ion transport in epithelial cells secondary to 
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CFTR defects leads to lung disease, lack of CFTR in immune cells also directly 

contributes to CF lung disease. 

 

1-3.6.3 Macrophages Exhibit Mixed M1/M2 Phenotype in CF 

 Once defects in CFTR were believed to directly affect macrophage 

function, research examined polarization profiles of human CF macrophages 

using cells recovered from the BALF. Initial studies showed that CF 

macrophages had elevated levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-

8, and IL-6 [29] while also expressing decreased levels of the anti-inflammatory 

cytokine IL-10 [61] in comparison to HD macrophages. These studies were 

supported and enhanced by later work that showed human CF macrophages 

recovered from BALF showed increased levels of the anti-inflammatory cytokines 

IL-4 and IL-13, in addition to the pro-inflammatory profile described earlier [62]. 

These studies describe CF macrophages as possessing a mixed M1/M2 profile, 

which may be explained interactions between defective CF macrophages and a 

complex CF lung environment that simultaneously exhibits pro-inflammatory and 

anti-inflammatory characteristics, as evidenced by chronic inflammation and lung 

fibrosis. 

 

1-3.6.4 Mechanisms Contributing to Abnormal CF Mϕ Activity 

  Extensive research of CF macrophages has uncovered numerous altered 

mechanisms that may, individually and symbiotically, contribute to abnormal CF 

macrophage activity. CF macrophages exhibit dysregulated signal pathway 
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regulation due to aberrant lipid raft composition that leads to altered levels and 

distribution of cholesterol, sphingolipids, and scaffolding proteins [63-66]. 

Defective vesicle trafficking, docking, and maturation also affect the spatial and 

temporal distribution of immune receptors, which increases intensity and duration 

of pro-inflammatory signaling pathways [64].  Defective autophagy leads to 

prolonged retention of TLR4, ultimately causing increased activation of the pro-

inflammatory pathways like NF-kB when stimulated with LPS [58]. The NF-kB 

pathway is further activated in CF macrophages secondary to dysregulated 

nuclear receptors such as PPARγ [67]. Over-activation of the XBP-1 arm of the 

unfolded protein response due to mutations in CFTR also leads macrophage 

activity [68]. All these disturbances in CF macrophage signaling lead to persistent 

hyperinflammation and increased secretion of pro-inflammatory cytokines in 

response to external stimuli. 

 CF macrophages also display defects in phagocytosis and bacteria killing. 

Defective chemotaxis affects CF macrophages ability to localize to sites of 

infection. Abnormal lipid rafts affect CF macrophage surface membrane’s ability 

to properly reorganize into formations necessary for phagocytosis [57]. 

Furthermore, phagolysosomes exhibit defective maturation capacity, and show 

inability to properly kill bacteria resulting from improper regulation of pH and ROS 

formation [69, 70]. Finally, macrophages do not produce normal levels of anti-

bacterial molecules [71]. Ultimately, these defects lead to macrophages 

underperform the vital functions of bacterial killing and phagocytosis of dead cells 

necessary to clear infections and dampen inflammation. 
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2. Statement of Purpose 
	
	

	
Even though the CFTR gene was identified in 1989 , research to establish 

direct links between the gene mutation and the pathophysiology of the disease 

still spark controversy. Up until recently, most research has focused on how 

defective CFTR disrupts ion transport in airway epithelia cells. Since CFTR gene 

expression was identified in bone marrow derived cell lines [56], mounting 

evidence supports the assertion that macrophages directly cause CF disease 

pathology due to innate defects that result from mutations in CFTR. 

Macrophages serve in a variety of roles from supporting tissue development 

and homeostasis, to regulating inflammation, to initiating the host immune 

response [50]. The process of polarization describes the mechanism through 

which macrophages can assume a broad spectrum of phenotypes depending on 

tissue localization, functional demand, and embryological origin. Characterization 

of macrophage polarization began in the early 1990’s [54, 55]. Modeled after the 

dichotomous lymphocyte classification system, macrophages were classified as 

either M1 or M2 phenotypes. Under this system, M1 macrophages refer to cells 

stimulated by pro-inflammatory cytokines, such as LPS and INF-γ, and initiate 

pathways important in killing intracellular pathogens and inflammation. M2 

macrophages refer to cells stimulated by anti-inflammatory cytokines, such as IL-

4 and IL-10, and initiate pathways important for tissue repair and resolution of 

inflammation. 
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As our view of macrophages has broadened from a specialized immune cell 

to a tissue-support cell, so has our understanding of polarization. We now 

characterize polarization as a dynamic, fluid process that activates macrophages 

into phenotypes represented better by a 360° color wheel than by a bidirectional 

vector. 

As mentioned earlier, macrophages with defective CFTR show alterations in 

numerous vital pathways involved in phagocytosis, bacterial killing, and signal 

transduction [45]. Furthermore, polarization profiles of CF macrophages have 

exhibited mixed M1-M2 profiles [61, 62]. While descriptive studies have informed 

us of the physiological pathways invoked in M1-M2 polarization, these studies 

have not been reproduced in human CF macrophages. 

 The purpose of this study is: 

1) To determine the polarization profiles of human CF macrophages in 

comparison to HD macrophages upon stimulation with M1 and M2 cytokines. 

2) To characterize in CF macrophages the pathways previously implicated in 

polarization, and to compare their signaling profiles to those of HD cells. 

3) To determine if the mixed phenotype attributed to CF macrophages is 

secondary to dysregulated polarization pathways. 

 

 

 
	
	
	
	
	



34	
	

3. Methods 
	
	
	
3.1 Chemicals and Reagents 

 Pseudomonas aeruginosa (Pa) LPS (Sigma-Aldrich) was prepared in 

PBS at 100X stock solution and used at a concentration of 100 ng/mL. 

Recombinant human INF-γ (ConnStem) was prepared in 0.1% BSA at a 2000x 

stock solution and used at a concentration of 20 ng/mL. Recombinant human IL-

4 (ConnStem) was prepared in 0.1% BSA at 500x stock solution and used at a 

concentration of 20 ng/mL. Recombinant human MCSF (ConnStem) was 

prepared in RPMI with 10% H2O at 50x stock solution and used at a 

concentration of 50 ng/mL. 

 

3.2 Isolation and Culture of Human Peripheral Bone Marrow Derived Mϕs 

 

3.2-1 Recruitment and Subject Profile 

Subjects	were	recruited	and	consented	according	to	approved	IRB	protocol.	

All	CF	subjects	were	recruited	from	pediatric	clinics	and	were	under	the	age	of	18.	

No	patients	were	on	Kalydeco	or	Orikambi	at	time	of	recruitment.	All	patients	had	

moderate	to	severe	mutations	(Figure	4).	
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Subject # Sex Genotype 

12 M ΔF/G542X 

23 F ΔF/G85E 

26 F 2789+57A/21841NS 

34 M ΔF/D110H 

45 F ΔF/ΔF 

54 M ΔF/R117H 

58 F ΔF/ΔF 

69 M ΔF/ΔF 

78 F ΔF/Deletion 

81 F ΔF/1444fs 

Figure 4. Subject Demographics: All CF subjects were recruited from 
pediatric CF clinic. 
	
	

3-2.2 Isolation 

Using 20G needles, ~10 mL of whole blood was drawn from both CF and 

HD patients, and collected in tubes containing EDTA. Whole blood was then 

mixed in a 1:1 ratio with PBS solution, before being gently pipetted into 15 mL 

conical tubes containing Ficoll solution (Histopaque 1077 Sigma H8889) at 25° 

C, always maintaining a 2:1 ratio of whole blood-PBS mixture:Ficoll. These tubes 

were then centrifuged at 1100 RPMs for 30 minutes, with centrifuge settings set 

to “no break” and “half-speed acceleration”. After 30 minutes of density 

centrifugation with Ficoll, whole blood separates into buffy coat layers (Fig. 5). 

The layer containing the monocytes was located between the serum and Ficoll 
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layers, and this layer was exclusively extracted from the 15 mL conical tubes 

(69).  

                        

Figure 5. Isolation of Monocytes Using Ficoll: Ficoll solution separated whole 
blood into buffy coats upon centrifugation. A cloudy layer that rests above the 
clear Ficoll layer contains monocytes, and was isolated for culture. 
 
 
Once extracted, the monocyte layer was washed in 40 mL PBS with 5 mL RPMI 

solution containing 50 ng/mL of MCSF, and then centrifuged at 1500 RPMs for 

10 minutes with “full acceleration” and “full break” settings. Upon centrifugation, 

the supernatant was discarded, the pellet containing immature monocytes was 

dissolved in 3 mL of RPMI supplemented with 10% FBS and 50 ng/mL 

recombinant human MCSF per 1x10^6 cells, and then the cells were placed into 

6 well plates at 3 x 10^6 cells/well.  

   

3-2.3 Culture 

Cells were cultured in 6 well plates and stored in incubators at 37°C with 

CO2 5%. Cells were carefully monitored each day for changes in the pH of the 

media, as indicated by the media changing color from pink to yellow. This change 

in pH was a good surrogate for cell activity, and generally indicates that fresh 

media should be added to the wells. Cells usually began to attach to the bottom 
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of wells at around day 5, at which time cells were passed into a new well to 

expand the culture. Cells were cultured until all 6 wells became confluent, at 

about 1x10^6 cells/well, which generally took 10-14 days, at which time they 

were ready to be treated with cytokines for experiments. 

 

3-2.4 Confirming Macrophage Population 

` In previously studies, after 1-2 weeks, cells were characterized by flow 

cytometry (CD14+/CD45+) and the morphology analyzed on cytospin (figure with 

FACS data, and mac picture). For our studies we also relied on the knowledge 

that gravity dependent centrifugation using Ficoll has been an accepted method 

for isolating lymphocyte, platelet, and monocyte populations. Furthermore, the 

RPMI media supplemented with MCSF used to culture these cells, only 

stimulates the growth of monocyte activation into macrophages, and would not 

support the growth of other cell types. Additionally, when looking under the 

microscope, platelets and red blood cells (RBCs) could easily be differentiated 

from macrophages due to their red color and smaller size. After ~10 days of 

culture, cells appeared to settle to the bottom of the wells, with extended 

pseudopodia – characteristic of macrophages (Fig. 6), without visual presence of 

RBCs or platelets. 
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Figure 6. Confirmation of Macrophage Population: Top panel shows confirmation 
of monocyte/macrophage population using flow cytometry. Bottom left panel 
shows adherent macrophages as visualized under microscope. Bottom right 
panel shows macrophages under high-powered magnification with staining.  

    

3-2.4.1 Confirming CFTR Function in Macrophages 

Chloride efflux in macrophages was confirmed by measuring the efflux of 

N-[ethoxycarbonylmethyl]-6-methoxy-quinolinium bromide (MQAE), a Cl- -specific 

fluorescent dye. Under steady state, MQAE dye is up taken by the cell and does 

not fluoresce when it is bound to Cl-. As cells are stimulated and secrete Cl-, 

MQAE becomes unquenched and begins to emit light.  Cl-- efflux was quantified 

as the initial change in MQAE fluorescence over time (slope) as the cells 
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transitioned from Cl--containing to Cl--free solutions following dye excitation at 

354 ± 10 nm & measurement of emitted light at 460 ± 10 nm [72].  

 

3.3 Cytokine treatments 

When cells were ready to be treated, media was aspirated and cells were 

washed three times with PBS solution. Cells were organized into three treatment 

groups: untreated, M1, or M2. Untreated groups had growth media replaced with 

RPMI supplemented with 50 ng/mL MCSF. M1 treatment groups had growth 

media replaced with RPMI supplemented with 50 ng/mL MCSF, 20 ng/mL INF-γ, 

100 ng/mL of LPS. M2 treatment groups had growth media replaced with RPMI 

supplemented with 50 ng/mL of MCSF and 20 ng/mL of IL-4. Experiments 

prepared for qRT-PCR were treated for 24 hours, experiments for western blot 

were treated for 3 hours (Fig 7). 

 

               

Figure 7. Macrophage Culture and Treatment Protocol: Macrophages were 
treated with either M1 cytokines, LPS and INF-γ, or with an M2 cytokine, IL-4. 
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3.4 QT-RT-PCR and Expression Analysis  

Cells were lysed in triazol (Qiagen), and total RNA was isolated from 

1x106 cells using QiagenRNAMini KitsTM (Qiagen), following the manufacturer’s 

instructions. Real-time PCR analysis was performed with a Bio-Rad iCycler using 

TaqMan technology. Copy number was normalized by 18S and the relative 

expression to untreated cells was calculated by ∆∆Ct method. M1 primers used 

were IL-6, TNF-α, and IL-1β. M2 primers used were MRC1, TGFβ1, and PPARγ. 

All TaqMan primers and probes were purchased from Applied Biosystems (Life 

Technology). 

 

3.5 Protein isolation and Western blot  

Cells were washed three times with PBS, and total cell lysate was 

extracted using RIPA lysis buffer (Cell Signaling) containing 1mM 

phenylmethanesulfonyl fluoride (PMSF) and protease and phosphatase inhibitor 

cocktails (Roche Diagnostics). Protein concentration was determined by a 

Bradford assay and an equal amount of protein was separated by 

electrophoresis on 4-15% Mini PROTEAN Gels (Bio-Rad Laboratories, CA), 

transferred to nitrocellulose membrane (Bio-Rad Laboratories, CA), and probed 

with primary antibodies using standard procedures.  

 

3-5.1 Western Blot Antibodies  

The following antibodies were used: rabbit monoclonal anti-STAT1 –

D1K9Y (1:1000, Cell Signaling), rabbit monoclonal anti-phospho-STAT1 –Tyr701 
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-58D6 (1:1000, Cell Signaling), rabbit monoclonal anti-STAT6-D3H4 (1:1000, 

Cell Signaling), rabbit polyclonal anti-STAT6-phosphoY (1:1000, Abcam), rabbit 

polyclonal anti-AKT (1:1000, Cell Signaling), rabbit monoclonal anti-phospho-

AKTSer473-D9EXP (1:2000, Cell Signaling), and rabbit-HRP anti-actin (1:5000, 

Santa Cruz). For detection, horseradish peroxidase was conjugated to IgG 

secondary antibodies (1:2000, Santa Cruz), followed by visualization using 

enhanced chemiluminescence (ECL). The chemiluminescence imaging system 

ChemiDoc (Biorad) and the Image lab software (Biorad) were used for image 

acquisition and for signal quantification. Protein relative expression is normalized 

to β-Actin. Images have been cropped for presentation.  

 

3.6 Statistical Analysis 

Statistical analyses were conducted using two-tailed two-sample t-tests or 

two-sample unequal variance t-tests. All experiments were performed in 

triplicate, unless otherwise indicated. Data are expressed as mean ± standard 

deviation. A P value <0.05 was considered statistically significant. Prism 7.0 

(GraphPad) was used for all statistical analyses. 
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4. Results 
	
 

4.1 Macrophages Effectively Transport Cl- Via CFTR 

 The MQAE results show that macrophages have expected efflux of Cl- 

upon stimulation with zero-Cl- solution (Fig. 8, left panel). Furthermore, as 

expected, CF macrophages do not show efflux of Cl- in a zero-Cl- solution due to 

lack of functioning CFTR (Fig. 8, right panel). 

 

Figure 8. MQAE Efflux in Macrophages: The left panel shows adequate efflux of 
MQAE upon stimulation with zero-Cl- solution, which represents Cl- efflux via 
CFTR. The panel on the right shows defective Cl- efflux in CF macrophages due 
to lack of functioning CFTR. 
 
 
 
4.2 LPS/INF-γ Stimulated CF Mϕs Exhibit Different Levels of STAT1/pSTAT1 

 In order to interrogate the pathway involved in M1 polarization, we studied 

phosphorylation levels of STAT1 – a protein well described in macrophage 

literature as a regulator of signal transduction and an activator of transcription 

(49-50). Upon stimulation by LPS and INF-γ, certain cell surface receptors 

transduce signals through the phosphorylation of STAT1. Upon phosphorylation, 

STAT1 localizes to the nucleus where it up-regulates the transcription of gene’s 
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involved in activating inflammation and pathogen killing. (49,50,70). Thus cell 

surface signals affect metabolic activity and phenotypic changes in macrophages 

through STAT1 signaling. We found that when stimulated with M1 cytokines, 

LPS/INF-γ, CF macrophages displayed differential expression of total STAT1 

proteins as well as phosphorylated STAT1 (pSTAT1) proteins. CF macrophages 

had decreased protein levels of total STAT1 (Fig. 9; Student TTest, n=3, p < .05), 

yet increased ratio of pSTAT1 to STAT1 protein levels at 3-hour time course, 

(Student TTest, n=3, p < .05), in comparison to HD macrophages (Fig. 9). In CF 

macrophages, total STAT1 protein levels were the highest in untreated cells, and 

decreased with stimulation by either M1 or M2 cytokines. Finally, as expected, 

phosphorylation rates of STAT1 were only significantly elevated when stimulated 

with M1 cytokines, and showed an almost lack of protein levels after M2 

cytokines stimulation. 

 

           

 

                

Figure 9. Differential Expression of pSTAT1/STAT1 in CF Mϕs: CF macrophages 
show elevated ratio of pSTAT1/STAT1 when stimulated with LPS/INFγ after 
three hours and lower expression of total STAT1. 
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4.3 LPS/INF-γ Stimulated CF Mϕs hyper-express M1 Gene Markers 

 We studied the downstream effects of STAT1 signaling by using QT-RT-

PCR to examine the expression level of three M1 markers, IL-6, TNF-α, IL-1β , 

that are regulated by STAT1 [54, 55]. CF and HD macrophages were stimulated 

with M1 cytokines for 24 hours before RNA was isolated.  CF macrophages 

hyper-expressed all three markers upon stimulation with M1 cytokines, in 

comparison to HD cells (Fig. 10; Student TTEST, n=8, p < .05). Unexpectedly, 

when stimulated with M1 cytokines, the M2 marker, TGF-β1, exhibited an on 

average, modest increase in expression levels with a broad range (0.1-16.0). In 

comparison, HD cells always showed down-regulation of these M2 markers upon 

stimulation of M1 cytokines (Fig 11). 

                        

Figure 10. Stimulation with LPS/INF-γ Leads to Hyperexpression of M1 Markers 
in CF Mϕs: This figure is a representative experiment for expression profiles of 
HD vs CF Mϕs upon stimulation with M1 cytokines. All M1 markers showed 
hyper-expression in CF cells. (Student T-test, n=8, p <.05) 
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Figure 11. Up-regulation of M2 Markers with Stimulation of M1 Cytokine by CF 
Mϕs: Representative figure showing increased expression of TGF-β1 and PPARγ 
by CF cells. 
 
 
4.4 IL-4 Stimulated CF Mϕs Exhibit Different Levels of pSTAT6/STAT6 

 In order to interrogate the pathway involved in M2 polarization, we studied 

phosphorylation levels of another signal transducer and activator of transcription, 

STAT6. Upon phosphorylation, STAT6 localizes to the nucleus where it up-

regulates the transcription of gene’s involved in activating resolving inflammation 

and coordinating tissue repair [54, 55, 73]. Conversely, STAT6 down-regulates 

M1 polarization signaling (Fig. 2). We found that when stimulated with the M2 

cytokine, IL-4, CF macrophages displayed differential expression of total STAT6 

proteins as well as phosphorylated STAT6 (pSTAT6) proteins. CF macrophages 

had decreased protein levels of total STAT6, yet increased ratio of pSTAT6 to 

STAT6 protein levels at 3-hour time course (Fig. 12, Student TTest, n-=3, P < 

.05), in comparison to HD macrophages. Furthermore, in comparison to HD cells, 

CF macrophages showed decreased levels of total STAT6 on average in 

untreated groups and cells treated with M1 cytokines. Finally, phosphorylation 
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rates of STAT1 were only significantly elevated when stimulated with M1 

cytokines versus M2 cytokines, as expected (Figure 12).  

 

                      

Figure 12. Differential Expression of pSTAT6/STAT6 in CF Mϕs: CF 
macrophages show elevated ratio of pSTAT6/STAT6 when stimulated with IL-4 
after three hours and lower expression of total STAT6 (Student TTest, n=3, p < 
.05). 
 

4.5 IL-4 Stimulated CF Mϕs Up-regulate Expression of M2 Gene Markers 

 We studied the downstream effects of STAT6 signaling by using QT-RT-

PCR to examine the expression level of three M2 markers, MRC, TGFβ1, and 

PPARγ, that are regulated by STAT6 (49,50). CF and HD macrophages were 

stimulated with M2 cytokines for 24 hours before RNA was isolated.  CF 

macrophages expressed higher levels of all TGFβ1 and MRC upon stimulation 

with M1 cytokines, in comparison to HD cells (Fig. 13; Student TTEST, n=8, p < 

.05). Even more interesting was the unexpected, aberrant increase in expression 

of IL-6, a M1 cytokine, that should be down-regulated upon stimulation by IL-4 

(Student TTEST, n=8, p < .05). In comparison, HD cells show down-regulation of 

these M1 markers upon stimulation of M2 cytokines (Figure 13). 
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Figure 13. Stimulation with IL-4 Leads to Hyper-expression of M2 Markers in CF 
Mϕs: This figure is a representative experiment for expression profiles of HD vs 
CF Mϕs upon stimulation with M2 cytokines. TGFβ1 and MRC showed hyper-
expression in CF cells (Student T-test, n=8, p <.05). PPARγ showed increase on 
average. 
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5. Discussion 
	
  

Cystic Fibrosis pathophysiology involves chronic infection, 

hyperinflammation, and obstructive ductal/airway disease. Until recently, 

defective CFTR in epithelial cells was thought to be the primary underlying driver 

of disease. We now understand that CFTR is expressed in macrophages, and 

that macrophages with defective CFTR display abnormal phagocytosis, bacterial 

killing, and cell signaling. Furthermore, abnormal macrophage activity has been 

shown to persist even in lungs lacking CF disease or in an environment that 

lacks signaling from CF epithelial cells [59, 60]. We believe that dysfunctional 

CFTR in macrophages leads to intrinsic defects in cell signaling important for 

regulating inflammation. Therefore, CF macrophages directly contribute to 

hyperinflammation, chronic infection, and ultimately obstructive disease.  

 Our experiments showing altered regulation of phosphorylation of STAT6 

and STAT 1 in CF macrophages support this conclusion that signaling pathways 

are affected in CF. CF macrophages exhibit increased phosphorylation rates of 

STAT1 and STAT6 in comparison to HD cells, which indicates that they are 

unable to appropriately control activation pathways. Furthermore, CF 

macrophages have lower expression levels of total STAT proteins. Untreated CF 

cells have the highest expression of total STAT1, and these levels decrease with 

stimulation by either M1 or M2 cytokines. This finding may represent an attempt 

by cell machinery to down-regulate these pathways, or maybe transcription of 

new STAT proteins cannot keep pace with the rate of phosphorylation. 
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Ultimately, the higher ratio of phosphorylated proteins and the decrease in total 

protein suggest that the pathways are dysregulated in CF macrophages.  

As STAT proteins traffic to the nucleus and affect gene expression when 

phosphorylated, the increased ratio of phosphorylated STAT1 and STAT6 

proteins may also explain the elevated levels of expression of M1 and M2 genetic 

markers in response to M1 and M2 cytokines. We expected macrophages to 

show up-regulation of M1 cytokines in response to LPS/INFγ, but the CF 

macrophages showed expression levels that were dramatically higher than the 

HD cells. This finding is consistent with the hyperinflammatory state found in 

patients with CF, and suggests that CF macrophages may be driving persistent 

hyperinflammation in CF patients through up-regulation of expression of M1 

cytokines.  

When stimulated with IL-4, CF macrophages showed a higher expression 

level of M2 markers. Another unexpected finding, though, was that M2 markers 

were up-regulated in response to M1 cytokines. Based on previous descriptions 

of STAT1 and STAT6 regulation of gene expression markers, we would expect 

M1 cytokines to only up-regulate expression of M1 markers while down-

regulating M2 markers. The converse should be true as well. This inability for CF 

macrophages to assume one definitive phenotype when receiving stimulation by 

either M1 or M2 cytokines implies that the previously observed mixed 

phenotypes of alveolar macrophages from BALF result from intrinsic defects that 

result from defective CFTR, in addition to the influence from the complex CF lung 

environment.  
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The intrinsic mixed phenotype of CF macrophages in the context of 

dysregulated STAT1 and STAT6 phosphorylation, as well as the different levels 

of total protein, suggests that a master regulator may be implicated in the 

aberrant signal pathways. Previous research has explored the role AKT and 

phosphorylated AKT play on macrophage polarization. AKT has been shown to 

act as a master regulator, affecting cell signaling in ways that up-regulate one 

pathway while down-regulating opposing pathways [74]. In this way, AKT can be 

seen as applying the gas to one pathway, M1 for example, while applying the 

breaks to another pathway, M2 for example (Fig. 14). The mixed phenotypes 

observed in CF macrophages may result from abnormal regulation of opposing 

pathways by a master regulator such as AKT.  

 

                       

Figure 14. AKT Serves as Master Regulator: AKT directs polarization by 
inhibiting M1 pathway signaling and enhancing M2 pathway signaling, thus acting 
as a master regulator. 
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Finally, dysregulated AKT signaling has been exhibited in macrophage 

polarization pathways in connection with decreased levels of insulin growth 

factor-1 (IGF-1). Studies show that appropriate levels of IGF-1 are required in 

order to allow AKT signaling to completely up-regulate the M2 pathway while 

down-regulating the M1 pathway [75]. Furthermore, studies have shown 

decreased levels of IGF-1 in the serum of CF patients experiencing pulmonary 

exacerbations. These clinical findings might explain why human CF 

macrophages show mixed phenotypes with dysregulated activation pathways, 

and could explain a mechanism underlying hyperinflammaiton.  
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