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INTRODUCTION

NTEREST in the study of the microclimate of vegetated areas by anaysis
I of their energy budgets has been increasing in recent years. This type of
study requires keeping track of the amounts, locations and forms of energy
within the "system" and its inter and intra system transport. The energy can
be in the form of a sensible or latent heat, chemical bonds, physical displace-
ments, etc. Energy can be transported within the system by physical transport
(movement of water, air, etc.) by conduction or by radiation. Complex trans-
formations between the energy forms dso take place. One locus of such proc-
esseswhich has received little attention is the stems of trees and smdl plants.

The purpose of this study was to investigate the part played by tree stemsin
the thermal energy budget of the forest stand. Heat flows between the stem sur-
face and the environment by radiative, convective, and conductive modes of
heat transfer. This flux and the resultant storage of thermal energy amounts to
5 to 100/0 of the net radiation incident upon the stand (Geiger, 1965). Although
the underlying purpose of this study wes the understanding of this particular
locus of thermal activity in relation to the forest as a whole, several preliminary
guestions have to be answered first. These are: (1) how are stem surface tem-
peratures related to air temperatures, (2) how can the temperature field in astem
be characterized, and (3) is the stem a passive thermal (physical) system? This
report deals mainly with these preliminary questions.

The best approach to this problem is that of mathematical physics. Although
this method is a powerful tool in the physical sciencesit is a relative newcomer to
the fidd of biology. In his book, The Physics of Plant Environment, Van Wijk
(1963) states:

The essential characteristic of such an analytical or physical approach is
that it leads to a quantitative theory of the studied phenomena, expressable
in mathematical language. In doing so generalizations can be made from a
limited amount of experimental data, i.e. the theory can be applied to circum-
stances differing from those encountered in the original experiments. This can
rarely be done when a problem is approached in a purely empirical way.

In addition the analytical method can often help in considerably reducing
the required number of experiments. In this connection it may be useful to
point out that the application of mathematical statistics to the design and
interpretation of experiments does not change their empirical character. Al-
though these techniques can adso serve to reduce the necessary number of
experiments, they differ essentially from the physical methods referred to here.



TEMPERATURE AND HEAT FLOW IN TREE STEMS

In this study the tree stem is taken to be a physical system which may be
expected to respond (internal temperatures) to a given stimulus (the variation
of air temperature) in a predictable way. A little reflection will convince the
reader that this problem can become extremely complex. For this reason certain
basic restrictions are made at the outset. These are: (1) the stem is assumed to be
in a completely closed stand, that is, the net exchange of radiant energy between
the stem and its surroundings is zero, and (2) the stem is assumed to be an infinite
circular cylinder. It is noted here that further simplication of the problem will
be required.

Throughout this study certain terms and concepts are used which are either
modifications of familiar terms or likely to be unfamiliar to many readers. These
are outlined below:

The term moisture fraction is defined as the ratio of the weight of water in a
unit weight of dry wood. The term wet wood is used throughout to indicate wood
with a moisture fraction greater than the fiber saturation point,

The temperature and heat flow variations in time are treated as sinusoidial
waves or sums of sinusoidial waves throughout this work. In all cases these waves
are characterized by their angular velocity w and an amplitude ™T. « is found
from:

w=27/P )

where P is the period of the wave. All periods are normalized to 2w radians. A
sinusoidial wave is given by:

T(t) = =T sin wt 2

where T(t) is the temporal variation of temperature. This wave is shown in figure
).

A second wave is shown in figure (1) which is lower in amplitude and peaks
later in time than the first. This second wave is related to the first by a phase lag
or epoch angle, ¢ = wt; where t; is the lag in real time, and an amplitude ratio
or gain, 8 = T, /™T}. Thus the second wave may be written as:

Ty, (t) = o°T, sin (wt — ¢) ©)

The vector representation to the right in figure 1 shows more clearly the meaning-
of phase angle and angular velocity.

The study is broken into several main sections. Following the literature review,
the tree stem is discussed in terms of a physical system. This is followed by the
development of an analytic solution to the simplified problem. Testing of this

2
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Ficure 1. Relationships between sine waves.

model against measurements in a real stem is followed by the development of an
analog computer model to attempt to include some of the complicating factors
which could not be included in the analytic model. The discussion brings to-
gether the various aspects of the problem and indicates how the results may be
applied to groups of stems.



PREVIOUS MEASUREMENTS OF
STEM TEMPERATURE

HE EARLIEST measurements of tree temperatures on record are probably

those of Hunter (1775, 1778). There were a large number of measurements
of the temperatures of various plant parts during the next 100 years. These are
well summarized in Gerlach (1929) and Koljo (1950). In early work interest was
centered on heat production in plant material, which at that time was a subject
of thriving controversy. More recent work (Leick, 1910; Gerlach, 1929) found
that no temperature rise due to respiration could be detected in tree stems.

Although a fairly large number of measurements have been made recently,
many are open to criticism on several fronts. In almost every case the tempera-
tures were measured by the radial insertion of a thermometer, thermocouple, or
thermistor into the stem. The theory of heat conduction indicates that this is
not an acceptable way in which to measure temperatures (Jakob, 1957). Since
heat flow is normal to the isotherms in a body, the radial insertion of measuring
probes places the probe in a position to conduct a maximum of heat toward or
away from the point of measurement. This flow of heat results in an unwanted
change in temperature at the point of measurement (Donaldson, 1959; Jakob,
1957). This effect was clearly shown by Eggert (1946) who found that radial
placement of very fine thermocouple wires (30 gauge) in twigs caused errors
of up to 6°C at a radial depth of %4 inch. It would be expected that the mag-
nitude of this type of error would increase with the diameter of the probe and
decrease with the depth of insertion. The latter effect was observed by Eggert.
The thermal properties of the probe material will also affect the magnitude
of this error, the error being higher for materials with higher conductivity
and lower volumetric heat capacity.

Reynolds (1939) comments on this type of error but still placed his rather
large probes (resistance thermometers) in radial holes. For measurement of cam-
bial temperature he inserted the probe along a diameter of the stem, in effect
approaching the cambium from the inside. This is an improvement, but the
probe is still normal to the expected isotherms.

Morowitz (1955) places the following restrictions on sensing probes:

(1) Probes measuring quantities, which can be represented by scalar or
vector fields, must be small in comparison with dimensions in which appreci-
able change of the field occurs.



PREVIOUS MEASUREMENTS OF STEM TEMPERATURE

(2) The perturbation of the scalar or vector field by the probe must be
small in comparison to the quantity measured.

Although (1) has usually been satisfied, (2) usually has not, especially when
thermometers are used for temperature measurements.

A second criticism, and perhaps the more important one from a scientific
point of view, is the approach taken to the problem.

Usually temperature measurements were made with little or no study of the
mechanisms of heat transfer. In the literature cited, authors rarely related their
measurements to the physical properties of the stem. Usually the stem is identi-
fied by species, age, and other indefinite denominations. Thus it becomes difficult
to generalize the results in any but a nebulous and gross way. Usually no attempt
was made to measure temperatures for a full day; only Koljo (1950), for three
days, and Reynolds (1939), intermittently for four years, have done so.

Despite the above criticism, however, certain general results are noted:

1. Temperature waves in the interior of tree stems are reduced in amplitude
and maximums and minimums occur later than on the stem surface. (Gerlach,
1929; Reynolds, 1939; Koljo, 1950; Haarlgv and Petersen, 1952.)

2. Insolation of the tree causes the southern side of the stem to experience
higher maximum temperatures, while on overcast days the surface temperatures
are uniform (Thne, 1883; Gerlach, 1929; Koljo, 1950; Haarlgv and Petersen,
1952).

3. Smaller stems and branches were found to respond more quickly than larger
ones to variation in surface or air temperatures (Gerlach, 1929).

4. Temperatures in stems vary with height, the base being cooler in spring
and warmer in fall, due to heat transfer between the stem base and the ground
(Gerlach, 1929).

5. A vertical temperature gradient in the stem due to fluid flow (transpi-
ration stream) has been noted by Gerlach (1929) and Rouschal (1939). Both
these workers found the effect to decrease rapidly with height. The effect is
more pronounced in ring porous species than in diffuse porous or coniferous.
Hartig (1874) concluded that a living oak was cooled by the transpiration stream.

6. Gerlach-(1929) found wind to have no effect on the temperatures of larger
trees, whereas Koljo (1950) found convectional cooling when the surface of the
tree was raised above the ambient air temperature by insolation.

Reynolds (1939) carried out a long term study of the temperatures of a cotton-
wood tree. The measurements were made on a cross section 30 feet above the
ground (diameter 25.4 inches). His continuous measurements of air, cambial and
central temperatures are the most voluminous yet collected. As mentioned above,

5



TEMPERATORE AND HEAT FLOW IN TREE STEMS

the resistance thermometers he used as probes were large and were placed normal
to the isotherms. Nevertheless his results are interesting. During the winter the
central stem temperature dropped to -1.5°C and remained there for consider-
able periods. Reynolds ascribes this to the freeZing and thawing of the water in
the wood. During mild weather he observed the expected amplitude reduction
and lagging of the temperature waves. During hot dry weather, however, the
stem temperature tended to remain relatively constant, although the air tempera-
ture showed its usual diurnal cycle. Reynolds explains this phenomenon as being
a result of () the absorption of heat by stretching of the water columns and
(2) vaporization of water into the air spaces in the stem wood. No calculations
or estimates of either the amounts of heat that would have to be absorbed in order
to account for the steady temperatures or the amount of heat that could possibly
be absorbed by these mechanisms are presented.

The recent work of Derby and Gates (1966), actually carried out after the
experimental portion of my study was complete, must be mentioned here. Their
model, which is a digital finite differences approximation to the heat transfer
processes within the stem, does allow the incorporation of both the radiant and
convective modes of heat transfer between the stem and its surroundings. Freez-
ing and thawing processes can aso be included. Their model was able to predict
the surface temperatures of an aspen to a reasonable degree of accuracy. Measure-
ments of stem temperatures support the general conclusions made above.



THE TREE AS A THERMAL SYSTEM

HIS SECTION deals with the analysis of the terms in the generalized heat
flow equation for cylindrical bodies and the boundary conditions which are
applied in arriving at a solution. It is in effect the elimination of terms and
boundary conditions which can be shown to be of little probable importance in
their influence on the temperature at a point in the stem.
Because of the obvious importance of the thermal properties of wood and
bark these will be treated first. Following this the complete equation for heat
flow in cylindrical bodies will be introduced and analyzed term by term.

THERMAL PRrOPERTIES OF Wo00D AND BARK

Although there is a relatively large amount of information pertaining to the
thermal properties of dry wood, that is, wood with a moisture content below the
fiber saturation point (see Wangaard, 1940; Kollman, 1951; Kollman and Malm-
quist, 1956; Kuhlmann, 1962; Rowley, 1933; and Maku, 1951) there is very
little data concerning the thermal conductivity of wet wood. MacLean (1941)
has carried out the most complete study on the thermal conductivity of wet
wood. He found that the conductivity was given by significantly different re-
gression equations above and below the fiber saturation point. In the moisture
fraction range 0.41 to 1.29 and specific gravity range 0.33 to 0.59 and at an
average temperature of 30°C the conductivity was given by

k = (5, (4.78 4+ 13.0 m) + 0.568) X 10~ cal cm™ sec? °C—! #

where S, is the specific gravity based on green volume and oven-dry weight and
m is the moisture fraction. For specific gravity based on oven-dry weight and
volume (S,) we have

$,=5(1~-a ®)

where « is the coefficient of volumetric green-to-oven-dry shrinkage. The
temperature dependency of the thermal conductivity can be found by a simple
linear equation for moderate temperature ranges. Estimates of the coefficients
for wet wood could not be found, however.

The thermal conductivity of a stem is neither homogeneous nor isotropic. It
can be seen from equation (4) that the conductivity is a function of both specific

7



TEMPERATURE AND HEAT FLOW IN TREE STEMS

gravity and moisture content and these quantities are known to be functions of
not only position in the stem but also of time (see page 12). The conductivity
also varies with the direction of heat flow, being roughly 2 to 2.5 times greater
in the longitudinal than in the radial or tangential directions.

Although there is some question as to the validity of using a linear regression
to predict the conductivity of wood, I decided to use equation (4). An equation
based on modeling of the heat flow in the microstructure of the wood would be
preferable (see, for example, Kuhlmann, 1962), but the testing of such models
for wet wood was beyond the scope of this work.

The specific heat of dry wood has been investigated in detail by Dunlap (1912)
and his results are expressed by the relation

C, = 0.266 + 0.00116T (cal gm™) ©)

where C, is the specific heat of dry wood at O°C and T is the temperature (°C).
Dunlap’s results are in general agreement with those reported by Kuhlmann
(1962), Ward and Skaar (1963), Hearmon and Burcham (1956) and Martin
(1963). His values ate, however, about 309, lower than those reported by the
Russian workers (see Chudinov, 1954). Dunlap’s values are used in this work in
light of agreement with the majority of other reports.

The specific heat of a mixture of snert material and water is given by

Co = (C, +m) (1 4+ m)™ @)

where C, is the specific heat of dry wood and m is the moisture fraction. This
simple relation does not hold for hygroscopic material, however, since the heat
of wetting of the hygroscopic material, which is a function of temperature,
must be included. For hygroscopic material Kirchoff’s thermochemical equation

dw
dT = Cmeas

(1 +m)— - C, =AC ®)
should hold. Here W is the heat of wetting and AC the excess specific heat.
Hearmon and Burcham (1956) found that this was valid for beech (European)
sawdust. The specific heat of wet hygroscopic material is then

_GCotm  dw
Ca = l1+m de ©)
or with (8)
o Cotm
Cm - 1 + m + ACm (T:m)

8
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Fiure 2. The excess specific heat of wood as a function of moisture fraction
and temperature. The data is from Hearmon and Burcham (1g60).
Also shown is a value for bark as determined by Martin (1960).

where AC,, is a function of temperature and moisture fraction. For wood with a
moisture content above fiber saturation, where the simple weighted sum may be
used, we have

C, +m + 1.3 AC(T, 0.3)
C, =
l4+m

(10)

where T is the temperature and a fiber saturation point of 0.3 is assumed. Figure
2 shows AC as a function of moisture fraction and temperature as reported by
Hearmon and Burcham.

The volumetric heat capacity (C,) is given by

C, =G (1)

9
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Ficure 3. The specific heat and heat capacity of wood as a function of moisture
fraction and density.

where
S =8 (- (1+m) (12)
Substitution of (9) into (11) gives
C, =5I(C,+m+ L3AC (T, 0.3) (1l — ) (13)

This equation with the data of Hearmon and Burcham (1956) is used in this study
to compute C,, which is shown in figure (3) as a function of moisture fraction
and density.

The diffusivity of wood is given by

x = k/C, (14)

and is shown in figure 4 as a function of moisture fraction and density. Note
that at high moisture contents there is little change of the diffusivity with mois-
ture fraction.

The thermal properties of bark have been studied intensively by Martin (1963)
and Reifsnyder, ez al. (1967).

10
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Ficure 4. The thermal diffusivity of wood as a function of moisture fraction
and density. The limit due to saturation of the wood is also shown
(max limit).

Martin found the conductivity of bark at 25°C to be given by
k = 0.2689 + 5.329 S, + 10.266 m (1 + a) (15)
while Reifsnyder finds for the average of Longleaf, Shortleaf and Red pine
k = 0.232 + 4.964 S, +5.558 m (1 + ) (16)

The coefficients in these equations are nearly the same except for the term
involving the moisture fraction. Since outer bark moisture contents are low
(Reifsnyder e al., 1967), this discrepancy is of little practical importance.

Both Reifsnyder and Martin recommend, on the basis of experimental data,
that Dunlap’s relation (6) be used for the specific heat of dry bark.

The excess specific heat of bark has been measured by both Reifsnyder ez al.
(1967) and Martin (1963). At a temperature of 80°C and m> fsp Reifsnyder

II



TEMPERATORE AND HEAT FLOW IN TREE STEMS

et al. find avalue of approximately 0.125 cal gm-* dry bark for both Longleaf and
Shortleaf pine. Martin gives this value as 0.089 ca gm-! dry bark as an average
of several species. These values are very close to those given by Hearmon and
Burcham for beechwood. Since both these values are close to those for wood,
equation 13 was used to compute the volumetric heat capacity of the bark.
Dunlop's relation, equation 6, for dry wood was used to compute the specific
heat of dry bark.

Variation of Thermal Properties

The thermal properties of a stem are nei ther isotropic nor homogeneous in space
or time. Since variations in these properties will influence temperature variations
at apoint in the stem they must be studied and, if necessary, incorporated into the
models. It has been well established that the thermal conductivity of wood is 2 to
2.5 times greater in the longitudinal direction (parallel to the gain) than in the
radial or tangential directions (Wangaard, 1943; Kellog and Ifju, 1962; Kollmann
and Malmquist, 1956). The conductivity differs only very slightly between the
radial and tangential directions (see Wangaard, 1940). This information pertains
only to wood at or below the fiber saturation point. It might be expected that
the longitudinal-tangential conductivity ratio might approach unity for in-
creasing moisture contents and decreasing specific gravities.

The only isotropy of consequence is then that between the transverse plane
and the longitudinal axis.

In the section dealing with the estimation of the thermal properties of green
wood and bark it was shown that the conductivity, the volumetric heat capacity,
and the diffusivity are functions of the specific gravity, the moisture content, and
the temperature of the wood or bark. The influence of temperature is relatively
smadl, and cannot be estimated with any confidence for wet wood and will not
be considered here.

Both the moisture content and the specific gravity distribution in tree stems
are quite variable. To some degree the specific gravity will be determined by
species but the variation around these levelsis quite large and a complex function
of heredity, site, water supply, microclimate, etc. (Hall, 1963; Brown, et ae
1952).

In hardwood species the radial distributions can be quite irregular (Brown,
et al., 1952) but may show a systematic decrease toward the bark (Wangaard,
1950). I n softwoods the specific gravity is generally low near the pith and increases
to a more or less constant value as the bark is approached. In both hardwoods
and softwoods there may be variation of the specific gravity with angular position,

12
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especialy if the tree is leaning or has an uneven crown. Specific gravity usually
decreases with height.

The specific gravity of bark is dso variable but there are insufficient data for
any general conclusions (Spalt and Reifsnyder, 1962).

The specific gravity distribution (oven dry weight and volume) will be a
function of space alone. The moisture content, however, will be a function of
both space and time. R. P. Gibbs has spent a good portion of his life studying
the moisture patterns in trees, and his major conclusion is that these patterns
show a variability which is hard to "explain" (Gibbs, 1958).

The patterns of the spacia and temporal variations of moisture content are
too complex for discussons here. The reader is referred to Gibbs (1958) and
Kramer and Kozlowski (1960) for more thorough discussions.

The thermal properties of wood and bark have been found to be predicted by
specific gravity and moisture content. The volumetric heat capacity is a function
of temperature, specific gravity and moisture content. Because of the variation
of gpecific gravity and moisture in the tree stem the thermal properties will be
functions of radius, angular position, height, and time. For a particular tree at
a particular time it would be virtually impossible to predict the thermal prop-
perties without some knowledge of the distribution of the specific gravity and
the moisture content.

HEAT FLOW IN THE STEM

In the following sections the heat flow equation is introduced and analyzed
term by term. From this analysis a reasonable model and set of boundary condi-
tions can be defined.

Aswe mentioned in the introduction, the stem is specified as a circular cylinder
with no radiation heat exchange on the surface. The coordinate system to be
used in this and following discussions is shown in figure 5. Any point in the
stem can be defined by specification of its axial coordinate (z), radial coordinate
(r), and angular coordinate (8).

Conduction in Cylindrical Coordinates
The heat conduction equation for cylindrical bodies in which there is heat

production at the point (r, z, 0) at the rate A (cal cm-23 sec-l) is
T T 1 T 1 2T o

T
Cv—_a-t_ = k a rz + T af + Tz' ael + azz + A (r!zie) (17)
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COORDINATE SYSTEM TO BE USED THROUGHOUT THIS STUDY
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Ficure 5. Coordinate system.
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where T = temperature, °C
t = time, sec.
C, = volumetric heat capacity, cal cm™
k = thermal conductivity, cal cm™! sec™? °C—!

This form of the conduction equation assumes that the thermal properties of
the cylinder are isotropic, homogeneous and invariant with temperature. As
was shown in the preceding chapter this is not the case here. Equation (17) is,
however, the simplest form and, as will become evident, its use here as an ap-
proximation to the actual case is acceptable even though wood is non-isotropic.
The variation of the thermal properties in space is most easily considered in the
boundary conditions which must be applied to equation (17). This aspect of the
problem will be considered later.

As the primary boundary condition the surface temperature is specified as a
periodic wave of angular velocity w, amplitude ™T,, and average temperature
T,:*

T(a,t) = T, + ™T, sin wt for all t (18)

where w = 2 7 /P, and P is the period of the wave.

Returning to equation (17) it can be seen that the temperature at time t and
some point (r, z, 8) is a function of the fluxes of heat in the axial (6T /0z%), tan-
gential (r728*T/06%), and radial (2*T/0r% + r~'9T/0r) directions, plus any
effect due to local heat generation (A). A discussion of the fluxes of heat in these
directions and their probable significance follows.

The Longitudinal (Axial) Flux

If a vertical temperature gradient exists in the stem there will be a flux of heat
in the axial direction. With the assumption that the radial flux, and thus the
surface temperature, will have the largest effect on temperatures in the stem,
this factor reduces to that of vertical stem surface or air temperature gradients.

On open ground steep vertical gradients of air temperature are established
due to insolation during the day and net long-wave radiation to cold skies during
the night. In the forest, however, the temperature gradients are not large since
the active surface is in the canopy. Geiger (1957), and Baumgartner (1956), have
presented data which indicate that the temperature gradients in the stem space
of the forest is usually less than 3°C. Both W. E. Reifsnyder® and R. Leonard® have

1In all temperature notation the superscript m indicates the amplitude of a wave and the
subscripts a and r refer to, respectively, the surface and some radial point (r).

2Personal communication.
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found gradients of the same order. It would be reasonable to assume that under
conditions where there is no insolation of the stem surface, that the surface tem-
perature of the stem will be quite uniform with height.

The stem is considered here to be a cylinder set into the ground and there will
be some exchange of heat between the stem and the ground. Petrov (1955) found,
for example, that for a spruce tree near Moskava (USSR) the stem was usually
a little warmer at a height of 1 m than it was at 10.5 m in December and January.
His measurements were made with ordinary thermometers inserted radially
into the stem and therefore the data are questionable. Saharov (1952) reports that
mean daily temperatures on the South side of a pine stem at breast height were
5°C higher than the mean at the ground level during July. For an oak 9 cm in
diameter the temperature was 1°C higher at 1 meter than at 0.5 meters. How-
ever, since readings were taken only three times a day (0700, 1300 and 1900
hours) the results are hard to interpret. Again, radially placed thermometers
were used.

Even though the conductivity of wood is greater in the longitudinal than in
the transverse direction, it is my opinion that in closed stands the effects of
vertical conduction will be negligible at heights over a meter. In any case, this
effect would probably be overshadowed by the convection of heat in the sap
stream.

Thus, if the study is restricted to a zone above some critical height the term
for vertical heat flow (6*T/0z*) can be dropped from equation (17).

Tangential Heat Flux

If the gradient dT/d exists, there will be a flow of heat in the tangential
direction. With the assumption that there is no vertical flux of heat of any sig-
nificance,- the factors that will cause a tangential gradient are: (1) variation of
the surface temperature with 6 in addition to its variation in time, and (2)
variation of the thermal properties of wood and bark with 6. As was noted ear-
lier, thermal properties of wood are a function of its specific gravity and mois-
ture content. There seems to be little data on the spatial variation of specific
gravity in tree stems. Langenkamp (1931) found considerable asymmetry in the
specific gravity distribution of a short bolt of beech. However, many studies of the
distribution of specific gravity on a vertical cross section (Trendelenburg, 1937;
Volkert, 1941 or 1956; see also Kollmann, 1951) indicate that a high degree of
axial symmetry exists on straight trees with no pronounced lean. This would be
expected if the theory that wood is laid down in such a manner that the stem
forms a beam of uniform resistance to horizontal loads is accepted (Schniewind,
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1962; Bryant, 1951; and others). It can be further assumed that for trees with a
uniform water supply and crown that the moisture content of the stem will not
vary to a large extent with angular position. The effect of moisture content
variation is of less importance at high moisture contents than at low as was pointed
out on page 10 (see figure 4, page 11).

Assuming that the surface temperatures will be uniform in respect to 0, it
would be reasonable, as a first approximation, to eliminate the term for tangential
flux from the heat conduction equation (17).

Heat Production and Removal

There are two possible sources of heat in the stem: (1) heat generation due to
respiration of living cells in the wood, bark and cambium, and (2) that due to
addition or removal of heat from the cross section under consideration by the
transpiration stream.

The amount of energy released by the oxidation of glucose to carbon dioxide
and water is 112 X 10 cal. per mole of oxygen taken up or carbon dioxide re-
leased. Since this is the energy by which the ‘‘machinery” of the cell is kept
functioning and with which new materials are formed, it would seem that only
a portion of it would be given off as sensible heat. It would be expected then, as
pointed out by Meyer and Anderson (1952), that in rapidly growing tissue only
a small amount of the energy released is given off as sensible heat while in mature
tissue close to 1009, of the energy is released as heat.

The amount of heat released can be estimated, assuming 1009, of the energy
of respiration is lost as heat, from the maximum rate of oxygen production given
by Goodwin and Goodard (1940): 300 mm3O, hr™! gm (wet material)™*. Cal-
culation indicates that a maximum of approximately 2.8 X 10~ cal sec™ cm™
(green wood) will be released. To arrive at an idea of the order of magnitude of
the effect which a source of this strength would have on stem temperatures the
relation

T(r) = A(a® — r?)/4k (19)
with T(a) = 0 for all t

can be used (Carslaw and Jaeger, 1959). Here A is the strength of a uniformly
distributed source in cal cm™ sec™, a is the radius of the stem, and k is the thermal
conductivity. Consider a stem with a radius of, say 10cm, in which heat is pro-
duced at the above maximum rate (2.8 X 107 cal cm™ sec™). With kas 5 X
10~* cal cm™
by some 3°C. This calculation was based on the maximum rate observed by Good-

sec™ °C™! and r equal to zero, the central temperature is raised
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win and Goodard. As pointed out above, the energy released by actively growing
tissue is probably relatively small. Using a value of 0.28 ca cm-3 sec-! (oxygen
absorption of 10 mm3 hr-t gm-'), results in a temperature excess of only 0.5°C
at the center. Since these estimatesare for adistributed source, it is not surprising
that Gerlach (1929) and Leick (1910) were not able to detect any increase in
stem temperature attributable to respiration.

The vertical flow of fluid in the transpiration stream poses a more difficult
problem. In terms of a cross section of the stem this fluid flow can be considered
asasourceif the fluid is coming from awarmer region or asasink if it comes from
a colder region. To complicate matters further it must be noted that the flow will
be roughly periodic in nature (Kramer and Kozlowski, 1960). Hartig (1873)
concluded from temperature data taken at a height of 1 meter on alive oak and
on an oak log set into the ground that the transpiration stream cooled the living
stem. There are, however, many other factors which could have caused the
differences on which he based his conclusions.

Gerlach (1929) noted that in the spring when the ground was colder than the
air that the transpiration stream had a cooling effect on the stem. This effect de-
creased with height in a birch stem 22 cm. in diameter. At 0.5 meters above the
ground the temperatures were lowered slightly in relation to the temperatures
at the same radia points at a height of 1.75 meters. The effect was strongest at
aradial depth of 6 cm. Study of his curves indicates that at 1.75 meters (height)
the stem was unaffected by the fluid flow from the colder ground. Gerlach adso
found that this effect was marked during the rise of sap.

Rouschal (1939) was able to show that the cooling effect as measured in the
region of the cambium was greater in ring porous than in diffuse porous and co-
niferous trees. He was able to detect acooling effect at a height of 3 metersin ring
porous species. In diffuse porous and coniferous stems no effect was detectable at
this height. For the latter, the temperatures were reduced approximately 10C
(maximum) at a height of 1 meter. In both of these studies temperature measure-
ments were made via radia holes, although small instruments were used.

Summary of Internal Effects

The results of the above discussion can be summarized briefly as:

() The effects of conduction from the ground and fluid flow can probably
be neglected if the study is restricted to a zone above some critical height.

(2 If the surface temperatures are independent of 0, then the interior
temperatures can be expected to be independent of 8 for healthy straight trees
without abnormal specific gravity or moisture content distributions.
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{3) The contributions of heat from living tissue can be neglected.

(4) The radial flow of heat, and thus surface temperature, can be expected
to make the major contribution to the temperature in the stem,

As a first approximation, then, the heat conduction equation for the tree can
be written as

T T 1 or
“ o =K T 20

Bounpary CoNDITIONS

Surface Temperatures

Since radiant heat exchange has been excluded from the study, the surface
temperatures will be related to the air temperature. In order to have heat flow
between the air and the surface of the stem, a temperature difference must exist
and a flow of heat will take place over some ‘thickness” of air. Since the flow
of heat to the surface must be the same as the flow of heat into the surface, we
havel

oT

—g r=a=hm (Ta_Tc) (2]')

where T, is the surface temperature, T, is the environmental air temperature,
h,, is the coefficient of surface heat transfer (surface conductance) in cal em™2
sec™! °C~1, The reciprocal of h,, is the boundary resistance.

For engineering applications many determinations have been made of the
value of the surface coefficient of heat transfer for flow normal to cylinders (pipes
and tubes). Carslaw and Jaeger (1959) give the relation

h, = 8 X 105 (V/D)!2 cal cm=2 sec™* °C 22)

for cylinders in turbulent flow (air). Here D is the diameter of the cylinder (cm)
and V is the velocity of the air flow {cm sec™). Note that the resistance to heat
flow, 1 /h,, decreases with the square root of the velocity.

The usefulness of such relations in the present study is questionable even
though the range of Reynolds numbers for trees (in flows from 1 to 450 cm
sec™ the Reynolds number varies from ca 1 to 150,000) is within the range for
which data were taken. The main difficulty is that in these determinations every
effort is made to keep the approaching flow non-turbulent and smooth cylinders

IThis is known as the “radiation type” of boundary condition and can be used for any form
of heat transfer between a body and its surroundings.
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are used. Since the wind in the forest will be turbulent, and since several studies
have shown that an increase in turbulence caused an increase in h, (McAdams,
1954; Jakob, 1957), it would be expected that the predictions of equation (22)
would be low.

Since there are, as far as I can determine, no data concerning the surface co-
efficient of heat transfer for tree stems, and since there is good reason to conclude
that the predictions of the above relations will be low by an unknown amount,
the problem here must be limited to consideration of the interior temperatures of
stems as related to the stem surface temperature and not the air temperature.

It might be noted here that the extensive study of Reynolds (1939) discussed
above was based on comparison of interior temperatures with air temperatures.
There may have been some factors not reported by him related to the surface
conductance which would account for some of the unexpected responses he
found at high environmental temperatures.

It is reported in the engineering literature (see Jakob, 1957; McAdams, 1954)
that the surface coefficient of heat transfer is not uniform over the surface of a
cylinder. On smooth tubes a maximum of heat transfer takes place on the up-
stream and downstream parts of the cylinder, while minimums occur on the
sides. Although there is a possibility that this situation may occur on tree stems
the effect on the angular variation of h, would be small due to the turbulent
nature and low velocity of the flow.

Assuming that the surface temperatures will not vary with height or angular
coordinate we have as the surface temperature boundary condition

T(a,t) = T, + T, sinwt (23)

Radial Variation of Thermal Properties

The simplest way to introduce the radial variation of the thermal properties
into the problem is to consider the stem to be made up of j concentric annuli of
differing properties. We have then, as an additional boundary condition at the
boundary (r') between the j th and the j th + 1 annuli, that

oT; oT,
k = = (k) —arfu (24)
and /
Tj (") = Tj+1 (" (25)

Boundary conditions (24) hold only when the annuli in question are in intimate
contact (Carlslaw and Jaeger, 1959). This requirement holds for the interior
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of the stem since a continuous variation of the thermal properties is being
approximated by division into annuli. At the bark-xylem! interface this may
not be true. If there exists a contact coefficient, h (cal cm™2 sec™* °C~1) between
the bark and the xylem, then (24) is replaced by
. 9T}

~ K20 < b () - Ty(0) 26)
where the j th annulus is the bark; now the heat flow is proportional to the tem-
perature difference between the inner surface of the bark and the outer surface of
the xylem.

SuMMARY

It has been shown that as a first approximation to the problem of heat flow in
the tree stem only the radial flux of heat need be considered. The surface tempera-
tures of the stem can be expected to be a function of time alone and are directly
related to the air or environmental temperature. However, since no reasonable
estimate can be made as to the magnitude of the coefficient of surface heat
transfer, the problem must be treated in terms of the surface temperature.

The boundary conditions relating to the variation of thermal properties with
radius and the possibility of a contact coefficient between the bark and the xylem
have been presented.

1Here “bark” indicates all tissue from the xylem outward.
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ECAUSE of the complexity of biological situations, the problem usually
has to be simplified further than can be conveniently rationalized. In what
follows, it will become apparent that equation 20 will have to be drastically
simplified if any tractable solution is to be reached. However, the knowledge
gained from working with such simplified problems often allows sense to be
made from what otherwise might be useless data. From the simplified analytic
attack on the problem a way of representing the data which is not restricted to
the simplified solution is found.
The preceding chapter has stated the problem in its most simplified form.
In what follows the possible solutions are presented and the simplified analytic
solution defined and discussed. ’

PossiBLE SoLUTIONS

In the preceding chapter the problem was defined as being that of an infinite
cylinder with thermal properties which are a function of radius. The surface
temperature variation, dependent on circumferential position, is the forcing
function. A review of the literature showed that (1) an analytic solution to the
problem had not been found, and (2) that if one were found the solution would
be so complex that it would be very difficult to make any sense of the results.
The second of these points is based on the fact that solutions in the literature
for the cases similar to that sought here due to Vodica (1956 a,b) and Lowell
and Patton (1955) rapidly become intractable and recourse must be made to
numeric solutions for specific cases.

Further simplification is necessary. Therefore, the boundary condition relating
to radial variation of the thermal properties is relaxed.

ANALYTIC SOLUTION

A solution to the characteristic equation

1 T T 1 oT

X ot o t or @7)

is sought. The appropriate boundary condition for surface temperature drive is
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T (a,t) = =T, sin wt for all 8 (28)

The average temperature term T, has been dropped for simplicity. A solution
of the form

T (r,t) = 8(r) T, sin (wt + ¢(r)) (29)

is assumed where 8(r) is the gain, defined as the ratio of the amplitude of the
temperature wave at radius r to that of the surface wave; that is

8(r) = =T, / ~T, (30)

and ¢(r) is the phase difference, in radians, between the surface and interior
waves;

t=¢() /@ €2

and t; is the phase lag in units of time. These relations have been described in the
introduction (see figure 1).

In arriving at the analytic solution a change is made in the independent
variable r so that the solution will be in terms of dimensionless ratios. The ap-
plication of dimensional analysis yields the following relations:

with
N = (w/8) (32)
then
p=Ar
E=M

where p is the dimensionless radial coordinate and £ is the dimensionless cylinder
radius. The angular velocity of the applied wave and the diffusivity of the mate-
rial determine the parameter A.

The manipulative complexity of finding a solution has been reduced; the
original four variables (r, t, w, K) have been replaced by two (t, p), and it is now
apparent that all cylinders which are characterized by the same parameter X will
have exactly similar responses.

It was assumed that the temperature field in the stem would be given by a
relation of the form,

T(o,t) = ™ 8(p) sin [t + #(p)] (33)
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Ficure 6. Gain as a function of radial coordinate and radius.
Solution! of the characteristic equation (eq. 27) with these boundary con-

ditions and the assumed form of solution gives the following relations for the
gain and the phase angle:

m' 2 12 1/2
5(p) = m?; =|:Bcrp+Belp (34)

3 Ber?f -+ Beilf

IThe derivation of this solution may be found in Herrington (1964). It is a modification of
the solution to a similar problem solved by Reismann (1958). A second solution is given by
Lowell and Patton (1955) and may also be found in Carslaw and Jaeger (1959).
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Ficure 7. Gain at fractional radii as a function of radius.

and

(35)

wty=¢ (o) = tan? |: Beif Berp — Berf Beip:l
= =

Berf Berp + Beif Beip

where t; is the phase lag in seconds (¢(p) in radians). The functions Ber (x) and Bei
(x) are, respectively, the real and imaginary parts of the Bessel functions of com-
plex argument (see MclLachlan, 1934; Watson, 1944; or Bowman, 1958). These
functions are tabulated in McLachlan (1934) and Lowell (1959). A short table
of Ber and Bei and related functions is given in Appendix B.

Figure 6 shows the gain § as a function of the dimensionless radial coordinate
p for cylinders of differing dimensionless radius. As would be expected the ampli-
tude of the wave is progressively reduced as it moves toward the center of the
stem. The amplitude is reduced sharply in the outer portion of the stem and the
rate of reduction decreases as the center is approached, becoming very small
close to the center. The curves for the stems of differing radius appear to be of
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Temperature

o n 2n

Time, wt
Ficure 10. Temperature history for several radial points within the stem. The
dimensionless radius is 5.

slightly different shape. This is supported by the fact that differentiation of
equation (34) in respect to p yields:

Ber p Ber’ p 4 Bei p Bet’ p

¥(p) = (Ber’t + Bei?t)'? + (Ber’p + Bei?p)t? (36)
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Temperature

Ficure 11. Temperature as a function of radial coordinate at various times.

Thus the slope of §(p) is a function of both p and £ and the relation cannot be
generalized further.

The gain plotted as a function of p is shown in figure 7. It is near unity for very
small cylinders, decreases rapidly for I < ¢ < 6, and then approaches zero asymp-
totically,

The phase lag is shown as a function of p for cylinders of different radii in figure
8. The lag increases linearly with a decrease in p and increases with £ for any given
p (figure 9) except at small values of p and £ The curves of figure 8 appear to
be very similar in shape.

Differentiation of equation (35) in respect to p yields:

Beip Ber’p — Berp Bei'p
Bei?p + Ber?

¢' (o) = (37)

Thus the slope of the lag is a function of p alone and a single curve may be used
for any size cylinder.
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TABLE 1. MAGNITUDE OF PARAMETERS AND RESPONSES OF STEM AND TWIG

PARAMETERS RESPONSE
Period
o

Applied 2] A Twig Stem

Wave Sec™? cm™! a=05cm a = 10.0 cm
8(0) 8(0) 8(0) 8(0)

1 min 1.05 X 1071 8.4 0.4 2%/3 (0)  very large

(1/3 min)
1 day 7.27 X 1073 0.2 1.0 () 0.4 2%/3 (8 hrs.)
1 year 1.99 X 1077 1.2 X 1072 1.0 ©) 1.0 (0)

The temperature history for several radial points of a theoretical stem is shown
in figure 10. The effect of the abrupt reduction in amplitude near the surface com-
bined with the nearly linear increase in phase lag is apparent. Figure 11, showing
the radial temperature distribution at intervals of 7 /4 radian (3 hours for daily
wave) shows the nature of these fluctuations more clearly.

The term response is defined so that an increase in response corresponds to a
decrease in the phase lag and an increase in the gain. If the response of the stem is
characterized by the central gain and phase angle, then the response is a function
of £ alone. Referring to the similarity relations

E=Na; N = w/k; 0 = 2m/P

it follows that:

1. The response decreases with an increase in £ which means that the response
decreases with an increase in nondimensional radius or frequency.

2. The response increases with an increase in the diffusivity K or period P.

3. Referring to figure 4 it can be seen that an increase in moisture content
will increase the response while a stem with a high specific gravity will respond less
than one with a low specific gravity.

These characteristics are shown clearly in table 1 in which the order of mag-
nitude of the various parameters and responses are tabulated for cylinders of
two sizes.

Both the real time differences and the similarity of the response of the twig
and stem are apparent. The response of the twig, a = 0.5 cm, to the daily wave
is virtually uniform and instantaneous throughout while the response of the twig
to the wave with a period of one minute is similar to that of the stem for a period
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of 1 day. The response of both the twig and the stem to the yearly wave is nearly
uniform and relatively instantaneous, although the lag for the stem is about §
hours in real time.

Surrace Hear Frux

The flux of heat across a unit area of the model stems surface is given by:

0=k (38)
Differentiation of equation (38) with p = £ and 8(¢) = 1 yields
q. = K™T, A [§(a) sin wt + ¢(£) cos wt] (39)
which can be written as
q. = K®T, A sin (wt + B) (40)
where
=0 () + (¢'®) N (41)
and
B = tan™! [¢' (§)/ &' (§)] (42)

In these equations the term k™T, v is the amplitude of the heat flow and 8 is
amount by which the heat flow wave Jeads the temperature wave. This phase lead
1s given by

= B/w #3)

The half cycle heat flux is the amount of heat which. flows across the unit sur-

face in one direction, that is

]
dT
Q’_kf dt|r=
4

where the limits of integration are the times when wt 4+ 8 = nmr, n = 0, 1,

. dt = 2N T (w)™ (44)

v is a nondimensional parameter which determines, in essence, the ratio of the
flux of heat across the surface of the cylinder to that across the surface of an
infinite slab. This can be seen by comparing the heat flux for the slab

g (t) = k =T, Asin (et + 7/4) (45)
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Ficure 12. Nondimensional heat flow parameter as a function of radius.

to (40). As v approaches unity the heat flux across the surface of the cylinder
approaches that of the infinite slab with the same properties and boundary con-
ditions. ¥ is shown as a function of £ in figure 12. It can be seen that the surface
heat flux for the cylinder increases very rapidly for £ less than 3, whereupon the
curve abruptly changes slope and approaches 1 asymptotically. Between £ = 0 and
4 the phase lead of the heat flow wave, B, decreases rapidly from a value of /2
at £ = 0 as shown in figure 13 and approaches the limiting value for the infinite
slab, 7/4 (equation 45).

The half cycle heat flux also can be shown to be identical to that for an infinite
slab when » = 1. The surface heat flux and half cycle heat flow for cylinders are
essentially those for an infinite body when § is greater than, say, 3.0. Assuming an
average diffusivity of 15 X 10~ cm™ sec™ °C for green wood, the half cycle
heat flow and the instantaneous heat flux can be approximated by treating the
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Ficure 13. Surface heat flux phase lead as a function of radius.

surface area of the stem(s) and an identical area of an infinite slab for stems with a
radius of 14 cm or greater. For smaller stems figures13 and 14 can be used to find
the appropriate reduction factor » and phase lead 8.

APPLICATION OF FOURIER SERIES TO THE SOLUTIONS
In nature the temperature waves at the surface will not be purely sinusoidial.
However, periodic functions, with few exceptions, can be represented by the sum
of an infinite series of sine and cosine functions with periods which are harmonics
of the fundamental period. Thus, for the temperature waves here, we have the
Fourier Series

N
Tt) =T, 4+ X [B,sin(n wt) + A, cos (n wt)] (46)

n=
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Ficure 14. Amplitude envelopes and phase lags for waves of various period.

wheren=1,2,3,4..... B, and A, are known as Fourier coefficients. Here
they are the amplitudes of the temperature waves of period 2 /nw. For naturally
occurring temperature waves the amplitude of the fundamental will usually be
much larger than that of any of the higher harmonics.

Equation (46) can be expressed identically as

N
T =T,+ 2 C,sin(nwt+1) (47)
n -
where C, is the amplitude of the n wave, which is shifted by 9 radians. We
have
C. = (B} + A"
n = tan~t (A,/B,) (#)

Since we are dealing with a linear system, a body which has a surface temperature
drive expressable as a Fourier Series will respond as if the waves of differing
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frequency were applied separately and the responses summed. 1 the surface

;emperature is specified by (48) the solution (equation 29) will then be of the
orm

Ty =X 13n (p) Cysin [n wt + ¢, (p) + n,] (49)

n=

where now the gain and the phase lag are those for waves of period of 27 /5w
Since the response of the cylinder, as was shown above, is a function of the period
of the wave, these components of the surface temperature wave will behave
differently in the stem or cylinder. It was seen that the response of the stem
decreases with a decrease in the period of the wave. If the surface temperature is
a wave that is essentially a sine wave of a period of 24 hours and the higher
harmonics are of relatively small amplitude, it would be expected that the temper-
atures within the stem would become more and more nearly a sine function of
time as the wave moves deeper into the stem. This can be seen in figure 14,
which shows the amplitude envelopes and phase relations for waves of various
periods.

Since these waves of differing frequency behave differently, the composite
wave in the stem may not bear much resemblance to the surface wave if the
components of higher frequency have rather large amplitudes. This effect is
shown in figure 15.

As was noted at the start of this section, these discussions have been based
on steady periodic waves.

When the waves are not steady, a transient response is evoked. The transient
response (Carslaw and Jaeger, 1959; Equation 14, p. 201) of cylinders to the
daily variation of surface temperature is such that the steady periodic condition
is reached in one day. This condition will further decrease the response of interior
points in the stem to rapid fluctuations of surface temperature.

This transient effect complicates the experimental analysis of stem tempera-
ture waves. Analysis should not be initiated until the stem has been subjected
to one or preferably more days with similar daily temperature waves.

SURFACE TEMPERATURES

Grober (1928), as reported in Lowell and Patton (1955), obtained a solution
to the problem of heat flow in an infinite cylinder with uniform and homogeneous
thermal properties in which the air temperature is the boundary condition. As
mentioned earlier this boundary condition is expressed by
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aar=a T,=T,- ((h*)-1dTldr] (50)
and
T, =T, 4+ ™T, sin wt (51

where h* hm/k and T, is the air or environmental temperature, and hmhas
been previously defined as the surface coefficient of heat transfer. Grober's
solution is expressed in terms of a gain and a phase lag, as are the other solutions
above. Figures 16 and 17 show the gain and the lag, respectively, as a function
of the parameters

Fo* = 2r h,/ (wa?) (52)
and

Ja* = 2x b,/ (wkC,) (53)

which are the notation of Lowell and Patton.
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Ficure 18. Illustration of % sin @t + % cos wt as 0.707 sin (w0t + T/4).

Returning to the two examples used in the discussion of the response of a
twig and a stem (table 1) the surface temperature gain and phase lag can be
found in relation to the air temperature from figures 18 and 19 and are shown
in table 2 with the parameters Fo* and Ja*%.

TABLE 2. THE ORDER OF MAGNITUDE OF THE SURFACE DAMPING RATIO AND
PHASE LAG FOR A TWIG AND A STEM.!

Radius hm b (a) ¢ (a)

ecm  cal ecm™2sec! Fo* Ja*? ®) rad. hrs.
stem 10.0 2X 1074 0.002 20 0.7 2n/12 1
twig 0.5 8 X 1074 300.0 300 1.0 0 0

Ik = 5 X 107* cal/em sec °C, Cy = 0.33 cal/cm3, w = 7.27 X 107% sec™}; equation (32).
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Ficure 19. Graphic presentation of gain and phase lag.

As might be expected intuitively, the surface temperature of the small twig
follows almost exactly that of the air while the amplitude of the surface tempera-
ture wave for the stem is approximately seven-tenths that of the air and the
surface maximum occurs approximately an hour later than does that for the air.

SuMMARY

It has been shown that considerable simplification of the problem of heat
transfer in tree stems is necessary in order to apply the techniques of mathematical
analysis with success. The most drastic of these simplifications is that the thermal
properties of the stem are not functions of radial position.

The analytic solution for the simplified problem shows that the interior tem-
peratures, assuming the steady periodic condition has been reached, will be
reduced in amplitude and maxima (or minima) will occur later in time as the
temperature wave moves into the stem. This response is shown to be a function
of the radius of the stem, its thermal properties, and the frequency or period of
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the applied wave. The parameter A = w/k was introduced as the dimensionless
number indicating similarity of response in different cylinders.

Application of a temperature drive expressed as Fourier Series was introduced
and the solution presented in Fourier Series form. The possible effect of differ-
ential damping and lag between waves of differing frequency was discussed in
terms of loss of higher frequency components of the surface drive. Mention was
also made of the transient response and its effects of short-term periodic fluc-
tuations.

Surface temperatures were found to be functions of the surface coeflicient of
heat transfer, radius of the cylinder, frequency of the temperature wave, and
the parameter kC,.
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MEASUREMENTS OF TEMPERATURE
PATTERNS IN A RED PINE STEM

N ORDER to evaluate the usefulness of the analytic model (analytic
solution) and to determine the effects of fluid flow (transpiration stream),
local heat production, and variation of the thermal properties of the wood in
time and space, temperature measurements were made in a living red pine stem.

PRrocEDURES

Selection of the Tree

The recording system used in this work was set up in a 48-year old red pine
(Pinus resinosa) plantation in connection with a study of the energy budget of
forest stands (Reifsnyder, 1962). The plantation is located at the north end of
Lake Dawson in Woodbridge, Connecticut, and is less than 10 feet above the
level of the lake.

In selecting the stem the following criteria were observed: (1) bole as nearly
as possible a circular cylinder, (2) no lean or other evidence suggesting the forma-
tion of reaction wood, (3) healthy appearance, (4) uniformly distributed crown,
and (5) a diameter at breast height of at least 20 cm. In addition, since the study
did not include the radiant portion of the energy balance it was required that a
minimum of solar radiation reach the stem surface.

Temperature Measurement

Measurement of the temperature field within the stems required that the
thermocouple measuring junctions be placed at known locations in the stem.
To this end a device (Herrington, 1965) was fabricated which permitted the
mapping of a cross section the stem and the insertion of the thermocouple junc-
tions at predetermined locations. The junctions were installed via holes drilled
at 45° to the longitudinal axis of the stem. This procedure minimized errors
due to conduction of heat along the thermocouple wires.

Surface temperatures are almost impossible to measure accurately with probes,
especially when the surface is of a material with a relatively low volumetric heat
capacity and poor conductivity.

Jakob (1957) discusses several methods of measuring surface temperature and
the reader is referred to his work for details. In this study the surface measure-
ments were made by pressing a small thermocouple into a depression in the
bark. Conduction errors due to the leads were reduced by laying the leads on
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the bark surface for about 10 cm. Tests at the end of the study with a Barnes'
radiation thermometer indicated that any errors were less than the accuracy of
the Barnes instrument (== 1°F).

Measuring Junctions

The measuring junctions used in this study were made from Leeds and North-
rup 24 gauge duplex thermocouple extension wire. The junctions used for
interior measurements were calibrated to be 4-0.01°C of the National Bureau
of Standards thermocouple tables (Shenker, ez al., 1955). The bead type of junc-
tion used for surface measurements proved to be very fragile and were not
calibrated. The junctions used for air temperature measurements were installed
before this study began and were not calibrated. Since the calibrated junctions
were either well within the specified limit of error (£0.01C) or showed very large
deviations it was assumed that the uncalibrated junctions were within the man-
ufacturer’s tolerance of 40.8°C.

Analysis of the errors in the thermocouple system (see Herrington, 1964)
indicated that the signals presented to the input of the data acquisition system
were, in terms of allowable error (2.02 times the standard deviation) = 0.22°C
for the calibrated junctions and 3-0.81°C for the uncalibrated junctions.

Recording of Temperature Data

Temperature data were recorded with a millivolt digitizing and recording
system which has been described in detail by Reifsnyder (1962). The digitized
thermocouple output voltage is calculated and then converted to temperature
by the relation,

T = Rt — (22.54mv + 0.55mv? + 0.02mv?) (54)

where Rt is the reference junction temperature (65.56°C) and mv is the milli-
voltage. The polynomial in equation (54) was derived from tables supplied by
the reference junction manufacturer. These tables are based on the National
Bureau of Standards Copper-constantan thermocouple tables (Shenker, er al.,

1955).

Recorder—Computer Calibration

Analysis of the components of variance indicated that at the 909, level the
time variation of a single thermocouple-reference junction pair was =41.0°C
and the total variation approximately 1.6°C. The between-thermocouple varia-

IBarnes Engineering, Inc.
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tion is due mainly to offsets in the reference junction temperature. Thus the
absolute temperatures are subject to more error than are temporal and difference
measurements.

Analysis of Temperature Data

To permit concise description of the temperature fields in tree stems it is
desirable to reduce the position-time-temperature data to gains and phase lags.
Without this type of concise description it would be almost impossible to compare
the temperature waves in different trees or different portions of the same tree
in a quantitative manner.

As was pointed out in the previous chapter (Analytic model) amplitude ratios
and phase lags can be computed from maxima and minima and their relative
time of occurrence if the surface wave(s) are very nearly sine waves. In terms of
the Fourier Series, if the higher harmonics have significantly large amplitudes
this simple technique may lead to errors.

The most logical way to measure the gain and phase lag would be to express
all the time-temperature curves as a Fourier Series and compare the fundamental
and harmonics individually. This was the technique used here.

Rewriting the Fourier Series equation of the last chapter (equation 46) in
terms of a period of n2/n, where n = 1,2,3,..... is the integer specifying the
harmonic, we have

m
TO =T,+ 2 | Ausin L@Pﬂ 4 B, cos <_“ZI;L>] (55)
=1

The immediate problem is to evaluate the amplitude coeflicients A, and B, from
the measured data.

It can be shown by the application of the theory of least squares (Carslaw,
1930), that when the temperatures are given as

To Ty, Ty, T o0 T Ty
at the times
0,t,2t,3t,4t...(w— 1Dt
where At = 27/w = constant!

that the amplitudes A, and B, and the average T, are given by

IThis relation transforms the data to a period of 27 for simplification of the calculations.
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1 (w- 13
T=—- X 7T (56)
oWV -, 0
2 w- 1
An = - 2 T,cos (2mnj/w) (57)
w j=20
2 w- 1
B,=- X o T, sn (2mnj/w) (598)
w ] =

where subscript j is the time interval and the subscript n is the index identifying
the harmonics.

When An and B, are found the Fourier series expression for the temperature
variation can be written

N
T@)=To+ X cC,sn(wt+n,) (59)
n =
where C, is the amplitude of a sine wave which is shifted by # radians from the
start of the analysis period, t = 0 (see figure 18). We have that

C = A+ B (60)
n = tan-* (An/Bp (61)

Each temperature wave is defined by two parameters, C, and 5. To compare
a surface wave with a wave measured at some interior point the relations

61: (r) = 2 n/rcn (62)
= 2ND ©

where now the superscripts a and r are used to indicate the surface and the in-
terior respectively.

Although the Fourier andysis (harmonic analysis) presented above is quite
satisfactory for steady periodic waves, there are severa limitations which must
be taken into consideration when it is applied to cases where the periodic tem-
perature is not exactly steady. The first of these has been mentioned before. |f
the surface or air temperatures immediately prior to the use of this analysis have
not been quite similar, there will be a transient response. For this reason the stem
should be in anearly steady periodic state for at least one day before any analysis
is attempted. The second point to be emphasized is that the anaysis of the
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Ficure 20. Cross section of stem showing thermocouple positions. Points on
stem surface indicated by symbols ([,north side;A, east side;
O, south side; X, west side). Dashed lines are plane projections of
thermocouple leads.

interior and surface waves cannot be made over the same time period. If pre-
liminary analysis indicates that an interior wave is, say, five hours behind the
surface waves (t; = 5 hrs.) then the best estimate of the damping ratio and the
phase lag will be obtained if the time of day of t = 0 for the analysis of the
interior waves is shifted to the neighborhood of five hours later than the time
of t = 0 for the surface wave. That is, if t = 0 for the surface wave is taken at
0700 hours, then t = 0 for the interior waves should be taken near 1200 hours.
If this is not done, as can be seen in figure 19, the analysis will include a fairly
large part of the wave of the “previous day.”
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REesurts

Thermocouple Location

Figure 20 shows the map of the cross section of the stem and the desired lo-
cation of the nine interior thermocouples. When the tree was felled (February
1964) at the end of this study the actual location of the thermocouples was
estimated from the cross section by measurement. Table 3 shows the estimated
errors. It is felt that these measurements are accurate only to 0.5 cm.

TABLE 3. RADIAL ERRORS IN THERMOCOUPLE PLACEMENT

Radius Ouetr Ring Inner Ring Center
N 0.0 0.0 0.0
E 0.6 0.6
S 0.0 0.6
w 0.0 0.0

Thermal Properties

Table 4 shows the moisture content and specific gravity distribution along
two increment cores taken from the stem in early April, 1963. Data were taken
only for the wood since the bark samples would have been too small to give
meaningful information. These cores were taken on North and South radii from
the internode above the one in which the temperature measurements were
made. The cores were taken from approximately the same internodal position
as the plane of temperature measurement. Table 4 also shows the radial distribu-
tion of thermal conductivity, volumetric heat capacity, and diffusivity as com-
puted from the sectional averages of the cores. The moisture content distribution,
high in the sap wood and decreasing to nearly the fiber saturation point in the
center, seems to be normal. The specific gravity distribution is not unusual.

The overall average thermal properties are:

C, = 0.485 cal cm™3
k = 6.93 X 10~ cal cm™2 sec™! °C™!
= 14.32 X 10~* cm? sec™?

Il

=

C, was computed on an area-weighted basis while k was computed (MacLean's
equation) from the area-weighted specific gravities and moisture contents.

Martin (1963) found that the diffusivity of bark is approximately 13 X
10~*cm?sec™. Using this figure and the average value for the wood given above,
the area-weighted average diffusivity is 12.23 X 10~*cm?sec.
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TABLE 4.

MOISTURE CONTENT AND SPECIFIC GRAVITY, THEIR AVERAGES, AND THE COMPUTED

THERMAL PROPERTIES OF THE STEMS

Inner Specific Gravity' Moisture Conrent® I* C ** P
. v
Radial Rads Radi 2 Area of
Depth? e adius ____Cil__ c_al cm” Annuli
cm 1 2 Aver. 1 2 Aver. cm sec °C cm? sec cm?
0.5 (bark) — — — — — — — — 13.00 X 1074%** 14.15
2.5 0.461 0.456 0.458 1.307 1.209 1.258 9.127 X 1074 0.632 14.44 X 1074 63.25
4.5 0.490 0.466 0.478 1.053 1.080 1.066 8.452 X 1074 0.597 13.16 X 1074 41.60
6.5 0.410 0.400 0.405 0.884 1.007 0.945 6.667 X 1074 0.447 14.91 X 1074 33.60
8.5 0.344 0.338 0.341 0.791 0.661 0.726 4.862 X 1074 0.311 15.63 X 1074 25.60
10.5 0.345 0.337 0.341 0.353 0.355 0.354 3.401 X 1074 0.200 17.00 X 1074 17.60
12.5 0.362 0.380 0.372 0.350 0.345 0.347 3.625 X 104 0.214 16.94 X 1074 11.56

1Oven dry weight and volume.
2Grams water/grams dry wood.

3Depth from surface to inner boundary of section.

*Calculated from equation (4), x = 11.5%,.
**Calculated from equation (13), T = 10°C.
***From Martin (1963).
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We find then that for the daily wave, P = 24 hrs.
N = (0.7272/14) % = 0.227 cm™t
and for
a= 144, &= 33.

This value of £ was used to compare the real tree to the analytic model.

VERTICAL TEMPERATURE FIELD FOR
23-24 MAY 1963. SMOOTHED DATA.
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Ficure 21. Vertical temperature field for 23-24 May 1963.

Vertical Temperature Field

Typical time-temperature curves for the thermocouples placed at heights of
0, 28, 57, and 86 c¢m at a depth of approximately 4 cm on the north side of the
stem are shown in figures 21 and 22 for 23-24 May 1963 and 15-16 August 1963.
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The effect of the colder ground (yearly wave effect) is quite noticeable in the
data for 23 May. At the ground level the temperature is almost uniform showing
only adlight dip in temperature in the early morning. This effect is not apparent
at the 57 and 86 cm levels. The data for 15-16 August shows amost the same
patterns except that the differences are not as great. Here again the curves for
57 and 86 cm lie almost atop one another.

The fact that the curves for 57 and 86 cm in the August data are slightly
flattened might indicate that the transpiration stream is lowering the maximum
temperatures. Noting that the data are confounded by vertical variation of
thermal properties and inaccuracies in thermocouple placement, we can conclude
from these data, with reasonable certainty, that the effects of the ground (con-
ductive effects), and tentatively that the effects of the transpiration stream,
are negligible above heights of one meter in this stem.

Horizontal Temperature Field

Computer-produced plots of the time-temperature data indicated that in
most cases the temperatures on the surface and in the interior of the stem were
not, within the limits of experimental error, functions of angular position (fJ).
The data for the outer ring of thermocouples (r = 11.6 cm) during the period
12-16 April 1963 showed the only serious deviation from this observation. A
typical time-temperature curve is shown in figure 24.

The data for the period 13-16 April 1963 were subjected to Fourier anaysis
in order to evaluate the temperature uniformity of the fundamental waves. The
results of this analysis are shown in table 5. Note that To and ffiT, are within
+0.5°C of their means (over the radia points). There does not seem to be any
red correlation between the maximum values of To and roT, aong anyone radii
or circle of constant radius (variation with fJ). Fot some unknown reason the
maxima of To and roT, of the surface waves occur most often on the north side.
There may be a slight correlation here with the day's average wind direction,
but this is not conclusive. The effect is small in any case.

Figure 23 shows the values of To as a function of time for April. Note that
the radia differences in To are nearly constant. The To's for the interior tem-
peratures are very close to one another, the range being approximately O.2°C.
The differences between the To of the surface wave and those of the interior
waves are larger, but still less than O.5°C. | believe that these differences are due
to reference junction offsets since the variation in time is consistent with the
air temperatures variation measured on site and at the New Haven Airport.' No

1Local climatological data. New Haven Municipal Airport, April, 1963.
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TABLE 5. RESULTS OF FOURIER ANALYSISI—ANGULAR UNIFORMITY OF TEMPERATURES
Radial Position T T,

o
cm Radius °C °C Radians
Date: 13 April 1963. Time Start 0600. Wind NW at 10 mph.
14.4 N 13.55* 3.48* —0.52
w 12.80 2.83 —0.59*
S 13.17 3.27 —0.51
E 13.21 3.32 —0.44
11.6 N 12.54 1.07 —1.99*
w 12.39 1.71* —1.54
S 13.10* 1.38 —1.24
E 12.37 1.56 —1.26
6.8 N 12.52 1.14* —2.31
w 12.08 0.78 —2.51%
S 12.60* 1.03 —1.72
E 12.45 0.88 —2.25
Date: 14 April 1963. Time Start 0600. Wind NW at 10 mph.
14.4 N 16.47* 8.76* —0.60
w 15.66 7.66 —0.62*
S 14.51 8.21 —0.57
E 16.16 8.62 —0.52
11.6 N 14.71 2.76 —1.56*
w 15.43* 3.50* —1.34
S 14.58 3.46 —1.35
E 15.38 3.45 —1.07
6.8 N 13.90 2.88%* —2.32%
w 15.03* 2.62 —2.18
N 14.81 2.20 —1.94
E 14.37 2.77 —2.01
Date: 15 April 1963. Time Start 0600. Wind NW at 10 mph.
14.4 N 13.56* 5.14* —0.59
w 13.02 4.42 —0.68
S 13.02 4.88 —0.61
E 13.30 4.80 —0.57
11.6 N 12.45 1.95 —1.66*
w 12.86 2.50 —1.45
S 12.38 1.49 —1.47
E 13.04* 2.73* —1.18
6.8 N 12.04 1.21 —2.89%
w 12.93* 1.75% —2.13
S 12.75 1.31 —1.81
E 12.43 1.02 —2.38
Date: 25 May 1963. Time Start 0940. Wind S at 6 mph.
14.4 N 11.91 4.15 —0.29
N 12.24* 4.30 —0.38
S 11.89 4.42 —0.40
E 11.50 4.47* —0.42%*
Date: 16 August 1963. Time Start 0600. Wind W at 5 mph.
14.4 N 18.22 3.74* —0.65
w 18.37* 3.62 —0.69
S 17.84 3.55 —0.63
E 17.65 3.68 —0.70*

1Fundamental wave only. *Indicates maximum.



TABLE 6.

SUMMARY OF FOURIER ANALYSIS—FIRST HARMONIC ONLY

T, oT, t 3(r) t*
°C °C Hours Hours

12 April

1000
Surface 12.17 5.85 — —_ 0
Outer 11.50 2.64 —33 0.45 4
Inner 11.39 1.86 —6.3 0.32 4
Center 11.34 2.05 —-7.9 0.35 8
Air — — — — 0
13 April

1000
Surface 11.31 7.36 — — 0
Outer 10.85 3.56 —3.5 0.48 4
Inner 11.00 2.87 -5.7 0.39 4
Center 10.83 3.04 —8.1 0.41 8
Air 11.25 10.56 +0.9 1.43 0
14 April

1000
Surface 10.36 6.46 — —_ 0
Outer 9.93 3.07 —3.2 0.47 4
Inner 10.01 2.26 —5.8 0.35 4
Center 9.79 2.54 —7.7 0.39 8
Air 9.36 7.81 +0.4 1.21 0
15 April

1000
Surface 10.89 6.50 — — 0
Outer 10.35 3.07 —33 0.47 4
Inner 10.33 2.23 —5.9 0.34 4
Center 10.17 2.51 —7.8 0.38 8
Air 9.86 7.95 +0.5 1.22 0
16 April

1000
Surface 12.39 5.76 — —_ 0
Outer 11.52 2.39 —3.5 0.41 4
Inner 11.40 1.71 —6.4 0.30 4
Center 11.22 1.88 —8.7 0.33 8
Air 11.74 7.34 +0.5 1.27 0
25 May

0940
Surface 13.88 5.94 — —_ 0
Outer 13.59 3.37 —1.81 0.57 2:40 min.
Inner 13.21 2.65 —3.7 0.47 2:40 min.
Center 12.76 1.75 —7.6 0.26 6
Air 13.21 8.02 +0.6 1.35 0
15 August

1000
Surface 18.02 3.67 — — 0
Outer 17.54 1.07 —35 .37 4
Inner 17.21 1.32 —6.6 .36 4
Center 17.58 0.93 —9.0 .25 8
Air 17.98 5.25 +0.7 1.50 0

*Time by which analysis of interior waves was lagged.
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TIME TEMPERATURE CURVES FOR 24-25 MAY 1963. S = SURFACE,
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TEMPERATURE PATTERNS IN A RED PINE STEM

TIME TEMPERATURE CURVES FOR 12 APRIL 1963.
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Ficure 25. Fourier series fit for surface and central temperatures of 12 April
1963.

evidence could be found in the temperature waves which would indicate that
this decrease in T, is due to transpiration,

Since the temperatures are essentially functions of radius alone the average of
the waves at the four radial points were used in evaluation of the phase lag and
gain as a function of radius. The results of the Fourier analysis of the temperature
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TEMPERATURE PATTERNS IN A RED PINE STEM

waves for the seven days that met the requirements set out in the discussion of
the application of this technique, and which had relatively low noise levels, are
presented in tables 6 and 7. Figure 24 is typical of the type of time-temperature
curves which were analyzed. These curves are smoothed and were traced from
the computer-produced plots. Figure 25 shows the surface and central waves
for 13 April with the first term of the Fourier series fitted to the data.

The average damping ratio and phase lags for the four outer and inner and the
one central thermocouple are shown in table 7 and figure 26. The data for
April are very consistent, while the data for May and August show some variation
from the April data. Figure 26 shows the measured and predicted phase lag and
gain as a function of radius. As can be seen in the figure, the analytic solution
predictions in terms of response are low. This is not surprising since the analytic
solution assumed uniform thermal properties. The estimated shape of the meas-
ured damping curve is essentially the same shape as the predicted curve. This is
not true for the phase lag curve.

TABLE 7. MEASURED GAIN AND PHASE LAG

3(r) n

Date 116 68 00  Air 11.6 6.8 0.0 Air
12 April 45 32 35 — =33 —6.3 —7.9 —
13 April 48 39 41 143 —35 —5.7 —8.1 0.9
14 April A7 35 39 121 —32 —58 —7.7 0.4
15 April 47 34 38 122 —33 —5.9 —738 0.5
16 April 41 30 33 127 —35 —6.4 —8.7 0.5
Average 456 .34 352 125 —3.36 —601  —852 058
25 May 57 47 26 135 —L8 —3.7 —7.6 0.6
15 August 37 3 25 150 —35 —6.6 —9.0 0.7

Overall average 444 364 331 133 —3.33* —6.11*  —8.68*  0.60
*Not including data 25 May.
SuMMARY

The data obtained in the experimental portion of this study indicated the
following:

1. Within the limits of experimental error (£0.5°C) the temperatures within
and on the surface of the stem are functions of radius alone. This is especially
true for the first harmonic of the Fourier series expressing the data.

2. The response of the stem is overestimated by approximately 209, by the
analytic model.
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THE ANALOG MODEL

T WAS expected at the initiation of this study that the analytic model
would not predict the temperature patterns in the stem with great pre-
cision. Thus it was desirable to investigate other methods of predicting or model-
ing the temperature field. When analytic methods fail to produce the desired
results, recourse is usually made to one of the methods based on replacement of
the differential equation by a finite-differences approximation. There are several
ways of solving the simultaneous equations which result. Of these the numeric,
active! analog and passive analog? methods were applicable here. The numeric
method was not considered due to the complex nature of the programming
which would be required. Both analog methods were suitable. Since the active
analog computer which was available was relatively small and modeling by this
method would require a large number of computing elements, this method was
discarded in favor of the passive analog method. The passive analog has the
advantage that any of the complicating factors such as heat sources, non-uniform
thermal properties, fluid flow, etc., could easily be included. In addition passive
models are easily understood intuitively while the others are not. The reader is
referred to Ingersoll, er al. (1954), Schneider (1957), or Tribus (1958) for general
discussion of these techniques.

AnALoG MobeLinG oF Heat FLow

Although the concepts presented in this section can be derived mathematically,
the physical approach will be used for the sake of clarity. For mathematical
derivation the reader is referred to Karplus (1958).

Electric analog models are based on the similarity of the equations of heat
flow and electric current flow. The characteristic equation describing the flow
of heat in a bar insulated at the sides and with time dependent temperatures is

oT k o

ot C, ox? ©4)
where x is the distance from the origin. Similarly, the equation giving the poten-
tial in a noninductive electric cable with resistivity R, and capacity C, is

ov 1 vV

ot RC. ax

(65)

IDifferential analyzer, analog simulator.
2Network analog, direct analog computer.
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THE ANALOG MODEL

The similarity of these equations is obvious, especially if the reciprocal of k, the
thermal resistivity, is substituted for k in equation (64). Thus the flow of heat
in a rod may be investigated by study of the flow of electric current in the cable.

Consider the bar mentioned above to be divided into a number of equal

volumes (figure 27). The total heat capacity is the product of the volume
and the volumetric heat capacity:

C, = Ax Ay Az C, cal®C™ (66)
and is “‘lumped” at the center of the model volume. These central points, or

nodes, are connected by thermal resistances; given by

R, = sec®C cal™ (67)

Ax
Ay Az k
The electric circuit which is analogous to this bar is shown in figure 27. Elec-
tric resistors simulate the dissipative effect of thermal resistance while the elec-

l ~ -~
-~ - \
~ -~ ~

AZ :
! % qou!
|
1

in 1 l: T(x,1)

o e
IS B\ R i M s
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electric electric

T capacitor —V\A\A—  resistor

Ficure 27. Analogous thermal and electric systems.
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TEMPERATURE AND HEAT FLOW IN TREE STEMS

tric capacitors, connected from each node to the reference potential (Vo).
simulate the heat storage capacity of the elemental volume. Transient boundary
conditions, obtained when the temperatures in the thermal system and the
voltages in the electric analog vary with time, require that there must be a
correspondence not only between the electric and thermal capacitance and
resistance but dso between the products of electric and thermal resistance and
capacitances.

The ratio of R, C, to R, C, determines the relation between the time variables
in the analog and the thermal system.

We have then, that

te = Tg t, s2c. model/sec. rea (68)
R. = Re R, (ohm sec °C/cal) X 10° (69)
C. = C:C, farad/ (cd/oC) X 10° (70)

where the subscripts are t, thermal; e electric; F, factor.
In order to connect voltage and temperature

V = V;T volt/C (1)

Table 8 lists additional scaling relations which are useful. Not only can physica
models be formed but time can be expanded or contracted on the model as
desired.

This is the bass on which the analog model of the tree stem was made. The
reader interested in further details is directed to Paschkis (1955), Paschkis and
Baker (1942), Karplus (1958), Karplus and Soroka (1959), and Tribus (1958).

PROCEDURE

The analog modeling was done on the Heat and Mass Flow Anayzer of Co-
lumbia University, which has been described by Paschkis (1955).

The cross section of the stem, taken to be a circular cylinder with a radius of
14.4 em was divided (lumped) as shown in figure 28. The woody portion of the
stem was lumped into 20 sections, with a half section at the cambium and at the
center. The radia length of each full section is 0.67 em.

Vaues of electric resistance and capacitance for each node were computed
using modifications of equations 66 and 67. The thermal properties used were
those found for the real stem and scaling factors were selected to result in reason-
able values of Reand Ceo The resistors and capacitors were then set up in the
circuit shown in figure 28.
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TABLE 8. COMPARISON OF ANALOGOUS QUANTITIES IN THERMAL AND ELECTRIC CIRCUITS (ADAPTED FROM KARPLUS, 1958)
Electrical Thermal
Variable or Parameter Description Symbol Unit Description Symbol Unit Scale Factor
Across variable voltage v volt temperature T °C V= VgT
difference
Through variable current i amp heat flux q cal/sec i= Vg/Rp
Integral of through
variable stored charge Qe coulomb heat energy Q. cal ge = CpQ¢
Time electric time te sec thermal time te sec te = TFt,
= RpCpt;
Dissipating or
damping parameter resistance R ohm reciprocal of R, °C sec/cal R. = RgR,
conductivity
x area
Potential energy capacitance Ce Farad capacitance C, cal/°C C. = CrC,

reservoir
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THE ANALOG MODEL

The resistors and capacitors used were accurate to =19 (tolerance). Once the
model was set up the capacitance at each node was checked with a General Radio
capacitance checker to make sure that each node of the circuit had the correct
capacitance. The resistance portion of the model was then checked by placing
a known voltage across the string of resistors and measuring the voltage drop at
several nodes. These voltage drops were compared with calculated voltage drops
and if the measurements and calculations checked to within =19 the resistance
portion of the model was accepted.

A sinusoidial voltage, corresponding to surface temperature, was impressed
upon the ‘‘surface” of the model and when the steady periodic state was achieved
voltage-time measurements were made at various nodes with three multiple-
point recorders. Since any current drain by the recorders would be analogous to
a heat sink, special buffer amplifiers with a very high input impedance were used.

The voltage-time curves were analyzed simply by measuring the amplitudes of
the surface and interior waves. From these measurements the gain and the
average voltage, V, (analogous to T,) could be calculated. The phase lag was
measured as the relative time between the intersections of the surface and interior
waves with their own average ‘‘temperature.” The ratio of this time to the
time required for one period times 24 hours gives the phase lag directly in hours.

In order to measure heat flow the electric current flowing into and out of the
analog model was measured. This was done by measuring the voltage drop across
part of the outermost resistance. These measurements are none too accurate,
however, due to the instability of the recorder when its input was floating (neither
side of input grounded).

Tue MobELs
The thermal properties used in forming two models are shown in table 9. The

values of resistance and capacitance used are shown in table 10. The scale factors
used were:

Ry = 4.828 X 10~* megohm cal/(°C sec)
Cp = 3.425 microfarad /(cal /°C)
Ty = 16.536 X 10~* sec elect/sec real (1 real day = 2.4 min)

The first model, model A, was set up using equations (4) and (13) for the thermal
properties of wood. The bark properties were estimated from the data available
at the time.! After the model had been set up and the data analyzed, it was

1Reifsnyder, unpublished.
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TEMPERATURE AND HEAT FLOW IN TREE STEMS

TABLE g. ANALOGS A AND B

Model A Model B
Nodel r Ce R, Ce R,
(p) cm Maicrofarads Kilohms Microfarads Kilokms

0 0 0.25 424.0 0.26 456.0

i 0.67 2.00 141.0 2.1 152.0

2 1.34 4.00 84.9 4.2 91.3

3 2.01 6.00 60.6 6.25 65.1

4 2.68 8.00 47.2 8.3 50.7

5 3.35 11.00 40.8 10.0 43.9

6 4,02 11.2 34.7 11.6 373

7 4.69 13.1 30.1 13.6 324

8 5.36 19.1 19.1 19.4 20.5

9 6.03 26.5 16.6 27.2 17.8
10 6.70 29.5 15.0 30.2 16.1
11 7.37 45.9 10.2 39.5 11.0
12 8.04 50.9 9.2 52.0 9.9
13 8.71 55.1 8.5 58.5 9.1
14 9.38 68.9 6.3 70.0 6.8
15 10.05 82.7 5.9 84.0 6.3
16 10.72 88.2 5.5 90.0 5.9
17 11.39 104.7 4.8 106.0 5.2
18 12.06 108.5 4.5 111.0 4.8
19 12.73 114.5 4.3 117.0 4.6
20 13.40 152.0 3.1 154.0 3.3

x 13.90 R,

x 37 2.7
21 14.02 19.5 7.1 13.0 5.22
22 14.27 19.9 35 13.1 2.58

X 14.40 Rb

[Tyt

air

1x indicates a resistor junction point.

discovered that an error had been made in the calculation of the volumetric
heat capacity of the wood. This error resulted in the volumetric heat capacity
being computed for 1°C instead of 10°C (averaging 2.59, lower than correct
values) as was intended. 10°C was selected since this was approximately the
average temperature of the real stem during the measurements made in the
early spring of 1963. The conductivity was computed for 30°C since that was
the temperature at which MacLean (1940) made his measurements.

The decision was made to set up the model again, with the correct values of
C,. Since Martin’s (1963) paper had been published during the interim, the
second model, Model B, was to have bark properties as predicted by his relations.
It was also planned, for Model B, to make an adjustment in the thermal con-

64



TABLE 10. THERMAL PROPERTIES OF MODELS

Density T hermal Properties
Model A Model B
Section Outer Moisture
No. Radius Content Sy Ss S3 k X 104 C, k X 10-¢ C,
cm % Dry Wt. gmcm3 gm cm™3 gm cm™3 cal/cm sec’C calem™3  cal/cm sec®C cal cm™3

Bark 14.4 259, 0.360 0.311 0.389 1.900 0.260 2.650 0.171
1 13.9 125.8 0.958 0.405 0.915 9.127 0.625 8.488 0.632
2 11.4 106.6 0.478 0.423 0.874 8.452 0.571 7.860 0.579
3 9.4 94.5 0.405 0.358 0.697 6.677 0.439 6.210 0.447
4 7.4 72.6 0.341 0.302 0.521 4.862 0.305 4.522 0.311
5 5.4 35.4 0.341 0.302 0.409 3.901 0.193 3.163 0.200
6 3.4 347 0.372 0.329 0.443 3.625 0.207 3.371 0.214



TEMPERATURE AND HEAT FLOW IN TREE STEMS

ductivity of the wood for a reduction in temperature from 30°C to 10°C. A
reduction of 79, was made. This very rough figure is based on the reduction of
the conductivity of wood at the fiber saturation point between 30°C and 10°C of
approximately 5%, (Kuhlmann, 1962) and 99, for water over the same temper-
ature range.> Although plans were made to make solutions with and without this
reduction of the conductivity, this became impossible due to instrument mal-
function.

Thus Model A is a solution based on the conductivity at 30°C, the volumetric
heat capacity at 1°C, and a rough estimate of the bark properties. For Model B,
the conductivity is reduced by 79, the volumetric heat capacity is at 10°C, and
the bark properties were estimated from Martin’s relations.

An early practice run on the computer indicated that a contact resistance
between the wood and the bark might be needed in order to achieve results that
were similar to the measured lags in the tree. Thus in different trials the contact
resistance shown in table 11 were included.

TABLE 11. CONTACT RESISTANCES USED IN THE ANALOG SOLUTION

Re,c hc
kilohms cal/cm2sec °C
0
5 11.1 X 1074
10 5.5 X 1074
20 2.8 X 1074

It was desired to estimate the coefficient of surface heat transfer (h,) for the
stem by recording the analog air and stem-surface temperatures (voltages) for
different values of h,,. Trials were made with the values of h,, shown in table
12 with R, . = 20 kilohms.

TABLE 12. VALUES OF THE COEFFICIENT OF SURFACE HEAT TRANSFER USED
IN THE ANALOG SOLUTION

hn

Re,b
kilohms cal/cm2sec °C
0
10 534X 1074
30 1.78 X 1074
60 0.89 X 1074
100 0.53 X 1074

2Chemistry and Physics Handbook, Chemical Rubber Publishing Co., Cleveland, Ohio.
40th Edition, 1958.
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THE ANALOG MODEL

Resurts aND Discussion

The results for the interior temperature field are shown in figures 29 and 30,
the gain and phase lags respectively. In these figures the solid lines are the results
for Model A and the dashed lines for Model B. In each case the results for Model
A with the indicated contact resistance are shown.

It was expected that the minor changes in wood properties would have little,
if any, effect on the temperature field in the stem. The rather large changes in
bark properties were expected, however, to have some effect. The results for the
two different models are for all practical purposes, the same. The largest deviations
are near the surface. In these figures the average data for April and the data for
May and August are shown. For both the gain and the phase lag the fit is quite
good for the case where the 20 kilohm contact resistance has been included.
This corresponds to a thermal contact coefficient of 2.8 X 10~ cal cm™? sec™?
°C!. The indicated presence of a contact resistance was first thought to be
associated with the initiation of cambial growth and the start of the “‘sap peeling”
season. The loose bark might explain the contact resistance effect. August, how-
ever, is well past the sap peeling season and the data for the one day during
August, even though less reliable, are far removed from the response curves for
zero contact resistance. Thus there is no real explanation for the indicated re-
quirement of a contact resistance.

The surface temperature gain and phase lead are shown in figure 31 as a func-
tion of the coefficient of surface heat transfer, h,. The solid lines indicate the
prediction of analog Model A. The dashed lines are for the parameters as pre-
dicted by Grober’s solution for two cases:

1. k=19 X 10 cal cm™! sec™! °C™!
C, = 0.26 cal cm™3

kC, = 0.49 cal* cm™* sec™! °C?

2. k=693 x 10~ cal cm™! sec™? °C™?
C, =048 cal cm™

kC, = 3.45 X 10~* cal? cm=* sec™! °C?

Case 1 is for a cylinder of bark, and Case 2 is for a cylinder of wood (see table
10). As would be expected the analog result lies between the two analytic pre-
dictions. The average phase lead between air and surface temperature on the real
tree is 0.6 hours, while the average gain is 0.75 (table 7). As shown in figure
31 this indicates surface resistances of 25 to 20 kilohms, which correspond to
approximately 2.0 X 10~ cal cm™2 sec™ °C™* for a value of hy. Application of
equation (22) for h,, gives 1.6 X 10~* cal cm=2 °C™* for a velocity of 67 cm sec™".
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THE ANALOG MODEL

The average amplitude of the electric current into the analog model was 556
microamperes (h, = 2.8 X 107 cal cm™ sec™! °C™?). This corresponds to a sur-
face heat flux amplitude, ™q, of 0.82 cal cm™ sec™?, for ™T, = 1°C. The phase
lead of the analog surface wave was 2.7 hours. The analytic solution gives, for
case | above, 0.47 cal cm™2sec™ (a = 14.4 cm, £ = 4.6, X = 0.32, » = 0.9), and
for case 2, 1.37 cal cm™? sec™? (a = 14.4, £ = 3.3, A = 0.227, v = 0.9) for an
=T, of 1°C. Again the analog results lie between the two cases. In this case, how-
ever, the analog result is closer to the analytic solution which assumes the stems
to have the average conductivity of the wood.

SuMMARY

The analog model was able to predict the temperature field in the stem more
accurately than the analytic model. It was discovered that a “‘contact resistance”
existed between the bark and the xylem. It was also noted that the solution was
not sensitive to small changes in the thermal properties of the wood or to relatively
large changes in the thermal properties of the bark.

The surface coefficient of heat transfer was estimated to be approximately
2 X 10~ cal cm™2 sec ~* °C™1, and it was noted that ‘n the real stem there was
little variation in this estimate. The analytic solution was shown to be unable to
predict with any real accuracy the relations between the environmental tempera-
ture waves and the stem surface waves. If the analytic solution is to be used for
this purpose it is best to assume the stem to be a body with the thermal properties
of the bark. The opposite situation was found in the case of surface heat flux.
Here the stem should be assumed to be made of material with thermal properties
characteristic of the wood,
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SUMMARY AND CONCLUSIONS

N THIS chapter the various aspects of this study of the thermal nature of
tree stems will be summarized, and the applicability discussed of the vari-
ous modeling techniques and other methods used.

THE ANALYTIC SOLUTION

The importance of the analytic solution to the understanding of the thermal
processes in a tree stem has been demonstrated. This solution for a greatly simpli-
fied form of the general problem indicated that the temperature field in the
stem can be quantitatively described by a pair of numbers, the gain and the
phase lag. In addition, it forms a basis on which the data from a limited number
of experimental trials can be generalized to cover a wide range of situations,
Since the analytic model was able to predict the internal temperatures with a
fair degree of success, it can be assumed that the extensions of the model will be
correct at least in a qualitative way. The important findings for the temperature
field were:

1. The amplitude of an applied wave is decreased and the maxima (or minima)
occur later in time as the wave moves toward the center of the tree.

2. The response of the stem or cylinder is a function of its dimensionless radius,
which is a function of the radius of the stem, the thermal properties of the stem,
and the frequency of the applied wave.

3. Any stem or cylinder with the same dimensionless radius, has the same
dimensionless response to the applied wave.

The relations for heat flow, although they did not match the analog heat flow
with any great accuracy, can be used for future analytic modeling concerning
the storage of heat in tree stems as a part of the energy budget of the forest. In
this regard two points are of interest. First, for very large trees or stands of large
trees the relatively simple equation for the flow of heat in an infinite slab can
be used. Secondly, the solution indicates that the thermal response of the canopy,
which is made up of small twigs and leaves, will be very fast, showing a maximum
of heat flow some 12 hours before the maximum of the daily air temperature
curve.

The analytic predictions for the relations between the air and stem surface
temperatures were not successful but did show how the analog data could be
analyzed to provide an estimate of the coefficient of surface heat transfer.
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SUMMARY AND CONCLUSIONS

THE ANALOG MODEL

Analog modeling of the real stem proved to be a very flexible and useful tool
for this type of study. The only drawback is the expense of using general purpose
instruments.

The analog model was able to predict the temperatures in the stem much more
accurately than the analytic model. This was because neither the radial variation
of the thermal properties nor the indicated presence of a "contact resistance"
between the bark and the xylem could easily be included in the analytic solution.
The important findings obtained from the analog model are:

1. A "contact resistance" was indicated to be present between the bark and
the xylem. This resistance could not be attributed entirely to the loosening of
the bark during the spring.

2. The average coefficient of heat transfer was estimated to be 20 X 10-* cal
cm-2 sec-1 °C-'.

THE REAL TREE

M easurements of the temperature field in the real tree indicated that:

1. Surface temperatures were uniform in respect to angular position and,
within the limits of experimental error, no effect of wind could be found.

2. Internal temperatures were found to be, for al practical purposes, inde-
pendent of angular position.

3. Within the limits of experimental error, no effects traceable to respiration
of living tissues in the stem or fluid flow were found at a height of 1.4 meters.

4. In a qualitative way the predictions of the analytic solution were shown
to be valid.

The fact that the surface temperatures (in terms of the fundamental waves)
were uniform was not too surprising, since wind speeds in the forest are relatively
low (Reifsnyder, 1955), and the flow is turbulent. The roughness of the bark
would aso tend to reduce any differences.

The apparent angular uniformity of the interior temperatures indicated that
the thermal properties of the stem were not functions of angular position. When
the tree was felled at the end of the study measurements of moisture content and
specific gravity distribution in a cross section immediately below the plane of
measurement show that this was the case. The variation (average error) with
angular position averaged 10% for the three annuli into which the stem was
divided.
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TEMPERATURE AND HEAT FLOW IN TREE STEMS

EXPERIMENTAL METHODS
Drill Rig
The drill rig proved itself to be a fairly accurate device for the location of

temperature sensors at desired points within a stem. Improvements in the design
of this device should alow for better accuracy.

Thermocouples

The measurement of temperatures with thermocouples is not to be advocated
due to the relatively small amplitudes being measured. With modern techniques
much more accurate results can be obtained with thermistors, which are much
more sensitive than thermocouples.

Fourier Analysis

Fourier Analysis should be used whenever complex but roughly sinusoidia
temperature variations are to be analyzed. By this technique qualitative com-
parisons can be replaced with quantitative analysis.
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APPENDIX A

TABLE OF NOMENCLATURE (Frequently Used Symbols)

rate of heat production cal/(cm sec)
a radius of cylinder cm
C specific heat (or electric capacity) cal/gm (microfarad)
Cn specific heat, wet wood cal/gm (microfarad)
Co specific heat, dry wood cal/gm (microfarad)
C, volumetric heat capacity cal/gm3
D diameter of cylinder cm
Fo* parameter N.D.
hg coefficient of surface heat transfer cal/(cm?sec °C)
hp contact coefficient cal/(cm?sec °C)
Ja parameter N.D.
k thermal conductivity cal/(cm sec °C)
P period of applied wave sec.
Q half cycle heat flow cal/cm?
q heat flux cal /(cm?sec)
R electric resistance megohms
r radial coordinate cm
S1 specific gravity, oven-dry weight, volume N.D.
Sz specific gravity, green volume
oven-dry weight N.D.
S5 specific gravity, green weight, green volume  N.D.
or density gm/cm3
T temperature °C
t time sec.
5} lag sec.
\% velocity cm/sec.
z axial coordinate cm.
a fractional volumetric shrinkage of wood,
green volume to oven—dry volume N.D.
B8 phase lead radians
] gain N.D.
n epoch angle radians
] angular coordinate radians
X thermal diffusivity cm? sec™!
A parameter = (w/K)}/2 cm™1
7 viscosity gm cm™Isec™!
v amplitude of heat flux N.D.
£ dimensionless radius = Aa N.D.
) dimensionless radial coordinate = Ar N.D.
¢ phase lag sec rad 1
w angular velocity = 2n/P rad sec™?
Subscripts
a surface
e electric
F factor
r radial point
t thermal
° average (time wise)
Superscripts
m amplitude
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X

TABLE OF BER, BEI, AND RELATED FUNCTIONS!

ber (x)

APPENDIX B

bei (x)

ber’ (x)

bei’ (x)

0.1
0.2
0.5
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

0.99999 84375
0.99997 50000
0.99902 34640
0.98438 17812
0.75173 41827
—0.22138 02496
—2.56341 65573
—6.23008 24787
—0.88583 159661
—0.36329 3024341
2.09739 5561141
7.39357 2985841
1.38840 465944-2

1From Lowell (1959).

0.00249 99996
0.00999 99722
0.06249 32184
0.24956 60400
0.97229 16273
1.93758 67853
2.29269 03227
0.11603 43816
—0.73347 46541+1
—2.12394 0258041
—3.50167 25165+-1
—2.47127 83169+-1
0.56370 4585542
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—0.00006 25000
—0.00049 99993
—0.00781 20761
—0.06244 57521
—0.49306 71247
—1.56984 66322
—3.13465 39628
—3.84533 94733
—0.02930 7996741
1.27645 2256041
3.83113 2570141
6.56007 709994-1
0.51195 258394-2

0.04999 99740
0.09999 91666
0.24991 86211
0.49739 65115
0.91701 36134
0.88048 23241
—0.49113 74406
—4.35414 05148
—1.08462 233294-1
—1.60414 8888841
—0.76603 184144-1
3.62993 84423+-1
1.35309 3017242
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