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ABSTRACT

A model is set up that covers the whole production process from tree seedling to
final product of one or more of the primary forest industries. It consists of a string
of revenue and cost functions which together form the objective function to be
maximized. Thus it translates the assumed objective of the study: maximization of
the discounted present value of the net benefits of alternative possible investments
in the forestry sector. What makes the maximization non-trivial is the interdepend-
ency of the variables involved. This multistage decision problem is molded into a
form that can be solved by dynamic programming. One state and one decision vari-
able, respectively total standing volume and total cut, are specified. To handle volume
growth forward recursion is necessary. This, plus the special computational proce-
dure developed, makes it possible after specifying the state and the decision variable
in aggregative terms to refind the per unit area values of these two variables and
thus to calculate the growth on a per unit area basis. All other variables either are
assumed constant or related to the state and/or the decision variable, and differenti-
ated for specific area units. A very desirable sensitivity analysis on the fina state
variable is automatically implied.

The model answers such questions as whether over-industrial capacity (relative
to sustained yield capacity) is a desirable thing in the first stages of development of
the forest resources. Thus it enables the forest planner to submit optimal decision
rules for any of the targets or constraints that higher policy may dictate. One specid
cae of the model is the Faustman formula case. By maximizing the discounted net
benefits from the whole production process and by allowing for the alternative of
ordering raw material from elsewhere, the model generalizes considerably the tra-
ditional soil expectation-sustained yield approach. Another special case is that of the
forester managing the forests of a plant subject to its demands. The model itself is
a specia case of a possible model embracing the whole forestry sector.



. OBJECTIVE OF THE STUDY

HE USE and development of the forest resource historically has been quite

haphazard in most countries. If planning took place at dl it generally was
donein the following way: foresters concentrated on the tree growing-harvesting
aspects while industrialists restricted their attention to the wood conversion or
industrial aspects of forestry. Of course tremendous conflicts of interests arose
because of these separated approaches. Foresters developed the sustained yield
philosophy which, coupled with the Faustman formula or soil expectation ap-
proach, formed the main framework within which management decisions were
taken. Industrialists eager for quick profits and often overlooking long range raw
material supply questions, insisted on much faster harvesting rates and cared
little for the renewable aspect of their raw material base.

The assumption implicit in this separated approach to the planning of the
development and use of the forest resources is that optimization of dl parts of a
unit within the forestry sector will lead to the optimization of the whole unit.
In other words the implicit assumption generally made is that the conditions of
pure competition hold true. Economists, of course, have pointed out the fallacy
of this assumption, but have done relatively little in the way of developing alter-
native decision models for foresters.

The objective of this study will be to develop optimal criteria or rules for
action when planning the use and the development of the forest resources, taking
into account the tree growing-harvesting activity as well as the wood processing
phase. The decision rules must be optimal in the sense that the contribution of
the possible forestry activities to the objective of the economy is maximized,
given constraints on the availability of resources. The objective of the country
will be taken as given.

A mathematical programming model, embracing the whole production process
from tree seedling to find product of one or more of the primary forestry in-
dustries, will be developed which will maximize over time the contribution of
the possible forestry activities to the objective of the economy, subject to con-
straints. Some of the constraints will be given data determined exogenously or
endogenously to the situation, other constraints will be determined jointly by
the foresters, economic planners and politicians.

The philosophy behind this approach is that the forester or forest planner
should not submit a single or at most a few alternative investment plans to be
subjected as a kind of fait accompli to a cost-benefit analysis and then perhaps
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I. OBJECTIVE OF THE STUDY

be accepted or rejected by the final decision makers. This results generally in a
single cost-benefit ratio with some marginal comments, which are subsequently
forgotten, as to the external effects of the investment plan. Rather the forest
planner should submit a model of investment whose performance can be ascer-
tained in respect to any targets or constraints that higher policy may dictate. In
this way the desired optimal decision rules are provided by the model for a
variety of assumed conditions. A mathematical programming model coupled
with a sensitivity analysis seems eminently suitable to handle this type of a prob-
lem. The model, finaly, will be applied to a particular case using real data where
available.



1. A DYNAMIC PROGRAMMING APPROACH
TO FOREST INVESTMENT DECISIONS

REVIEW OF LITERATURE

Like every other sector of an economy, the forestry sector should try to maximize
its contribution to the objective(s) of an economy subject to given restrictions
on the availability of resources. Or, alternatively, it should try to minimize the
use of scarce resources per unit contribution to the objectives of the economy.
This, of course, is a perfectly general statement.

Several questions arise immediately in connection with the statement above
which have to be dealt with before the problems to which this study directs itself
can be stated. What are the important characteristics of an economy as they con-
cern the allocation of resources? Which possible forestry activities are considered
in this study and to what kind of forestry situation is the study directed?

In the traditional static world of pure competition with al its assumptions of
perfect foresight, perfectly divisible resources and commodities, absence of exter-
nal and internal economies, the resulting price system would assure the optimal
alocation of resources among the alternative uses. The allocation of resources
would be optimal in the sense of assuring a maximum output at a given socia
cost or agiven output at a minimum socid cost. As many economists have pointed
out, this optimal allocation of resources would be assured if a policy of profit
maximization would be followed: select investment projects according to the
profits they are able to provide. Equilibrium would be indicated by the so-called
set of marginal equations and when the profits of all activities in use are zero.
The price system would make a decentralized decision making process possible.
Adam Smith's "invisible hand" would guide everybody to pursue the best
interest of the society by pursuing his own best interest. No deliberate economic
policy designed to influence the amount and composition of investment would
be able to raise national income. And disregarding an ethical value judgment
about Personal income distribution, the maximum output obtained would aso
be a social optimum, even over time.

However, economists found many important departures from this idealized
picture of the economy. These departures were found in advanced and under-
developed economies dike, though they are likely to be especially significant in
the latter. Tinbergen (38) indicates at least three areas in which the under-
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developed economies are normally in a positlon of structural disequilibrium:
the market interest rate is likely to be too low because of rationing of loan funds
by the banks, the wage rate is apt to be too high because of disguised unemploy-
ment and the exchange rate is often overvalued. Other reasons for the occurrence
of structural disequilibrium are numerous. To name just a few: indivisibilities,
imperfect foresights, the occurrence of monopoly positions, ignorance of demands
and technological possibilities, the occurrence of outputs with no readily assign-
able or fully recoverable market values, etc. External economies and diseconomies
form another departure from the idealized picture and are especially important
in underdeveloped countries. In advanced countries the establishment of a new
plant, firm or industry generally entails only marginal adjustments in the rest of
the economy; hence the environment of a project generally changes slowly enough
to be taken as given. In an underdeveloped economy many activities are non-
existent and the establishment of a new plant in one sector might involve sub-
stantial changes in other sectors, which in turn will affect the operation of the
new plant.

In short the existing market price system cannot be relied upon as a tool of
resource allocation in most economies. 1\10reover, an investment often cannot be
judged under the ceteris paribus conditions of partial equilibrium analysis. Hence,
optimizing al parts of an economy, sector, industry or firm does not imply the
optimization of the whole as would be the case when the assumptions of pure
competition were fulfilled. And thisin general is the more true, the more under-
developed an economy is.

The conclusion of economists has been that especially in underdeveloped
economies not only are there likely to occur systematic discrepancies between
existing market prices of factors and their true opportunity or scarcity costs, or
between present private and socia costs and benefits, but future prices, them-
selves the resultant of the allocation of the available resources, have to be estimated
in a general equilibrium model. However, even in the advanced countries the
mass of data that would be necessary to apply such ageneral equilibrium allocation
model is often not available. This has led to the elaboration of investment or
allocation criteria. The idea of investment criteria is to rank or order alternative
potential investment projects or their consequences according to a chosen cri-
terion. The limit between projects that should be, and projects that should not
be carried out is then determined by the available resources.

Investment criteria, of course, represent a partial equilibrium approach to the
problem of resource allocation. I\fany theoretical objections to their use have
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been raised in the literature and it has been shown that there exist additional
difficulties when applying the investment criteria to the forestry sector.* In
addition, they do not provide much help to answer some of the basc questions
of the forestry planner.

This leads us back again to the ideal of the general equilibrium approach for
alocation problems. Chenery and Kretschmer (9) point out that a mathematical
programming model embracing the whole economy may be of help for this type
of an approach to allocation decisions. Such models have actually been constructed
(7, 9). However, these models should not work with crude technical coefficients,
production figures and economic data because in actual practice these quantities
vary with the way of doing things and hence with the alternative possible proj-
ects. Therefore, it seems to me that before such a general mathematical program-
ming model can be developed and applied, knowledgeable people in each sector
should indicate projects which are alternatives for producing certain commaodities.
These projects should be alternatives under the different possible assumptions for
such things as resource availabilities, technical and economic data to be used over
time, etc.

In correspondence with the general interest of forestry planners, the main
forestry activities to be considered in this study are:

I) Raw material supply.

a Tree growing. This activity produces primarily wood material in the
forest. The possible secondary effects of tree growing, often termed
forest influences (erosion control, recreation, etc.) will be taken into
account only indirectly, at least in s0 far as they cannot be expressed
quantitatively.

b) Harvesting ("logging") and transport.

2) Raw material processing: the most important pnmary forest industries.
ad The sawmill industry.
b) The veneer and plywood industry.
¢) The fibreboard and particleboard industry.
d) The pulp and paper industry.

It seems fair to say that foresters by and large have restricted their attention
to either the tree growing-harvesting phase or to one (or more) of the four pri-

* Schrecuder, G. F. The usefulness of investment criteria in the forestry sector. To be pub-
lished soon.
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mary forest industries. Only rarely has the whole production process from tree
growing to final product of the primary forest industry plant been taken into
account. This means that generally the implicit assumption is made that maxi-
mization of any part of a unit within the forestry sector will lead to maximization
of the whole unit. In other words the implicit assumption that generally has
been made by foresters is that the conditions of pure competition hold true for
any unit in the forestry sector (even for such big units like the U.S. Forest Serv-
ice). Forest economists, of course, have pointed out the fallacy of this assumption,
but have done relatively little in the way of developing alternative decision
models for foresters. And certainly no model has been developed that would
handle the whole forestry sector.

Consequently one of the main decision models in the tree growing part of the
forestry sector has been and still is the soil expectation approach developed
originally by Faustman, or one of its modifications. Investments are made in
those species, those silvicultural practices and those installations that promise the
highest soil expectation (of course once the decision to engage in tree growing-
harvesting has been taken many sub-optimization problems in forest management
are solved using either the marginal or total benefit minus total cost approach).
Gaffney (17) gives an excellent summary, analysis and critique of the theoretically
sound (within the objective set) Faustman approach and some of the existing
modifications. It is interesting to notice that he does not even mention the fact
that the objective set may not be realistic in the case where the assumptions of
pure competition are not fulfilled.

The soil expectation model combined with the philosophy of sustained yield
has provided the framework within which sound forest investment, harvesting
and other management decisions are supposed to be made. It is true that the
philosophy of sustained yield has come under fire already for some time, especially
because it did not seem to provide the optimal solution in cases where the forest
was not fully regulated, i.e. where mature stands, say, were overrepresented in
comparison with young stands. Still the unsound forest management decisions of
the small forest owner and of some of the primary forest industries which own
forests (often very large areas) have been rather universally condemned. More-
over, except for some rather general intuitive guidelines as to what should be
done in the case where a forest is not fully regulated (see 13, chapter 7), not much
in the way of a model to aid in making decisions has been developed. Finally,
such recent studies as the ones by Gould and O’Regan (18) and by Clut
Bamping (10) have argued or actually showed that the unspund f

r and
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may not be o0 unsound after all. True the revenue and cost stream is quite ir-
regular. But on the other hand revenue is increased by 15 to 30% over what it
would have been following the sustained yield approach.

Recently forest economists have become interested in operations research
techniques and a number of studies applying the principles of linear programming,
parametric programming, dynamic programming and simulation to problems in
the forestry sector have appeared. An excellent review isgiven by Hall (20). True
to tradition al of these focus either exclusively on the timber growing-harvesting
phase or on specific problems of one of the primary forest industries. Some of these
do, however, get away from the strict per unit of area approach and at least
consider the tree growing enterprise as an entity (for example 10, 18 and 32).
These latter studies show that one has to pay some attention to the computational
aspects of the model; because of the large areas involved in forestry the number of
possible combinations of the different treatments, unit areas, site class conditions,
etc. tend to exceed very rapidly the storage capacity of even the biggest (con-
ceivable) computers. If no attention is paid to the computational feasibility one
gets results such as (25):

Three silvicultural treatments, 17 age-site classes and five time periods create
a large number of possible harvest alternatives. Because of limited computer
capacity only 78 alternatives were identified for the forest.

This study will develop an investment decision model that will consider both
the tree growing-harvesting phase and the primary manufacturing part a an
entity. As such it can be used for a complete vertically integrated plant or even
for a complex of forestry enterprises. The assumed objective is the maximization
of the discounted present value of the net benefits of alternative possible invest-
mentsin the forestry sector. To obtain the optimum, the Bellman type of dynamic
programming is used. Given this model the forest planner will be able to submit
optimal rules for action for any of the targets or constraints that higher policy
may dictate. In this way the model furnishes the necessary data for a possible
general equilibrium or mathematical programming model embracing the whole
economy, like the one developed by Chenery and Kretschmer (9).

THE MODEL

As mentioned before the objective chosen to be Inaximized is the discounted
present value of the net benefit of alternative possible investments in the forestry
sector (in 0 far as these benefits can be expressed in quantitative terms). The
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justification for choosing this particular objective from a host of others is two-
fold. In the first place it assures a maximum total quantity of goods and services
available for public and private consumption and investment at a certain point
of time. Moreover, Bator (4) showed that under certain restrictive assumptions
(primarily that the rate of saving is not related to specific projects, i.e. to the
market imputed distribution of income), instantaneous productive efficiency is a
necessary condition for obtaining dynamic intertemporal efficiency; or, in other
words, that we always must maximize current net output. Secondly, it provides
a workable objective which is most closely akin to what the forest manager or
the forest planner are likely to have in mind or actually follow in practice. This
objectiveis rather similar to the socia marginal productivity investment criterion.

Review of Dynamic Programming

To obtain the optimum, the dynamic programming approach was used. Dy-
namic programming was developed by Bellman (at least the Bellman type of dy-
namic programming; sometimes dynamized versions of linear programming are
dso caled dynamic programming). It is a computational approach used to solve
complex optimization problems. As such it is fundamentally different from linear
programming which basically is a mathematical model. It is more like simulation
in this respect; however, simulation does not search for an optimum while dy-
namic programming does.

What dynamic programming does is to take a model for which an optimal so-
lution is sought and to transform it to a form that has the same optimal solution
but that can be optimized more easily. For example, multistage or sequential
decision processes containing many interdependent variables are transformed into
a series of single-stage problems, each containing one or only a few variables. The
problem is then solved recursively (which explains the term recursive optimization
as a synonym for dynamic programming). Hence, instead of solving one opti-
mization problem in which al the decisions are interdependent, the optimal
decisions are found one at a time.

At each stage of the problem we have a certain input as described by one or
more input state variables, and a certain output as described by one or more
output state variables. A certain set of decisions can be taken as described by one
or more decision variables. Finally, as aresult of the input(s), decision(s) and out-
put(s) we have a certain stage return, which has to be a single valued function of
the input(s), output(s) and decision(s). The input of one stage is the output of a
former stage. The different stages are combined by the stage transformation or
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stage-coupling function. This stage transformation must be a single-valued trans-
formation, expressing each output state variable as a function of the input state
variable(s) (34). The optimal solution (return function) is calculated at each
stage for each feasible value of the state variable(s). The transformation itself is
based on Bellman's principle of optimality (5):

An optimal policy has the property that whatever the initial state and initial
decisions are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

This principle is intuitively obvious but as Nemhauser (34) states, it " ... can
be more appropriately described as powerful, subtle and elusive ..."

Dynamic programming has been used extensively on operations research prob-
lems. It has been proved especialy effective for inventory control, production
smoothing and allocation problems. Still it has not enjoyed the attention of linear
programming, which probably is due to the fact that it is difficult to delineate a
class of problems amenable to this approach; in fact, the trick largely is to formu-
late a problem in terms of dynamic programming or to recognize that a certain
problem can be transformed into a multistage form. Therefore, applications will
depend on the ingenuity of the problem solver. Also, as Howard (24) says:

Dynamic programming requires considerable insight on the part of the analyst
... Hence it is more likely to be used by the professional analyst rather than
by a manager directly.

One of the biggest advantages of dynamic programming is that it can handle
both continuous and highly discrete variables and functions. This, perhaps,
accounts for its popularity in cases where uncertainty is taken into account
through the use of stochastic variables. On the other hand, one has to be careful
in using dynamic programming in order not to create computationally infeasible
problems. As the number of state variables and/ or the number of stages increases,
the number of necessary calculations increases very rapidly. In fact, the number of
calculations increases exponentially for each additional state variable, while it
increases by a multiplicative amount for each additional stage. It is generally
true that a state variable is needed at each stage for each constraint that relates
state and decision variables (see 34, chapter |11, section 10 for exceptions). In
some cases computational refinements, such as Fibonacci search, the coarse grid
approach, the use of Lagrange multipliers and the one-at-a-time method can al-
leviate the computational burden (see 34, chapter 1V).

Of course not every problem can be formulated as a dynamic program. The
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necessary and sufficient conditions to use dynamic programming on a multistage
decision problem are (34, 31): the condition of separability; the condition of
monotonicity. These conditions are quite general. In fact even some min max or
max min problems satisfy these conditions (34).

Once a problem is formulated as adynamic program it generally is solved work-
ing backward: one starts from the final (output) state variable(s) and works back-
ward to the initial (input) state variable(s). Individual stage returns are found as
afunction of the input state variables and the problem is solved as a function of
the initial input state variable(s). This is caled backward solving or initial state
optimization (5, 34, 19). Notice that a sensitivity anaysis on the initial (input)
state variable(s) is automatically built into the dynamic programming formula-
tion. Thisis what Bellman (5) cdls the "imbedding of the original problem into
the whole family of problems.”

It is also possible to solve the same optimization problem as a function of the
initial input(s) and of the final output(s). This is called the initia-fina state
optimization (34). This problem generally till is solved working backward.

If, in the stage transformation function, the input state variable(s) can be
expressed as a function of the output state variable(s) and the decision variable(s)
(this is called state inversion), then a dynamic program can be solved working
forward. This is often caled fina state optimization because the optimum is
found as a function of the fina (output) state variable(s) (34, 19).

In summary, the basic difference between backward and forward recursive
optimization is that in backward recursion the analysis proceeds from the fina
stage to stage one, and the optimal returns are found as functions of the stage
input variable(s). In forward recursion the analysis proceeds from the first stage
to the fina stage and the optimal returns are found as functions of the stage out-
put state variable(s).

When the choice between input and output variables is arbitrary from a math-
ematical point of view, the only conceptual difference between forward and back-
ward recursion is the order in which the transformations are made. However, the
direction of solving may make a significant difference in the ease of solving the
problem and may be crucia in the case of stochastic transitions and/ or returns, or
in the case of nonserial multistage decisions (see 34). The direction of anaysis
aso turns out to be very important for the forestry problem of this study.

Dynamic programming has been applied to forestry problems by Arimizu (3,
2) and Hool (21,22). Both follow the traditional forestry approach, already com-
mented upon, of optimization per unit area, i.e., of a part rather than the whole

11
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forestry enterprise. In this way they get around the difficulty of the large number
of combinations of the unit areas and of the states these units can be in at each
stage. Burt's (8) paper comes most closely to that which this study will do. How-
ever, there are some basic differences between his optimal water resource use
problem and a typical forestry problem. In the first place he does not have to
worry about the per unit area versus the whole area approach, because only the
latter makes sense. Also important, the quantity of resource added to the stock
per period is not under the decision maker's control, while it (i.e. growth) is to
some large extent in forestry. Finally and less basic, his model employs continuous
variables and the decision rule obtained works only if the initial stock is large
relative to (quantity used minus quantity added) for a "long" period of time.

Cagting the Objectivein Dynamic Programming Form

Suppose that we have a very large undeveloped forested area. Assume that
most of the forest is mature or overmature and virgin (this assumption is just
made for the sake of discussion; basically the forest can be in any state). How
should this forest area be brought into use and managed 0 that the discounted
present value of the net benefits is at a maximum for society (or for one or more
enterprises, if so desired)?

A preliminary forest inventory should be made to indicate the several forest
types and site classes, and to give a rough figure about volume available. Some
forecasts should be made as to what type and quantity of forest products the
local market demands now and over time and at what prices; exports should be
considered too. Harvesting costs should be estimated and several levels of forest
management should be considered, for example, no management, very extensive
and very intensive management. For each level of management, questions con-
cerning possible species to plant, regeneration and management costs, density of
the required road network, etc. will have to be answered. Number, possible
sizes and locations of sawmills and/ or other forest raw material processing plants,
including integrated plants, should be discussed. Resource limitations should be
considered.

On the basis of these data, many of which are likely to be very incomplete, a
number of interdependent decisions have to be taken. Should one invest in the
forestry sector at al? If so, how much and in what part of the forestry sector?
What should be the rate of cut, the level of management intensity, the species to
be planted, the rotation to be followed and the total capacity and type of raw
material processing plants to be established? Basically these decisions should be
taken in such a way that the following expression is maximized:

12
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N
pX

n=I

1
T+K)r {rs —cp)

N = the planning horizon.

K = the discount rate in period n.

r, = avector of revenues accruing in period n as a result of decisions taken in and
before period n.

c, = avector of costsincurred in period n as a result of decisions taken inand be-
fore period n.

The model above is perfectly general and does not help the forestry planner
much to obtain optimal decisions. The reason mainly is that al the decisions to
be taken are interdependent to alarge extent. It is, however, a multistage decision
model, so dynamic programming may be expected to provide some help. More-
over, the problem can be thought of as an inventory management or production
scheduling problem with some peculiarities. One cannot order or produce ad-
ditional product at will but is constrained by the growth capacity of the forest.
(In away one can be taking other countries or regions than the one under con-
sideration into account; this, however, will entail an extra cost, comparable to the
penalty cost of inventory control problems.) Moreover, whether we want it or
not, some growth is generally forthcoming. The amount of inventory (timber-
volume) conditions largely the re-order or production rate (growth-rate). Finally,
in case of emergency it is possible to supply the demand by cutting into the as yet
immature stands (i.e., by liquidating part of the machine), thus shortening in
effect the rotation. The question now is. How can the above model be recast so
that it can be solved by dynamic programming?

Foresters have always realized that their most powerful decision variable is
the periodic (yearly) cut. It is this decision variable that regulates primarily the
flow of benefits, to alarge extent the flow of costsand the amount of investment
in the tree growing part. Hence it was decided to take this as adecision variable
in the dynamic program. As the accompanying state variable, the total volume as
composed of the sum of the per unit area volumes seemed to be a natural choice.

The total amount of capital to be invested in al the forestry activities seems
to be a necessary second decision variable. It will determine plant capacity and
management intensity. However, when trying to use the total amount of capital
to be invested as a decision variable, a number of major difficulties crop up. What
part of this amount should go to investment in the raw material processing
plants and what part to the tree growing-harvesting phase? Moreover, in the
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former no new investment (excepting regular operating costs) is heeded once an
initial investment has been made, until the time of replacement or obsolescence
comes; also the problem of replacement is as yet largely unsolved (see (30) for
example).

The best way to get around these difficulties is to assume a certain (any number
preferred) total plant capacity to be present from the start and to assume a certain
replacement schedule. Operating costs, including depreciation, would then vary
only with the amount of production, which in turn depends on the cut. Invest-
ment in the tree growing-harvesting phase could then be taken as a second deci-
sion variable to determine the management intensity.

However, data in the tree growing-harvesting phase are not that exact that
afew thousand dollars more or lessinvested in alarge forest area would mean much
in terms of increased production. The investment rate as a second decision vari-
able would have to be considered in quite large discrete steps. Moreover, intro-
duction of a second decision variable, coupled with the customary long planning
horizon in forestry, increases the necessary computations tremendously. So,
although it is very well possible to make the amount of investment (in the tree
growing-harvesting phase, given the investment in the plant capacities) a
second decision variable, it was decided to follow a computationally easier and
probably a not much less satisfactory approach: only a very limited number of
alternative possible plant capacities (say over-capacity, sustained yield capacity
and under-capacity) and management intensities (say no management at al,
extensive forest management and intensive management) are considered and the
dynamic program is solved for each one of the (nine) possible cases. This approach
seems especially satisfactory because so often the amount of capital available for
investment is determined exogenously to the forestry sector. In the example
worked out in chapter 111, sustained yield plant capacity throughout the planning
period and an extensive form of forest management are assumed.

A number of simplifying assumptions was necessary to obtain an operational
model. It is assumed that the optimal number, type, size and location of the raw
material processing plants (within the total capacity assumed at the outset) can
be determined by some sub-optimization procedure. In other words, the model
abstracts from the question whether one big plant or several small ones have to
be constructed and from the question of their optimal location. The number of
suitable plant locations is generally quite small. Linear programming and integer
programming have been used to answer these questions in other sectors and could
presumably be used in the forestry sector (see (29), for example).

The density and type of road network to be constructed is assumed to be re-
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lated to the management intensity. Optimal ways of carrying out such silvicultural
operations as planting, thinning etc., and the harvesting operations also should be
found through sub-optimization methods (the marginal approach of economic
analysis (13) and linear programming (15) have been used). It will be assumed
that, for every management intensity, the forest planner knows at each year of
age of a stand the exact volume that should be maintained per hectare (and hence
the amount to be thinned) in order to maximize value growth. Given sufficient
data this does not seem too unrealistic an assumption for a given soil climate and
tree species (or species mixture). In this way most management costs and revenues
can be related to the volume per area unit or to the area unit involved.

The species or species mix to be grown (at least if management is considered
at all) and consequently the product or product mix to be obtained must be con-
sidered. The type of plants to be constructed at the planning outset will be
dictated largely by the raw material base present. As it is possible to change this
raw material base over time, it may be desirable to plan also a change in the type
of plants and /or plant capacities over time. The particular soil and climate of the
forest area under consideration and the management intensity considered will
generally severely limit the choice of alternative possible species and hence the
possible obtainable products. Because the number of alternatives is likely to be
very small the model can be run for each alternative, if so desired.

The Dynamic Programming Model

The general model given before can now be made more specific and transformed
into dynamic programming form. Let
N
1
- [ ¢ ) (1) () _ (2 (3) —_
H ni A+ Ky (& (Yo P) + 2 (Yo = M, PiP)) + ¥ (Yo — Yo,

PO) 4 (O (Y, Vi, I) = <@ (VO — Y, PO, K,) — @ (L, IO, K,) — ¢
O, FP) — ¥ IV, K, DD, FP) — ¢ (¥,, WP, 0P, K, [?) — e (Y, —

Yo, PP) — ¢ (Yo, Vo D]
The explanation of the various symbols is as follows:

—The dot notation is used to indicate that summation is carried out over the
subscript in whose place the dot stands. For example Y, = 7Y,

—In contrast with accepted dynamic programming notations the stages are
numbered in the normal and not in reverse order. The reason is that forward
recursion, as opposed to the traditional backward way of solving, will be shown
to be essential for the forestry problem of this study. Thus the stages from the
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beginning to the end of the planning period are numbered respectively 1, 2,
3,...,n—1,nn+1,...,N

—Small letters indicate either subscripts or functions. Capital letters represent
parameters or variables. The meaning of the capital letters will be explained
first. For ease of reference it may be noted here already that r represents a
revenue function and ¢ a cost function.

—The planning horizon is supposed to be N periods or N stages long (a period may
stand for a month, a year, five years or some other preferred time unit). In
the example of chapter III the total planning period is 75 years and composed
of 15 stages of five years each.

—The total forest area is supposed to be divided into J area units. It is not nec-
essary that the area units are of equal size. Because it will simplify computations
somewhat and does not aflect the reality of the model, equal sized area units
will be assumed for most of this study. The division should be done in such a
way that an area unit always is homogeneous in respect to site class and/or
forest cover. Each unit is represented by a subscript j = 1, 2,..., J. In the
example of chapter III, three site classes are distinguished and each area unit
1s 1000 hectares.

—M is the maximum volume of wood that the installed plant capacity can proc-
ess. As explained before, it is assumed to be a constant for a particular case,
though different cases may be examined.

—Y,,; is the cut in period n from area unit j; Y, consequently is the total cut in
period n and will constitute part of the decision variable. Y, is the total amount
of wood processed by the forestry activities under consideration in period n
and will be used as the decision variable. Hence Y, — Y, , which may be zero
but cannot be negative, is the amount of wood ordered from outside the region
under consideration. Also Y{" will stand for the total amount of wood proc-
essed by the primary forest industries and Y for the total amount sold in
log form. Of course YV + Y@ = Y,. Unless stated otherwise it will be assumed
that Y& = 0 aslong as Y is smaller than M. This means that we assume that
no wood will be sold in log form (in unprocessed form) until the installed plant
capacity is fully utilized. Of course, other assumptions can be made.

—XK, is the periodic (not necessarily annual) discount rate at stage n. We notice
that it need not remain constant over the planning period but may be assumed
to rise, fall or to fluctuate wildly. In the example of chapter III the model will
be run for three different but constant interest rates.

—DP is the price per unit volume of timber on the stump on a finished product
basis (finished product meaning it has passed the production process of one of
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the primary forest industries) in period n from area unit j. Notice that if the
jth area unit produces wood for lumber purposes while the (j + 1)th unit
produces wood for pulp purposes, the two prices are likely to be different. And
even if both area units produce wood for the same purpose, the prices may be
different due to the fact that the forest cover on area unit j is different from
that of unit (j +1) (adifferent speciesor quality mix). There also may be more
than one product being produced from timber coming from the jth area unit
(for example in the case of integrated plants); then we have to work with a
weighted price. A weighted price is aso needed in the case where the forest
cover on an area unit is made up of a mixture of species, each commanding a
different price. Notice aso that it is possible to make the price I’E,}}a function
of the amount of product produced, i.e. P’ = p{’ (Y. This is important
when the forest enterprise under consideration faces a not perfectly elastic
demand curve. It is possible to incorporate to some extent price differentials
for different size classes of timber by relating price aso to volume per area
unit at the moment of cut, i.e. P = pl> (v;. Y ). The n subscript on the
parameter indicates that changes of product prices over time can be taken
into account. An allowance for possible quality improvements or deteriorations
after the first cut may be made by assuming a different price value when
harvesting for the second time (i.e. after one "rotation") from the same area
unit. Finally pgp may be made a function of the management intensity rem),
ie PP = pd (lem).

—Pﬁj) is the price per unit of volume of timber on the stump on a roundwood
f. 0. b. basis. The remarks made for the P&}) price are applicable here. If we
want to make P{> and P& a function of Yn we must remember that the two
are likely to be interrelated because the products on which the two prices are
based, are close substitutes for each other. That is P’ = p® (Y®, Y{?) and
PP = p® (Y, YEP). But as both are on the same per unit of volume on the
stump basis no difficulties arise. If the demand schedules for the two products
on which P{’ and PP are based, are different (say because finished products are
sold on the domestic market but logs are exported), then the two prices might
be independent functions of Y That is P = p{ (Y®) and PR = p{® (YP).
Both cases can be handled easily.

—IJ,C},/‘ is the price per unit volume of stumpage. Again the remarks made for the
P and P& prices are applicable here.

—DP%2 represents the per unit of cubic volume price of logs that can be bought and
brought from elsewhere (from other regions than the one under consideration).
It resembles P,(,_f) except that an extra transportation price is included. Hence
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in general PP > PP, If so desired P may be made a function of Y, — Y,
so that the price to be paid depends on the amount ordered.

—P is the price per unit of cubic volume finished product on a roundwood
basis obtained from the logs brought in from outside the region under consid-
eration. It may or may not be different from P{.

‘In the example of chapter III, P’ = PXy, = P®, PP = PP, and PYP=
P31, Also P® = P® + some nonnegative amount. All three prices P, PP
and P’ will be assumed to increase over time. Finally P’ and P$? are taken to
be decreasing functions of respectively Y, and Y, — M, while it is assumed that
Y® = 0 as long as Y is smaller than M.

—I® s the amount of fixed investment in the tree growing-harvesting phase of
the forestry enterprise. Examples are: investments in roads, drainage ditches,
nurseries and buildings. As commented upon before IV is fixed for the level
of management intensity I™ under consideration.

—I® is the amount of fixed investment in the raw material processing plants.
It determines the total plant capacity M and was commented upon before.

—I = 1® 4 @

—V,; is the cubic volume at the beginning of the nth period of the jth area unit.
Consequently V, is the total volume of the forestry enterprise at the beginning
of period n; it will be used as the state variable. A superscript 0 indicates that
a stand is under consideration which has cost nothing to grow.

—Gy,; is the net cubic volume growth of the jth area unit during the nth period.
The prediction of growth is one of the most essential things in forest manage-
ment. Yet no exact growth prediction method has been developed. In this
study the development of a stand as a function of site class, age and manage-
ment intensity will be assumed known (this is a fairly strong, yet quite common
assumption in forestry). The growth of a stand on a specific area unit and for
a given level of management intensity as a function of the volume per area
unit (which is part of the state variable) can then be derived easily. That is
Guj = g(Vaj, I™). As will be seen later it is necessary to relate growth to the
state variable in order to be able to use dynamic programming. The total
growth G, is found as the sum of the growth of each area unit. In the example
of chapter III the growth for each of three different site classes is given as a
function of the per unit area volume.

—L,; represents the land value (soil expectation value where available) of area
unit j in period n. If fixed investments I are made, this enhances the value
of L. Hence L,; is not determined exclusively by the general demand and
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supply for land; it may be increased (or decreased) by some actions of the
forest manager. As the n subscript indicates, the price of land may change over
time.

—W®, W® and W represent the wage rates in period n of labor employed in
respectively the tree growing phase, the harvesting phase and the primary forest
industries. Again the n subscript allows for possible changes over time.

—OW®, OD and O represent all other costs in period n that vary with the
decision variable Y,, respectively in the tree growing phase, the harvesting
phase and in the primary forest industries. They may change overtime. op
is determined also in large part by %, the level of forest management intensity
considered.

—F®, FD and FY are fixed costs of operation in period n, respectively of the
tree growing phase, the harvesting phase and the primary forest industries.
Insurance costs and certain taxes are examples.

—DE and D@ are the rates of depreciation in period n of those fixed invest-
ments, respectively in the tree growing phase and in the primary forest in-
dustries, that are subject to decay or obsolescence.

The specific meaning of the revenue and cost functions follows.

—r< represents the revenue received from the sale of the products of the primary
forest industries. Unless the r{” term is omitted, this excludes those products
based on the raw material from elsewhere. The term 7 depends on the decision
variable Y, only as long as Y, < M; r{" will become constant as soon as Y,
> M.

—r® represents the revenue received from the sale of logs. As explained before,
it is assumed that as long as Y, < M, all the timber will be processed. As soon
as Y, > M, the plants cannot process the additional timber any more by the
definition of M. The unprocessed amount (Y, — M) will then be sold in log
form. Hence this term will become operative only if (Y, — M) > 0. If the
above assumption is not made, a more general notation becomes necessary:
replace Y, — M by Y in the r? function and Y, by Y in the £ function.

—1$ represents the revenue received from the sale of the final products obtained
from processing the logs brought in from outside the region under considera-
tion. The implicit assumption, that it will not pay to buy logs from elsewhere
and sell them again in unprocessed form, seems reasonable enough as long as
PO > PS,?. The contrary is hard to imagine in practice but possible in theory;
it can be handled just as easily by the model. This term is included only to
allow for the possibility that wood imported from elsewhere is of a different
quality and/or species mix than the timber obtained locally. If this is the case,
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the price P$ of thie final product obtained from this material will be different
from PSP, If this is not the case, the term 1 will be omitted and absorbed in
the term r{P because P& = PP = P, The latter case is the one considered
in the example of chapter IIL.

—1$” has been included to allow taking into account external economies of the
forestry activities. These, of course, can be considered only when some quanti-
tative estimate can be supplied for them.

—c{V represents the costs of holding for an additional period of time those stands
that have cost nothing to grow. It is applicable to all stands if no management
is practiced. If management is being practiced it is applicable only to those
stands that have not been cut for the first time. As the interest K, and the
stumpage price P$’ may change over time, this cost may change also over
time. In the example of chapter III, this cost is assumed to be applicable only
to the original stands (the stands present at the beginning of the planning
period).

—c® represents the periodical land rent or K, times the land value (or soil
expectation value if the land value is not known). It can also be looked upon
as an opportunity cost of timber growth foregone and of possible stand improve-
ment foregone in future stands when holding the present forest cover for an
additional period of time. It is also a function of I in so far as investments are
made that increase the value of the land, such as roads, drainage ditches etc.
As the interest rate K, and the landprice L,; may change over time, this cost
may change also over time. In the example of chapter 111, land prices are
assumed to be different for the three site classes distinguished. Moreover, a
constant periodic increase in land values is assumed.

< represents those management costs that vary with Y,, WS and O, such
as costs of preparation and planting the cut-over sites, release cuttings and
other plantation tending costs. This cost function will depend on the level of
management intensity 1™ considered. It may be zero if no management is
planned (cut-and-get-out type of operation). If so desired this cost may be
assumed to vary with site class, or with any other characteristic that distin-
guishes one area unit from another. Often this will not be worthwhile or not
even possible, as when variable management costs are recorded on a total area
basis and not separately per area unit; generally an average variable manage-
ment cost per area unit will do. As its parameters may change over time, this
cost may change also over time. In the example of chapter III a constant cost
is assumed as soon as an area unit is clearcut.

—c$® are the fixed per area unit costs of management, such as certain taxes, costs
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of inventories on a per area unit bass, fire protection costs, interest charges on
fixed investments not included in the ¢ term etc. Some of these will be in-
curred even if no management is practiced. This cost may be assumed to in-
crease or decrease over time.

—c{® represents the cost of harvesting the cut Y. and of transporting the material
to the processing plant(s) or to the f. o. b. place. It is assumed that a time period
n is 0 long that logging equipment is depreciated within the time period (this
is not a necessary assumption; it is made for simplicity only, as otherwise a
logging and transportation equipment depreciation term has to be separated
out from ¢{%). Hence logging costs include &l costs from tree on stump to log
in the yard of the processing plant or on the f. 0. b. site. It does include the
construction of temporary logging roads, but not the construction and/or
maintenance of permanent roads, which are considered part of the management
costs 1(y. Consequently the higher 1q) is, the lower cE,” will tend to be. The
logging costs may be differentiated by the area from which the different Y,
are secured (thus taking into account distance of transportation, ease of logging
etc.). As such these costs can dso be made a function of the per area unit
volume V,; from which the cut Y ; is taken. Finally it is also possible to allow
for lower logging costs when harvesting for the second time from the same
area unit (say after one "rotation"). This cost may be assumed to increase or
decrease over time depending on how the parameters move. In the example of
chapter 111 a constant cost per unit of volume cut is assumed as long as the
cut comes from the original stands. A lower cost is charged when cutting on
subsequent occasions.

—c® represents such fixed costs as the depreciation of the processing plants,
fixed interest charges, insurance, certain taxes etc. The problem of depreciation
and replacement appears to be a complicated one (16,30). Eckstein (16) gives
basically four different depreciation methods: straight line depreciation, de-
clining balance depreciation, sum-of-the-years-digit and the sinking fund
method. Optimal depreciation and replacement strategies differ with the tax
system of a region (37), with business attitudes (the desire to use depreciation
as a method of internal accumulation of investible funds), with technical pro-
gress etc. Perhaps one can abstract from technical progress in the forest in-
dustries. Eckstein recommends the sinking fund method of depreciation for
public undertakings, like investments in water resources. Any form of the
depreciation rate Do assumed, whether continuous or irregularly discrete, can
be handled by the model. But the planner has to know whether the plants
will be able to continue operations at the end of the depreciation period and
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whether increased operating costs in this case will result; or whether new in-
vestments should. be planned at that time. In the example of chapter III the
investments in machinery are depreciated within 10 years, the investments in
buildings in 20 years. Straight line depreciation is assumed. After 10 years the
plant continues to operate with the old investments but the cost of repair and
replacement is increased.

—c{? represents the operating costs of the processing plants, including working
capital charges, power costs, labor costs etc. It is a direct function of Y,. The
function can be quite irregular in respect to Y,; for example the operating
costs (especially labor costs) will show a jump when Y, becomes so big that
the plants have to operate on two 8-hour shifts a day, instead of on one 8-hour
shift. Three 8-hour shifts a day will bring the plants up to the maximum capac-
ity level M defined earlier. Once Y, has reached the M level, ¢ will remain
constant; timber will remain unprocessed and will be sold in log form. Only
if the amount of investment were to be made a second decision variable, could
M be varied also. The form of the function may be quite different for different
levels of installed capacity considered. As its parameters may change over time,
the value of this function may also change over time. In the example of chapter
ITI, labor costs are assumed to increase over time, while the other variable
costs remain constant. The plant can operate on one 12-hour shift or on two
12-hour shifts, and the variable costs are quite discrete. The two 12-hour
shifts will mean full capacity utilization. As indicated before, sustained yield
capacity is the case considered in the example.

~—c® represents the cost function associated with the buying of raw material
outside the region under consideration because the region has run out of
appropriate raw material.

—c$? has been included to allow taking into account external diseconomies of the
forestry activities. These, of course, can be considered only when some quanti-
tative estimate can be supplied for them.

With the exception of ¢, c{” and ¢, all the functions depend on the variable
Y,, on the variable V, or on both. All the other parameters in the parentheses
of a function are either constant for any one stage (though not necessarily for
the whole planning period, as explained) or are assumed to be related to Y, and/
or V. The model can now be stated as follows. Maximize H as a function of V, ,

Vas ooy Viand Y, Yy, . .., Yy subject to the following two sets of constraints:
Vo +G, =Y, =V forn=1,2,...,N.
Y, >0 forn=1,2,...,N.
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Of course, ¢, ¢ and ¢® do not influence this optimization problem and
consequently could have been omitted. They are included for the sake of com-
pleteness.

What makes this maximization problem complicated is the first set of con-
straints, one for each stage. It is this set of constraints that makes the Y,’s in-
terdependent. Because of it, the various revenue and cost items have to be
balanced against each other and over time: a large Y, in any period n will make
some costs and revenues in period n big and others small; but it may make some
costs so unreasonably high or some revenues so small in subsequent periods that
it is better to choose a smaller Y, in period n. Consequently it is this part of the
variable Y, that is of crucial importance in the optimization problem. If it were
not for Y, , we could have optimized separately for each period. The second set
set of constraints limits only the range of the Y, ’s.

Hence a multistage optimization problem is obtained with at each stage two
constraints, one of which connects the stages. In dynamic programming term-
inology this constraint is the stage transformation function which expresses
the state output variable V ; in terms of the state input variable V, and the
stage decision variable Y, (or conversely, which expresses the state input variable
as a function of the state ouput variable and the decision variable). It will be
shown later how and why it is advantageous to use Y, the total amount of wood
processed by the region, as the decision variable instead of Y, the total amount
cut (the difference Y, — Y, , which may very well be zero, being the amount
imported from elsewhere). For the time being Y, and Y, will be denoted in-
terchangeably as the decision variable with due regard for the context.

Before obtaining the recurrence equations we have to know whether or not
it makes a difference if the traditional backward way of solving is used, or whether
perhaps the forward recursive optimization (if at all feasible) is to be preferred.

Forward versus Backward Recursion

The stage transformation function is V, = V4, + Y, — G, or equivalently
V.. + G, — Y. = V,4,.. The latter version is more familiar to foresters. Now
it is possible to make two different assumptions about G, .

1) G, =g (Vop1,), ie. the growth in period n is a function of the volume
at the end of the nth period, that is of the state output variable (actually,
as indicated before, G, is found as ¥ G, and each G,; under the above
assumption is found as a function of V,y,;). This in fact assumes that
the whole cut Y, is obtained in the first minute of the stage period n.
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Generally this assumption would be conservative; it tends to underestimate
growth. If so desired only half a period growth on those stands that are
cut can be assumed to take place, but this would complicate calculations
and does not seem to promise a sufficient increase in accuracy. This as
sumption would alow backward recursive optimization and not the
forward way of solving, because state inversion is impossible.

2 G, =g (V,) i.e the growth in period n is a function of the volume at
the beginning of the nth period (that is of the state input variable). To
be theoretically correct this would imply that Yn. is obtained during the
last minute of period n. In reality this assumption would tend to over-
estimate growth to the extent that plantations in their first few years
grow sower than the stands that have been cut. As before, only half a
period growth on those stands that are cut can be assumed to take place.
Much depends dso on the length of a stage period. Anyhow this assump-
tion would alow forward recursive optimization because state inversion
is possible, i.e. because we can write the coupling function as V,. + G,.

= Vit + Ya.

The conclusion is that by changing the assumption on the growth function,
we can solve recursively either forwards or backwards. Which way is to be-
preferred? In planning the development of a forest region the forest planner gen-
erally knows VI, i.e. the initial volume. Hence it does not seem worthwhile to
optimize as a function of V,, i.e. to solve as an initial state problem. Moreover,
it will be dl but impossible computationally to solve backwards anyhow, as a
specific V.. can be composed of the individual V4, ;s in an infinite number of
ways. Some of the ways of composing a given Vy+;.. by specific V+.js will be
impossible in practice or nonsensical economically, but we have no way of knowing
beforehand which ones will make sense and which ones not. In short, one would
have to consider each possible value of V+;,. and for each value of Vy+;. dl
the possible ways of composing it of the individual Vn+l,j's.

Hool (21, 22) gets around this problem by optimizing on a per area unit
(1/5 acre) bass. This avoids having to consider al possible conditions the total
number of area units (125 in his case) can bein at the end of the planning hori-
zon. In his case each area unit can be in anyone of 36 states. Assuming that each
area unit is different from another one, this would make it necessary to consider
36'% different cases when optimizing backwards over the whole enterprise instead
of on a per area unit basis (assuming that each area unit is not different from
another one reduces this number to 36 X 125 different cases). As remarked
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before, maximization of each part of an enterprise does not necessarily lead to
maximization of the whole. More important, Hool's study does not alow for
basic stand structure changes, such as those brought about by clearcutting and
replanting, nor for differences in site qualities and/or species compositions.
Consequently, growth in the general forest nlanagement sense is not really
taken into account: once a 1/5 acre plot is reduced to the 0-10 trees' state (and
when clearcutting al plots eventually will), it islikely to stay in that state forever.

Hence solving the problem as an initial state or as an initial-final state prob-
lem, using backward recursive optimization is computationally infeasible and
practically not interesting. Only if volume growth could be related to total
standing volume in the whole region in question and if r{?, r®, O, &,
could be related to the aggregative values of the state and/ or the decision vari-
able, could the backward approach be used profitably. Obviously this would
make for a much cruder (though simpler) model. While it probably would be
too crude in the case of even-aged forest management and when large areas are
involved, the backward approach in this form might be of some use in the case
of all-aged management, especially when small areas are involved.

Obviously forward recursion is the answer. It entails a minimum of computa-
tional burden and has the very important feature of solving as a function of
VN+1,» This, of course, is due to afeature of dynamic programming that at each
stage (and thus dso at the last stage N) we solve not for one value of the state
output variable but for awhole set of values. In other words, a sensitivity anaysis
on the total volume at the end of the planning horizon is automatically imbedded
in the solution.

The recursion equations can now be obtained easily. First H can be rewritten as

H = h (VI Vo, ===, V1., Y1, Yo ===, YN
=hy (VI Yo, Vo) Fh; (Vo, v2e V) + ... Fhy (Vi Y Vien,)

Using the stage transformation we can replace Yo. in the h; term by Vgt.. +
Yo. - Go.. Once Vgt and Yn. are specified, Go. becomes a constant and can
be found easily as will be shown later. Hence, the value of V,+;. + Yo.- G,,
depends on the two variables V,+;.. and Yn. and may be replaced by

hy (Vnty. Y.). Rewriting H we obtain

H=h (h’; (Vo, Yr), Y. V3) +h; (h: (Vs Ya), Yo V3) + ... +h;{ (h:i
(VN+1,., YN.)! YN, VN+1,,)
=h (Vo, Yp T h2 (V5. Y2 + ... T hy (Vnti: Yy
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The absence or presence of primes indicates that different functions are involved.
The maximization problem can now be rewritten as follows

Maximize [hy (Vo, Y)) +hy (Vs, Ya) + ... + hy (Vi Y

subject to Y, >0 n=12,...,N.
Vo +g (Vo) =V + Y, n=12,...,N.
In words: determine the decision variables Yy, Y,, ..., Yy subject to the two

constraints, so that H is at a maximum. Because of the discreteness of the para-
meters involved, especially of the growth term, no neat analytic solution will be
possible. This was done deliberately to avoid imposing additional restricting
assumptions and to keep the model as general as possible.

Bellman’s principal of optimality states that the above interdependent multi-
stage optimization problem can be solved a stage at a time as a function of the
state output variable, as long as the two conditions of monotonicity and separa-
bility, mentioned earlier, are met. This can actually be proved (see (34), chapter
2, section 9). In accordance with the general dynamic programming theory,
the recursion equations consequently become:

1) £ (V) = max b (V,, Y))
subjectto Y, >0
Vit+tgMV)=Via+ Y,
2) Forn=2,3...,N
fn (Vn-l-l,.) = max [hn (Vu+1,.v Yn) + f, -1 (Vn)]
subject to Y, >0
Vn. + g (Vn) = Vn+1,. + Yn.

The maximization problem should be read as “‘Determine Y, so that the expres-
sion in the big brackets is maximized for a given value of V.,  (and consequently
for a given value of V,)”

Hence the first step is to determine f; (V) for each feasible value of V,. Then
fy (Vata,) is determined forn = 2, 3,.. ., N, the last one being fy (Vy41,). The
optimal decisions Yy, Yx_j, ..., Y; can be found finally by tracing back the
whole process, either for a specific assumed value of Vi, or, if this is preferred,
by first determining the value of Vyy, , say V4, that maximizes fy (Vi ).

This calculation process has to be elaborated upon as in practice some rather
formidable computational difficulties arise. These difficulties are all associated
with the growth term in the stage transformation function. This term makes it
impossible to use the ordinary way of solving a dynamic programming problem.
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CoMPUTATIONAL ASPECTS OF THE MODEL

To find £, (V,) for a specific value of V,, we first find V, + G; . It was assumed
that the forestry planner knows Vy; G =1,2,...,]) and thus V,. As Gy =
g (Vyj), it can be determined easily for j = 1,2,..., J. By simple summation G,
is determined. Finally Y, can be found as Y, =V, + G, — V,. No maxi-
mization is necessary in this first step because for each value of V,, the value of
Y, that maximizes h, is automatically determined as there is only one value V, .

However, two difficulties crop up already at this first stage. In the first place
each forester will ask immediately: which area units should furnish the cut Y;.
Secondly, after specifying V,, that is the total volume at the beginning of stage 2,
somehow V,; forj = 1, 2, ..., J also has to be found if we are to find Gy and G,
at the second stage; and so on for subsequent stages. If we work only with ag-
gregative quantities at the first stage (and thus also at subsequent stages), that
is with a set of different V,_ values and not also with the respective V,; values, the
growth determination at the second and subsequent stages will be impossible
or very crude. This is so because then we have G, = g (V,), that is we would have
to find G, as a function of the total volume of all the area units. As was pointed
out, the same total volume can be built up of the individual area unit volumes in
many ways. Consequently this would be a very inexact way to determine G, . To
be able to determine growth with some accuracy we have to keep calculating
everything on a per area unit basis before aggregating.

Cutting Priorities Versus Outside Buying Alternatives

The solution to the above difficulties consists of the following three rules.
First let Y, be made up of all thinnings due (if any). As indicated before, knowing
Vy; we assumed that the forester not only knows the growth but also when to thin,
Le. that he knows at each V,; the optimal volume to be maintained per area
unit (and hence whether to thin or not) in order to obtain maximum growth.
Secondly, only if with the total amount of thinnings the total Y, is not yet
reached, we should actually start scheduling some of the area units for a harvest
felling. Or thirdly, we should order raw material from outside the region under
consideration,

An important point here is to remember that we not only know V; and Gy,
but also the individual Vy;and Gy forj = 1,2, ..., J. So if we know which area
units to schedule for a thinning or harvest cutting, we can adjust Vy; + Gy; for
the cut Yy to obtain V. And knowing Vy;, we can determine G,; and obtain
both V, and G,. We would then be ready for the optimization at the second
stage. The big and only difference at the second (and subsequent) stages is that
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now, if we try to find f, (V3 for each specific value of V5, a whole range of Y, ’s is
possible because we had to consider a whole range of values V, at the first stage.
We have to find the one Y, that maximizes [h, (Vy, Y,) + £ (V)] for each
different V. The dynamic programming trick is, of course, that the specifica-
tion of a V, and a Y, entails the specification of V, + G,, while f; (V,), that
is the maximum with respect to V, (and consequently also the maximum with
respect to V,_ + G, ), has been determined already at stage 1.

However, we still need to know which area units first to schedule for thinning
(if thinning is considered at all) and harvesting; simultaneously we need to know
the cut-off point at which it is more economical to order raw material from out-
side the region rather than to schedule still vigorous stands for harvesting. As to
the question of where to thin first, it seems reasonable to assume that all thinnings
have to be done when due out of silvicultural considerations; this neatly cir-
cumvents all difficulties and does not seem unrealistic. However, it is not nec-
essary to make this assumption; some alternatives, for example, could be to thin
the most valuable stands first or to thin the most vigorous stands first. Both alter-
natives relate back to the state variable V,; and hence an order of thinning
urgency can be established easily.

As to the simultaneous questions of which stands to schedule first for a harvest
cut and/or whether to revert to ordering the raw material from outside the
region under consideration, the following method has been developed. Suppose
PP — PP = A
paying A,; dollars more per volume unit of raw material relative to the price we
can get it for from area unit j. Calculate the gross value growth of the stands on
each area unit j during stage n as P$’ G,;. To obtain the net value growth, sub-
tract the incremental costs associated with the same stand or area unit during
the same stage as composed of K, X Pg) XV + ¢ and possibly of some parts
of cg) and ¢®; these are all related to the state variable V., to the area unit j,

nj

ap that is buying the raw material outside the region means

or to the stage n and hence can be found easily.

Denote the net value growth by B,;. It should be clear that B,; can be negative.
If we rank all area units according to By; it is obvious that those area units for
which B, is smallest should be harvested first. (To avoid the problem of assigning
two area units, for one of which B,; is still increasing while for the other it is
already decreasing, the same rank, add a large constant value to all the B,/s
that are still on the increase). As long as Y, comes from area units for which
B, <0 or as soon as Y, > M it will obviously not pay to consider the alter-
native of ordering raw material from outside the region. But as soon as we have
cut all area units for which B,; < 0 and as long as Y, < M, we do have to con-
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sider that alternative. If the latter two conditions hold, we will consider cutting
area units for which B,; > 0 as long as B,; < A,; X V. As soon as we come to
the first area unit for which B,; > A,; X V,;, we will start ordering from outside
the region. In other words, the ‘‘marginal” area unit to be considered for harvest-
ing is the one (may be plural} for which B,; = Ay X V.

Faustman has developed a theoretically sound (within the objectives and
assumptions implied, commented upon before) method of determining the
rotation of a stand. It is well known to foresters, often under the name “‘soil
expectation approach”, in both its total value and its marginal value version
(see (17) ). In its marginal value approach version it states that a stand should be
cut as soon as its net value growth equals zero. It is this method that the model
of this study generalizes considerably, as can be deduced from the cutting versus
ordering rules described above.

The above method of establishing cutting priorities is not only theoretically
sound but also quite easy to apply in practice. The method of determining when
to order from elsewhere by establishing the marginal area to be considered for
cutting, is also theoretically sound. In practice, however, it would be somewhat
difficult to follow. The cut Y, is specified at the outset of the computations at
stage n. If we now find that part of Y, would come from sub-marginal area units
and (instead of cutting) order this part from elsewhere, we will be in trouble with
the dynamic programming computational procedure. Only part of the Y,
specified at the outset will really be cut, another part will be ordered from else-
where. Still the whole value of Y, is assumed to be cut when specifying a value
for Y, and V_, at the outset of the computations. This assumption is necessary
in order to find V, + G, through the coupling function Vo4, + Y, =V,
+ G,.

There appear to be two possible solutions to this difficulty.

1) We specify at the outset a different decision variable Y,, made up in some
known way by the part Y, that will be cut and comes only from marginal and
supra-marginal area units, and a part Y, — Y, that will be ordered from else-
where. This is a feasible but tedious way, because we would have to make sure
each time that the part Y, specified comes indeed only from marginal and supra-
marginal area units.

2) We specify Y, at the outset and assume that amount to be cut, whether
part of it comes from sub-marginal units or not. But in addition (and after the
calculations are made with Y, ) we consider for each value of Y, specified, various
amountsdY,, dY,,...,dY,, ... to be ordered from elsewhere. Denote Y, - dY,
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by Y&, k = 1, 2, ... The first amount dY, is taken to be zero to allow con-
sideration of Y, by itself. Because P® > P$ we consider adding additional
amounts only asfong as Y, + dY, < M. Assoonas Y, + dY, > M we find the
one Y, + dY, (denoted by Y,) that gave the biggest value h,(V,4,, Y)
+ £,-1(V,). This would be the value recorded for f,(V,, ). For each value of
f2(Voty,) recorded, we would also record both the values of Y, and Y, in order
to enable us to find the optimal decision variables when tracing back our steps
at the end of stage N. In fact, there are two decision variables Y, and Y, at
each stage. The dynamic programming procedure will automatically eliminate
from consideration at stage n 4 1 those occasions where we considered cutting
sub-marginal area units. Hence, although the marginal area unit to be considered
for cutting is not determined explicitly, it is taken into account implicitly. This
second solution is eminently practical and quick. It will be followed in the re-
maining sections and in the example of chapter II1.

Reduction of Computations Through the Coarse Grid Approach

The above formulations, modifications and adaptations of the dynamic pro-
gramming approach are theoretically sound. However, when we try to apply the
above reasoning and actually carry out the calculations, a minor but very trouble-
some difficulty arises. This difficulty is still, in a way, caused by the growth term.
It arises as follows. When dynamic programming is used, every feasible value of
the state variable and of the decision variable should be considered at each stage.
This means in the model that two different values of V4, considered, should
differ by only one unit of cubic volume (say by 1 m? or by 1 cu ft) and the same
would be true for the decision variable Y, . This requires an enormous amount of
bookkeeping of the calculations in the sense that a certain area unit may be
scheduled to be cut over a number of stages. In turn, this destroys the simple
relation between the growth of an area unit and the volume of that area unit:
different parts of the same area unit would be in different stages of development
and hence carry different volume densities. Worse, however, the number of
state and decision variables to be considered at each stage would be very large
indeed, even for a relatively small planning region. Coupled with a possible long
planning horizon (say 100 years) the whole problem would be computationally
infeasible.

Obviously the solution is to consider at each stage, state and decision variables
that differ from each other by more than say, 1 m?, for example which differ by
1000 m?*. Or that differ by a quantity that is at least as big as the volume on
onc area unit is likely to be. In fact, what is wrong with calling 1000 m® a unit?
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This, in effect, proposes to reduce the number of feasible values of the state vari-
able at each stage (and consequently also the number of feasible values of the
decision variable). This computational trick is known under the name coarse
grid approach (see 34, chapter 4, section 5). If we may assume unimodality of
our maximization problem, the maximum will still be obtained. However, it is
when applying the coarse grid approach that the difficulty, which can be traced
back to the growth term, strikes with full force.

To explain what happens, suppose we try again to find f, (V 4, ). As explained
before V4, . is specified and so is Y,,. Through the coupling function V, + G,
is found. The difficulty now is that when using a coarse grid, the value of V, or
of V, + G, may not have been considered at stage n — 1 when calculating
the various f,_, (V). The following simple example will show this more clearly.
Assume for simplicity that each area unit stand grows by 2 m?/hectare/year until
there are 100 m3/hectare, after which growth is zero. Assume that the grid con-
sidered is 100 m?, and that we have a region of three hectares each with 100 m?
at the first stage. Hence, V;. = 300 and G, = 0. If V, = 300 then Y, = 0; if
V, = 200 then Y; = 100; if V,, = 100 then Y; = 200; finally if V, = 0 then
Y, = 300. Assume for simplicity that the three hectares are identical in all
respects so that we can start cutting from j = | etc. As there is no maximization
at this first stage we find {; (300), f; (200), f; (100) and £; (0) and save them for
stage two, while the decisions as a function of V, are saved till the end; that is we
store Yy (300) = 0, Yy (200) = 100, Y, (100) = 200 and Y, (0) = 300. As
G,; is a function of Vy; only, we can find it easily. If V, = 300 this means that all
three hectares still have 100m? and consequently that G,; = 0 forj = 1, 2, 3.
Again if V, = 200 this means that by assumption the cut came from j = 1; hence
V,1 = 0and Gy, = 2, while V,;, = V,53 = 100 and G,, = G,3 = 0. Similarly
£V, = 100 then Vg = Vo = 0, Gyy = Gyy = 2 and Vyy = 100, Gy = 0.
Finally if V,, = 0 then V,; = V,, = V3, = 0and Gy, = Gy, = Gy3 = 2. So if
V, = 300 then G, = 0;if V, = 200 then G, = 2;if V, = 100 then G, = 4;
and if V, = 0 then G, = 6. No difficulties arise at this first stage.

At the second stage we want to find f, (300), £, (200), £, (100) and f, (0). Let
us take f, (100) as an example. Here V; = 100 and the Y,’s that must be con-
sidered to find £,(100) are 0, 100 and 200. Let us consider the case Y, = 100. From
the coupling function we then find V, + G, = V; 4+ Y, = 100 + 100 = 200.
Now h, (V. = 100, Y, = 100) can be found easily; however as indicated before,
the dynamic programming calculations assume that at this second stage f; (V,) =
f, (V1. + G,) is known. We found V, + G, in this case to be 200, which means
that V, must have some value between 100 and 200 (quite close to 200 in fact).
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Now the difficulty is clear: at the first stage we did not calculate f; for any value
of V, between 100 and 200, but only for V, = 100 (exactly) and V, = 200
(exactly) or alternatively, we did not calculate f; for values of V, + G, = 200;
the nearest value for which we did calculate f; is for V, + G, = 200 + 2 = 202.

Obviously the error made in this case by taking f; (V, + G, = 200) = f;
(V. + G, = 202) is not likely to be of any significance. However, the error
becomes bigger and bigger as we go on to the third and following stages; and the
error may not be so insignificant, even at stage two, if the grid used is very coarse
(for example in the case where each unit represents 10* m?). However fine or
coarse we make the grid, this difficulty arises. Moreover, as indicated before,
we cannot make the grid too fine (specifically not much finer than the volume
of one area unit), because otherwise we run into additional difficulties of having
to consider harvesting an area unit over a number of stages. As explained, the
latter increases bookkeeping requirements and hence will tax the computational
and storage limitations of the computer.

The way found to get around this difficulty is to take Y, — G, instead of Y,
as the decision variable. It may seem awkward to do this, as part of the decision
variable (i.e. G, ) is only to some (small) extent under the control of the decision
maker. This, however, can be taken care of by setting bounds on the values of
Y,. — G, to be considered. After all, such bounds also existed in the case where
Y, is the decision variable. A second possible objection may be that this decision
variable can be negative; all programming methods require the decision variables
to be non-negative. As the actual decision variable still remains Y,, and G, is
only included for computational purposes, again this objection does not hold in
this case. As long as there is a one-to-one relation between decision variable and
objective function and as long as the requirements of monotonicity and separ-
ability are satisfied, we can use almost any decision variable. Finally, it should be
obvious that taking Y, — G, instead of Y, as the decision variable, does not
affect in any way the computational procedures developed before to establish
cutting priorities and to take into account the alternative of ordering raw material
from elsewhere.

Review of the Computational Sequence Developed

The computational sequence developed can be summarized with the following
steps. Suppose we want to find f, (V4 ) for a general stage n (n = 2, 3,...,N).
The computational sequence for the first stage (i.c. when n = 1) is basically the
same but much more simplified. As indicated before, this is because at the first
stage only one value V;_ has to be considered, while at any other stage n (n = 2,
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3, ..., N) a whole set of values V, has to be considered. Thus the specification
of a value for V,_at stage 1 automatically fixes the value of (Y, — G,)); specifying
a value V4, at a general stagen (n = 2, 3,..., N) does not imply any specific
value for (Y, — G,).

Step 1: Determine the possible range of values of VY, , where t = 1, 2,
..., T. The smallest value to be investigated, i.e. V¥, , is zero. The largest
value, i.e. V}, | cannot exceed the largest recorded value of V, i.e. V{P, plus
the respective growth G§P.

Step 2: Determine the possible range of values of (Y, — G, )®, where z = 1,
2, ..., Z. At the lower end Y,, — G, is restricted by the value ( — maximum
G,), because Y, cannot be smaller than zero. At the upper end it is bounded by
the value V¢ = maximum V. Hence the first value of Y,  — G, to be invest-
igated, i.e. (Y, — G,)®, equals zero minus a whole number x times the grid
unit. (if we investigate the values 0, 1000, 2000, 3000, . ., the grid unit is 1000).
Here x is determined in such a way that (0 — x times the grid unit) > — max
G, while (0 — (x 4+ 1) times the grid unit) < — max G,.

Perhaps it is not superfluous to indicate that the grid size used on V4
should also be used on Y, — G,. That is, if the consecutive values of V%, to
be investigated differ by 1000 m?, then the successive values of (Y, — G,)®
should differ by 1000m>.

Step 3: Start with V,(}_al'. = 0.

Step 4: Start with (Y, — G, )®

Step5: VP = V¥, + (Yo — G, )®. If VI is smaller than zero go back to
step 4 and take the value (Y, — G,)®, which is one grid unit larger than (Y, —
G, )® etc., until VI > 0,

Step 6: Recover V), j =1, 2, ..., J. Because both the values that V¥,
(t=1,2,...,T)and (Y, — G,)® (z = 1,2, ..., Z) can take on, are dictated
by the grid selected, we automatically obtain a value for V, which is also a value
of the grid. Thus we are sure that the value V& has been considered at stage
n — 1. The irregular number difficulty has been solved. It is true that Y, and,
as will presently become clear, Y, will be a bit irregular (that is a non-grid num-
ber), but there is nothing against that. Of course, G, will by its very nature
always be an irregular quantity. Knowing V{ we also know Vi, j = 1,2,...,].
This shows the big advantage of the forward approach being followed: at each
stage we know by area unit what happened in the former stage.

Step 7: Determine Gg‘j) and G§. Obviously G is the growth component of
the specified value (Y, — G,)®.

Step 8: YO = (Y, — G,)® + GO If Y{? is negative we go back to step 4
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and take the value (Y, — G, )® which is one grid unit larger than (Y, — G,)®
etc. until Y& > 0.

Step 9:  Calculate the net value growth of each area unit j.

Step 10:  Rank the area units according to their net value growth, smallest one
first. We obtain V§? where i indicates the rank according to the net value growth.
Of course i = 1, 2, ..., ], but generally 1 = .

Step 11: Determine Y. First all the prescribed thinnings (if any) are made,
remembering that an area unit j is scheduled to be thinned as soon as V,; has a
certain predetermined value. As soon as the thinnings add up to the prescribed
amount Y& (found in step 8) go to step 12. If the thinnings do not add up to the
prescribed amount Y, one starts scheduling stands for a harvest cut beginning
with the stand on the area unit showing the lowest net value growth, No more
stands are scheduled for a harvest cut as soon as the prescribed amount Y is
obtained. A harvest cut can either be a clear cut (considered in the example of
chapter IIT) or a partial cut (as practiced in all-aged or unevenaged management).
In the latter case the desired remaining volume level should have been specified
before, of course; it is presumably determined by silvicultural and other consider-
ations (see, however, section D for a more extensive discussion of this case).

Step 12: V&, =VO +GP — Y@ forj=1,2,...,].

Step 13: Take Y& = Y, that is add dY; = 0 to Y.

Step 14: Calculate h, (VY , Y®).

Step 15: Recover f,_; (V$?) from storage; it was found at stage n — 1.

Step 16: Find h, (V& , Y®) + £,_, (V).

Step 17: Check whether Y > M. If so, go to step 20. If not go to step 18.

Step 18: Set Y = Y + dY,. Here dY, is one grid unit larger than dY,.
Note that the grid imposed on dY, does not have to be the same as the one im-
posed on V¥, and (Y, — G,)®.

Step 19: Find h, (V¥ , Y®) + f,_, (V) and if Y® < M, repeat steps
18 and 19 with dY;, dY,, ... until Y > M.

Step 20:  Set f (V& ) equal to the largest value of h, (V& , Y®) +
f,_1 (V) obtained for k = 1, 2, 3, .... Suppose this maximum was reached
for Y&, Save VY, , Y{?, YO, £ (V¥ ), G and V,(,Q)_l,j forj=1,2,...,]
temporarily.

Step 21:  Go back to step 4, increasing the value of (Y, — G, )® by one grid
unit to obtain (Y, — G,)®.

Step 22:  Repeat steps 5-20, obtaining successively V&+D, Vi, Gg‘i"'l), G,
YERD, YGH, VS, 60(VEY, ) and Y2,
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Step 23: Repeat steps 21 and 22 with (Y, — G,)®, (Y, — G.)®, ...,
until we obtain a V&~ which is larger than the largest recorded value of V,,
at stage n — 1, i.e. larger than V. Then we go to step 24.

Step 24: Find f,(VYY, ) as the maximum among the f® (V& ) values,
z=1,2,...,7Z, determined by the steps 1~23. It is this value f, (V{{, ) that

nf1
is saved for stage n + 1, together with the respective Vo, values, ;Lz 1, 2,

., J. There may be several £ (V{, ) of the same value and thus there may
be more than one maximum. In this case there is more than one solution and all
should be saved for stage n + 1. The values f, (V&; ) and Verrpl =12,..,
J, are not needed any more after stage n + 1 (if so desired, they might be printed
out by the computer before eliminating them. This might be useful to obtain
detailed insight as to how our enterprise develops over time. In the example of
chapter V all f, (V&, ) were in fact printed out for z =1, 2, ..., Z and for
n=1,2,...,N). The values Y,, G, and Y, for which the maximum (maxima)
was (were) obtained, are saved until after stage N is finished and we are ready to
trace back our steps to find the optimal decision policy.

Step 25:  Go back to step 3 and repeat 4-24 with the next higher grid value
ngf_ly to find f, (VEQI) and the pertaining values V., ; G = 1,2, ..., 1), Y,,
G, and Y,. The first two sets of values are again saved for stagen + 1, while
the last three are saved until the end.

Step 26: Repeat step 25 with the grid values V,(ﬁ*)_l,_, Vg‘f’)_l’_, ceey VEB
Once we have had V¥, , we are finished with stage n. We have found f, (V{4 )
fore =1,2,...,T. For each VS‘_i)_lr we have saved the pertaining V.4, ( = 1,
2,...,1),Y,, G, and Y. We are prepared to start the next stage, i.e. stage n +1.

Step 27: Start again at step 1, replacing the value n by the value n + 1. We
obtain f,1; (V&{, ), t = 1, 2,..., T, and for each t we find one set of the per-
taining valuesof Vo, ; G = 1,2, ..., ), Youy, G oy, and Y4y

Step 28: Repeat step 27 for n+ 2, n+ 3, ..., N. At stage N we find
fxo (V) I (VL) ooy I (V1 ), « -+, £(Vy). Only now we can find
the optimal decision policy.

If we want the optimal plan for a specific value V4, , say Vg (where Vi,
has to be a number of the grid used, of course), we proceed as follows. The maxi-
mum discounted net return of the whole operation over the planning period is
fn (VEina)- At stage N the optimal decision policy was

1) to cut the amount Yy, pertaining to Vi, say Yy

2) to obtain a growth of Gy = Gy pertaining to Vo,
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3) toorder the amount Yy — Yy from elsewhere, where again Yy is the amount
specified for the value V@, = Vg,

We also can find the individual per unit area volumes Vy,; forj =1,2,...,],
that is the total forest volume composition pertaining to the value Vi, specified.
To find the optimal decision at the stages N — 1, N — 2, ..., | we note that
Ve + Yn, — G, gives us a certain value Vg which is, of course, a value of the
set of grid values V{9, t = 1,2,..., T, investigated at stage N — 1. As mentioned
in step 27, not only are these values saved until the end but the pertaining values
Yy-1,, Gno1, and Yy_; are also saved. Hence we find Yy_; , Gy, and Y3,
after having found Vy = Vg, + Yy — GY. But this in turn enables us to
find Vy_, = Vi + Yyo, — Gyo;. and consequently Yy_,, Gy_,. and
Yx—,. Continuing back to stage 1 we obtain consequently Vi, , Y., G. and
Y.forn=N,N—-1,..., 1L

If the optimal policy is desired for another value at the end of the planning
period, say for V.., we proceed in exactly the same way as was indicated for
Vrinar- This is why a sensitivity analysis on the final total amount of volume left
at the end of the planning period, is automatically implied in the solution.

If we want the optimum optimorum, the best we can possibly do, we determine
at stage N the one (or more) V(& that gives the largest fy value. Then we trace
back the optimal decisions in the same way as was indicated for Vg, starting
however with this different value of V&, .

It should be remarked that the above summary of the computational sequence
obviously can be used to construct a computer flow chart. However, as it was
presented mainly to clarify the working of the model some shortcuts are possible.
Some of the computational results need not be saved as long as indicated. Neither
need every element of h, be recalculated every time a different value dY, is
added to Y to give a new value Y. Good programming will reduce both
storage requirements and computational time.

ConcLupING OBSERVATIONS ON THE MODEL

The model developed has been shown to be able to arrive at optimal decision
rules for the whole production process from tree seedling to one or more of the
products of the primary forest industries, under alternative possible, and generally
exogenously imposed, amounts and patterns of capital investments. A few special
possibilities of the model will be indicated in this section. Some of these have
been hinted at, or can be inferred from the explanation of the symbols used.

As indicated before P@ (the price of the logs sold) can be made a function of
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Y,.. while P& (the price to be paid for logs ordered from elsewhere) can be made
a function of quantity ordered. The method given to determine which stands to
harvest first is not affected by the specific size of P&; only an ordering of stands
isinvolved and any price will do. The''marginal” area unit to be considered for
cutting is affected though by the relative sizes of P3 and P{. Each different
size of Yn considered and each different quantity ordered may affect P and
P&, i.e. their relative sizes, and so change the''marginal" area unit. As remarked
before, the computational method developed does not require the explicit
determination of the "marginal” area unit. As the concept is accounted for im-
plicitly through the natural dynamic programming selection process, it makes
no difference by which parameters it is influenced as long as these parameters
arein the model. And P$ and P are in the model, whether or not we make them
afunction of Yn

It may, of course, be undesirable to cut timber before it has reached a cer-
tain gze. This can be handled in either of two ways. Establish a volume level
( = age) below which no area unit should be considered for cutting; this level,
which may be different for the different site classes and/or management intensities,
mayor may not override the previously determined "marginal" area unit.
Alternatively we might fix P$’ and PSP at avery low level as long as the volume
is not high enough, i.e. as long as the desired sizes are not yet present on the
area unit. This last way is demonstrated with the example in chapter II1.

It cannot be stressed sufficiently that although the optimization is carried out
over the whole enterprise, and although the state and decision variables are in
the first instance specified in aggregative terms, al calculations are done on a per
area unit bads The model, the forward recursive solution and the computational
procedure were dl designed to make this possible. It means that most of the
traditional advantages of working on a per area unit bads are maintained. Growth
is determined per area unit as a function of stand volume present and, indirectly,
as afunction of age; site is taken into account. 1fonly x% of the stand volume is
merchantable, as is often the case in virgin or old second growth natural forests,
this is easily taken care of by the fact that Y is determined on a per area unit
bass. Differential logging and silvicultural costs and price differentials for species,
timber qualities and sizes produced, can dl be taken into account by tying them
back to the specific area units. For example, after a changeover from no manage-
ment to extensive management, the percentage of the stand volume that is
merchantable may rise (as it does in the example in chapter 1), the species
composition may change, the quality of timber may increase, logging costs per
volume unit harvested may decrease, etc. The model can be made to handle dl this.
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As can already be inferred from the explanation of the symbols, the model
is not static. It will handle changes over time in prices, interest rates, wages,
landprices and other costs. Of course the forest planner must be given these data
and their changes over time. These data may be very unreliable, but this is not
a fault of the model. Shadow prices may be used whenever they are available. A
decrease in the forest area under consideration may be foreseen. Certain area
units may be more suitable for say—agriculture or pasture. Or population pressure
may be expected to force some area units out of its forest use. It is possible to
include this as a modifying factor into the model. All that has to be done is des-
ignate these areas with known j-numbers and drop them at the stages specified.
Depending on the time period at which these areas are planned to revert to
another use, it will be advantageous to schedule them for early harvesting or for
cutting just before the date due.

Historically most regions have witnessed over-capacity of the plants erected,
or at least over-exploitation of their forests, relative to what sustained yield
would have dictated. While most foresters would probably have favored a some-
what greater than sustained yield cut, at least as long as there is a relative over-
abundance of mature forests, they are generally rather alarmed by the very rapid
rates of exploitation often experienced in the first stages of development. The
model developed not only supplies optimal decision rules to the forest planner,
but also can be used to find out whether overexploitation and/or over-capacity
in the beginning is economically desirable or not. Running the model for a num-
ber of different capacity situations, the most economical one can be found. As
solutions are found as a function of the total volume at the end of the planning
horizon, any desired weight to the future can be given (over and above the
weight expressed by the discount rate used). One could imagine running the
model for cases such as: over-capacity throughout the whole planning period,
over-capacity only in the beginning with sustained yield capacity later on,
sustained yield capacity throughout (as assumed in the example of chapter III),
undercapacity in the beginning etc. The model will indicate whether a policy
of over-exploitation, sustained yield exploitation or even under-exploitation
should be followed. For example, the model might indicate that the most eco-
nomical thing to do is to start with under-capacity coupled with over-exploitation
in the beginning (implying the sale of unprocessed raw material in the beginning)
and to revert to sustained yield only later on. This approach really implies a
simulation of the dynamic programming model.

The model can take account of external economies and diseconomies only in
so far as they can be given some quantitative measure and only in so far as they

38



II. A DYNAMIC PROGRAMMING APPROACH

can be related to the state variable V,4, (and V,4,;) and/or to the decision
variable Y, (and Y ;). The second requirement will by and large be easy to fulfill,
but the first one might be impossible to satisfy or at least will involve considerable
uncertainty. Again by obtaining the solution as a function of Vyy,  (the total
volume at the end of the planning horizon) some externalities can be accounted
for by specifying a certain desired Vyy, .

Some Special Cases of the Model Developed

SPECIAL CASE 1:

The decision variable Y, can be constrained in a number of ways without in-
creasing computations, if so desired. All we have to do is add a constraint like
Y, <X, Y, >X,or X, <Y, <X/ to the model. Here X, is a constant in
period n, which however, may be different in period n 4+ 1. As this constraint
limits only the range of feasible values that Y, is allowed to take on, it presents
no difficulties. Rather it diminishes the computations. Of course, we might not
get the optimum but only a constrained optimum. The following examples show
the possible uses of such a constraint. It may be decided that the forest activities
should give employment to at least x persons. This would mean that Y, must be
at least equal to a certain number. This number may be increased or decreased
over time depending on whether the forestry activities are, or are not, expected
to absorb additional labor with the onset of economic development. The capacity
of the transportation system may also constrain Y,; again this constraint may be
changed over time. Constraints by the amount of investment available are taken
into account already, as explained before. There may exist a labor constraint,
either for all activities or for some. By constraining Y, and/or the maximum
capacity of the plants to be erected ( = M), this will be taken into account.
Limitations imposed by certain types of labor (entrepreneurs, for example)
are handled the same way.

SPECIAL CASE 2:

Unless stated explicitly otherwise, it was assumed until now that clearcutting
and hence the even-aged type of forest management was being practiced. This is,
after all, the most commonly practiced form of management to date and in the
foreseeable future. And if the length of a stage period is taken to be about five
years or longer, the shelterwood type management can be accommodated too.
Actually the all-aged type of forest management and hence the selective cut,
can be handled by the same model. All we need to do is to change the harvesting
rules as follows.
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First, there are no thinnings to consider separately. Second, the area units are
considered to supply the desired cut in order of their B, starting with those for
which B,; is smallest. As explained before B,; is the net value growth of the jth
area unit during stage n (a marginal concept). However, this time we do not
clearcut, but leave that residual volume which the forester considers optimal (as
determined by a suboptimization process or otherwise). Again as long as the cut
Y, comes from units for which B,; < 0, or as soon as Y, > M, it will not pay to
consider the alternative of ordering raw material from outside the region. But
as soon as we have cut all area units for which B,; < 0 and aslong as Y, < M, we
do have to consider that alternative. In fact, if the latter two conditions hold,
we will consider cutting into the residual volumes of those area units for which
B,; > 0. However, one should never go below the lowest volume Vimin) that
is necessary silviculturally or otherwise. This is an absolute minimum level.
Economically speaking it may or may not pay to cut down to that level. In fact,
these considerations dictate cutting down to that volume level V, 4, ; for which
the net value growth B, equals A, X (V,iq; — V™). As defined before, A,
is the additional amount to be paid for raw material imported from elsewhere
over and above the price of local raw material, i.e. it equals P® — P

The “‘marginal” area unit is now replaced with the “‘marginal” residual volume
level to be left. Aslong as Y, < M we will continue considering cutting down to
the marginal residual volume level until we have had all area units. Once that
point is reached, and assuming Y, is still smaller than M, we will consider the
alternative of ordering from outside the region. Again it is never necessary to
determine actually the ‘“‘marginal” residual volume level. As indicated in the
review of the computational procedure, it is taken into account implicitly. In
this case of selective cutting it may be desirable to constrain Y, from below, that
is to establish minimum amounts cut per area unit, in order to make harvesting
operations economically feasible. Better even is to make the harvesting cost a
function of Y, as indicated in the model already.

SPECIAL CASE 3:

In the discussion of the cutting order and the harvesting rules, the words
generally used are area units considered for cutting, not area units that will be
cut. Only when retracing our steps will Y, and Y, be determined and only then
shall we know what will happen. Only then shall we know for each investment
pattern whether we indeed have to harvest stands for which B, > 0, that is
financially immature stands according to the Faustman rotation. And only then
shall we know whether it pays to run into shortages at some stages because we
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overcut earlier; and whether in this case it pays to leave some plant capacity idle,
or whether to order raw material from outside the region. Finally, if we consider
various investment levels and patterns, we shall know whether it pays to start
with overcapacity (possibly making it necessary to order raw material from
elsewhere at some stages), under-capacity (possibly implying the sale of un-
processed raw material at some stages), or sustained yield capacity. It is in this
way that the Faustman or Soil Expectation approach to the determination of
the rotation is generalized to take into account the demands of the plant capacity
established and the outside-the-region buying and selling alternatives; and alter-
natively to take the growth potential of the forestry region into account when
considering the total plant capacity to be established.
Hence, the Faustman formula is a special case of the model developed. To show

this more clearly, let
H = § L (v, PD) - O VO _ Yy, PO K) —

.t (I+Kn)n n nj» L aj 0 nj njs + o)y ha

— D (L, I, K,) = o (Y, WE, OP, 1) —

~ & (FY, DO, K, 1) —

— & (¥, WP, V,, 19, K,, O, FP)]

n)

The problem can be stated as: For each separate j = 1, 2, ..., J determine Yy,

(n=1,2,...,N) soas to maximize H, which is a function of Vyand Y

subject to Vi = Vo + Yy — Gy forn=1,2,...,N
Yoy 20 forn=1,2,...,N.

Note that Y, is not included any more, because no outside buying alternatives
are considered. Neither are allowances made for factors related to industrial
plants. The optimization is on a per area unit basis, not for the whole forestry
enterprise. We have in fact | different optimization problems. The cost and rev-
enue functions and such parameters as P and P$ are not a function of Y,,.
Consequently, perfectly elastic demand curves are assumed. We have the straight
forward maximization of the soil expectation of an area unit. The costs of holding
the present forest stands for another period, inclusive of such things as taxes and
insurance (at least in so far as these are related to the value of the standing vol-
ume), plus the value of timber growth or any other benefits of future (new)
forest stands and rotations foregone in holding the present forest stand for an
additional period (this is an allowance for the site rent), are balanced against the
growth in value of the present forest stands. Possible reductions or increases in
logging costs are taken into account also.
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Finally, if we impose the additional restriction of a fairly constant total periodic
cut Y, in order to assure a rather constant benefit and cost stream over time, the
traditional sustained yield framework is obtained. Hence X; < Y, < X,, where
X, and X, represent respectively the lower and upper bound between which Y,
is allowed to fluctuate. In fact, if we do not add this constraint, H would be max-
imized by cutting almost all the area units in the first period already (unless the
cost and revenue functions are made also a function of Y, , which the Faustman
formula does not do).

SPECIAL CASE 4A:

Another special case of the model is that of the forester managing the forests
for an established plant. Most forest plants do not own sufficient forests to supply
their whole demand. In fact, many plants keep forests mostly to strengthen their
bargaining position and/or to protect their capacity over the long run. The forest
is called upon to supply wood only at irregular intervals, indicated primarily by
the needs of the plant and only secondarily by financial considerations of the
forest part itself. The question is, what is the optimal cutting strategy in this
case? On the one hand the plant wants to keep the forests as a kind of insurance
to safeguard its continuous operation. On the other hand, it does not want to
manage its forests too far from what is the optimum according to the Faustman
formula approach.

Of course, if absolute uncertainty as to the future exists, the model will not
be of much help (nor will any model probably for that matter). Suppose how-
ever, that on the basis of regional or national supply forecasts, the plant is able
to indicate over a number of years that part of its total requirements that its
own forest is expected to provide for. It is also able to attach a penalty or shortage
cost for each unit by which the requirements are not met. This penalty cost, which
can be made a function of the amount by which the plant’s demands are not met,
can represent the increase in price which a plant has to pay for raw material pur-
chased and shipped in from more distant suppliers; or, if that alternative is not
available, the cost of operating the plant at only a part of its capacity.

The model, changed to cover this case, may look as follows. Again let
H - IZ\;I L @y, P9y — (VO — Y, PP, K,) —

= & arRy U e a° (Vs ap i B

= 6 (L 19, K,) — (Y, WEP, O, 100) —
— & (FD, D, K, 1) -
— @ (Yo, WP, Vyy, 10K, OF, D) = & (Q, = Y, S,)
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Then we have to determine Y, (n = 1,2, ..., N) so as to maximize H
subject to Vo=V +Y, -G, forn=1,2,...,N.
Y, >0 forn=1,2,...,N.

Here c{? is the shortage cost, which is a function of Q, — Y, and of S, The
parameter Q, represents the plant’s demand on its own forestsin period n; it may or
may not be also the plant’s total requirements for raw material in period n. The term
S, represents the cost per unit of volume by which the plant’s demand is not met,
Obviously, S, may be a function of Q, — Y,, i.e. S, = s (Q, — Y.). Note that
9 =0 if Q, — Y, €0. The alternative of ordering raw material from else-
where is accounted for by Y, — Y. The “‘marginal” area unit to be considered
for cutting is now determined in exactly the same way as before, except that in-
stead of working with A,; we use S, if S, > A, and A, if S, < A Although Y,
may be larger than Q, in any one or more periods, this presumably will occur
rarely because the plant is assumed not to own sufficient forests to supply its
own demand. Thus this problem can be solved through dynamic programming in
exactly the same way as explained for the general model.

Although this last problem might seem reminiscent of a production smoothing
or inventory control problem as described by Scarf et al (36) and by Hadley (19,
chapter 10, 11), it is basically different in some important respects. Additional
quantities of raw material cannot be produced at will (though they can be ordered
at an additional cost A)); the growth capacity of the forest and the standing vol-
ume present are binding constraints. Moreover, it does not make sense to assume
that demand can be back ordered: if the plant is to do without the necessary raw
material in stage n, it most probably cannot make up for this in stage n - 1.
Finally it may be advantageous in the forestry problem above to make Y, in any
one period larger than Q,, at least as long as the amount by which Y, > Q, can
be disposed of just as profitably as when Y, < Q,. This does not seem to be an
unrealistic assumption. In standard production scheduling-inventory control
problems, however, an inventory cost would be associated with this case where
Qn < Y,. This special case model can be made a bit more realistic by assuming a
stochastic demand Q, with a known probability density function.

SPECIAL CASE 4B:

As explained before, because dynamic programming can handle almost any kind
of variable it is often used in the case where variables are stochastic. This generally
makes the model much more complicated computationally. Basically three cases
are still amenable to solution:

1) Only the return function is stochastic.
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2) The stage transformation function (or the output state variable) is stochas-
tic, and consequently the return is uncertain.

3) The stage transformation is stochastic, but the return is deterministic.

The assumption, that generally has to be made, is that the random variables
of the different stages are independent (if this assumption is not made, additional
state variables are needed to account for the dependence). However, the expected
value of the random variable may vary from stage to stage. This assumption may
be doubtful in many instances in forestry. It would, for example, have to be true
that when growth is assumed to be stochastic, the fact that it is very low in one
year (due to, say, an insect attack, fire, extra dry or wet season, etc.) will have
absolutely no influence on the growth of next year.

Hool (22) has worked out an example for the second case based on the above
mentioned assumption. In his study the development of a stand is assumed to be
stochastic and described by a special case of stochastic processes, a Markov process.
(He actually uses an even more specidliized case, that of a stationary Markov
process, but this is not essential for his model.)

Because it is impossible in the last two cases to link a decision with a specific
value of the output state variable(s), the forward approach cannot be used and
backward recursive optimization must be employed. Furthermore, because the
values of the output state variable(s) are uncertain, we cannot determine the
decisions at the stages two to N (or at the stages one to IN-1 when the stages are
numbered reversely as is customary in backward solving). That is we cannot
determine the sequence of optimal decisions, except the decision at the first stage.
For the remaining stages only a set of decisionfunctions can be obtained. Except
for the decision at stage one, the resulting optimal decision policy is itself stochastic
and the optimal decisions cannot be expressed deterministically until the stochas-
tic elements that precede them are revealed. In this sense, an N stage stochastic
optimization yields incomplete results (see for example Hool (22) tables 4 and 6).

However, when only the return is stochastic while the stage transformation
functions (and hence the state output variables) are deterministic, it seems that
we can still use the forward recursive approach. This is the case in our problem
if we assume the demands Qn in the different periods (n = 1, 2, ..., N) to be
independent random variables, which are either continuously or discretely dis-
tributed. If the demand Qn for raw material in period n is assumed to be con-
tinuously distributed according to the probability density function u{® (Qn), we
have to replace the ¢{? term in the expression for H by the stochastic term
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{ Cgm) (Qn - an Sn) USC) (Qn)d Qn
If Q, in period n is assumed to be distributed according to the discrete probability
density function u{® (Q,), we work with

E CEIO) (Qn - Ym Sn) u[(]d) (Qn)

n n

Otherwise the problem remains exactly the same. We have to determine Y,
Y,, ..., Yy so as to maximize H subject to

Vn. = Va1, + Yn. - Gn.
Y, >0.

In the actual calculations the infinity sign will be replaced by some large value
M, the maximum amount of raw material the plant can process in a period, The
stage transformation function in this formulation of the problem is in no way
affected by what the demand actually turns out to be. Hence our forward approach
of solving, developed before, can be employed. Note that the subscript n on the
probability density functions indicates that these functions may change over time.
As before, it has been assumed that the amount by which Y,, > Q, can be disposed
of just as profitably as when Y, < Q,. This does not seem to be unrealistic.

It might be felt that the above formulation of the problem, when demand is
stochastic, is not completely realistic in the sense that it would be better to obtain
optimal decisions Y, (n = 1, 2, ..., N) asa function of what the demands turned
out to be in the stages before the nth stage. This would entail associating an in-
ventory cost with overproduction, and a shortage cost when requirements of the
plants are not met. This is being done in standard inventory control problems
(see 19, 36). While this would be possible it would abstract from the possibility
of selling the amount Y, —~ Q, also to the plant (so that the plant will have to
buy less elsewhere), or on the open market. It also would make the demand a part
of the stage transformation function. This in turn would make the output state
variable stochastic. As a result it would be impossible to use the forward approach
developed in this study. It would seem that generally the objective function as
used in this study is the most realistic one, but one can imagine situations where
other objective functions are more appropriate.

It is of course possible, that the beginning volume V;_ and the growth together
cannot fulfill the demands and that the beginning volume is steadily being drawn
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down. This could be seen in the calculations by the fact that the cut Y, is in no
period bigger than the demand Q,, but in most periods has to be increased by the
amount Y, — Y,. This would provide an early warning to the plant that, if it is
to stay in business, it must buy more forest land and/or look for additional raw
material suppliers. Anyhow, it must rely less on its own forests for the necessary
raw material than it planned to do.

Regional Versus National Considerations

After having pointed out the above special cases of the model, it is well to
indicate that the general model presented in this study itself can be viewed as a
special case. Basically the model presented pretends to be of help on the regional
forest development planning level (or on lower levels as indicated by the special
cases described). When the region is taken big enough, or when the country is so
underdeveloped as to have no forestry sector yet to speak of, then the factors
taken into account by the regional forest planner tend to be the same as those
considered by the national forest planner. Still, even in those cases and especially
in view of the long planning period considered, many additional factors should be
considered at the national forest planning level.

The trouble is that at the national level so many factors enter, which are com-
pletely outside the competence of the forest economist, which are non-quanti-
fiable, or about which prospects are so uncertain that probably no model can ever
be expected to incorporate them all without becoming non-operational. Yet,
in so far as these additional factors might profoundly influence the regional
view point, decisions have to be made about these factors and their possible
bearing on the regional viewpoint must be analyzed. If considered necessary, the
regional viewpoint, and consequently the optimal decision rules developed by the
model presented in this study, should be modified accordingly. Some of the con-
siderations which are important at the national level will be reviewed now.

Some considerations related to the production factor labor are likely to be
weighted more carefully on the national than on the regional level. The national
planner might specify certain shadow prices for labor which are different from the
current market prices. Through subsidies, special taxes or otherwise, the national
planner might try to enforce the use of these shadow prices in order to influence
employment in the region by the forestry activities. The national planners
might even specify minimum employment levels in the sense that the combined
forestry activities are expected to employ x persons. As indicated before this
could be handled by the model (see special case I).

The model developed assumed that labor can be laid off or rehired at will,
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possibly implying that labor can be moved around within and between regions
without incurring any extra costs. On the national level the social cost involved is
bound to be weighted more heavily than on the regional level. As the optimal
decisions are only determined after the maximum to the problem has been ob-
tained and we are tracing back our steps, it is only after the calculations are made
that we find out how the decision variable Y, and consequently the labor force
employed, will fluctuate from period to period.

Thus the model in the form presented cannot handle this consideration. How-
ever, it would be possible to include at stage n the decision variable at stage
n-1 (le. Y, ;) as an additional state variable. This would solve the problem be-
cause the size of the labor force employed is related to Y,. The model would be-
come a two state/one decision variable model. A cost function associated with
labor force changes would be included in the expression for H and might have the
form ¢V (Y, — Y,._;). Otherwise the problem remains the same: to maximize H
subject to the two constraints. Computationally there is a difference, however.
At stage n, for each possible value of V., and each possible value of Y,_;, we
would determine the Y, that maximizes the expression set up by the model.
Computations would increase, but the model remains feasible. Actually, if the
stage periods are made large enough (which anyhow is desirable computationally
if the total planning period is of the order of 75-100 years or longer), say 5 years
each, then the costs associated with fluctating employment levels can possibly
be decreased considerably by advanced planning.

Another point, which is likely to be very important on the national planning
level, is the supply picture over time, both domestically and on the world market.
Many countries want to maintain a certain degree of self-sufficiency in such a
strategic raw material as timber. Questions as to possible substitutions of forest
products for or by other products will have to be considered. To some extent the
self-sufficiency criterion and related questions can be accommodated in the model
by specifying a certain Vy, . at the end of the planning horizon, and/or certain
minimum V4, (n = 1,2, ..., N) levels at the end of each stage below which
cutting is prohibited.

On the demand side there are likely to be also some factors which are of more
specific interest to the national planner than to the regional planner. Quantities
of products demanded and prices are generally considered to be given factors for
the regional planner, often to the extent of assuming perfectly elastic demand
curves for the region’s products at existing prices. At the national level demand
curves are almost never perfectly elastic, domestic as well as export markets are
considered, product substitution possibilities must be studied, etc. Also it is
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known that prices often do not reflect true socia costs. Any or al of these con-
siderations may make it necessary to reconsider the regionaly obtained optimal
decision rules. It may be desired to make alternative runs of the model under
different demand schedule assumptions, especially in view of the enormous un-
certain demand and supply forecasts over time.

The regional planner may not have the same attitude towards foreign capital
and business as the national planner. He is not likely to be as much concerned
with foreign exchange constraints and the necessity of earning foreign exchange.
Considerations of the availability of investment capital in general, and foreign
exchange in particular, may make it desirable to run the model under different
assumptions in order to test various policy alternatives.

The power of the authorities in charge to tax away, or to force the reinvest-
ment of any desired percentage of the benefits obtained from the forestry under-
takings may not be large in the beginning stages of development. It generally
may be expected to increase substantially over time. Some ways of doing things
may be expected to result in ahigher reinvestment than others. It may bedesirable
to assume population growth to be, to some extent, an endogenous variable in the
model. All these considerations may again profoundly affect the optimal regional
decision rules.

External effects of the tree growing-harvesting phase and of the primary forest
industries may be weighted more heavily on the national than on the regional
level. These externalities have been pointed out duly in the forestry literature:
recreational uses of the forests, watershed and erosion control effects of the forests,
backwood character and educative effects of the primary forest industries, en-
hancement of the productivity of the agricultural labor force, high socid costs of
destructive exploitation of the forests resulting in severe erosion, etc. Some of the
externalities may be very important in the beginning stages of development, oth-
ers become more important as development progresses and/or forests become
scarcer. An example is the shift that has taken place in many advanced countries
from exclusive emphasis on the timber production role of forestry to its multiple
Use aspects.

It ismainly the task of the national planners to survey the picture of the whole
country and to indicate which areas should remain in forestry and which should
revert to other uses. For those area units which are destined to remain in forest
cover, they should set up broad usage priorities. These priorities should be estab-
lished on the basis of a careful examination of the timber production, the water-
shed, the recreational and al the other values and functions of the forests, as well
as of the demand for these goods and services over time. The model contains terms
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to take account of the externalities. In so far as they often cannot be given quanti-
tative measures, however, they will tend to be deemphasized more on the regional
than on the national level, where a broader view must be taken.

Many institutional factors are nationally determined and can be changed, if at
all, only at the national level. To the extent that they are variables at the national
level, they might profoundly affect the regional optimal decision rules.

Perhaps a find word is necessary about the philosophy of planning, the use of
the model and the relevance of the optimal decision rules obtained. Asindicated
repeatedly in this study, the model is basically directed to a planning situation.
On the basis of the data used in the model, the forest planner obtains decision
rules which are optimal within the objective assumed and the constraints em-
ployed. The data which are available and used originally probably are rather
crude and inaccurate. Often they will be just educated guesses, or they may have
been taken from elsewhere where conditions are or are not rather similar. The
quality of the data may be expected to ilnprove over time. The constraints em-
ployed may change over time and new ones may be added. Factors which pre-
viously did not influence the region under consideration and its actions, may
become important. In short, it is obviously impossible to plan once and for all
the forestry activities over any length of time.

As better data become available and situations and prospects change, replanning
becomes necessary. Consequently the model has to be rerun periodicaly to re-
orient planning and to obtain new decision rules which are optimal for the
changed situation. In this way planning and the optimal decision rules are dy-
namic and can and should be changed as the situation dictates. The model, in-
cluding the computational procedure developed, isonly the tool used for each new
situation to make some of the many necessary decisions when planning the
forestry activities.
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UST TO show how a real life problem will be handled by the model and to

give some idea about the computational procedures to be followed, a concrete

example will be given in this chapter. The example is based upon plausible data.
Some of the data were extracted from the literature as indicated, others were
educated guesses or obtained through personal contact with existing enterprises,
As no specific area with the necessary data available could be found, the example
is purely illustrative. An initial situation with overmature, stagnant forest is
envisioned (although as was indicated in chapter II, the model may be employed
at any stage of the development or use of the forest resource). As this situation,
coupled with significant departure from the assumptions of pure competition, is
most likely to be encountered in underdeveloped regions and because these regions
are so often situated in the tropics, the data reflect as much as possible tropical
conditions (although again non-tropical situations could have been assumed).

Tue Dara
Assume we have to plan the development of the forestry activities in a region
with about 100000 hectares in forest cover. A preliminary survey is made to get
an impression about volume/ha, species composition, merchantable volume, and
site quality (as determined by some crude method and expressed as: good = site
class I, medium = site class II and poor = site class III).

The results are as follows:
20 000 ha of site I with 400 m?/ha of which 409, is merchantable
60 000 ha of site II with 400 m®/ha of which 3097 is merchantable
20 000 ha of site IIT with 400 m>/ha of which 209, is merchantable

These figures are typical for a tropical rain forest (see 39, 44, 54 and 52). Assuming
that the survey was based on a 29, sample, an average per hectare inventory cost
of $0.50 seems reasonable, i.e. a total inventory cost of $1000.

The region has only recently become economically or otherwise accessible.
Consequently we are dealing with naturally grown forests which have cost nothing
to grow in terms of human effort (as is still the case with many forests in the
tropics, such as those situated in the Amazon region). The forests consist of old
and probably virgin stands and although biologically speaking growth is taking
place, net volume growth is zero. Harvesting is technically and economically
feasible. In view of the resources available, especially the amount of investment
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capital and the species composition of the forests, an extensive type of forest
management is considered as well as the establishment of some sawmill capacity.
The forestry planner wants to obtain decision rules over a planning period of 75
years.

On the bass of experience elsewhere, the forestry planner expects a stand on
site 11 under some type of extensive management to develop as follows.

Volume Volume

Age in Years in m3/ha Age in Years in mé/ha
0 nursery stock 55 288
5 9 60 336
10 18 65 366
15 3 70 334
20 51 7S 3%
25 72 80 402
30 % 85 405
35 123 R0 408
40 153 9% 409
45 192 100 410
50 237 >100 410

This implies an average annual increment of 5m3 ha over a period of 80 years
which seems to be attainable (39, 40 and 41). Converting this to a stand volume
-volume growth relation, the following table is obtained

Sand Volume Volume Growth Stand Volume Volume Growth
in m3/ha in m3 hal5 Years in mS/ha in m3/ ha/5 Years
0 9 237 51
9 9 288 48
18 15 336 30
33 18 366 18
51 21 334 12
72 24 3% 6
9% 27 402 4
123 30 405 3
153 39 408 1
192 45 409 1
=410 0

A similar stand is expected to grow 4/3 times as fast on site | and 2/3 times as
fast on site 11 (see 53).

Extensive management is assumed to entail the following. Harvesting is car-
ried out with some minimum attention being paid to the silvicultural require-
ments. Regeneration will be done by one or another variety of the enrichment
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system (40, 42). Specificaly, this will be assumed to imply some minimum site
preparation such as the poisoning and girdling of the undesirable trees, the plant-
ing of some 500 young trees per hectare and about four release cuttings during the
first five years. No plantation care thereafter. No thinnings. Representative
management costs are given by Yoho et d (59), Catinot (40) and Martyn (47)
and may look as follows (note that they dl are incurred during the first five years
after clearcutting).

Poisoning, girdling and some other minimal site preparations $10/ha
Planting (500 trees/ha), inclusive of nursery charges and transportation of plants $15/ha
Four release cuttings during the first five years of the plantation $45/ha
Total $70/ha

It seems reasonable to assume that some 20 Km of roads are needed for every
400 Km? (see 46, 48, 49). This means that in average one is never more than
10 Km from a road. Assuming it costs $10,000 to construct one Km of road
(inclusive of simple bridges, draining systems etc), in total 50 Km of road have
to be constructed at a cost of $500,000. Another $100,000 is assumed to be needed
for buildings and nurseries (see 51). No depreciation costs are assumed on roads,
buildings and nurseries, only maintenance costs.

Fixed yearly costs, irrespective of the amount of wood harvested, for such
charges as taxes, road maintenance, insurance etc. may come to $1 per hectare
per year (see 51).

Land values will be put at $0.50, $1 and $1.50 per hectare for site I11, Il and |
quality land respectively (see 50). In correspondence with experiencesin Europe
and the United States these will be assumed to increase by 5% (compound interest)
per year (which corresponds to 27.6% compound interest per five years).

The costs of logging, including felling, cross cutting, yarding, rigging, loading,
hauling, unloading, opening up (temporary) logging roads, depreciation of tools
and equipment (tools and equipment are assumed to depreciate within five years),
are put at $10 per m) roundwood (see 48, 49, 58). These costs are assumed to be
the same for al area units. When harvesting for the second time from the same
area unit, these costs will be put at $8 per m}. Logging costs will be assumed to
remain constant. Thus it will be assumed that rising labor costs will be offset by
increased mechanization and advances in technology.

To bring dl costs and revenues back to the same point of time an annual
discount rate of 6% will be used. This corresponds to a 33.33% rate on a five
year bads This discount rate will serve as the alternative rate of return. It is
assumed to be the same for &l parts of the production process, i.e. for the tree
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growing part, for the harvesting phase, and for the sawmill operation. The dis-
count rate is assumed to remain constant during the whole planning period.

The average growth rate of the forests is 5 m3 per hectare per year. Assuming
the forestry planner wants to obtain optimal decision rules for sustained yield
sawmilling capacity throughout the planning period, we have to construct one
or more sawmills with a total maximum capacity of 5 X 105 m3 per year on a
roundwood basis. As explained before, whether one big miU or several small ones
should be constructed is a question that has to be answered through a suboptimi-
zation process. The following cost data for the indicated sawmill capacity were
obtained from existing plants in the United States (see dso 50).

Number of 12 hour shifts a day for 250 days a year two one
Yearly production in m3, roundwood basis 5 X 105 25 X 105
Investment

Machinery (inclusive of engineering costs, freight and erection) $1,800,000 same
Buildings, storage space, yard, transport sidings, etc. $1,000,000 same
Depreciation (straight line) o

Machinery 10% per year over 1 years
Buildings 5% per year over 20 years
Operating costs

Power costs: per hour of operation (or $0.36 per m3 roundwood sawed) $ 30 same
Materials for maintenance and repair: cost per year $ 600,000 $ 380,000
Number of personnel (inclusive of maintenance, repair, lumber yard,

sawmill, etc.) 200 110
Average annual salary of personnel $ 5,000 $ 5,000
Property taxes and insurance, per year $ 300,000 $ 200,000
Working capital (raw material stocks, in-process inventory, product

inventory, credit, funds for wages, etc.) $5,000,000 $3,000,000

The machinery is assumed to continue to be used after having been depreciated,
but the costs for maintenance and repairs are expected to increase to $750,000
for the two shifts a day operation and $500,000 for the one shift a day operation.
They are assumed to remain constant thereafter. It is assumed that the average
salary will rise by 1% compound interest per year. These data work out to a min-
imum sawmill processing cost of $5.22 per m? roundwood basis (or to about $20.
per 1000 bd. ft. lumber scae basis), attainable when operating on full capacity on
the two shifts a day basis, they amount to $6.52 per m® roundwood besis when
operating on full capacity on the one shift a day bass.

The following product prices seem reasonable (see 44, 50, 51, and especialy 54).
Stumpage sdls at $4 per m?® roundwood basis. This is assumed to increase 2%
compound interest per year (for justification see 43, 55, 56 and 57). The price per
m? roundwood either f.o.b. shipside or f.o.b. the sawmill is $15 for the first
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600,000 m? sold in a year and $1 less for each additional 100,000 m? sold per year.
This price is assumed to increase by the same amount the stumpage price is
expected to increase. The price per m? sawnwood on a roundwood basis is $25
for the first 100,000 m? sold per year and $1 less for each additional 100,000 m3.
This price is again assumed to increase by the same amount by which the stumpage
price will increase. No differences in wood quality are assumed. Hence the same
prices are paid for timber from the three site qualities and for the sawn wood
produced from the raw material imported from elsewhere.

Finally it is assumed that in case of shortage of raw material unlimited amounts
of roundwood can be obtained at an additional current per m® roundwood f.0.b.
sawmill cost of $3, i.e. at a current price of $18 per m? roundwood f.0.b. sawmill
(see 54).

If we were to work with stages of a duration of one year, we would have 75
stages. To reduce computations five year long stages will be used, so that we have
a total of only 15 stages. In terms of chapter [l we haven = 1,2, ..., 14,15 {=N).

For similar reasons we will divide the total area of 10° ha into 100 area units
of 1000 ha each, so that j =1, 2, ..., 99, 100 (=]). Assume that the first 20
are the site quality I area units, the next 60 the site quality II ones and the
last 20 the poorest or site quality III area units.

The symbols and terminology of the model in chapter 11 will now be translated
in terms of the above data for a general stage n, wheren = 1, 2, ..., 15.

K = K, = 0.3333 or 0.06 on an annual basis.

Vy; = 1000 X 400 X 0.4 = 16 X 10* m? forj=1,2,...,20
Vy; = 1000 X 400 X 0.3 = 12 X 10* m3 forj =21,22,...,80
V,; = 1000 X 400 X 0.2 = 8 X 10* m? forj =81, 82,..., 100

V. =12 X 10 m?
Vo = Vo, + Yy — G, (all terms in m® units)

100
V, = X V, (all terms in m? units)
=1

In what follows all cost and revenue functions are calculated for a five year
period. This explains the multiplicative factor five used in both these functions
and in the determination of the demand dependent constants X, and X;.

If V,; equals the value indicated in the table, then G,; equals the corresponding
table value.
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Vi (in 10> m?) G, (in 10 m?) Vg (in 10> m?) Gy (in 10> m?)

0 9 X X, 237 X X, 51 X X,

9 XX, 9 XX, 288 X X, 48 X X,
18 X X, 15 X X, 336 X X4 30 X X
33 X X, 18 X X, 366 X X, 18 X X;
51 X X, 21 XX, 384 X X4 12 X X,
72 X X, 24 X X4 396 X X4 6 X X,
96 X X, 27 X X4 402 X X4 IXX
123 X X, 30 X X, 405 X X4 3 XX,
153 X X, 39 X X, 408 X X4 1 XX,
192 X X, 45 X X 409 X X4 1 X X,

G, = 0 for every other V. This assumption is made for computing purposes
only; if desired, interpolations could be made in the above table.

Consequently Gy = 0 if V, =160 X 10> m?, if Vy =120 X 10> m® or if
V,; = 80 X 10*> m>. These cases correspond to the initial state of the virgin and
stagnant forest with 400 m3/ha, of which only a certain percentage is merchant-

able. Hence Gy; =0 forj =1,2, ..., 100 and G, = 0.
Furthermore X, =4/3forj=1,2,...,20
X, =1 forj=21,22,...,80
X, =2/3forj =81, 82,...,100
@ =Y, X (PP — X,), where
PO = PL = PP = PO, + 0.104PX,  forj =1, 2,..., 100
(the ¢ subscript indicates that the price is the same for all area units).
PP = P = PP = 25.16 for j = 1, 2, ..., 100 )the average sawn wood price
during the first five years).
PP = PP =416 forj =1,2,..., 100 (the average stumpage price during the
first five years).
PP = PY = (1.104)"* X 4.16 forj = 1,2, ..., 100.

X, =0if0 <Y, <5X 10°

X, = 1if5 X 10° < Y, < 10 X 10°

X, =2if10 X 105 < Y, < 15 X 10°

X, =3if 15X 10° < Y, <20 X 10
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X, =4if20 X 10° <Y, <25 X 10°

& =25 X 10° X (PP — 4) ifY, >25 X 10°
D=0 fY, <25 x10°
1D = (Y, — 25 X 105 (PQ — X,) ifY, > 25 X 10°
PP = PO = PO, 4+ 0.104 P& forj=1,2,..., 100

P = P = 15.16 (the average price of logs during the first five years).
X;=0if25 X 10° <Y, <30 X 10°
=1if30 X 10° <Y, <35 X 10°
2135 X 10° <Y, <40 X 10°

Nl
o

Xy =3if40 X 10° <Y, <45 X 10%

X;=4it45 X 10° <Y, €50 X 10°

X;=5if50 X 10° < Y, €55 X 10°

Xy =6if Y, > 55 X 10%

1 is included in rP because the sawn wood produced from the imported raw
material is assumed to fetch the same price as the sawn wood produced from
locally grown raw material (no quality differences are assumed). That is, because
DY = P,

19 = 0 because no external economies are taken into account.

i =5 X 0.06 X PP X (V, — Y,) if
Vo = 160 X 10°and j = 1,2, ..., 20

Va =120 X 10%and j = 21,22, ..., 80

V, =80 X 10%and j = 81,82, ..., 100
cr(,lj) = (), otherwise

100

P =3 P

j=1
P =5 X 0.06 X (1.276)*! X 1.66 X 10° forj=1,2,...,20
@ =5 X 0.06 X (1.276)> x 1.11 X 10 forj=21,22,...,80
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P =5 X 0.06 X (1.276)*1 X 0.55 X 10° forj = 81,82,..., 100

Note that 1.66, 1.11 and 0.55 are the average per hectare land prices during the
first five years (i.e. during stage 1) respectively for site quality I, II and III land.
. 1oo

@ T P

=1
¢ =70 X 10% if Vopy; = 0; <@ = 0 otherwise. Hence planting and tending
costs are incurred only if the land has been clearcut.

100
=3 cfﬂ)

=1
P =5XG+1) X006 X 10* +5 x 10° (i.e. the costs associated with the
investments in roads and buildings plus the other fixed yearly costs).

100
W= 32 P=68x10
=1
P =10Y, if Vi =160 X 10®and j = 1,2, ..., 20
V=120 X 10°and j = 21,22,..., 80
if Vy; =80 X 10°and j = 81,82, ..., 100
P =38 Yy otherwise
100
= 3 cg?
1=1
¢® =5 X (18 X 10* + 5 X 104 ifn=12
® =5x%x5x10* ifn=34
P = ifn=35,6,...,15
P =5x%x2x10 ifY, =0

Otherwise c{” consists of property taxes 4 power costs + maintenance costs
+ wages - interest on working capital as follows.

P =5X%X2X1054+Y,X 03645 X 38X 10*+
+5 X 110 X (1.051)*! X 5101 + 5 X 0.06 X 3 X 10¢
fn=1,2 and 0 <Y, <5X25X10°
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P =5x%x3%X105+Y, X036+5X60 X 10*+
+5 X200 X (1.051)> x 5101 + 5 X 0.06 X 5 X 10°
ifn=1,2 and 5 X 25X 105 <Y, <5 X5 X 10°

P =5%3X1054+5X5X10°X0.36+5X60X10*+
+5 X 200 X (1.051)== X 5101 + 5 X 0.06 X 5 X 10
ifn=1,2 and Y, >5 X5 X 10

D =5%x2X1054+Y, X036+5X50X 10"+
+5 X 110 X (1.051)>7! X 5101 4+ 5 X 0.06 X 3 X 10¢
ifn=3,4,...,15and 0<Y,<5X25X10°

P =5X3X10°4+Y,X036+5X75X10*+
+5 X 200 X (1.051)** X 5101 +5 X 0.06 X 5 X 10°
ifn=34,...,15and5 X 25 X 10° <Y, <5X5 X106

P =5X3X10°+5X5X10°X036+5X%X75X10°+
+5 X 200 X (1.051)*1 X 5101 +5 X 0.06 X 5 X 10°
ifn=34,...,15and Y, >5 X5 X105

Note that 5101 is the average wage of factory personnel during the first period.

® = (Y, — Y,) (PP +3), where P¥ + 3 = PP in the terminology of
chapter IL

< = 0, because no external diseconomies are taken into account.

All costs and revenue functions are expressed in dollar terms. The dollar sign
has been omitted for ease of notation.

The net value growth, which is used to establish the cutting priorities of the
area units, is denoted by VG.

VG, = P® X Gy — 5 X 0.06 X PP X Vy — P, forj =1, 2,..., 100.
It was found that the net value growth was still increasing as long as:

Vy <15 X 10 m?*forj =1,2,..., 20

Vi <10 X 10> m? for j = 21, 22, ..., 100.

Hence if these volumes were present, a large constant was added to VG, in order
to increase the rank of these area units (and thus to decrease the cutting priority)
assigned on the basis of their VG,

Clearcutting is assumed. Consequently
Y, = Vo + Gyjand Voypy; = 0 if the area unit j is scheduled to be harvested.
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Y, =0 and Vo, ; = V,; 4+ G, if the area unit j is not to be harvested.

Finally Y,; may be smaller than V,; + G, if the predetermined amount Y, is
not yet obtained with the amounts

Yo + Yoo + ...+ Yo, but is exceeded when we add Y,. In this case
Yo =Ye - Ya+ Yu+...+ Yy) and Voyy; = Vi + Gy~ Yy A par-
tially harvested area unit is immediately assigned a very small (negative) net
value growth VG in order to assure the harvesting of the residual volume at
the next stage n + 1.

In all the foregoing terms the simplifying, but neither necessary nor realistic
assumption is made that at every stage all costs and revenues accrue in five equal
yearly parts. This implies that if Y, = 5 units, we process the equivalent of 1
unit durent each year of stage n. In reality we might prefer to process all in one
year. Also, instead of using annual prices and wages, an average number is used
for each parameter during a given stage n. These assumptions simplify the form
of the cost and revenue functions and especially the discounting procedure.
In fact, we can discount at each stage by multiplying each term by

(1.06)° — 1 x 1
(1.06)* X 0.06 (1.06)5@=D

= X
5

The following grid on the state variable Vata,. and on (Y, — G,) will be
used. The maximum value that V4 can attain is 410 X 10° m®. A grid of
10 X 10° m? means that we have to consider at most 42 different values of Vat,.
at each stage n. As pointed out before, Y, isat least zero; it isat most 41 X 106 m3.
Finally G, can at most be 51 X 10° m3, but it is at least zero. Thus (Y, — G.)
is always greater than —51 X 10° m? but smaller than 41 X 10¢ m?. Hence for
each value of the state variable, we have to consider at most 47 different values
of (Y, — G,) when employing a grid of 10 X 105 m®. As indicated in chapter II,
a different grid can be imposed on the dY,. Because an increase in the number of
dYy’s considered does not increase the computational burden too much, a much
finer grid of 2.5 X 10> m® was imposed on these quantities to be ordered from
elsewhere. There was no special reason behind the choice of these grids, except
that the limited amount of available computer time acted as a constraint.

A computer program was written in the Fortran IV (version 13) language.
The computer flow diagram followed quite closely the steps described in the
review of the computational procedure developed for the model in chapter I1.
Using the data described in this chapter, it took the IBM 7090-7094 about 11
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minutes to obtain and print out the solutions. If the grid employed is made finer,
the required computational time will increase proportionally faster. A somewhat
finer grid than the one employed in this example seems desirable. A grid, using
intervals of 5 X 10° m? instead of 10 X 10> m?, will certainly be sufficiently
fine as it is smaller than the total growth G, = 9 X 10°> m? pertaining to a total
volume V, = 0. This is desirable as it allows considering a zero cut Y, in period
n after a complete 1009 harvest in period n— 1. Naturally this is impossible with
grids larger than 9 X 10%. Considering the magnitude of the problem and the
values involved, the time required to obtain a solution on the computer does not
seem to be excessively high.

In view of the nature of the data and the objective of this example, which was
purely illustrative, no sensitivity analysis on the parameters was planned. Still the
following different runs were made (the run based on the data presented before
is denoted by the name standard run).

1. Employing an interest rate K, = 89, instead of the 67, used above.

2. Assuming P® = P@ + 1, instead of the P + 3 employed above. That is,
the price differential between locally obtained raw material and the raw
material imported from elsewhere was taken to be $1 per m’ roundwood

instead of $3.

3. Assuming the P = P® = 0 if Y,; was obtained from an area unit with
less than 100 m?/ha. In effect, this prohibits cutting stands which are less
than 30 years old.

4. Assuming PP = PQ and an interest rate K, of 49, instead of respectively
P® = PY + 3 and K, = 69 as used in the description before.

Tuae REesurts

The following tables were part of the computer output (for the standard run)
and will give an impression about the type and form of the results. As before:
n indicates the stage number
f, (Vo1,) indicates the maximum stage return as a function of Vg4, . Hence
it is the maximum discounted net revenue at the end of stage n, the determination
of which is the objective of this study.

V.41, = the total volume at the end of stage n (or beginning of stage n + 1)
and represents the state variable.

Y, = Y, -+ dY represents the decision variable.

dY represents the amount of raw material ordered from elsewhere.

60



III. AN EXAMPLE

Y, indicates the total volume cut from the region under consideration during
stage n. Of course Y, > Y.
G,. indicates the total volume growth during stage n.

TABLE 1. STANDARD RUN; OPTIMUM OPTIMORUM FOR Vs = ()
n fo(V, . Vo , Yo Yn. Ga.
Eél(%'(-)l)' ) (100_51!113) (1000m3) (1000m3) ( 1000m3)
15 31325 0 1948 1948 948
14 30961 1000 1194 944 944
13 30719 1000 3360 3360 1360
12 29567 3000 2796 2796 1796
11 28387 4000 1160 660 1660
10 28191 3000 1134 134 1134
9 28386 2000 1056 56 1056
8 28733 1000 3443 3443 1443
7 25359 3000 2774 2774 1774
6 21893 4000 1173 673 1673
5 21364 3000 1100 350 1350
4 21588 2000 1006 1006 1006
3 19979 2000 3546 3546 546
2 12245 5000 3294 3294 294
i 5870 8000 4000 4000 0

TABLE 2. STANDARD RUN; THE STAGE RETURNS AT THE END OF THE ISTH STAGE.
f15(V1s.) \4

16. f15(V1e.) Vie.

(§1000) (1000m3) (§1000) (1000m3)
31325 0 28107 9000
31113 1000 27229 10000
30773 2000 26354 11000
30467 3000 25765 12000
30229 4000 25321 13000
29948 5000 23222 14000
29710 6000 14637 15000
29386 7000 9733 16000
29071 8000 negative 17000

Perhaps it is not superfluous to indicate that a table like table 1 could have
been obtained for each value of Vi in table 2. And similar tables were available
for each different computer run, i.¢. for the runs employing a different interest rate
and/or price as described before. Also available from the computer output for
each run but not reproduced here, were the volume distributions over the area
units (i.e. Voyi;forj = 1,2,..., 100) pertaining to each Vo4, , as well as the
corresponding Y; forj = 1,2, ..., 100.

Suppose for example that for some reason it had been desired to have a volume
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of 8 X 10 m? at the end of 75 years, employing the values of the standard run.
From table 2 we see that the optimal discounted net return in that case is
$29,071,000. This, as could be expected, is less than the optimum optimorum of
$31,325,000 obtainable when we cut and get out at the end of 75 years, i.e. for
V1. = 0. A table similar to table 1 would be extracted from the computer output,
giving .V, ), Vo1, Yo, Yoand G, forn =1, 2, ..., 15. For each V4,
the volume distribution over the area units, i.e. V,4,; would be obtained from
the computer output, as well as Y,;. For example for Vig = 8 X 10° m> the
following values were found for Vi (in 1000 m%): 164 forj =1, 2, ...,13;
128 for j = 14; 12 for j = 15; 408 for j = 16; 0 for j = 17; 270 for j = 18;
512 forj = 19, 20; 18 for j = 21, 22, ..., 52; 9 for j = 53; 123 for j = 54, 55,
..., 80;6forj = 81, 82, ..., 100. Moreover the cut Yi5, = 754 X 10° m® was
obtained from only two area units: Y537 = 512 X 10* m?, Yy 45 = 242 X 10°
m?, Y5 ; = 0 for j # 17 or 18. Note that area unit 17 has been clearcut while
area unit 18 has been harvested only partially; Vis 15 + Gis, 15 was 512 X 10> m?
of which 242 X 10°> m? is cut, leaving Vi 13 = 270 X 10> m>. Under our regime
of management area unit 18 will be clearcut at the next stage. Because Y, was
found to be 1004 X 10> m?, we have to import from elsewhere 1004 000 minus
754000 or 250 000 m®. Thus the results indicate exactly when, where and how
much to cut and how much to buy and import from elsewhere.

The results were definitely very reasonable. The following appeared to be the
most striking features.

1. In all runs the original forest was cut down as fast as possible. This is immi-
nently logical: only in this way can the considerable c{ cost term be escaped.
Moreover, the net volume growth of this forest is zero. While it did not pay
to cut all volume in the first stage, presumably because of the assumed
price-quantity relation (the demand-schedule), the cut during the first 15
years was considerably above the yearly amount of 5 X 10° m® which the
strict sustained yield approach would indicate. And this was true even when
the interest rate was assumed to be only 497, so that the future was discounted
less heavily (run 4).

2. A comparison of the Y, and Y, columns in the computer output and for
the different runs indicated at which stages the alternative of ordering raw
material from elsewhere has been used. As could have been expected, it has
been used especially in the case when the interest was 89, (run 1), or when
the price paid for the imported raw material was the same as that of the
locally grown wood (run 4).
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Like many actual companies, this forestry enterprise has its ups and downs.
See for example the fn(V.4.,) column in table 1. After an initial financialy
favorable start, it loses money during the 5th stage and again during the
8th, 9th and 10th stages. These losses are incurred during periods when the
forest is being built up, as can be deduced from the V +;. column or alter-
natively comparing the Yn. and G, columns. Losses were largest in the
possibly most realistic case where we assigned a zero price to the timber cut
from stands less than 30 years old (run 3). In this case the 6% interest rate
was apparently too high to afford waiting that long for a stand to grow up
after the initial investment has been made and hence to maintain high
volumes per hectare. Without imposing such a lower age cutting limit but
employing a discount rate of 8%, we do little less than to cut as soon as there
is something to cut in order to escape the heavy interest charges on the initial
investments. This was evident from the very low, mostly zero values for the
V,+.. term at the various stages of run 1. Employing an interest rate which
many foresters would consider more reasonable, i.e. 4% ,the enterprise
succeeded nicely. Profits occurred at every stage of run 4 and the total forest
volume was maintained at a rather high level. Another point to be made is
that a heavy cut, followed by some lean years to build up the forest again,
was the optimal thing to do. This seems to be in contrast with what many
foresters would advocate in a similar situation.

The optimum optimorum, that is the best we can possibly do, over 75 years
was in al cases except one obtained for the value V5. = 0. The one exception
pertains to the case where a zero price was assigned to the timber cut from
stands less than 30 years old (run 3). These results are completely in line
with expectations: if we do not care what happens after 75 years, we cut al
and get out. If we do care, we have to specify the desired V4. for which we
want to obtain a set of optimal decisions, like Vg = 8 X 10° m3 for example.
Thisis the built-in sensitivity analysis referred to in chapter 11: no additional
calculations are necessary, just a back tracing for a different value of V.

A rotation in the accepted forestry sense (the age of a stand at which net
value growth drops down to zero, or at which the soil expectation is at a
maximum) is not present. When a stand is being cut depends largely on the
supply and demand situation of the moment, as it should be. Sometimes it
pays to cut about 10° m3 timber when we have only 2 X 10° m® of wood on
al the area units together (as at stage 3 to 4 in table 1), at other times it is
optimal to cut only 134 X 103 m3 in the same situation (as at stage 9 to 10
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in table 1). The volume distribution over the individual area units provide
us with a more detailed explanation of what went on.

To be able to formulate general conclusions, more runs should be made assum-
ing different industrial capacities, forest management intensities, depreciation
rates, etc. A somewhat finer grid is desirable. However, as observed at the begin-
ning of this chapter, the example was meant to be purely illustrative. Viewed in
that light, the objective has been reached: the working of the model was illus-
trared, the computational procedure developed in chapter Il was tried out on
the computer and optimal decision rules were obtained. Specifically the questions:
when, where and how much to cut and/or to order from elsewhere were answered.



IV. CONCLUSIONS AND SUMMARY

N PLANNING the forestry activities of a region, the objective was assumed
I to be the maximization of the discounted present value of the net benefits
of alternative possible investments in the forestry sector. This objective was
assumed throughout the study. Instead of assuming one specific set of constraints,
it was desired to develop a model that would provide optimal (in the sense of the
objective defined above) decision rules for a wide variety of exogenously and
endogenously imposed contraints and variables.

The study was directed mainly to a situation characterized by significant
departures from the assumptions of perfect competition. This creates problems
in the allocation of resources as the existing market price system cannot be ex-
pected to do an efficient job. Consequently, optimizing al parts of an economy,
sector, industry or firm does not imply the optimization of the whole. For forestry
purposes this means that an integrated planning approach, taking into account
the tree growing/ harvesting phase as well as the wood conversion or forest in-
dustry activities, to the allocation of resources in the forestry sector has to be
taken. This isin contrast with the present practice of concentrating rather
exclusively either on the tree growing activity, the harvesting activity or the wood
conversion activity. This integrated approach would be a necessary first step
toward the theoretic ideal of a general equilibrium approach to the allocation of
resources.

The initial situation envisioned by this study can be any stage in the develop-
ment or use of the forest resource, from the completely non-regulated all-aged or
even-aged forest with any age or volume class over or underrepresented to the
situation of a fully regulated all-aged or even-aged forest. Likewise the forest
industries mayor may not yet exist and, if present, their combined capacity may
or may not equal the traditionally advocated long run sustained yield capacity of
the forest base.

In analogy with the efforts of economists to develop a programming model
embracing the whole economy, a model is set up that covers the whole produc-
tion process from tree seedling to final product of one or more of the primary
forest industries. It consists basically of a string of revenue and cost functions
which together form the objective function to be maximized. Thus it translates
the assumed objective of the study.

What makes this maximization problem complicated is the time interdependent
nature of the cost and revenue functions. The objective function includes al the
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conflicting and competing variables and objectives and most of the constraints,
which al have to be balanced against each other and over time. Some variables
may be high in some periods, thus forcing other variables to be low, but this
might imply an undesirable disproportionate reduction or increment of these
variables in subseqguent periods.

The model is then conceived of as a multistage decision problem and molded
into a form that can be solved by dynamic programming. Because planning
horizons are long in forestry, the number of stages is large. Consequently, for
computational reasonsit wasdecided to work with only one state and one decision
variable, respectively the total periodic standing volume and the total amount of
wood material processed. But as indicated, other variables such as the investment
rate or the amount of wood processed in the preceding stage, could be used as a
second state or decision variable. All other variables are either assumed to be
constant at anyone stage or to be related to the state and/or to the decision
variable.

In order to properly handle the volume growth term the forward way of
solving dynamic programming was chosen. This, plus the special computational
procedure developed, made it possible after specifying the state and the decision
variable in aggregative terms to refind the per unit area values of these two vari-
ables and thus to calculate the growth on a per unit area basis. Those variables
that were assumed to be constant at anyone stage or to be related to the state
and/ or to the decision variable, consequently could also be differentiated accord-
ing to the different area unitsif desired. In thisway most of the traditional advan-
tages of working on a per area unit basis were maintained while the optimization
was carried out over the whole forestry production process.

The sequence in which the forest stands on the different area units should be
considered for harvesting is determined by their net value growth, a marginal
concept. Those stands showing the lowest (possibly negative) net value growth
should be harvested first. This, of course, corresponds to what the Faustman
formula tellsus. But by taking into account the demands of the industrial capacity
installed and by allowing for the alternative of obtaining raw material elsewhere,
possibly at an additional cost, the traditional method of determining when and
where to cut is shown to be generalized considerably. By the same token, the
model is shown to be useful to the forester who has to manage the forests of a
plant subject to its demand. The demand is alowed to be stochastic.

Throughout the discussion of chapter |1 and more specificaly in the example
of chapter |11, it is shown that the model provides optimal decisions or rules for
action to the forestry planner. It tells the forester when, where and how much
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to cut and/or to order from elsewhere. When solved for different situations, it
will answer such questions as whether over-industrial capacity relative to sus-
tained yield capacity is a desirable thing in the first stages of development. Or
whether sustained yield capacity throughout the planning period is more desir-
able in terms of the objective. Whether the region under consideration can afford
to practice intensive, extensive or no forest management and care at dl. Finally,
these answers can be studied in the light of any value for such variables as the
the discount rate, the price-quantity schedule, landprices, wage rates, transpor-
tation constraints, number of laborers employed, etc., which the forestry planner
might care to specify. External effects can be taken into account where quanti-
fiable. The interests of the future can be considered (other than through the
interest rate) and their costs evaluated, by specifying a certain value for the
final state variable. As was shown, a sensitivity analysis on the fina state variable
is automatically implied in each solution to the model. Thus the objective of
supplying optimal decisions and rules for action for the wide variety of conditions,
which the factors exogenous or endogenous to the forestry sector may impose,
has been reached.
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