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ABSTRACT 

THE ROLE OF OXYTOCIN IN MODULATING NEURAL OSCILLATIONS IN NULLIPAROUS 
WOMEN. Xiaoyue Mona Guo, Helena J.V. Rutherford, Linda C. Mayes. Child Study Center, 
Yale University, School of Medicine, New Haven, CT. 

The hormone oxytocin (OT) has been implicated in social cognition and behavior as well 

as in modulating important affiliative relationships such as parenting; meanwhile, 

intranasal OT administration is gaining popularity as a means to modulate neural 

activity in brain regions during experimental tasks. However, the neural mechanisms 

underscoring the changes associated with OT administration have yet to be fully 

elucidated. Using electroencephalography (EEG), this thesis project aims to further our 

understanding of how OT affects brain activity and response to infant cues. In a double-

blind placebo controlled design, OT’s effect on resting-state neural oscillations and 

event-related potentials (ERPs) to face stimuli were examined in a cohort of nulliparous 

women of childbearing age. Specifically, we examined the effects of intranasal OT on 

delta, beta, and delta-beta coupling during the resting state, and the amplitudes of the 

ERP components N170, P300, and the Late Positive Potential (LPP) to infant and adult 

faces. Prior work has suggested that cross-frequency coupling may be a useful way to 

study cognitive processing, whereas the N170, P300 and LPP are all components 

involved in the processing of facial and emotional stimuli. We found that OT, relative to 

placebo, decreased delta-beta coupling across multiple brain regions; ERP data showed 

that OT administration led to an increased amplitude of the P300 component to infant 

faces compared with adult faces. Taken together, these findings demonstrate that OT 

administration may lead nulliparous women to allocate greater attentional resources to 

infant faces than adult faces via a neural mechanism captured by delta-beta coupling.  
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INTRODUCTION 

Over the past decade, oxytocin (OT) has made news headlines from “OT makes people 

more trusting” to “Hormone OT jump-starts maternal behavior” [Data Source: Google 

Trends (www.google.com/trends)]. This so-called “love hormone” has gained attention 

in the research field for both its seeming influence on an increasing myriad of human 

behaviors and its potential for use in clinical populations. However, despite the four-

fold increase in the number of publications over the past decade on OT and social 

cognition or behavior [1], there continue to be an absence of knowledge about OT’s 

basic neurophysiological effects. What’s more, notably lacking are studies on female 

participants due to the difficulties of controlling for hormonal interactions. 

This thesis will provide a brief overview of the roles OT may play in social contexts and 

of how electroencephalography (EEG) can help inform this body of research, 

particularly for women. The studies described will investigate how OT administration 

affects brain responses in a cohort of healthy nulliparous women as measured by EEG 

both at rest and in response to social and nonsocial cues.  

Physiologic Roles of Oxytocin 

Derived from the Greek word oxutokia (oxus or ‘sharp’ + tokos or ‘childbirth’ = ‘sudden 

delivery’), OT is a neuropeptide produced by the hypothalamus that acts as both a 

peripheral hormone and a central neurotransmitter. OT belongs to an ancient class of 

molecules known as nonapeptides, which are found in virtually every vertebrate 

phylum, with a lineage that can be traced through invertebrates. Despite the different 

types of nonapeptides within diverse species, they all are usually expressed selectively 
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in the brain and gonads (with OT shown to be synthesized further in somatic organs 

such as the heart, thymus and gastrointestinal tract [2]), are influenced by gonadal 

steroids, and are important for social behavior [3]. Much of what we understand of 

oxytocin’s physiologic activity are from animal models, and very early studies suggested 

the importance of OT and the OT receptor in triggering critical aspects of pair bond 

formation and maternal behavior in rodents [3]–[5] which have since been replicated in 

higher-order mammals and primates [5], [6]. 

In humans, OT has a few well-described natural effects: in women, OT induces uterine 

contractions during parturition and is involved in milk release during breastfeeding.  

For both men and women, OT is released during sexual stimulation and orgasm, may 

reduce urine volume and induce natiuresis through co-activation of vasopressin 

receptors, and is involved in the modulation and regulation of the hypothalamic-

pituitary-adrenal (HPA) axis [3]. On a cellular level, oxytocinergic neurons project to 

limbic, mid-, and hindbrain structures including the hippocampus and amygdala; they 

also have indirect effects on the activity of higher cortical functioning and the synaptic 

transmission of other neurotransmitters, including serotonin [7]–[9].  

Importantly, there is a greater understanding of how the OT system is endogenously 

mediated by changes in OT receptors, whether via dynamic regulation in density and 

location by hormones like estrogen, or genetic and epigenetic differences between 

individuals. Pregnancy is a leading example, when elevated estrogen levels prime the 

maternal brain for increased synthesis of both OT and OT receptors, and lead to marked 

increases in OT receptor density in the uterus, mammary myoepithelium, and 

hypothalamus [10]. More recently, single nucleotide polymorphisms in the OT receptor 
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gene have been suggested to affect the efficiency of OT signaling in individuals [11], 

particularly with regards to caregiving behaviors such as parental touch [12] or 

response to infant faces [13]. However, a meta-analysis found that the direct 

social/behavioral impact of these genetic variances are inconsistent and small in 

magnitude [14], with increasing research now focusing on epigenetic modifications of 

the receptor gene via early childhood experiences [15], [16]. 

Influence of Intranasal Oxytocin on Social Behavior 

Given these traditional associations of OT with affiliative behaviors, it is not surprising 

that OT has been broadly mapped onto human neurobiology with its actions translated 

towards affecting important human relationships (see reviews [10], [17]). To assess 

experimentally the central actions of OT in humans, intranasal administration has 

gained wide support and popularity of use. While minimal pharmacokinetic 

information exists on intranasal OT, a number of studies evidenced elevated levels of 

salivary OT for up to seven hours post administration [18]–[20]. More importantly, the 

nasal route circumvents the blood-brain barrier and leads to replicable behavioral and 

functional changes [15], [21]. However, it is worth noting that this methodology is not 

without its criticisms; taking into account the prevalence of somatic OT receptors and 

that a modest percentage of intranasal OT reaches the cerebral spinal fluid compared 

to the peripheral circulation, care needs to be taken in interpreting behavioral results 

as centrally versus peripherally driven [22]. 

Increasingly, OT has been associated with various aspects of positive human sociability 

including supporting partner communication and interactions [23], [24], improving 

emotion recognition in faces [25], [26], and increasing trustworthiness and trust 
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building [27]–[29]. In healthy populations, these results translate to a promise of stress 

reduction and anxiolysis [30], [31] as well as enhanced prosocial behavior [11]. 

Coupled with clinical research showing that plasma levels of OT are inversely related 

to depressive [32] and psychotic [33] symptomology, therapeutic considerations have 

risen for OT use in a host of patient intervention protocols from autism and 

schizophrenia to post-traumatic stress disorder and depression [34]–[37]. The crux of 

these treatment effects may lie in OT’s anxiolytic properties, as it decreases an 

individual’s aversion to negative internal or external stimuli [15]. 

However, despite excitement about OT’s potential pharmacologic role, little is known 

about the neural basis underlying these effects, and inconsistencies abound between 

various studies in dosages used (from 2 IU to 320 IU) and the durations to wait after 

spray administration before measuring changes in the dependent variables [10], [15], 

[38]. Moreover, there is burgeoning evidence that OT also has negative influences such 

as increasing feelings of exclusion [39], and that the behavioral presentation depends 

on the individual. The end-effect of OT appears to be moderated by environmental 

contexts, personal characteristics, and early childhood experiences. Specifically, OT 

plays a stronger role when considering in-group situations, and in participants with 

lower attachment anxiety and supportive parenting backgrounds [15], [40].  

Differential Oxytocin Effects on Women 

Oxytocin and the Mother 

Encompassing all the above described affiliative behaviors of trust and empathy is the 

act of parenting. Unsurprisingly, the earliest evidence suggesting OT’s influence beyond 
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that of reproduction and parturition physiology was the stimulation of a nurturing, 

maternal phenotype in virgin rats that were centrally administered with OT [41]. 

Multiple human and animal studies since have supported this observation and 

implicated OT in having a key role in the formation and development of the infant-

parent bond [6], [42]. For example, affectionate and stimulatory parenting behaviors 

are correlated with OT levels in new mothers and fathers, respectively [10], and 

securely attached mothers have a stronger OT response following a play interaction 

with their child as compared to insecurely attached mothers [43]. Moreover, a steady 

rise in OT levels from the first through third trimester in a pregnant woman is 

correlated with higher self-reported bonding scores to her unborn infant [44]. There 

also appears to be a genetic basis underlying the parental OT pathway, with low-risk OT 

receptor alleles corresponding with more sensitive parental care [12], and stronger 

preference for infant faces [13], [45].  

One way to experimentally study parenting is through examining and comparing the 

response to infant versus non-infant cues. This predilection for infant cues (faces and 

cries) that seems to instinctively trigger feelings of protection and caretaking may arise 

from an innate positive affect towards the “baby schema,” a collection of infantile 

characteristics like big eyes and round features [46]. Multiple studies show individuals 

having greater responses in brain regions associated with face processing, attention, 

and reward when viewing infant versus adult faces; the use of images or sounds from a 

parent’s own infant further enhances these responses (see review [47]). With its 

association with affiliative behavior, intranasal OT administration also unsurprisingly 

increases sensitivity to infant cues [45], [48]. 
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More recent work suggests that a number of individual differences, including substance 

use [49] and depression [50] may also affect the neural response to infant cues. As 

stress and addiction both impact prefrontal cortical function [51], [52] these states 

may have detrimental effects on executive function as it relates to parenting behavior 

[53]. Evidence further shows OT to have a bidirectional relationship with HPA activity 

[54] and drug exposure [55]. In rodents, chronic OT administration leads to a 

reduction of the acute stress response [56]; OT has also been shown to be released by 

the heart and vasculature, suggesting a role in the modulation of cardiac activity and 

vascular tone [57], [58]. Accordingly, in mothers 2 – 6 months postpartum, the amount 

of plasma OT following stress induction was related to lower cardiac and vascular 

reactivity and increased levels of norepinephrine [59]. This attenuation of the HPA axis 

by OT is further observed with lactating mothers, where a rise in OT following 

breastfeeding is inversely related to ACTH and cortisol levels, and the act of 

breastfeeding can decrease HPA responses to a stress exposure [44]. These studies 

suggest potential benefits of OT in modulating the physiological stress responses that 

are critical factors in parenting; they further suggest that OT may have a wider 

regulatory function than previously thought.  

More broadly, global gray matter volume has been shown to significantly increase in 

mothers from 2 – 4 weeks to 3 – 4 months postpartum [60], supporting a notion that 

cortical reorganization over the postpartum period serves to facilitate parenting 

behavior and the orientation of attention and perception towards the infant. The exact 

neurological basis of parenting, however, is still unknown. An area of accumulating 

evidence is the idea that that reward neural circuits in mothers are recruited when 

they are engaged with infant cues, particularly of their own infants [61]. Several 
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studies have shown the importance of increasing orbitofrontal cortex activity in various 

aspects of parenting, including when listening to infant cries versus white noise [62], 

[63], viewing pictures of own infant faces versus unknown infant faces [64], perceiving 

infant faces as compared to adult faces [65], and distinguishing maternal from 

romantic attachment [66]. OT administration has been shown to directly affect neural 

activation of similar regions, with a recent meta-analysis of fMRI studies on mother-

infant interactions finding greater activation of the left insula but decreased activation 

of the dorsomedial frontal cortex in the maternal brain [67].  

Oxytocin in Nulliparous Women 

Despite rich research on the maternal-infant relationship, it is difficult to understand 

the changes that occur in a woman’s affiliative processing abilities throughout the 

course of pregnancy and into early and late-postpartum periods. This is made even 

more complicated by further differences in the neural response to infant cues while 

comparing parents to non-parents [68], suggesting a unique parental neurologic state 

that could be in part modulated by OT. Multiple studies describe how intranasal OT 

administration modifies a nulliparous woman’s neural and behavioral responses to 

infant cues to being more similar to those of a postpartum woman. For instance, 

nulliparous participants given OT have increased empathy and decreased negative 

affect towards a crying infant, and report higher arousal by photos of infants [69]–[71].  

The OT literature has burgeoning data supporting the existence of underlying sexual 

dimorphism modifying OT’s physiologic effects and the importance of appreciating 

these sex-dependent effects particularly for translational research [72].  Indeed, a 

recent rodent study suggested a direct link between sexual dimorphism in OT-
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producing areas of the brain and sex-specific behaviors. By optogenetically turning on a 

group of hypothalamic neurons, the researchers were able to increase a virgin female 

rats’ pup retrieval behavior and circulating OT levels in rats of both sexes, providing 

new causative data on gender differences in social or reproductive behaviors [73]. In 

human women compared to men, OT is associated with almost opposite neural imaging 

findings particularly in the temporal lobes and subcortical areas such the amygdala 

[38], [74]. The neuropeptide has also been shown to reduce self-reported anxiety 

measures in women who use emotion-oriented coping mechanisms but not men [75], 

and generally leads to more “tend and befriend” traits instead of the “fight and flight” 

responses of the male participants [76], [77]. Similarly, there is some indication that OT 

makes a male’s neural responses, especially older men’s, more similar to that of females 

[78], [79].  

Despite gender being a well-explored moderator of OT effects on social cognition, a 

significant limitation to our understanding of maternal-infant relationships is a scarcity 

of data using non-maternal female populations. This bias is evident in the 44 

publications using intranasal OT prior to 2010, where 32 used an all-male participant 

pool and only one used an all-female group [17]. In order to avoid potential interactions 

and confounding by hormonal variances, researchers often do not recruit female 

participants, and thus our foundation of OT-related knowledge has predominantly been 

anchored on male-oriented studies. For the studies that do use females and males, some 

show a lack of gender differences (i.e., [80]–[82]), possibly due to differences in study 

design and inclusion/exclusion criteria of the participants (including but not limited to 

OT dosage, oral contraceptive use, menstrual cycle, and parity). 
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A well-controlled, mechanistic understanding of OT’s effects on the nulliparous female 

brain thus still requires study. This thesis employs a female-only sample given the 

limited knowledge of OT effects on neural activity in this group, to help augment our 

sex-specific appreciation of OT modulation. 

Assessing Neural Responses to Oxytocin Using Electrophysiology 

Given the sometimes conflicting and inconsistent results of intranasal OT research, 

there is growing interest towards exploring its effects using behavioral and functional 

neuroimaging [83]. The majority of these intranasal OT studies have employed 

functional magnetic resonance imaging (fMRI), a methodology relying on changes in 

blood oxygenation to determine brain activity [38]. However, electroencephalography 

(EEG) provides a valuable alternative to imaging data by enabling a direct index of 

neuronal activity through measuring post-synaptic potentials of cortical pyramidal 

neurons [84]. The few studies using EEG have mostly shown that OT administration 

mainly alters cortical activity during social tasks, specifically, and that these neural 

effects correspond with performance on these tasks [38]. Through complementing the 

spatial resolution of fMRI findings with the temporal resolution of EEG studies, a more 

comprehensive picture of the neurophysiology behind OT administration on human 

cognitive and social behavior can be formed. 

Delta-Beta Coupling 

In EEG, tightly coupled neural correlates can be measured as oscillations of varying 

frequency: slow waves (i.e., delta, theta) are thought to reflect subcortical emotion and 

motivational processes, whereas fast waves (i.e., alpha, beta, gamma) are thought to 
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reflect more cortical cognitive control processes [85]. Prior research has found no 

changes in the neural activity of individual frequency bands with OT administration 

when EEG was recorded at rest without social stimuli or tasks [38], [86]. As such, 

interest has increasingly veered away from the study of individual frequency bands to 

focus on cross-frequency coupling, measured as correlations between the amplitudes of 

slow- and fast-wave oscillations, to understand complex brain interactions more fully. 

Indeed, this method may be more sensitive to the complexities of OT effects [87].  

In particular, amplitude-amplitude coupling between delta and beta activity may 

represent a synchronization or interface between emotional or motivational systems 

and higher-order cognition, given the likely subcortical and cortical generators of these 

oscillations, respectively [85]. Support for this approach can be garnered from studies 

examining delta-beta correlations when the interplay of affect and cognition may be 

compromised, particularly in relation to increased levels of stress and anxiety. For 

example, there is a positive association between the strength of delta-beta coupling and 

basal cortisol levels [88]; intranasal administration of cortisol also increases this 

correlation, an effect that was amplified in participants with higher levels of behavioral 

inhibition [89]. Furthermore, delta-beta coupling is increased in more anxious 

individuals and decreased after the treatment of anxiety [90]. Consequently, given the 

previously described properties of OT in decreasing stress and anxiety, OT 

administration may modulate cross-frequency coupling on EEG despite not affecting the 

activity of individual frequency bands.  

In the first portion of the current study, EEG served as a viable tool for evaluating and 

understanding the underlying neural mechanisms of OT in healthy nulliparous women 
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in the absence of any social or behavioral task. Through observing OT effect on the 

amplitudes of delta, beta, and delta-beta coupling at rest, we can directly examine the 

role of OT at the neural interface of emotional or motivational systems and cognition 

[85]. Given the aforementioned relationship of delta-beta coupling with anxiety, it was 

hypothesized that administration of intranasal OT, relative to placebo, would decrease 

delta-beta coupling, consistent with OT’s association with decreasing stress and anxiety. 

As previous research has not shown changes in delta and beta oscillations following 

hormonal manipulations, it was anticipated that these individual frequency bands 

would similarly be unaffected by OT administration. 

Event-Related Potentials to Infant Faces: N170, P300, LPP 

Evoked or event-related potentials (ERPs) are another way of observing the brain’s 

electrical potentials as elicited by specific sensory events. Whereas the rhythmic 

oscillations of EEG show a more general state of activity, ERPs enable the analysis of 

the synchronized processes of a population of neurons underlying perceptual, 

attentional, and cognitive responses in a time-locked manner.  

Characteristic ERP waveforms are associated with different visual stimuli; faces are 

particularly prominent in the literature as eliciting a stereotypical response. The N170, 

a negative ERP component 170ms after the presentation of the stimulus, is an early 

marker of the structural encoding of human faces [91], [92]. Correlating with fMRI, the 

N170 is most prominent over brain areas implicated in face processing (e.g.,the 

fusiform gyrus) [34]. Infant faces have been shown to differentially affect this 

component compared to adult faces in parents and non-parents alike, while being 

modulated by bond formation between a parent and their infant [93]. Indeed, the N170 
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response is affected by individual differences in sensitivity to infant cues such as 

parental status and mood [50], [94]. It has also been shown to be modulated by the 

infant’s emotional expression (particularly of distress), although the literature is mixed 

regarding how the amplitude of the N170 changes in response to the cue versus other 

parental characteristics like depressive symptomology [95]. 

The P300 or P3 positivity component is another well-described ERP configuration 

triggered by detection of or attention to an improbable, ‘oddball’ stimulus [92]. 

Compared with the immediacy of components like that N170 that correspond with the 

initial perception of a stimulus, the P300 is associated with a later stage of cognitive 

processing that requires more long-term memory and recognition [96]. Overall, it 

appears to reflect attention allocation towards motivationally salient and task-relevant 

stimuli, as the P300 amplitude is directly related to subjective perceptions of the 

probability of and attentional engagement to the stimulus [96], [97]. Crucially, P300 

activity has been evidenced to be sensitive to prosocial behavior [98], and emotional 

stimuli in particular leads to a sustained P300 dubbed the late positive potential (LPP). 

More specifically, the LPP reflects a conscious allocation of attention to, and presumed 

continuous processing of, motivationally significant emotional stimuli [97]. 

Both the P300 and LPP have been explored in the context of the presumed relative 

importance of processing infant cues [95]. The P300 is greater in amplitude when 

mothers are tested with cues of their own versus an unknown infant [93], [99] and 

greater with distressed infant faces [68]. For the LPP, mothers who were more 

accurate in face recognition tasks to negative infant expressions had larger amplitudes 

[13] while neglectful mothers in a separate study had attenuated LPP amplitudes to all 
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emotional infant faces [94]. Similar to the N170, characteristics of the P300 and LPP 

also appear to be modulated by individual differences, such as the desirability or 

preference for the stimuli, parental status, anxiety, and early childhood experiences 

[93], [97], [100], [101].  

Taken together, the N170, P300, and LPP embody different processing modalities of 

infant cues, with the former representing earlier, more automatic perception and the 

latter representing higher-order cognition. Newer evidence suggests that face 

processing may be influenced by the affective significance of the stimuli and therefore 

interact with emotion or reward systems [102]; a few imaging studies show an 

interaction between the fusiform gyrus and the amygdala or orbitofrontal cortex 

during face viewing [65], [102]. Although dopamine and norepinephrine have been 

implicated in the manifestation of the P300 and LPP [97], there are a few studies 

exploring neurohormonal involvement with other ERP responses. Oxytocin, with its 

reported roles in attention allocation for faces and emotional events, may be an 

integral molecular modulator of these neural responses particularly with regard to 

affiliative stimuli.  

In the second part of this thesis, we performed an ERP analysis on the N170, P300, and 

LPP components, employing neutral and distressed infant and adult faces with non-

social stimuli (houses) as a control. Given OT’s aforementioned properties in social 

behavior, it was expected that OT administration would increase sensitivity to faces 

compared with houses, and emotional compared with neutral faces. A prior study 

showed that mothers with certain alleles of the OT receptor gene have earlier latencies 

for the N100 (a negativity differentiating emotional facial expressions) only in 
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response to infant faces [13]. Other studies showed that elevated P300 amplitudes 

were directly associated with OT levels in foster parents viewing photos of their child 

[103], while OT administration led to larger LPP amplitudes with emotional faces 

[100]. As such, it was hypothesized that OT administration would increase both the 

early N170 component and the later P300 and LPP amplitudes in our cohort of 

nulliparous women. Specifically, we hypothesize that OT will further increase the 

amplitudes of the N170 and P300 for infant compared with adult faces, and LPP for 

distressed faces compared with neutral faces.   
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STATEMENT OF PURPOSE 

Aim:  

The specific aim of this thesis is to determine how OT affects (1) resting-state neural 

oscillations and (2) event-related potentials in response to social stimuli in healthy, 

nulliparous women. 

Hypotheses: 

Intranasal OT administration will: 

(1) Decrease delta-beta coupling in participants at rest without affecting the activity 

of the individual delta and beta frequency bands 

(2) Increase sensitivity of the participants to social stimuli as compared to placebo, 

measured as increased amplitudes of the: 

a. N170 to infant faces compared with adult faces 

b. P300 to infant faces compared with adult faces 

c. LPP to emotional (distressed) faces compared with neutral faces 
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METHODS 

Note: Helena Rutherford (HR) and Linda Mayes (LM) designed the experiments and 

trained me (XMG), Nathan Hayes (NH), and Kelsey Graber (KG) on all protocols. NH and 

KG performed the telephone eligibility screening. XMG, NH, and KG conducted the visits 

and ran the participants through the face-viewing tasks. XMG and HJVR analyzed the 

data and HJVR performed the statistical analyses. 

Participants 

Twenty-six healthy, nulliparous women from the Yale University and New Haven 

community were recruited using flyers for two study visits scheduled four weeks apart 

to facilitate continuity in menstrual cycle phase. Eligibility was assessed by telephone 

screening and exclusion criteria included pregnancy, use of any hormonal birth control, 

clinically significant medical or psychiatric illnesses, and use of psychotropic 

medications. A full list of inclusion/exclusion criteria are listed in Table 1.  

All participants gave informed consent during the first visit and were compensated $80 

for each visit ($160 total). Two participants did not return for a second visit and the 

data from one participant could not be analyzed due to excessive artifacts. Therefore, 

the final sample consisted of 23 nulliparous women (22 single, 1 married), aged 18 – 31 

years (M=23.3; SD=3.3). Using self-reported menstrual data, half of the participants 

were in the luteal phase of their menstrual cycle. All were high school graduates 

(M=16.7 years of education; SD=2.0). Self-identified ethnicity was: Caucasian/White 

(n=14), Asian-American/Asian (n=5), African-American/Black (n=1), Hispanic/Latina 

(n=1) and Other (n=2). One participant reported current cigarette use, and two 
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reported current marijuana use; no participants had present or past alcohol or 

substance abuse as gauged by the Addiction Severity Index Lite CF [104] interview. 

Table 1. Inclusion and exclusion criteria used for telephone screening of participants 

Inclusion Criteria Exclusion Criteria 
• Adults ages 18-64 
• Good medical health 
• Ability to understand 

and speak English 
• Nulliparity 

 

• Medical Illnesses:  
o Moderate or severe acute or chronic medical illnesses 

(e.g. cardiac disease, diabetes, epilepsy, influenza). 
• Cardiovascular risk factors: 

o History of hypertension with baseline blood pressure 
above 140 mm Hg (systolic) over 90 mm Hg (diastolic) 

o Any history of syncope and/or baseline blood pressure 
below 100 mm Hg (systolic) 

• CNS disease:  
o Known history of brain abnormalities (e.g., 

neoplasms, subarachnoid cysts), cerebrovascular 
disease, infectious disease (e.g., abscess), or other 
central nervous system disease 

o History of head trauma that resulted in a persistent 
neurologic deficit, or loss of consciousness > 3 
minutes 

• Medication status:  
o The use of contraceptive hormones 
o The use of any psychotropic medications excluding 

those individuals on stable doses of a neuroleptic 
and/or an antidepressant medication for at least the 
past 6 weeks 

Procedure 

All procedures were approved by Yale School of Medicine Human Investigation 

Committee (HIC: 1309012677) and registered under clinicaltrials.gov (Identifier: 

NCT02238379). Both visits occurred between 1200h and 1500h in order to minimize 

diurnal variations in hormone levels, with attempts to schedule the participant at the 

same time on both days [105]–[107]. Participants refrained from exercising and alcohol 

use for 24 hours, caffeine intake for 12 hours, and smoking and eating for two hours 

before each visit. Upon arrival, participants had their blood pressures measured and 

completed pregnancy, urine drug, and breath alcohol and carbon monoxide testing. No 
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participants were pregnant or evidenced recent substance use in their urine toxicology 

or breathalyzer tests. 

Given the intranasal route of the spray administration, participants filled out a nasal 

questionnaire (www.nwentallergy.com) to document the presence and severity of 

symptoms such as nasal congestion and itching. All participants had minimal symptoms, 

with total scores of less than four (out of 15) during their first visit and with one 

participant scoring six during the second visit due to a recovering upper respiratory 

illness. Moreover, participants completed various personality questionnaires including 

the State-Trait Anxiety Inventory (STAI) [108], the Beck Depression Inventory-II (BDI) 

[109], the Perceived Stress Scale (PSS) [110], and the Parental Bonding Instrument 

(PBI) [111] during each visit (Table 2). The only statistical difference found was for 

State Anxiety, with participants scoring lower on the visits where they received OT 

compared to placebo sprays (M=30.8, SD=7.2 versus M=34.7, SD=10.9; p=0.03). 

However, both scores lay well below the cutoff for clinically significant anxiety 

symptoms, and Trait Anxiety was not statistically different between conditions. Finally, 

routine safety monitoring with blood pressure, heart rate, and temperature 

measurements was conducted throughout the visit. 

In this double-blind, within-subject crossover design, participants received, at random 

and counterbalanced, either OT (United States Pharmacopeia) or a placebo delivered by 

nasal spray. Both substances were in identical bottles and prepared by the 

Investigational Pharmacy at Yale-New Haven Hospital. After priming the bottle, 

participants administered four puffs of spray, alternating nostrils with 15 seconds 

between puffs, of 4 IU/puff resulting in a total dose of 24 IU. This OT dosage was chosen 

 

http://www.nwentallergy.com/
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because of there being no adverse behavioral and neurobiological effects in previously 

reported intranasal administrations [112]. The placebo spray contained all ingredients 

except the active OT. In post-experiment interviews, participants were unable to 

identify better than chance whether they received the OT (n=4 guessed correctly) or 

placebo (n=5 guessed correctly) spray. After a 45 minute rest period, participants first 

completed the ERP Experiment lasting 25 minutes, followed by the EEG Experiment 

(described below). Each visit lasted approximately two hours, with both visits having 

the same procedural flow.  

Table 2. Mean scores and standard deviation (SD) for questionnaires completed by participants on 
separate visits prior to nasal spray delivery. Paired two-tailed t-tests were used to calculate p-value 
for comparison between conditions if appropriate. 

Questionnaire Placebo Oxytocin p-value 

Beck Depression Inventory a 4.3 (SD=5.9) 4.1 (SD=6.2) 0.93 

Perceived Stress Scale b 17.7 (SD=7.3)‡ 17.0 (SD=8.0) 0.31 

State-Trait Anxiety Inventory c    

State Anxiety 34.7 (SD=10.9) 30.8 (SD=7.2) 0.03 

Trait Anxiety 30.3 (SD=7.6) 29.9 (SD=7.9) 0.79 

Parental Bonding Instrument d    

Maternal Care 29.6 (SD=6.8)  

Paternal Care† 27.7 (SD=8.8)  

Maternal Protection 13.2 (SD=7.9)  

Paternal Protection† 11.1 (SD=8.8)  

†1 participant did not report paternal care or protection scores  
‡1 participant had incomplete questionnaire  

a Scores <13 indicate minimal depression 
b Scores of 16-20 indicate slightly higher than average stress 
c Scores >40 suggest clinically significant anxiety symptoms 
d Optimal parenting is defined as high care (maternal>27, paternal>24) and low protection 
(maternal<13.5, paternal<12.5). Reported data are averaged from both visits. 
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EEG Acquisition 

All data were collected in a sound-attenuated room under low ambient light conditions. 

A 128 Hydrocel Ag/AgCl electrode sensor net (Electrical Geodesics, Inc.; Tucker, 1993) 

was soaked in a warm potassium chloride solution and fitted according to manufacturer 

specifications evenly and symmetrically across the participant’s scalp from nasion to 

inion and from the left to right ear. Continuous EEG was recorded using Net Station 

4.2.1 with a sampling rate of 250 Hz and high impedance amplifiers (Net Amps 200, 

0.1Hz high pass, 100Hz low pass). Electrodes were referenced to the vertex (Cz) during 

EEG recording and impedances were kept below 40 kΩ.  

EEG Experiment 

After the ERP Experiment and approximately 70 minutes after intranasal 

administration of OT or placebo sprays, participants completed a resting state eyes-

open eyes-closed EEG task. This task consisted of a continuous series of six one-minute 

recording periods as participants sat quietly in alternating eyes-open (EO) and eyes-

closed (EC) conditions (i.e. OCOCOC).  

ERP Experiment 

Participants were asked to sit quietly for 45 minutes after administration of either the 

OT or placebo spray with blood pressure and heart rate monitored throughout.  The 

experimental task began with nine practice trials containing stimuli not included in the 

experiment (photographs of farmyard animals) following the same protocol as the 

experimental trials. The trial sequence consisted of a central fixation cross (jittered 
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between 400 – 600ms), stimulus presentation (1000ms), and a blank screen (1000ms). 

All stimuli were randomly selected and presented on a uniform black background. 

Experimental stimuli were grayscale photographs of 12 unique infant faces, 12 unique 

adult faces, and 24 unique houses. With identity held constant, half (6) of the faces in 

each group for both infants and adults showed distressed expressions while the other 

half (6) showed neutral expressions. Pre-tests were conducted using all the face stimuli 

to confirm their emotional content. 

Each participant completed four blocks of 108 experimental trials. Within each block, 

48 face stimuli (50% of the faces were infants; 50% of the expressions were distressed) 

and 48 house stimuli were presented. In order to assure participant attention, an 

additional 12 catch trials requiring a key press response were included in each 

experimental block, but were not included in the final analysis. In total there were 192 

house trials and 192 face trials (48 Adult Distress, 48 Adult Neutral, 48 Infant Distress, 

and 48 Infant Neutral). The face-viewing experiment took approximately 25 minutes to 

complete. 

Data Analysis  

All analyses were performed blind the spray condition of each participant. Net Station 

4.5 was used to pre-process all raw EEG data and prepare the data for statistical 

analysis. Secondary analyses of any interactions between the self-report questionnaires 

(i.e. STAI, PSS, BDI, PBI) and EEG data will be conducted in a follow-up study and are not 

reported below.  
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EEG Experiment 

To analyze EEG data during the resting conditions, the data was segmented into two-

second epochs, yielding 90 possible epochs for each of the EO and EC conditions. 

Artifact detection was 200μV for bad channels and Ocular Artifact Removal (OAR; 

[113]) using a blink slope threshold of 14μV/ms was applied to the EEG data. Eye blink 

and movement threshold was set to 150μV. Spline interpolation was used to replace 

channels with artifacts in more than 40% of trials. EEG data were then re-referenced to 

the average reference of all electrodes and baseline-corrected. Following pre-

processing, there were on average 73 (range: 34-90) EO epochs and 78 (range: 36-90) 

EC epochs (t(48)=-2.03, p=.048). 

Data were exported to Matlab 7.9.0 (R2009b MathWorks, Natick, MA) where Fast 

Fourier Transform analyses were performed. The average spectral power for delta 

(0.5–4Hz) and beta (13–25Hz) frequencies were extracted and natural log transformed 

(ln) given their non-normal distributions. Subsequent statistical analyses were 

performed on the correlation between the ln power of delta and beta frequencies and 

averaged across electrodes sites in: central (C3, C4, Cz), prefrontal (Fp1, Fp2), frontal 

(F3, F4, F7, F8, Fz), parietal (P3, P4, Pz), temporal (T3, T4, T5, T6), and occipital (O1, O2) 

regions (consistent with the 10-20 electrode system; Jasper, 1958; Figure 3D). Ln delta 

and beta power were also compared when averaging across all electrode sites. Although 

spectral data from EO and EC conditions are often averaged together to represent a 

single resting state condition, we compared the ln delta and beta power within and 

between EO and EC conditions given differences that have been reported previously 

between these two resting EEG conditions [114], [115]. 
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Next, Steiger’s [116] modification of Dunn and Clark’s [117] z score was used to test for 

differences between two non-overlapping dependent correlations [118], and 95% 

confidence intervals were calculated [119]. Given the directional hypothesis of 

decreased delta-beta correlations associated with OT, one-tailed tests were employed. 

Effect size is presented as partial eta-squared (η2partial), where .01 represents a small 

effect size, .06 represents a medium effect size, and .14 represents a large effect size 

[120]. Greenhouse-Geisser corrections were used when sphericity assumptions were 

violated. 

ERP Experiment 

For data processing to analyze the ERPs, each EEG file was first digitally filtered with a 

30 Hz low-pass filter for reduction of environmental noise artifacts. The EEG signal was 

subsequently segmented into one-second epochs, beginning 100 ms before and ending 

900 ms after the onset of the stimulus.  Spline interpolation was used to replace 

electrode channels with artifacts in more than 50% of the trials and OAR using a blink 

slope threshold of 14 µV/ms was also applied to all data. 

Electrode clusters as they cover the scalp are presented in Figure 1. Electrodes of 

interest were selected for the N170 using scalp regions characteristically eliciting the 

N170 [121], and conforming to electrode sites used in published dense-array EEG face 

perception studies [50], [122]. These electrode sites consisted of two clusters of six 

electrodes over the left lateral posterior scalp (58 59, 64, 65, 68, and 69) and the right 

lateral posterior scalp (89, 90, 91, 94, 95, and 96). Data for ERP analysis were averaged 

across the six sites in each hemisphere. The N170 time window was derived and 

customized for each participant using the Net Station user-defined event function; this 
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enabled statistical extraction of each component and ensured they were representative 

of waveform variability. Specifically, the N170 that was extracted for statistical analysis 

was identified and marked as an event at each electrode site per participant. The time 

window ranged across participants from 150 ms to 225 ms, with the N170 peak defined 

as the minimum amplitude falling in that window.  

Figure 1. Electrode array layout with clusters of interest highlighted (top of figure is nasion). N170 
(Circled) = Left hemisphere: 58 59, 64, 65, 68, 69; Right hemisphere: 89, 90, 91, 94, 95, 96. P300/LPP 
(Shaded) = 61, 62, 67, 72, 77, 78.   
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For the P300 and the LPP, ERP data were averaged over six electrode sites typically 

used in P300 research (61 62, 67, 72, 77, and 78; [99], [123]) that also overlap with 

published dense-array LPP research [100], [101]. Using time windows of 200 to 400 ms 

and 500 to 800 ms after stimulus onset, we measured the mean amplitudes of the P300 

and the LPP, respectively. Next, the P300 and LPP were both examined in the averaged 

data of each participant to confirm that the component of interest was captured at each 

electrode site. Finally, the mean amplitudes were statistically extracted for each 

participant. 

Statistical analysis was performed using repeated measures of analysis of variance 

(ANOVA). All data were also assessed for their appropriateness for parametric analyses 

and house stimuli were separately analyzed from face stimuli for all components. 

Similar to the EEG Experiment, effect size is presented as η2partial.   

The N170 data for houses were analyzed with a two (spray: OT, placebo) by two 

(hemisphere: left, right) within-subject ANOVA while faces were analyzed using a two 

(spray: OT, placebo) by two (face: infant, adult) by two (emotion: distressed, neutral) by 

two (hemisphere: left, right) within-subject ANOVA. For both the P300 and LPP, a two-

tailed paired t-test was conducted to assess the effect of OT versus placebo 

administration on house stimuli; a two (spray: OT, placebo) by two (face: infant, adult) 

by two (emotion: distressed, neutral) within-subject ANOVA was conducted for face 

stimuli. Of note, one participant was excluded as an outlier for LPP analyses following 

boxplot assessments. 
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RESULTS 

EEG Experiment 

Delta and beta powers 

Scalp topographies for the raw delta and beta powers across each of the experimental 

conditions (EO, EC, EOEC) are presented in Figure 2. The ln power for each electrode, 

resting condition, and spray condition were first separately examined (Table 3) and 

found to have no main effect of spray for either delta [F(1,22)=1.48, p=.24, 

η2partial=.06] or beta [F<1] frequencies. This confirmed that resting delta and beta 

were unaffected by OT administration relative to placebo.  

Table 3. Natural log transformed delta and beta power for each electrode site (including a total 
power averaged across sites) as a function of resting EEG condition (eyes open, eyes closed) and 
spray type (OT, placebo). 

 Electrode Site 

 Prefrontal Frontal Central Parietal Temporal Occipital Total 

Eyes Closed        

Delta-Oxytocin 1.97 1.06 0.50 0.95 0.67 1.01 0.96 

Delta-Placebo 1.88 0.86 0.48 0.81 0.41 0.80 0.80 

Beta-Oxytocin -1.95 -2.64 -2.90 -2.56 -2.74 -1.99 -2.55 

Beta-Placebo -2.07 -2.72 -2.84 -2.54 -2.86 -2.19 -2.61 

Eyes Open        

Delta-Oxytocin 1.57 0.88 0.36 0.71 0.62 0.83 0.78 

Delta-Placebo 1.50 0.65 0.36 0.48 0.37 0.65 0.61 

Beta-Oxytocin -1.68 -2.70 -3.09 -2.92 -2.95 -2.38 -2.71 

Beta-Placebo -1.77 -2.76 -3.08 -2.95 -3.06 -2.56 -2.78 
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There was a main effect of resting EEG condition for both delta [F(1,22)=10.80, p=.003, 

η2partial=.34] and beta [F(1,22)=13.29, p=.001, η2partial=.38], with greater power 

during EC relative to EO. For delta, there was a main effect of electrode site 

[F(3,76)=40.06, p<.001, η2partial=.65], with greater delta in prefrontal and parietal 

regions and lower delta in central regions. These main effects were qualified by resting 

condition and electrode site interaction [F(3,62)=7.52, p<.001, η2partial=.26], showing 

variability in the magnitude of delta during EO and EC conditions (with this difference 

being smallest in temporal electrode sites). There was also a main effect of electrode 

site for beta [F(5,110)=30.85, p<.001, η2partial=.58], with greater power in prefrontal, 

parietal and temporal regions. Similarly, these main effects were qualified by a resting 

condition and electrode site interaction [F(2,40)=36.19, p<.001, η2partial=.62] where 

beta was greater in EO and EC conditions in prefrontal regions but greater in EC than 

EO conditions in other regions.  

There were no other interactions between these variables [F’s<1] for either delta or 

beta. Taken together, these data illustrate how delta and beta vary as a function of the 

resting EEG condition as well as the electrode site where these frequency bands are 

recorded.  Critically, delta and beta powers did not differ as a function of OT or placebo 

administration.  

Cross-frequency coupling  

Delta-beta correlations were next examined between OT and placebo conditions. Figure 

3 depicts delta-beta correlations for EC (Panel A), EO (Panel B), and EOEC averaged 

together (Panel C).  
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Figure 3. Delta-beta correlations for placebo and OT conditions at each electrode region (listed on 
the horizontal axis) for the Eyes Closed condition (Panel A), Eyes Open condition (Panel B), and 
Averaged Eyes Open and Closed conditions (Panel C). Schematic of position and naming of electrodes 
using the 10-20 EEG system (Panel D). *Statistical reduction in delta-beta correlation between OT 
and placebo conditions (p<.008; corrected for multiple comparisons); Fp=Prefrontal; F=Frontal; 
C=Central; T=Temporal; P=Parietal; O=Occipital   
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In the EC condition, OT administration resulted in decreased delta-beta correlation 

across all electrode sites relative to placebo [z=3.25; p < .01; 95% CI: 0.21–0.99]. 

Examining individual electrode locations separately, delta-beta correlations were 

differentiated by spray condition at prefrontal [z=1.69; p<.05; 95% CI: -0.66–0.88], 

frontal [z=2.14; p<.05; 95% CI: 0.03–0.75], parietal [z=2.80; p<.01; 95% CI: 0.12-0.81], 

temporal [z=2.58; p<.01; 95% CI: 0.10–0.88], and occipital [z=1.71; p<.05; 95% CI: -

0.06–0.80] sites. Central electrode sites did not show a condition difference [z=0.99; 

p=.16; 95% CI: -0.19–0.60]. Notably, after Bonferonni correction for multiple 

comparisons across each site (p<.008), only comparisons between parietal and 

temporal sites remained statistically significant.  

The EO condition had a similar trend for decreased delta-beta correlation after OT 

administration, although no individual electrode site reached statistical significance 

[z’s<1.15; p’s>.12]. After averaging EOEC together as done in prior research, OT 

administration significantly decreased the global delta-beta coupling across all 

electrode sites [z=2.15; p .02; 95% CI: 0.04–0.92]. However, there was no condition 

difference at individual electrode sites or after correcting for multiple conditions (NB: 

parietal [z=2.28; p<.05; 95% CI: 0.05–0.77] and temporal [z=1.69; p<.05; 95% CI: -0.06–

0.82] sites approached statistical significance).  

In summary, intranasal OT administration decreased the resting state EEG delta-beta 

correlation in the averaged EOEC condition, but predominantly affected the EC 

condition. 
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ERP Experiment 

N170 

The N170 amplitude for houses showed no main effect of spray (F<1), hemisphere 

[(F(1,23)=2.36, p=.14, η2partial=.04], or their interaction (F<1).  For faces, there was a 

main effect of emotion [F(1,23)=11.38, p=.003, η2partial =.33] and face type 

[F(1,23)=5.11, p=.034, η2partial=.18], but no main effect of spray [F(1,23)=1.06, p=.31, 

η2partial =.04], hemisphere (F<1), or any interactions (p’s >.14). Of note, the mean 

N170 amplitude was attenuated for houses (M=-1.15 mV; SD=1.34) compared with all 

face types, regardless of expression (Infant M=-3.46 mV, SD 2.40; Adult M=-3.27 mV, SD 

2.13).  

 

Figure 4. Mean P300 amplitudes for adult and infant face stimuli after placebo and OT 
administration. * Mixed effects within subject ANOVA showed main effect of face (p=.03) and Face x 
Spray interaction (p=.03). 
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P300  

A paired t-test comparing mean P300 amplitude for houses after placebo or OT showed 

no significant difference [t(23)=-1.41, p=.17]. For face stimuli, the P300 amplitude was 

modulated by face type [F(1,23)=5.21, p=.03, η2partial=.19], which was qualified by a 

face x spray interaction, [F(1,23)=5.20, p=.03, η2partial=.18]. There was no main effect 

of spray [F(1,23)=1.75, p=.20, η2partial =.07] or emotion (F<1). Figure 4 shows the 

mean P300 amplitude for each face type and spray condition, depicting how OT 

administration selectively led to an increased P300 for infant faces compared with adult 

faces. 

LPP 

A paired t-test comparing mean LPP amplitudes for houses showed no significant 

difference between the placebo and OT conditions [t(22)=1.12, p=.27]. There were also 

no main effects of spray, face type, emotion or their interactions for the face stimuli 

(p’s>.05). 
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DISCUSSION 

Despite the large number of social cognition and behavioral studies that have employed 

intranasal OT administration, the neural mechanisms modulated by this neuropeptide 

remains elusive and not well understood. In this present study, the influence of 

intranasal OT was assessed using electroencephalography in a group of healthy, 

nulliparous women. We examined how OT compared with placebo influenced the 

resting state EEG correlations between delta and beta frequency bands, and affected 

ERP responses to social and nonsocial stimuli.  

During resting state EEG recording, while OT did not modulate the amplitudes of delta 

and beta oscillations individually, it did decrease the cross-frequency coupling of delta 

and beta across EEG scalp sites. Exploring ERP data, OT administration led to increased 

P300 amplitude in response to infant faces as compared to adult faces, without affecting 

N170 or LPP amplitudes. Taken together, these findings suggest that a potential 

mechanism through which to understand how OT administration modulates attention 

allocation for infant cues may be by studying the interrelationships between neural 

oscillations; delta-beta represents one such relationship but other oscillations should be 

examined as well. 

Neural Responses to Oxytocin 

To our knowledge, this is the first study to explore how OT administration affects the 

correlation between spectral powers. Accumulating research is focusing on 

understanding neural network functions through the interactions between fast and 

slow wave EEG activity, which are thought to represent cortical and subcortical 
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generators, respectively [87]. Indeed, previous research on cross-frequency coupling 

have been conducted using cortisol [89] and testosterone [124]; those researchers 

similarly observed hormone modulation of cross-frequency coupling without any effect 

on individual resting delta and beta frequencies. These findings suggest that the 

observed changes in delta-beta correlation may not be due to general neural activity or 

arousal changes from the hormone administration, but rather reflect spectral coherence 

changes in the underlying neurobiological systems.  

As low-frequency oscillations like delta waves are physiologically thought to arise from 

subcortical regions while high-frequency oscillations like beta waves are hypothesized 

to originate in cortical circuits, the apparent changes in delta-beta correlation may 

represent shifts in subcortical-cortical interactions [85]. To date, a majority of research 

describes increased delta-beta coupling as associated with anxiogenic contexts and 

emotional dysregulation [87], which converges well with OT’s anxiogenic properties 

[125]. Interestingly, a few studies suggest that alterations in this coupling are driven by 

and are more sensitive to changes in delta activity than beta [87], [88], implying greater 

subcortical influences on this relationship. Since slow waves are thought to be involved 

in the discrimination of emotional stimuli [126], perhaps changes in delta-beta coupling 

reflect changes in emotional salience. One subcortical brain structure that is strongly 

involved with emotion—and anxiety—is the amygdala. Converging with this, OT 

administration has been shown to alter the functional connectivity between the 

amygdala and the bilateral insula and medial and dorsal anterior cingulate cortices in 

patients with social anxiety viewing fearful faces [127].  
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An advantage of using dense-array EEG methodology is the scalp coverage it provides 

despite poor spatial resolution beyond the cortical surface. We found that decreased 

delta-beta coupling was more pronounced in the temporal and parietal regions, which 

corresponds with fMRI data suggesting that OT effects are the most strongly influenced 

and produced the largest effect sizes across research studies in the temporal lobes [38]. 

These findings correspond with research implicating the temporal regions in the 

processing of emotional cues [128]–[131] and the parietal regions in attentional 

processing [132], [133]. Furthermore, delta-beta coupling has been suggested to be a 

neural correlate of attentional avoidance of threat [134]. Thus, one interpretation of 

decreased coupling in temporal and parietal lobes with OT administration may be that 

the anxiolytic effects of OT dampen attentional processing of affective stimuli through 

modulation of these neural networks.  

A strength of the current study is the examination of neural oscillations at multiple 

electrode sites, separately and together, for the different resting conditions. We notably 

found that although modulation of delta-beta coupling by OT was present when data 

from the eyes-closed and eyes-opened recording periods were averaged together as is 

typically done in EEG research, it was most prominent in the eyes-closed resting 

condition. The physiology behind this phenomenon is not clearly understood, although 

studies have shown that there is increased spontaneous activity [115] and generalized 

low frequency power increase [114] during EC conditions which may render the 

oscillation changes to be more easily visualized. Regardless, it may be valuable to 

consider these conditions separately as well as together in future research. Indeed, 

except for at the prefrontal electrodes, OT administration led to decreased delta-beta 
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coupling at trend-level significance during the eyes-open condition across the scalp, 

which may reflect a need for a larger sample size to better elicit this phenomenon. 

Oxytocin and Infant Cues 

Through capitalizing on the temporal strength of ERPs, we learned how OT may affect 

different stages of stimulus processing—from perception and the N170 to attention and 

cognition with the P300 and LPP. In our cohort of healthy nulliparous women, the N170 

was expectedly attenuated for house compared to face stimuli, and enhanced for infant 

faces and distressed expressions compared to adult faces and neutral expressions, 

respectively. This is consistent with prior studies showing increased N170 amplitude 

with infant faces, particularly those that are distressed [68], [93], [94]. Modulation of 

the N170 by face type and emotion is in line with the component’s association with low-

level categorization of visual stimuli, and suggests the importance of efficient 

processing of infant faces and the discrimination of distress.  

On the other hand, neither the P300 nor the LPP were modulated by emotional 

expression. OT administration increased the amplitude of only the P300 component 

after participants viewed infant faces compared with adult faces, and did not affect the 

amplitudes of the N170 or LPP as was originally hypothesized. Such an outcome implies 

that OT mainly affects the temporally later stages of stimulus processing without 

changing the initial perceptual processing of the faces themselves. The increased 

amplitude of the P300 demonstrates that OT administration was associated with 

participants allocating greater attentional resources to infant faces than adult faces. OT 

consequently selectively rendered infant faces more salient and relevant, which is 

congruent with prior research implicating OT in increasing participants’ sensitivity to 
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infant cues [45] and in the enhancement of the P300 when participants evaluate stimuli 

of greater motivational importance [97].  

Whereas our results of OT’s effect on resting delta-beta coupling suggested anxiolysis 

through a dampening of baseline attentional processes, its effect on the P300 

conversely suggested increased attentional allocation to infant stimuli. These seemingly 

inconsistent results may be due to resting-state EEG oscillations inherently measuring 

different aspects of neuronal processing than ERPs, or can be resolved through the 

perspective that OT renders infant cues to be both more salient and less anxiety-

provoking. Further taking into consideration that OT had the greatest impact on delta-

beta correlation in the parietal and temporal lobes, multiple ERP and fMRI studies have 

inferred the generation of the P300 to be from an interaction between the frontal and 

the temporal-parietal lobes [96], [135]. New research has also shown OT’s ability in 

altering the balance of inhibitory and excitatory neurons projecting from the 

hypothalamus to the cortex; these connections appear to directly control the 

development in virgin mice of a behavioral response to crying pups and subsequent 

memory formation for the socially relevant sounds [136]. Altogether, our data supports 

a role for OT in modulating neuronal circuitry from subcortical to neocortical regions, 

and selectively strengthening resource and attentional allocation to neural processes 

that are involved in handling infant cues, while potentially making these cues less 

aversive. 

The lack of either face, emotion, or OT effect on the LPP was surprising, given its 

intimate relationship functionally and electrophysiologically with the P300. Our results 

were in contrast to prior research finding greater LPP positivity after OT administration 
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in female undergraduates to emotional faces [100]. However, this published study was 

predominantly driven by participants reporting lower maternal love withdrawal, and 

was affected by oral contraceptive use. The authors suggested that participants with 

higher love withdrawal may have maximum facial or emotional processing even under 

placebo administration and would not gain the benefit of additional OT [100]. This is 

consistent with other research connecting early childhood experiences with OT 

sensitivity [15], and may explain why we did not observe an effect without elucidating 

and analyzing our participants based on these personal characteristics. Since the LPP 

represents a conscious allocation of attention compared to the P300 [97], individual 

traits may play a greater role in impacting this component and would be a direction of 

future research. Consistent with this idea is a recently published study showing 

enhanced LPP in a cohort of mothers shown distressed compared to neutral infant faces  

[101], which together with our lack of LPP effect by infant faces in a nulliparous group, 

further provides support for a uniquely maternal brain.  

Along the same vein, although infant faces elicited stronger N170 amplitudes than adult 

faces in our cohort of nulliparous women, OT did not modulate this difference. The 

N170 has been shown to be greater in response to infant cues in parents and individuals 

in romantic relationships than in individuals who are single or have no children [93], 

[137]. Although all our participants have never been pregnant, we did not ask for 

relationship status or caregiving experiences which may both play modulating roles. 

However, it may be that low-level perceptual or visual processing (represented by the 

N170) are simply not affected by OT [138]. In fact, there is some data showing that the 

N170 to infant faces is not modulated by parental status [50] or by familiarity of the 
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infant to the mother [99].  As such, OT administration may not change early neural 

responses to an already salient infant cue.  

Limitations and Future Directions 

An important limitation to many intranasal OT studies is small sample sizes leading to 

underpowered results and low positive predictive values [139].  We strived to offset 

this limitation through stringent inclusion and exclusion criteria and a within-

participant experimental design. However, the generalizability of these results to male 

participants needs to be established, and future studies using mixed male and female 

samples could directly enable between-gender comparisons as well as a replication of 

our findings among other female subjects. Moreover, the importance of individual 

differences on OT’s influence requires the need for establishing how varying socio-

emotional and personality traits, as well as physiological or pathological states such as 

pregnancy or depression, may contribute to its effects (e.g. [140]). Further analysis is 

ongoing to examine any interactions between the self-report questionnaires (regarding 

anxiety, depression, stress, and early bonding experiences) completed by our 

participants and the neuro-electrophysiological data; these results will be explored in a 

separate manuscript. 

While we found that OT administration did not affect resting delta or beta oscillatory 

power, exploring other frequency bands may be worthwhile. Furthermore, although the 

difference between relative and absolute power measures is beyond the scope of this 

thesis, it is important to note that these measured oscillations of individual frequency 

bands represent proportions of multiple frequencies in a recorded EEG, all of which 

may be differentially affected (or not) by substance administration. We focused solely 
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on delta-beta correlations due to prior research identifying their role in modulating 

stress- and anxiety-associated contexts, as well as in interfacing with emotion and 

cognition [85], [89], [90], [124]. Indeed, some studies have shown intranasal OT leading 

to greater low alpha / mu (8-10Hz) and beta suppression during the viewing of 

biological motion [141]. Thus, exploration of OT effects within, as well as across, other 

frequency bands and experimental paradigms may be warranted. It is also worth noting 

that the analyses we report assumed a linear correlation between the amplitudes of 

these oscillations, while other studies have suggested distal brain regions may have 

non-linear relationships representing different sets of brain dynamics and functions 

[142]. We also only examined amplitude-amplitude synchrony between delta and beta, 

in contrast to phase-phase or phase-amplitude measures [143] which can elucidate 

other important mechanistic associations of cognitive function (reviewed in [142]). 

In regards to the event-related potentials, our results could be further informed by 

including faces with positive expressions to compare neural responses to negative and 

neutral faces. Since identity and emotional processing of faces are intimately 

interlocked [102], we may expect similar results irrespective of emotional valence. 

However, multiple studies suggest that infant happiness or distress as represented by 

facial expression and cries may activate very different brain regions in parents and non-

parents [61], [68], [70]. There is also is a dearth of studies assessing the span of basic 

emotions since studies have primarily focused on happy and angry as representation 

for positive and negative expressions [25]. For the P300 in particular, we focused on its 

amplitude as a whole, instead of separately analyzing its individual temporal 

components or its latency. The P3a and P3b subcomponents of the P300 represent 
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mechanisms arising from different brain loci [96] and may be differentially affected by 

both facial or emotional category and OT administration. 

Finally, although EEG arises from neurotransmission and neural activity, it is ultimately 

a correlational technique; the precise anatomic origins of our results are not known and 

require additional neuroimaging studies aimed towards determining neuroanatomical 

and neurophysiological correlates. It is also possible that the commonly used dosage of 

24IU intranasal OT is insufficient for delivering an effective cerebral concentration. This 

can either, or both, mask any true neurological effects or lead to inaccurate 

apportionment of peripherally driven OT effects to central OT activity [22], [139]. The 

latter situation is less likely for this thesis given our direct neural measurements using 

EEG, but it would be beneficial to conduct dose-response studies and examine whether 

these neural relationships are functions of OT levels. Through using varying OT dosages 

and measuring saliva OT levels at different experimental time points, we can more 

effectively link dynamic hormonal changes with social or electrophysiological behavior. 

Conclusion  

In summary, the present study explored how intranasal OT administration affected the 

neural oscillations and responses to infant faces in a cohort of healthy, nulliparous 

women. We demonstrated that OT decreased delta-beta coupling in the resting brain 

and increased the amplitude of the P300 as elicited by infant faces compared with adult 

faces. This provides a potential mechanism through which intranasal OT may modulate 

brain and social behavior on a neural level, and supports the value of EEG in examining 

the integration of dynamically changing cortical and subcortical neural networks. By 

measuring cross-frequency correlations, we were able to explore the complex 
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interactions that OT modulates between subcortical and cortical brain regions, while 

the use of ERP further provided us the ability to identify the processing stage at which 

OT influences the handling of affiliative stimuli. Overall, this thesis adds to the 

intranasal OT literature a potential tool for measuring OT action with delta-beta 

coupling, and provides new data on how OT acts upon the female brain. 
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