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BIODEGRADABLE NANOPARTICLES IN THE TREATMENT OF CUTANEOUS 
MALIGNANCY.  
Emily S. Yin1, Julia Lewis1, Hee-Won Suh2, Alison Lee1, Patrick Monico1, W. Mark 

Saltzman2, Michael Girardi1.  
1 Department of Dermatology, Yale School of Medicine, New Haven, CT 
2 Department of Biomedical Engineering, Yale University, New Haven, CT 

 
ABSTRACT 
Keratinocyte-derived carcinomas represent the most common type of malignancy 
worldwide, and while surgical removal is a first-line therapy, surgery may be 
impractical for certain patients and does not completely eliminate risk of recurrence. 
Previous studies have demonstrated the advantages of biodegradable poly(lactic 
acid)-hyperbranched polyglycerol non-bioadhesive nanoparticles (NNPs) and 
bioadhesive nanoparticles (BNPs) as chemotherapeutic drug delivery vehicles for 
the treatment of internal solid tumors. We are now investigating the use of this 
delivery system for the treatment of cutaneous malignancies, with the goal of 
maximizing drug efficacy while minimizing systemic effects and treatment-associated 
morbidity. After topical application of fluorescent dye-loaded NNPs to the intact skin 
of mice, epidermal penetration of the NNPs to the dermal-epidermal junction and 
accumulation within hair follicles was observed at time points ranging from 4 to 72 
hours. Using the PDV squamous cell carcinoma (SCC) murine model, both dye-
loaded NNPs and BNPs exhibited a dose- and time- dependent association with 
PDV cells in vitro by flow cytometry, and BNPs had increased association with cells 
compared to NNPs. Confocal microscopy confirmed internalization of NPs by cells. 
Camptothecin (CPT)-loaded NNPs and BNPs were developed; these particles 
contained 5% by weight CPT. There was no significant difference in effect on PDV 
cell proliferation in vitro among CPT, CPT/NNP, and CPT/BNP treatment groups. A 
pilot study using subcutaneously transplanted PDV tumors showed effective and 
complete destruction of the tumor after intratumoral injection of CPT/BNP. A 
subsequent study using an increased frequency of treatment and lower 
concentration of CPT compared CPT/intralipid (CPT/IL), CPT/NNP and CPT/BNP 
injections and showed prolonged survival in all CPT groups compared to control, and 
a trend toward prolonged survival in NNP and BNP groups compared to CPT/IL. 
However, none of the three treatments fully eliminated tumor burden in treated mice, 
suggesting that a higher concentration of drug may be optimal. Overall, our results 
indicate that both NNPs and BNPs rapidly associate with PDV tumor cells, and in 
vitro drug delivery is not inhibited by NP encapsulation. Further studies are needed 
to optimize the method, concentration, and frequency of nanoparticle and drug 
delivery to effectively and consistently treat SCC tumors.  
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BACKGROUND 

 

Skin cancer epidemiology and treatment 

Cancers of the skin are the most common malignancies worldwide. Each 

year in the US alone, there are over 5.4 million new diagnoses of skin cancer, 

resulting in over 10,000 deaths.1–3 Skin cancers may be categorized into 

melanoma and non-melanoma skin cancers. Non-melanoma skin cancers are 

further sub-divided into (1) keratinocyte-derived carcinomas (KDCs), which 

include basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), and (2) 

non-keratinocyte tumors such as Merkel cell carcinoma and angiocarcinomas of 

cutaneous vessels, among others. KDCs comprise the vast majority of skin 

cancer diagnoses, and the incidence of KDCs is rising.4 Most common in fair-

skinned individuals, KDCs largely arise secondary to DNA damage caused by 

ultraviolet radiation (UVR) exposure, but they may also be triggered by 

immunosuppression and/or viruses such as human papillomavirus (HPV).5–8 Both 

BCCs and SCCs can be destructive via local invasion. SCCs carry an additional 

risk of metastasis that is estimated at 2-5%, but can be as high as 45% for locally 

recurrent tumors on the face.9–13 Actinic keratoses (AK) are precancerous lesions 

and precursors to SCC, and present as rough, scaly macules on the skin.14 AKs 

most commonly arise in fair-skinned individuals with a history of extensive, 

chronic sun exposure. Fortunately, KDCs are highly curable with early detection 

and definitive treatment, and treatment can prevent the progression of AKs to 

cancerous lesions.15,16  
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For many patients with KDCs, in-office surgical procedures are effective 

first-line treatments. These procedures include conventional excision and Mohs 

micrographic surgery (MMS). However, surgery may not be appropriate or ideal 

for all patients. Patients with lesions in areas that are surgically difficult to close, 

such as on the scalp or face, may require complicated surgical flaps or grafts to 

achieve acceptable cosmetic results. Grafts may also be associated with 

complications such as infection and skin discoloration. SCC tumors that cover 

large surface areas can be seen in patients as a result of severe solar actinic 

damage, often requiring sizeable excisions that may be destructive, disfiguring, 

and even functionally debilitating, and they may also necessitate the use of grafts 

for wound closure. Other patients may prefer alternative, non-surgical methods of 

treatment for convenience, cost, or other personal preferences.  

Notably, KDCs impose a significant cost burden on healthcare systems. 

Treatment costs of KDCs total over $8.1 billion per year in the US, in large part 

due to surgical procedures.17 MMS is a staged excision technique that is most 

commonly used on the head and neck and involves histopathologic examination 

after each step of excision in order to maximize the preservation of normal tissue 

and anatomy and minimize recurrence rates. Despite its lower rates of tumor 

recurrence, relative to more simple surgical procedures, MMS is particularly 

costly and time consuming.18 The average cost of MMS is $1,000-2,000 per 

treatment, depending on tumor size and number of excision stages.19,20 Despite 

these high costs, current surgical treatment methods still do completely eliminate 

risk of recurrence in vast majority of cases.21 In light of these limitations, 
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nonetheless, there is a demand for more cost-effective and clinically practical 

non-surgical alternatives to improve the treatment of KDCs. 

 

Alternative therapies for skin cancer treatment 

Several non-surgical therapies are also available for superficial KDCs; 

however, these have limited efficacy, a higher rate of recurrence, and are not 

effective in the treatment of full-depth or invasive KDCs. Radiation therapy may 

be used for patients who are unwilling or unable to undergo surgery, with a 5-

year recurrence rate of 5-20%.22,23 However, patients may experience significant 

adverse effects, including radiation dermatitis, epidermal atrophy, and secondary 

cutaneous malignancies.24 Radiation therapy is also less favorable for younger 

patients, as the risk of late-onset adverse effects increases with time. Destruction 

by curettage and cautery/electrodessication (C&D) involves the removal of the 

visible tumor by curettage, followed by the use of cautery or electrodessication to 

destroy 1 mm of tissue at the tumor margins.25 C&D is recommended only for 

treatment of small (<1 cm), low-risk KCs, and is associated with 5-year 

recurrence rates between 3-19%.26–29  

Cryotherapy, which involves the freezing of skin lesions with liquid 

nitrogen, is primarily used in the treatment of AKs and superficial KDCs. While 

the method can be effective in eliminating full-thickness KDCs, its utility is 

significantly hindered by the inability to assess treatment margins for residual 

malignanancy.30–33 Moreover, there is no standardized method of treatment 

regarding duration and number of cycles of freezing and thawing. Poor cosmetic 
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outcomes are also of concern, due to common complications including blistering, 

pigmentary changes, and edema.25 Post-treatment scar formation can present 

additional risk due to the potential obscuration of recurrent lesions, and other 

complications may also include hemorrhage and, rarely, nerve damage.  

Diclofenac, ingenol mebutate, and trichloroacetic acid are topical 

medications that may be used to treat pre-cancerous AKs, but are not sufficiently 

effective in eliminating KDCs.34–38 Imiquimod is a topical immunomodulator that 

stimulates the immune system to react to and destroy tumor cells and may be 

used in the treatment of superficial KDCs. Topical chemotherapeutic drugs, such 

as 5-fluorouracil (5-FU), also may also be used to treat superficial KDCs by 

interfering with DNA synthesis in actively dividing cells.39  

Similarly, topical photosensitization with δ-aminolevulinic acid (δ-ALA) 

followed by photodynamic therapy (PDT) can also be used to treat superficial 

BCCs and SCC in situ.40 δ-ALA is an amino acid involved in the porphyrin 

synthesis pathway. It induces photosensitization of epidermal cells via metabolic 

conversion of δ-ALA to protoporphyrin IX, which accumulates in the skin and 

produces a cytotoxic photodynamic reaction. However, δ-ALA/PDT is associated 

with pain, and disease recurrence rates may exceed 50%.41–43 Pulsed dye laser 

surgery has been reported as an alternative treatment for BCCs and SCCs, but it 

is not FDA-approved for this indication and is less effective than surgery.44,45 

Thus, while these non-surgical treatments have some efficacy, they may not be 

appropriate for deeper or invasive lesions, and success rates may be significantly 

less than that of surgical treatments. 
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Despite the abundance of FDA-approved chemotherapeutic agents, 5-FU 

is the only commonly used chemotherapy in the topical treatment of KDCs. There 

are a number of challenges that limit the efficacy and practicality of 

chemotherapeutic drugs for KDC therapy. Small molecule chemotherapeutic 

agents may rapidly disperse from the application or injection site after 

administration, resulting in low concentrations of drug at the site of interest. 

Diffusion into the bloodstream via the dense vasculature within tumors can also 

lead to significant systemic toxicity. Thus, achieving high local concentrations 

and efficacy without systemic toxicity is a major concern. Given the efficacy and 

relative safety of current surgical treatments, a novel chemotherapy-based 

treatment would need to both be highly effective and have an excellent safety 

profile to be practical for clinical use. Here, we propose the use of polymer 

nanoparticles in the delivery of chemotherapeutic agents for the treatment of skin 

cancer. 

 

Polymer nanoparticles: applications and advantages 

Polymer nanoparticles (NPs) is an umbrella term that primarily refers to 

polymer-based nanospheres and nanocapsules.46,47 Polymers are commonly 

used in drug delivery and medical applications due to their favorable 

biocompatibility and inert nature which result in excellent safety and tolerability. 

Moreover, NPs have a number of important characteristics that make them 

attractive and effective for drug delivery. These include the enhanced 
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permeability and retention (EPR) effect, increased surface area, biodegradability, 

and controlled-release of drug.  

The enhanced permeability and retention (EPR) effect refers to the 

preferential accumulation of macromolecules and nanoparticles in tumors 

compared to normal tissue (Figure 1).48–50 The EPR effect occurs due to a 

combination of irregular tumor vascular structure, high vascular density and 

permeability, and defective lymphatic drainage.51,52 In tumor angiogenesis, 

vascular endothelial cells proliferate out of proportion to pericytes, which are 

responsible for blood vessel stability. As a result, blood vessels, which normally 

have junctions less than 10 nm in size, become highly porous with pores greater 

than 100 nm in diameter.48 The resulting vascular permeability allows for 

extravasation of macromolecules such as NPs into the interstitial space of the 

tumor.53 In normal tissue, the lymphatic system is able to clear similarly sized 

macromolecules from the interstitium. However, tumors have impaired 

lymphatics which prevent effective drainage and may therefore allow the 

accumulation of NPs in the interstitium and prolonged contact of NPs with tumor 

cells.54   
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Figure 1. The enhanced permeability and retention (EPR) effect describes 

the properties of tumor structure that permit the accumulation of 

macromolecules, such as polymer nanoparticles, in the tumor interstitium. 

The EPR effect is one of the hypotheses regarding the efficacy of nanoparticles 

for drug delivery in tumor therapy.  
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The size of NPs also contributes to reduced systemic toxicity. While the 

term NP may refer to any particle in the 1-1000 nm size range, NPs are most 

commonly between 100-500 nm.47,55 With a diameter larger than that of normal 

vessel junctions, NPs are typically unable to penetrate normal vasculature, 

resulting in minimal concentrations of drug reaching normal tissues such as skin, 

heart, and lung.51 NPs are primarily removed from the circulation by hepatic 

excretion and through the mononuclear phagocytic system. They are excreted in 

the bile and by phagocytosis via Kupffer cells (stellate macrophages) in the liver, 

macrophages in the spleen, and by local macrophages at the point of entry.56,57  

The structure of NPs also increases surface area compared to free drug 

alone. A greater surface area results in an increased likelihood of interaction with 

other molecules or cells. Modification of the surface of NPs can affect the 

characteristics and behavior of NPs, and these effects can be amplified by an 

increased surface area. For instance, antibodies can be used on NPs to target 

specific cellular proteins and cells, while more non-specific chemical alterations, 

resulting in more reactive or inert terminal structures, can increase or decrease 

the likelihood of interactions with cellular proteins.58–60 

Due to their biodegradable nature, NPs allow for the controlled-release of 

their contents.61,62 Notably, nanoparticle controlled release can be attributed to 

two effects, degradation and erosion. Degradation refers to the chemical reaction 

of bond-cleavage, while erosion refers to the physical processes of dissolution 

and diffusion. Poly(esters) such as poly(lactic acid) are chemically degraded by 

hydrolysis, however it is hypothesized that most biodegradable polymers 
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undergo breakdown by a combination of both processes.62 As the polymer 

degrades over time, encapsulated drug is released from the NPs. Compared with 

repeated administrations of free drug that would result in alternating peaks and 

troughs of local concentration, an NP-encapsulated delivery system would 

provide a sustained release of drug into the surrounding tissue over an extended 

period of time. The latter results in a more stable local concentration of drug, 

which can reduce toxicity associated with temporary peaks in concentration. In 

conjunction with the EPR effect, NPs can also produce a depot effect, allowing 

for maximal local concentration while minimizing systemic toxicity.  

Poly(lactic)-acid (PLA) is a polymer that is commonly used in NPs due to 

its excellent safety profile, biodegradability, controlled-release, and non-

immunogenic properties.63,64 It can be sourced from renewable resources such 

as corn starch and sugarcane, among other materials, making it highly 

sustainable.65 Given its favorable properties, PLA is used in a variety of medical 

applications, including implantable screws, plates, and rods.66–68 In combination 

with polyglycolic acid, PLA is also used to create dissolvable sutures. 

Importantly, the surface of polymer NPs can be altered to affect its biochemical 

properties. Polyethylene glycol (PEG) is a surface coating that was previously 

commonly used due to its low toxicity and low immunogenicity; however, 

synthesizing PEG-coated NPs with sufficient density of surface PEG chains can 

be difficult.69,70 In this study, we use PLA with a hyper-branched polyglycerol 

coating (PLA-HPG). While HPG provides similar advantages as PEG in reducing 

attachment of NPs to cellular proteins, there are a few important distinctions. 
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HPG is more hydrophilic than PEG, which is advantageous for the encapsulation 

of poorly soluble, hydrophobic drugs. In addition, the hyperbranched structure of 

HPG provides enhanced coverage of the NP surface compared to PEG. The 

multiple hydroxyl groups in HPG also allow for the attachment of multiple ligands 

per HPG.  

While PLA-HPG NPs are relatively inert, incubation of non-bioadhesive 

NPs (NNPs) with sodium periodate can produce aldehyde-rich NPs, termed 

bioadhesive NPs (BNPs), which are more biologically reactive. This chemical 

reaction with sodium periodate involves the conversion of vicinal diols to 

aldehydes on the surface of NPs.71 These aldehydes may then readily form 

covalent bonds, such as Schiff-base bonds, with amines on cellular proteins. The 

result is improved adhesion of NPs to cell surfaces and subsequently increased 

uptake by cells. The use of NNPs may result in decreased internalization by 

cells, while BNPs may enhance internalization via surface interactions.71 

 

Use of nanoparticles in therapeutics 

Given the aforementioned characteristics, NPs offer a number advantages 

that are useful for drug delivery. In particular, the use of NPs in cancer therapy 

has been an important area of study, as chemotherapeutic and cytotoxic 

anticancer agents often have significant systemic toxicity. A few NP-based 

cancer therapeutics are already commercially available. Genexol-PM (Samyang 

Biopharmaceuticals, Seongnam, South Korea) is a polymeric NP micelle 

formulation for the delivery of paclitaxel to treat metastatic breast cancer. The 
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NP-based formulation not only decreases the systemic toxicity associated with 

paclitaxel, but also increases the maximum tolerated dose of paclitaxel to greater 

than twice that of Taxol.72–74 Oncaspar (Enzon, Piscataway, NJ, USA) is a 

modified, PEGylated form of the enzyme L-asparaginase, and is used to treat 

acute lymphoblastic leukemia.34 In clinical trials, it reduced the frequency of 

formation of anti-asparaginase antibodies by hindering detection of the antigen 

by the immune system.76,77  

In recent studies from Mark Saltzman’s research group, NPs have also 

been effectively utilized as a drug delivery platform to target difficult-to-treat 

malignancies in mouse models. To target glioblastoma, Sawyer et al. used 

polymer NPs containing the chemotherapeutic drug camptothecin in conjunction 

with convection-enhanced delivery (CED).78 The efficacy of this combination, 

which resulted in prolonged survival of glioblastoma-bearing mice, was 

hypothesized to be a result of an increased duration of exposure to the drug and 

an increased volume into which drug was distributed via CED. In another study 

from the same group, Deng et al. determined that BNP-encapsulation of 

epithilone B enhanced survival of mice with intraperitoneal uterine serous 

carcinoma tumors, likely due to enhanced interaction with mesothelial cells and 

improved retention of NPs intraperitoneally.79  

 

Murine SCC model and chemotherapeutic drugs 

In our assessment of NP efficacy in the treatment of KDCs, we chose to 

focus our study on SCC, given its relative propensity for metastasis in humans 
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and increased mortality compared to BCC. In addition, because SCCs can 

present as widespread lesions that cover large surface areas due to progressive, 

severe actinic damage or immunosuppression, these cases also stand to benefit 

the most from a non-surgical therapeutic strategy. We sought an SCC tumor 

model that could be reliably transplanted, producing tumors that were consistent 

in size and number. Additionally, our ideal model would produce rapidly 

progressive tumors, thereby allowing us to most efficiently conduct our 

experiments. As such, we selected the PDV SCC murine cell line for our study. 

This cell line was originally derived by chemical carcinogensis via treatment of 

epidermal cells by 7,12-Dimethylbenz[a]anthracene (DMBA).80  

Camptothecin (CPT) is a DNA-topoisomerase I inhibitor and powerful 

cytotoxic agent. CPT is a naturally occurring compound derived from the 

Camptotheca acuminata plant, and it was initially discovered in a screen of plant 

extracts for antitumor activity.81 CPT binds to the topoisomerase I and DNA 

complex resulting in a stable ternary complex that prevents DNA ligation.82 This 

results in a double-stranded DNA break and subsequent apoptosis. While CPT 

analogues such as topotecan and irinotecan have had clinical success, it is not 

used clinically due to severe adverse effects, including bladder toxicity.83–85 CPT 

can have a closed- or open- ring conformation, depending on pH (Figure 2). The 

closed ring or lactone conformation is stable at pH < 5.5 and is the active form of 

the molecule, while the open ring conformation is more soluble but has poor 

activity.86,87 Conversely, bladder toxicity results from exposure of CPT to the low 
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pH in the urine, which results in a conformational change of CPT to the closed 

ring form.  

We selected CPT for our preliminary studies for two primary reasons. 

First, it was important for proof of principle that we select a particularly cytotoxic 

agent to assess whether our delivery system could be effective at altering the 

bioavailability of the drug. Second, CPT is hydrophobic and poorly soluble, which 

makes it an excellent candidate for encapsulation using PLA-HPG. While these 

properties make CPT difficult to use clinically, they are ideal qualities for our 

study. Encapsulation in NPs may improve the clinical usability of CPT by 

concentrating its cytotoxic effects locally and decreasing systemic toxicity. 

Moreover, NP encapsulation may structurally stabilize the drug, delaying 

inactivation at physiologic pH and enhancing the efficacy of CPT. For similar 

reasons, we also chose to screen paclitaxel (PTX), a powerful and poorly soluble 

chemotherapeutic agent that is associated with significant systemic toxicity. As 

previously mentioned, PTX is not only employed directly as a chemotherapeutic 

drug, but it is also used in FDA-approved NP-based therapeutics (Genexol-PM).  

To study the behavior of NPs in our murine carcinoma model, we 

encapsulated fluorescent dye in NNPs and BNPs and characterized their 

association with cultured PDV SCC cells and dispersion after intratumoral 

injection. We subsequently developed CPT-encapsulated NNPs (CPT/NNP) and 

BNPs (CPT/BNP) and assessed their cytotoxicity and anti-tumor efficacy in 

comparison to CPT in vehicle to determine whether NNPs or BNPs may be an 

effective chemotherapeutic drug delivery platform for the treatment of SCC.
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Figure 2. The structure of camptothecin varies depending on the pH of its 

environment. The active lactone structure (left) is present in acidic solutions, 

with pH < 5.5. At physiological pH, the inactive open conformation (right) 

predominates.  
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STATEMENT OF PURPOSE 

Prior work has shown that NPs may be an effective drug delivery system 

in the treatment of malignant tumors, and BNPs may be particularly efficacious. 

This may be due to advantageous properties such as controlled release, depot 

effect, and increased association with tumor cells compared with non-malignant 

cells. Our objective is to assess the properties and anti-tumor efficacy of 

chemotherapy-loaded NPs in a SCC mouse model. 

 

HYPOTHESIS 

NP-encapsulation of a chemotherapeutic agent will allow for the safe and 

effective treatment of cutaneous malignancies by maximizing local concentration 

of drug and minimizing systemic toxicity and will have superior anti-tumor efficacy 

compared to chemotherapeutic agent alone due to advantages which include the 

EPR effect and gradual release of drug. Given their surface properties, BNPs 

may have superior efficacy compared to NNPs. 

 

SPECIFIC AIMS 

1) To characterize NP association with PDV SCC cells and transplanted PDV 

SCC tumors in vitro and in vivo using dye-encapsulated NPs 

2) To assess the efficacy of chemotherapy-encapsulated NPs in the 

treatment of established SCC tumors in mice and compare the relative 

efficacies of drug/NNP, drug/BNP, and drug in vehicle. 
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METHODS 
 

Synthesis of NNPs and BNPs 

Materials. Poly(D,L-lactic acid) (Mw = 20.2 kDa, Mn = 12.4 kDa) was obtained 

from Lactel Absorbable Polymers (Birmingham, AL). Anhydrous 1,1,1-

trishydroxymethylpropane, KOCH3, 10x phosphate-buffered saline (PBS), 

Na2SO3, and NaIO4 were obtained from Sigma Aldrich (Darmstadt, Germany). 

The 1,10-dioctadecyl-3,3,30,30-tetramethylindodicarbocyanine, 4-

chlorobenzenesulphonate salt (DiD) was obtained from Thermo Fisher Scientific 

(Waltham, MA). 

HPG synthesis. HPG was synthesized by anionic polymerization88. Briefly, 4.6 

mmol 1,1,1-trishydroxymethylpropane (THP) was partially deprotonated by the 

addition of 1.5 mmol KOCH3 (25% in MeOH) under argon atmosphere at 95ºC for 

30 min. The flask was evacuated for 30 min. The system was subsequently 

refilled with argon, and 25 mL glycidol (x equiv.) was added by syringe pump 

over 12 hours with stirring. The crude product was then dissolved in methanol, 

and HPG was precipitated by the addition of acetone. HPG was purified by 

repeating methanol/acetone precipitation (2x). To remove low molecular weight 

HPG, HPG was dialyzed against DI water using 0.5-1kDa MWCO dialysis tubing. 

The water was replaced twice every 12 hours. HPG was precipitated with 

acetone and dried under vacuum at 80ºC for 12 hours.  

PLA-HPG synthesis. PLA (5 g) and HPG (2.15 g) were dissolved in 

dimethylformamide and dichloromethane (DCM) and dried overnight using 4Å 

molecular sieves. Subsequently, 0.06 ml N,N’-diisopropylcarbodiimide (DIC) and 
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10 mg 4-(N,N-dimethylamino)pyridine (DMAP) were added, and the mixture was 

stirred at room temperature for 5 days. The product was precipitated by adding 

the solution into cold ether. To purify the product, it was redissolved in DCM and 

precipitated with cold ether. This precipitate was washed with the cold ether and 

lyophilized for 2 days.  

General methods for NP synthesis. PLA-HPG copolymer (50 mg) was 

dissolved in 3 mL of solvent mixture (4:1 ethyl acetate:DMSO) with fluorescent 

dye (DiD, 0.2 wt%) or drug (CPT, 10 wt%). The mixture was added to 4 mL DI 

water under vortexing and subjected to probe sonication for 3 cycles of 10 

seconds each. The emulsion was diluted in 10 ml DI water under stirring and the 

solvent was evaporated with a rotavapor. The NP suspension was subsequently 

filtered by centrifugation using an Amicon ultra centrifuge filters (100kDa 

MWCO). The particles were washed twice with DI water, suspended in DI water, 

and stored at -20ºC.  

Conversion to BNPs. To convert NNPs to BNPs (Figure 3), one volume of 

NNPs at 25 mg/ml was incubated with three volumes of 0.1M NaIO4 (aq) and one 

volume of 10x PBS for 20 minutes. Three volumes of 0.2 M Na2SO3 (aq) were 

added to quench the reaction. BNPs were washed two times with DI water using 

Amicon ultra centrifuge filters (100kDa MWCO) and resuspended in DI water. 

BNPs were stored at 4ºC.  
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Figure 3. Incubation of non-bioadhesive PLA-HPG nanoparticles (NNP) with 

NaIO4 produces an aldehyde-rich bioadhesive nanoparticle (BNP). The reaction 

is quenched using Na2SO3, and formaldehyde is formed as a byproduct. 

Encapsulated drug is illustrated as white circles within the nanoparticles.  
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Assessment of NNPs and BNPs. To determine the concentration of NPs, a 100 

µl aliquot of NP solution was placed in a pre-weighed 1.5 ml Eppendorf tube, 

flash-frozen by incubation of the tube in liquid nitrogen, and lyophilized overnight. 

The Eppendorf tube was subsequently weighed, and the initial weight of the tube 

was subtracted to determine the weight of the NPs. The amount of DiD or CPT 

encapsulated was determined by fluorescence. For quantification of CPT, one 

volume of NPs was diluted in acidified DMSO, volume ratio 1:100 of 1N 

HCl:DMSO (with SDS to assist dissolution of CPT). A standard curve was 

prepared using known concentrations of CPT using the same assay. CPT 

fluorescence was measured by fluorescence spectroscopy, with excitation at 370 

nm and emission at 428 nm, and the loading concentration of CPT in NPs was 

determined by comparison to the standard curve. For DiD, a standard curve was 

also prepared, with excitation at 644 nm and emission at 665 nm. 

 

Cell lines and cell culture 

The PDV squamous cell carcinoma cell line (PDV) was obtained from 

Allan Balmain (UCSF). PDV cells were maintained in RPMI 1640 medium 

supplemented with 10% fetal bovine serum (FBS), 2% 1M Hepes, 1% 200mM L-

glutamine, 1% 100mM sodium pyruvate, 1% 5 x 10-3 M 2-mercaptoethanol, 1% 

10mM non-essential amino acids, and 1% 10,000 U/ml-µg/ml penicillin-

streptomycin. Live cells were maintained at 37ºC and 5% CO2 in 25 cm2 or 125 

cm2 Falcon tissue culture flasks (Thermo Fischer Scientific, Waltham, MA, USA). 

Cells were harvested from flasks using 0.25% Trypsin-EDTA (Thermo Fischer 
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Scientific). For long-term storage, cells were resuspended in 90% FBS and 10% 

DMSO and stored at -196ºC in a liquid nitrogen tank.  

 

Confocal microscopy and image processing 

All microscopy images were captured using the Leica TCS SP5 confocal 

microscope. Images were processed using Fiji/ImageJ (NIH, Rockville, MD, 

USA)89. Stacked images consist of images taken at 0.5-2 µm z-intervals. 3D 

visualizations were constructed using Huygens Professional v17.04 (Scientific 

Volume Imaging, Hilversum, Netherlands).  

 

Flow cytometry data collection and analysis 

Skin, tumor, and lymphatic cells were analyzed by flow cytometry as 

described below. Samples were matched with the appropriate isotype controls. 

Stratedigm S1000EX flow cytometer and CellCapture software v3.1 (Stratedigm 

Inc., San Jose, CA, USA) were used to collect flow cytometry data. Data was 

analyzed using FlowJo v10.4 (FlowJo LLC, Ashland, OR, USA).  

 

Animal care and mouse tumor model 

All animal procedures were performed in accordance with Yale 

Institutional Animal Care and Use Committee (IACUC). Animals were kept in the 

Yale Animal Resource Center and given free access to food and water 

throughout the duration of the study. Mice were anesthetized in an induction 

chamber using 30% isoflurane (Zoetis, Parsippany-Troy Hills, NJ, USA) in 
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propylene glycol (Thermo Fischer Scientific). Mice were euthanized by overdose 

in the same manner at the end of experiments. 

Tumor transplantation. TCRβ-/- mice on the C57Bl/6J background were 

obtained from The Jackson Laboratory (Bar Harbor, ME). To prepare the mice for 

tumor transplantation, hair over the dorsal right flank was shaved with electric 

clippers, and shaved skin was cleaned with an alcohol wipe. PDV cells were 

harvested from tissue culture flasks. Cells were counted and then washed and 

resuspended in ice-cold PBS at a concentration of 20 million cells/ml. Mice were 

anesthetized prior to the procedure as described above. A subcutaneous 

injection of 1 million cells/50 µl was placed using a 27.5-gauge syringe, forming a 

small bleb at the site of injection.  

Preparation for topical application. For topical application of DiD/NNPs, 

C57Bl/6 mice were shaved using a straight razor blade while hair was in telogen 

(resting) phase, at approximately 8-9 weeks of age. To minimize inflammation in 

the skin, experiments were initiated 4-7 days after shaving.  

 

In vitro PDV cell uptake of NPs 

Cells were seeded at a density of 100,000 per 1.9 cm2 well in a 24-well 

tissue culture treated plate (Corning, Inc.). At 24 hours after plating, media was 

removed by glass pipette, and DiD/NNPs or DiD/BNPs were added at a 

concentration of 0.01, 0.1, or 1.0 mg/ml in CRPMI. After 6 or 24 hours, cells were 

washed with PBS and trypsinized. The enzymatic reaction was stopped by 

addition of CRPMI. Cells were pelleted by centrifuge and washed twice with stain 
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buffer (1x PBS, 1% FBS, 0.09% NaN3) and subsequent centrifugation. All 

subsequent steps occurred on ice. Cells were then resuspended in surface block 

containing anti-FcR (5 µg/ml), normal hamster IgG (11.8 µg/ml), and normal rat 

IgG (22.2 µg/ml) and incubated for 15 minutes in a round-bottom 96-well plate 

(Corning, Inc.). Cells were pelleted by centrifugation for 5 minutes at 1100 rpm at 

4ºC, and supernatant was discarded. Pellet was resuspended in 100 µl of 2.5 

µg/ml FITC anti-mouse CD326 Ep-CAM (BioLegend, San Diego, CA). After 25 

minutes incubation, cells were centrifuged and washed twice with 250 µl stain 

buffer. Cells were pelleted by centrifugation, and supernatant was removed. Cells 

were resuspended in 100 µl of secondary antibody, 5 µg/ml Alexa-488-anti-FITC 

(Life Technologies, Thermo Fischer Scientific) for 25 minutes. Centrifugation and 

washing was repeated twice as described above. Cells were pelleted by 

centrifugation and resuspended in 1% PFA for 20 minutes. Cells were 

centrifuged and resuspended in PBS for short-term storage at 4ºC. Cells were 

adhered to slides for visualization using the CytoSpin 4 Cytocentrifuge (Thermo 

Fischer Scientific) 800 rpm for 5 minutes. Cells were mounted using ProLong 

Gold Antifade Mountant with DAPI (Thermo Fischer Scientific) and a coverslip 

was placed. Slides were kept in the dark at room temperature for 24 hours and 

subsequently stored at -20ºC.  

 

In vivo topical application 

NNPs were thoroughly vortexed before use and diluted to 2 mg/ml using 

DI water or 5% di(ethylene glycol) ethyl ether (Sigma) in DI water. Mice were 
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anesthetized as described above. The rectangular area used for testing was 

marked and measured on the dorsal back, ranging from 1-3 cm in each 

dimension. NNPs were applied at a density of 2 µl/cm2 at a concentration of 2 

mg/ml. The solution was allowed to dry on the skin for 5 minutes. A second coat 

of NNPs was subsequently reapplied at the same density and allowed to dry for 5 

minutes. The area was occluded using a non-stick bandage and secured in place 

with tape. At the end point, mice were euthanized. The demarcated area of skin 

was tape-stripped to remove excess dye on the surface and harvested. Tissue 

was fixed in 4% methanol-free paraformaldehyde (PFA) for 48 hours and frozen 

in Tissue-Tek OCT compound (Electron Microscopy Sciences, Hatfield, PA) for 

sectioning.  

 

Nanoparticle dispersion after intratumoral injection in vivo 

Intratumoral injections. PDV tumors were transplanted as described above. 

Tumors were measured using calipers three times per week beginning 1 week 

after transplantation. To determine where nanoparticles disperse after 

intratumoral injection, we injected 100 µl DiD/NNP intratumorally and used flow 

cytometry to measure fluorescence in individual cells of the tumor and draining 

inguinal lymph node as described below. 

Materials. DNAse was prepared by reconstituting 10 million Dornase units 

(ICN#190062) in a mixture of 1 ml 10x DNAse buffer, 4 ml sterile distilled water, 

and 5 ml glycerol. Aliquots of DNAse were stored at -20ºC. Media A was 

prepared with 100 ml MEM (Gibco, Thermo Fischer Scientific), 10 ml FCS, 1 ml 
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100x pencillin-streptomycin, and 50 µl DNAse, and stored at 4ºC. Trypsin-GNK 

was prepared by adding the following to 1700 ml of dH2O: 14.7 g NaCl, 0.7 g 

KCl, 1.7 g glucose, and 5.0 g Trypsin (Sigma T-1005). The pH was adjusted to 

7.6 using NaHCO3, and the solution was filter sterilized. Trypsin-GNK aliquots 

were stored at -20ºC. Personna single-edge surgical prep razor blades were 

obtained from AccuTec Blades Inc. (Verona, VA, USA). Dermis Digestion buffer 

was prepared fresh by mixing the following into RPMI: 2.7 mg/ml collagenase 

(Sigma), 0.25 mg/ml hyaluronidase (Sigma), 10 µl/ml DNAse, 10 µl/ml 1 M 

HEPES (Gibco), and 10 µl/ml 100x sodium pyruvate (Gibco). Nalgene™ Rapid-

Flow™ 0.2 µm PES membrane. Petri dishes and centrifuge tubes were obtained 

from Corning, Inc. (Corning, NY, USA). 

Tissue harvesting. Mice were euthanized and affixed to a Styrofoam board. The 

skin of the mice was soaked with 95% ethanol, covering all areas to be 

manipulated during tissue harvesting. Hair was removed over the site of the 

tumor using surgical prep blades. With the mouse in the supine position, a 

midline cut in the skin was made, running superiorly from the groin to the neck 

using scissors. Subsequent cuts were made bilaterally from the groin to the inner 

hind legs, creating flaps on each side of the abdomen that were then pulled 

outward and affixed to the board. Inguinal lymph nodes, found on these skin 

flaps, were then dissected away from subcutaneous fat using forceps. Lymph 

nodes were placed in a dish of Media A on ice. With the mouse in the prone 

position, the tumor and skin overlying the tumor were resected and prepared as 

described below. For flow cytometry experiments, the skin was separated from 
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the tumor. For assessment of histology by confocal microscopy, the skin and 

tumor were remained attached by subcutaneous fat and/or adhesions.  

Epidermal and dermal cell preparation. Skin was placed on a petri dish lid with 

the epidermis facing down and was spread out until flat. Subcutaneous fat was 

removed by scraping the dermal side using the dull edge of a pair of closed 

scissors. A surgical prep blade was then used to cut the skin into approximately 1 

cm wide strips. Strips of skin were placed dermal side down in a petri dish 

containing Trypsin-GNK (T-GNK). The dish was covered and incubated for 2 hr 

at 37°C. Fine forceps were then used to separate the epidermis from dermis. To 

digest the epidermis, all epidermal strips from a single mouse were collected and 

in 50 ml tube containing 8 ml T-GNK, 2 ml RPMI, and 50 µl DNAse. Tubes were 

incubated in a 37°C shaking water bath for 10 minutes. Tubes were removed 

from the water bath, and 10 ml Media A was added to each tube. Digested tissue 

was filtered through 70 um Nitex mesh into a new 50 ml Falcon tube to remove 

stratum corneum, hairs, and other large debris. Cells were centrifuged and 

washed with Media A. To digest the dermis, the tissue was first minced in Petri 

dish containing Dermis Digestion Buffer. Tissue was incubated for 1-1.5 hr at 

37°C with occasional mixing using serological pipet to break up clumps. The 

digested mixture was filtered through 70 µm Nitex nylon mesh to remove any 

remaining large pieces of tissue. Media A was added to stop digestion of tissue, 

and cells were washed twice with Media A. For some experiments, epidermal 

and dermal cells were pooled for analysis.  
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Lymph node cell preparation. The rough area of two frosted microscope slides 

(Thermo Fischer Scientific, Waltham, MA, USA) were dipped in a petri dish 

containing Media A to remove dust. Using forceps, lymph nodes were placed on 

the frosted area of one slide and covered with the frosted area of the second 

slide. The two slides were gently rubbed together to break apart the lymph nodes 

and allow the cells to separate, and free cells were washed into the petri dish 

from the slide. The media containing lymph node cells was collected and filtered 

through sterile 70 µm Nitex nylon mesh into a 15 ml Falcon tube. Cells were 

centrifuged for 8 minutes at 1100 rpm, before resuspension in Media A. The cells 

were placed on ice.  

Spleen preparation. The spleen was minced in Media A using ethanol-sterilized 

scissors. The media was collected and filtered using a 70 um Nitex mesh into a 

15 ml Falcon tube. The collected cells were centrifuged for 8 minutes at 1100 

rpm and resuspended in 5 ml ACK lysis buffer. After incubation for 4 minutes, the 

tube was filled with Media A and centrifuged for another 8 minutes. The pellet 

was resuspended in Media A and placed on ice.  

Tumor cell preparation. Each tumor was placed in a 60-mm petri dish 

containing collagenase/hyaluronidase buffer and minced using ethanol-sterilized 

scissors. The tissue was incubated at 37°C for 1.5-2 hr with occasional mixing 

with serological pipet to break up larger pieces of tissue. Liquid from the dish was 

moved to a 15 ml Falcon tube, and Media A was added to stop digestion. The 

suspension was filtered using 70 um Nitex into a new 15 ml Falcon tube. The 

remaining undigested pieces of tissue were incubated with T-GNK at 37°C for 
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1.5-2 hr with occasional mixing, until the majority of tissue was digested. Media A 

was added to stop the digestion, and the cell suspension was filtered through a 

70 um Nitex mesh. Cells were pelleted by centrifugation and resuspended in a 

small amount of Media A for counting and placed on ice. The 

collagenase/hyaluronidase-digested cells and the T-GNK digested cells were 

pooled for analysis.  

Cell type staining. Cells were counted using a Neubauer Ruled hemocytometer. 

Up to 1 million cells were aliquoted per FC sample. Cells were resuspended in 50 

µl/sample of ice-cold block (stain buffer with anti-FcR (1:100) + normal hamster 

IgG (1:500) + normal rat IgG (1:500)). Aliquots of 50ul/well were placed into a 

round bottom 96-well plate on ice and covered with foil to minimize light 

exposure. Ethidium monoazide bromide (EMA) at 2x concentration was prepared 

in the dark by mixing 4 ml stain buffer and 2 ul of 2x EMA. For a final 

concentration of 0.25 µl EMA/ml, 50 µl of 2x EMA was added to indicated 

samples. The foil and plate cover were removed, and the plate was placed on ice 

under a fluorescent lamp for 10 minutes. After light exposure, 150 µl of stain 

buffer was added to each well. The plate was covered and centrifuged for 5 

minutes. Supernatant was removed. Cells were resuspended in indicted primary 

antibody diluted in stain buffer. The plate was covered in foil and incubated on 

ice for 25 minutes. The plate was centrifuged and washed twice with stain buffer. 

Cells were pelleted by centrifugation and resuspended in 1% PFA for 20 minutes. 

Samples were centrifuged and resuspended in PBS before storage at 4ºC until 

cytometry analysis.  
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CPT nanoparticles in vitro 

Cells were harvested from tissue culture flasks using 0.25% Trypsin-EDTA 

as described above. Cells were washed using media containing 10% FBS, 1% 

10,000 U/ml-µg/ml penicillin-streptomycin, and 10mM Hepes in HBSS. Cells 

were resuspended in CRPMI and counted. Cells were centrifuged and 

resuspended at 100 cells/µl and held on ice. Three-fold dilutions of CPT, 

CPT/NNPs, and CPT/BNPs were prepared, with CPT concentration ranging from 

0.002 µM to 15 µM. Cells were plated at a density of 5,000 cells per well in a flat-

bottom 92-well tissue culture clear bottom plate. At 24 hr after cell plating, the 

prepared solutions of CPT, CPT/NNPs, CPT/BNPs, or DMSO (vehicle control) in 

CRPMI were added to the wells. Cells were incubated at 37 ºC for 24, 48, or 72 

hr. After incubation, the CellTiter-Glo® Luminescent Cell Viability Assay 

(Promega, Madison, WI, USA) was used to determine cell viability based on the 

quantity of ATP present in each well. Luminescence was read using the Victor 

Light Luminescence Counter (Perkin Elmer, Waltham, MA, USA). Luminescence 

was normalized to a vehicle control containing CRPMI and 3% DMSO, the 

highest concentration of DMSO used in any sample.  

 

Assessment of chemotherapeutic nanoparticle efficacy in vivo  

PDV tumors were transplanted in mice as described above. In the pilot 

experiment of 4 mice, tumors were injected with 0.5 mg CPT/100 µl of CPT/BNPs 

at 23 days after tumor transplantation. This treatment was repeated at 1 week. 
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Control mice received two intratumoral injections of 100 µl PBS on the same 

schedule. Subsequent experiments used a modified injection method to reduce 

ulceration and minimize potential for systemic toxicity. In these experiments, 

mice were treated with 0.125 mg CPT/50 µl of CPT/IL, CPT/NNPs, or CPT/BNPs 

when the diameter of the tumor had reached 3 mm in any dimension. Injections 

were repeated at a twice-weekly schedule. Injections were not performed on a 

tumor if one of the following was true: (1) there was no identifiable tumor, or (2) 

there was open ulceration at the site of a previous injection.  

An 8 mm 31G insulin syringe (BD, Franklin Lakes, NJ, USA) was used for 

intratumoral injections. NNPs and BNPs were vortexed and sonicated using a 

Vibra Cell sonicator (Sonics & Materials, Inc.; Danbury, CT, USA) for 30 s before 

use. Mice were anesthetized prior to the procedure. The needle was inserted 

intratumorally such that the tip was positioned in the center of the tumor, and 50 

µl of drug was slowly injected over approximately 15 seconds. The needle was 

then held in this position for 10 seconds and slowly withdrawn to minimize 

backflow. Gentle pressure was applied to the site of injection to prevent leakage. 

 

Statistical analysis 

Statistical analyses were conducted using Microsoft Excel 2016 for Mac 

(Microsoft, Redmond, WA, USA) and Prism 7 (GraphPad, La Jolla, CA, USA). 

Statistical significance between experimental groups was determined using two-

tailed Student’s t-tests for two-sample, equal variance datasets, with significance 

at p < 0.05. Statistical significance between flow cytometry populations was 
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determined by FlowJo (FlowJo LLC) using the Kolmogorov-Smirnov (K-S) 

algorithm. The K-S algorithm is used to determine the confidence interval with 

which it can be asserted that two univariate histograms are different.90,91 Notably, 

for analysis of flow cytometry data, this method is most ideal for smaller 

populations; with larger populations, there may be mathematical significance in 

situations where there may not be biological significance. 

 

Division of labor 

Julia Lewis, PhD, and Patrick Monico performed all animal breeding and 

genotyping. Hee-Won Suh, PhD, conducted polymer synthesis, nanoparticle 

synthesis, and nanoparticle loading. NNP to BNP conversion was performed by 

Emily Yin and Hee-Won Suh. Cell culture and cell viability experiments were 

conducted by Emily Yin. Mouse injections and tumor measurements were 

performed by Emily Yin and Alison Lee. Frozen tissue section preparation and 

confocal microscopy were performed by Emily Yin. Formalin-fixed tissue was 

paraffin embedded, sectioned and stained with H&E by the Yale 

Dermatopathology Lab. Flow cytometry was performed by Emily Yin and Julia 

Lewis.   
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RESULTS 

NP uptake by PDV cells in vitro 

In order to assess NP association with SCC cells in vitro, we incubated 

cells with fluorescent-dye loaded NNP or BNP and quantified fluorescence of 

cells by flow cytometry. DiD/BNP had enhanced association with PDV SCC cells 

compared with DiD/NNP in vitro (Figure 4). This relationship was consistent at 

both 6 and 24 hours and at higher (1 mg/ml) and lower (0.1 mg/ml) NP 

concentrations. A comparison of averaged median fluorescence intensities (MFI) 

is also shown in Figure 4, in which ΔMFI represents the change in MFI between 

6 and 24 hours. Table 1 displays p-value results for Student’s T-tests comparing 

MFIs from each of the samples. Greater fluorescence was observed in samples 

incubated with 1 mg/ml DiD/NNP and DiD/BNP compared with their respective 

0.1 mg/ml samples. There was enhanced association of both DiD/NNP and 

DiD/BNP with cells at 24 hours compared with 6 hours (Figure 4C).  

Next, we sought to determine whether the association was due to NP 

adhesion to the cell surface or whether NPs were being internalized by cells. By 

confocal imaging, greater fluorescence in DiD/BNP-treated samples compared to 

DiD/NNP-treated samples was consistently observed (Figure 5). When the Ep-

CAM cell surface marker stain was used, DiD fluorescence was observed co-

localizing with the surface stain in some areas and was also distributed inside the 

cell membrane (Figure 5B-C), suggesting that NPs both adhere to the cell 

surface and are internalized by cells.  
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Figure 4. Bioadhesive nanoparticles (BNP) showed superior association 

with PDV squamous cell carcinoma cells relative to non-bioadhesive 

nanoparticles (NNP). Cells were harvested and analyzed by flow cytometry at 

(A) 6 hours and (B) 24 hours after co-incubation with 0.1 mg/mL or 1 mg/mL 

fluorescent dye-loaded NNP or BNP. 
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Table 1. Results of Student’s T-test (two-tailed, two-sample equal variance) 

indicates increased association of BNP compared to NNP with cells at both 

time points, and increased association of dye particles at 24 hours 

compared with 6 hours for both NNP and BNP samples. (A) Comparison of 

non-bioadhesive nanoparticles (NNP) and bioadhesive nanoparticles (BNP) 

samples at each combination of time-point and concentration. (B) Comparison of 

6-hour and 24-hour samples for NNP and BNP at each concentration. 

  

(A) 

Time-point NP Concentration NNP vs. BNP      

P-value 

6 hours 1 mg/ml 0.000051 

6 hours 0.1 mg/ml 0.000053 

24 hours 1 mg/ml 0.000071 

24 hours 0.1 mg/ml 0.000163 

 

(B) 

Sample NP Concentration 6 hr vs. 24 hr          

P-value 

NNP  1 mg/ml 0.000090 

NNP  0.1mg/ml <0.0000001 

BNP 1 mg/ml 0.000060 

BNP 0.1mg/ml 0.000226 
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Figure 5. Confocal microscopy shows particle-encapsulated fluorescent 

dye (red) inside PDV squamous cell carcinoma cells after 24-hour culture. 

(A) Control, DiD/NNP, and DiD/BNP samples displayed as stacked images. (B) 

Image montage shows cross-sections at 0.5 µm intervals through the thickness 

of the cells. (C) Cells at higher power show dye-loaded NNP observed both 

inside the cell and on the surface (co-localizing with Ep-CAM).  
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Analysis of DiD/NNP distribution in cells after topical application 

To determine the distribution of NPs after topical application, we applied 

DiD/NNP to the shaved skin of mice and assessed skin by confocal microscopy. 

While BNPs would be expected to remain on the surface due to their bioadhesive 

properties, we hypothesized that NNPs would absorb into the skin and therefore 

be a better mode of chemotherapeutic drug delivery. DiD/NNP suspended in 5% 

di(ethylene glycol) ethyl ether was applied topically to shaved skin on the flanks 

of mice and occluded with a band-aid in order to visually assess the dispersion of 

NPs after topical application. With the goal of maximizing nanoparticle 

penetration through the epidermis, di(ethylene glycol) ethyl ether was selected as 

a solvent, as it is commonly used to increase epidermal drug penetration. Frozen 

sections were assessed qualitatively by confocal microscopy (Figure 6). 

The distribution of DiD/NNP after topical application was further assessed 

by flow cytometry of harvested skin cells (Figure 7). Langerhans cells were 

gated on CD45+, MHC II+, and CD3-; T-cells were gated on CD45+, CD3+, and 

MHC II- (Supplemental Figure S1). There was an increased association of 

DiD/NNP with Langerhans cells in the epidermis compared to DiD alone and 

control (K-S >99.9%) (Figure 7A). Similarly, there was an enhanced association 

of DiD/NNP with T-cells in the epidermis (K-S >99.9%) (Figure 7B). CD45- cells 

from the epidermis (Figure 7C), largely representing keratinocytes, also showed 

improved association with DiD/NNP (K-S >99.9%), as did CD45- cells from the 

dermis (K-S >99.9%) (Figure 7D). The T(X) values indicate that in each subset 

of cells, the DiD/NNP and control populations were statistically different.  
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Figure 6. Confocal microscopy shows accumulation of dye-loaded non-

bioadhesive nanoparticles (red) suspended in 5% di(ethylene glycol) ethyl ether 

in the epidermis and hair follicles. Nuclei are stained with DAPI (blue). (A) Control 

(no topical application). (B) 4 hours after topical application; higher power at right. 

(C) 72 hours after topical application; higher power at right.  
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Figure 7. Topical application of DiD dye-loaded non-bioadhesive nanoparticles 

(NNPs) on the skin of mice results in enhanced association of dye with 

epidermal, dermal, and local immune cells compared to DiD application alone. 

Fluorescence of PDV squamous cell carcinoma cells was measured by flow 

cytometry 72 hours after topical skin application of DiD or DiD/NNP. (A) 

Langerhans cells (CD45+ MHC II+ CD3-) in the epidermis. (B) T-cells (CD45+ 

CD3+ MHC II-) in the epidermis. (C) CD45- cells in the epidermis. (D) CD45- 

cells in the dermis. Each plotted curve represents data from one mouse. Control 

populations represent mice that received injections of an equal volume of 1x 

PBS. Median fluorescence intensity (MFI) for each sample is shown in the 

corresponding tables. ΔMFI refers to the change in MFI between each sample 

and the control. 
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Distribution of DiD/BNP after intratumoral injection 

To assess the distribution of BNPs after intratumoral injection, we injected 

100 µl of DiD/BNP into established PDV tumors at 4 weeks after tumor 

transplantation. We harvested the tumors after 72 hours and digested the tissue 

for analysis of fluorescence by flow cytometry. We also harvested the draining 

inguinal lymph node to address the potential for targeting immune cells. Gating of 

defined cell populations is shown in Supplemental Figure S1. Flow cytometry 

demonstrated significant association of DiD/BNP with a variety of cell types 

harvested from the draining lymph node, tumor, and skin (Figure 8). Comparing 

CD45- tumor cells, the treated samples were significantly different from the 

control (K-S >99.9%). The subset of CD45+ cells from the tumor was also 

assessed to determine the association of particles with local, tumor-associated 

immune cells, with increased fluorescence seen in the treated sample (K-

S >99.9%). There was also a difference between treated and untreated samples 

of CD45+ cells from the draining lymph nodes (K-S >99.9%). 

To visualize the anatomical distribution of NPs after intratumoral 

injections, DiD/BNP injections were repeated on another tumor for analysis by 

confocal microscopy. Imaging of frozen sections of these tumors showed 

fluorescent dye throughout the tumor, indicating tumor-wide penetrance of the 

intratumoral injection (Figure 9).  
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Figure 8. At 72 hours after intratumoral injection of 100 μL fluorescent dye-

loaded bioadhesive nanoparticles, there was significant association of 

nanoparticles with cells harvested from the tumor and draining lymph node 

as assessed by fluorescence on flow cytometry. (A) CD45- cells from tumor. 

(B) CD45+ cells from tumor. (C) CD45+ cells from lymph node. 
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Figure 9. After intratumoral injection of 100 µl of fluorescent dye-loaded 

bioadhesive nanoparticles, nanoparticles were visualized by confocal to be 

distributed throughout the tumor. Concentration of nanoparticles within injected 

tumors was variable. (A) Nanoparticles were observed dispersed throughout the 

imaged area of a tumor. (B) Images from another injected tumor show 

nanoparticle dispersion throughout the layers of the skin and tumor, from minimal 

dye visibility in the epidermis (top) to the highly saturated tumor (bottom). 
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Cytotoxicity of CPT, CPT/NNP, and CPT/BNP in vitro 

To compare the cytotoxic efficacy of our delivery methods in vitro, we 

used the CellTiter-Glo® Luminescent Cell Viability Assay (Promega) to measure 

cell viability after treatment of PDV cells with CPT, CPT/NNP, or CPT/BNP. 

Cytotoxicity assays were conducted at 24, 48, and 72 hours of incubation with 

the drug (Figure 10). At these time points and the selected range of 

concentrations, the viability curve of paclitaxel was not well visualized. NP 

encapsulation was attempted for each drug. However, only CPT was 

successfully encapsulated in PLA-HPG, and therefore this drug was used for 

subsequent experiments. 

The time-point selected for further study was 48 hours, due to the ability to 

visualize the full viability curve of CPT at this time. To compare NP-encapsulated 

drug with drug alone, cells were incubated with CPT, CPT/NNP, or CPT/BNP for 

48 hr. The three treatments had similar effects on cell viability (CPT IC50=0.2770 

[95% CI: 0.2365, 0.3246]; CPT/NNP IC50=0.4283 [0.3387, 0.5423]; CPT/BNP 

IC50=0.1708 [0.1444,0.2020] (Figure 11). Although statistically different, it is not 

clear from this experiment whether the difference has biological or clinical 

significance. 
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Figure 10. PDV cells were incubated with paclitaxel or camptothecin to 

assess the cytotoxicity and IC50 of each drug. Cell viability was measured by 

CellTiter-Glo® Luminescent Cell Viability Assay (Promega) at (A) 24, (B) 48, and 

(C) 72 hours. 
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Figure 11. Incubation of PDV cells with camptothecin-loaded non-adhesive 

nanoparticles (CPT/NNP) resulted in slightly increased cell death at 48 

hours compared to incubation with camptothecin (CPT) or CPT-loaded 

bioadhesive nanoparticles (CPT/BNP). Cell viability was measured by the 

CellTiter-Glo® Luminescent Cell Viability Assay (Promega). The three treatments 

had statistically different IC50 values: CPT IC50=0.2770 [95% CI: 0.2365, 0.3246], 

CPT/NNP IC50=0.4283 [0.3387, 0.5423], CPT/BNP IC50=0.1708 [0.1444,0.2020]. 
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Efficacy of CPT, CPT/NNP, and CPT/BNP in treating PDV SCC tumors  

In a small pilot study (n=4), mice with established PDV tumors were 

treated with intratumoral injections of CPT/BNP or 1x PBS to determine the 

efficacy of CPT/BNP in vivo. Control mice treated with 1x PBS injections showed 

significant, rapid tumor growth over 4 weeks of observation, while complete 

resolution of the transplanted tumor was seen in all CPT/BNP treated mice (n=2) 

(Figure 12). Tumors were harvested and fixed in 4% PFA for sectioning, and 

sections were stained with H&E. Large tumors were confirmed by histology in 

both of the control mice (Figure 12C), while no tumors were observed by 

histological examination in the two CPT/BNP-treated mice (Figure 12D).  

Given concern for potential systemic toxicity, we used a lower dose of 

CPT and increased frequency of treatments in our subsequent study. We also 

compared CPT/BNPs to CPT in an intralipid 20% vehicle (CPT/IL) and 

CPT/NNPs. The dose of CPT was reduced from 0.500 mg to 0.125 mg per 

injection, while the frequency of injections increased from weekly to twice per 

week. This study (n=25) showed efficacy of all three CPT-containing treatment 

groups. Figure 13 shows the Kaplan-Meier survival analysis for each group, in 

which the endpoint represents the tumor reaching a diameter greater than or 

equal to 1.0 cm in any direction. Each of the three CPT-containing samples 

(CPT/IL, CPT/NNP, CPT/BNP) was significantly different compared to the IL-only 

control (p=0.013, 0.002, 0.002, respectively). There was no statistical difference 

in the Kaplan-Meier survival analyses among CPT/IL, CPT/NNP, and CPT/BNP 

(p(CPT/IL v. CPT/NNP) = 0.1259; p(CPT/IL v. CPT/BNP) = 0.1744; p(CPT/NNP v. CPT/BNP) = 
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0.9091). However, there was a trend toward significance in comparing CPT/NNP 

and CPT/BNP samples with CPT/IL, suggesting that CPT/NNP and CPT/BNP 

may have enhanced antitumor effects. In addition, examination of the histology of 

the tumors suggested that external tumor measurements in the CPT/NNP and 

CPT/BNP groups may over-estimate the actual tumor burden due to increased 

necrosis compared to CPT/IL-treated mice.  
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Figure 12. In a pilot study of mice with transplanted PDV tumors (N=4), tumors 

were treated with two weekly intratumoral injections of 0.5 mg/100 µl 

camptothecin bioadhesive nanoparticles (CPT/BNP) or 1x PBS (control). While 

control mice showed rapid tumor growth over the 3 weeks after initiation of 

treatment (A, C), tumors treated with CPT/BNP had complete resolution of their 

tumors (B, D). Images are from 10 days after final injection.  
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Figure 13. Kaplan-Meier survival analysis indicated a significant difference in 

time to 1 cm between the intralipid 20% (IL) control and each of the CPT groups: 

CPT in IL (CPT/IL), CPT/NNP, and CPT/BNP (N=20). Survival of CPT/IL 

(p=0.013), CPT/NNP (p=0.002), CPT/BNP (p=0.002) were significantly different 

compared to the control. No significant difference was observed between the 

three CPT treatment groups (p(CPT/IL v. CPT/NNP) = 0.1259; p(CPT/IL v. CPT/BNP) = 0.1744; 

p(CPT/NNP v. CPT/BNP) = 0.9091). Mice received twice weekly intratumoral injections 

containing 0.125 mg CPT in a 50 µl volume. A treatment was skipped if either of 

the following were true: (1) ulceration at the site of injection, or (2) tumor was 

neither visible nor palpable.  
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DISCUSSION 
 

Polymer NPs can be employed as an effective drug delivery system and 

may be particularly well-suited for the treatment of malignant tumors. Given the 

limitations of current treatments in skin cancer, NPs provide a delivery method for 

chemotherapeutic agents that may improve treatment efficacy and decrease the 

risk of tumor recurrence. This is the first study to assess the efficacy of NP-

encapsulated chemotherapeutic agents in the treatment of skin cancer. Our 

preliminary results demonstrate the efficacy of PLA-HPG NPs in the delivery of 

CPT for the treatment of SCC in mice.  

As we had hypothesized based on prior studies, BNPs showed an 

increased association with PDV cells compared with NNPs. This can be 

explained by the aldehyde-rich surface chemistries of BNPs, which facilitate 

covalent bonding to cellular proteins. We not only observed the association of 

dye-loaded NPs with cells, but also confirmed internalization of NPs by PDV cells 

via confocal microscopy. The latter further suggested that NPs, in particular 

BNPs, may be effective at directly targeting malignant cells. While a specific 

mechanism of uptake has not been described for PLA-HPG NPs, prior studies 

suggest that a number of different pathways may be at work. For instance, PLA-

PEG NPs have been shown to be taken up by receptor-mediated endocytosis.92 

Macropinocytosis has also been implicated as a pathway of internalization for 

other classes of NPs.93 The predominant method of uptake may also depend on 

cell type and local environment.  
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Our observation of significant fluorescence in both NNP- and BNP- treated 

samples at 6 hours suggests that an NP-based delivery method could rapidly 

begin targeting tumor cells within hours. The increased association at 24 hours 

also provides evidence of the continued capacity of PDV cells to associate with 

NPs with prolonged co-incubations and lends support to the depot effect 

advantage of NPs. Additional studies at longer time-points may help determine 

when and at what concentration a plateau in NP association with cells is 

reached. This may help determine the ideal concentration of NP for therapeutic 

use in order to maximize treatment efficacy. 

We also found that after topical application of NNPs, there was significant 

penetration of particles through the full thickness of the epidermis as well as in 

hair follicles, by as early as 4 hours and persisting for at least 72 hours. There 

was enhanced uptake of NNPs by cells compared to fluorescent dye alone, 

including in keratinocytes in the epidermis, fibroblasts in the dermis, and T-cells 

and Langerhans cells in the epidermis. This supports the use of NNPs as a 

topical delivery method and also suggests NPs may be an effective delivery 

system for immune-modulating therapies. Notably, the K-S algorithm was used to 

determine whether there were statistical differences in fluorescence between 

these populations of cells. While this statistic is recommended for comparing 

populations, it is notably a measure of mathematical and not biological 

difference. As the value of n increases, particularly in our flow cytometry data that 

has populations in the thousands to hundreds of thousands, there is an 

increasing likelihood of a >99% difference between two populations. As such, 
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while we can conclude that there is a true difference in the association of 

DiD/NNPs and DiD alone with T-cells, Langerhans cells, epidermal keratinocytes, 

and connective tissue cells in the dermis, the biological or clinical significance of 

these findings is more subjective. However, we can compare the relative impact 

of NNP delivery on various cell types by comparing the ΔMFI of various cell 

types. For instance, Langerhans cells (ΔMFI=7.24), T-cells (ΔMFI=6.1), and 

epidermal keratinocytes (ΔMFI=5.25) have greater uptake of NNPs compared to 

dermal fibroblasts (ΔMFI=1.93). 

Despite the difference in surface chemistry between NNPs and BNPs, and 

the related difference in cell association, there was only a small difference in 

effect on cell viability among CPT/NNP, CPT/BNP, and CPT in vitro. CPT/NNP 

had the lowest IC50, while CPT/BNP had the highest IC50, and thus a higher 

concentration of CPT/BNP would be necessary to achieve the same degree of 

cytotoxicity. This may appear contrary to our previous findings that BNPs have 

preferable association with PDV cells compared to NNPs; however, association 

with NPs is not necessary for the drug to exert its cytotoxic effects, as free-

floating NPs will continue to release active CPT. In addition, while these results 

were statistically different, their clinical significance is less clear. Taken together, 

these findings may also suggest that the lack of cytotoxic advantage of CPT/BNP 

compared to CPT/NNP is not related to the degree of NP-cell kinetics, but rather 

may be explained by drug-cell or drug-NP kinetics. Previous studies using CPT in 

PLA-HPG nanoparticles have shown that at room temperature in buffered water, 

the particles release slightly over half of their contents within 24 hours, and the 
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remaining encapsulated drug is released over a period of 1 week.60 However, 

this release profile may not be applicable for in vitro studies in buffered cell 

media at 37ºC. Drug may be released more quickly in these conditions, thereby 

minimizing the advantages conferred by NP encapsulation. While less likely, it is 

also possible that the nanoparticles may degrade and release CPT more slowly 

in these settings, such that an incubation time longer than 48 hours would be 

necessary to observe differences between NNPs and BNPs. Previous studies 

from our research group have suggested that a difference in antitumor efficacy 

between delivery methods may be observed only in in vivo studies, while no 

difference is observed in vitro. Deng et al. showed that PLA-HPG CPT/NNP 

significantly decreased tumor burden in Lewis lung carcinoma-bearing mice 

compared to PLA-PEG CPT/NNP, however no difference in cytotoxic efficacy 

was seen between the PLA-HPG and PLA-PEG CPT/NNP in vitro.60 

Our initial in vivo pilot study also demonstrated the efficacy of CPT/BNP in 

the treatment of established SCC tumors. Due to concern for potential systemic 

toxicity associated with such a high dose of CPT, we used a decreased dose and 

increased frequency of treatments in our subsequent study. In this second 

experiment, several mice received fewer than the scheduled biweekly doses, as 

injections were not administered if the mice had ulceration from prior injections or 

in the absence of a visible or palpable tumor. Given the absence of complete 

resolution in the tumors in this experiment, a higher dose of CPT is likely 

necessary to definitively treat these tumors.  
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Furthermore, our study demonstrated that CPT/NNP and CPT/BNP may 

be more effective in the treatment of established PDV SCC tumors compared to 

CPT/IL. In our Kaplan-Meier analysis, there was a trend towards superiority of 

CPT/NNP and CPT/BNP compared to CPT/IL (p(CPT/IL v. CPT/NNP) = 0.1259; p(CPT/IL v. 

CPT/BNP) = 0.1744). We had hypothesized that both NNPs and BNPs would have 

superior antitumor efficacy compared to drug alone. As previously described, 

polymer NPs are notable for the advantages of gradual release and producing a 

depot effect, as well as advantages secondary to the EPR effect. Thus, the lack 

of statistical difference between NP-encapsulated drug and drug alone may 

suggest an insufficient sample size, or it may point to these NP advantages 

having been minimized or hindered by another process. As previously proposed, 

immediate release of drug from the particles after intratumoral injection may 

decrease advantages in efficacy expected from controlled-release. Injection of a 

relatively large volume of drug into the tight space of the tumor interstitium may 

cause structural changes to the tissue, vasculature, or lymphatic drainage that 

minimize the EPR effect which gives NPs their antitumor advantage. 

In addition, we had hypothesized that CPT/BNP would have superior 

efficacy compared to CPT/NNP due to BNPs’ enhanced ability to bind to cellular 

proteins and increased uptake in vivo. This pattern was seen in prior studies of 

glioblastoma and intraperitoneal uterine serous carcinoma from our group. 

However, in glioblastoma, the continual flow of CSF through the brain may make 

NNPs easily cleared away, while in the case of intraperitoneal carcinomas, 

intraperitoneal fluid is also absorbed and replenished over time. Relative to these 
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tumor models, there is likely relatively limited drainage from the self-contained 

PDV SCC tumors. As described in the EPR effect, lymphatics in tumors have 

poor drainage, and in such a setting, NNPs and BNPs may be similarly retained 

in the tumor interstitum. Future studies may employ dye-loaded NPs to compare 

the degree to which NNPs and BNPs track to the draining lymph nodes. While 

we believe that NP delivery has advantages that can be exploited to improve the 

treatment of cutaneous malignancies, our preliminary data has not been able to 

definitively confirm this hypothesis. 

Our study has a few limitations. First, when visualizing dye by confocal 

microscopy, we cannot be certain that we are visualizing only NPs and not free 

dye that has been released from NPs. Similarly, we know that drug release from 

NPs is dependent on the encapsulated drug, therefore the behavior of dye-

loaded NPs may not be highly predictive of CPT-loaded NPs. Another limitation 

is the potential for human bias or variation in our procedures. Our studies were 

not blinded, as they were in large part conducted by a single researcher in an 

effort to minimize researcher-to-researcher variation in injection and 

measurement techniques. When injecting tumors that may range significantly in 

size, shape, and density, it is impossible to fully standardize injection techniques. 

However, we sought to replicate our injection technique as precisely as possible 

from mouse to mouse. Finally, the external measurement of tumors may be 

complicated by inflammation and necrosis that occurs secondary to treatment. 

Histological examination of tumors suggested that tumor burden may be over-

estimated in NNP-treated and BNP-treated mice due to widespread necrosis.  
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Additional studies are underway to optimize the concentration and 

frequency of drug delivery in order to consistently and definitively treat tumors. 

Future experiments will also aim to assess other potential injection techniques to 

determine the most effective means of delivering our treatment. Other 

chemotherapeutic drugs will be tested, as they may offer increased efficacy for 

our tumor model. While paclitaxel was difficult to encapsulate in PLA-HPG NPs, 

other types of polymers may be better suited for encapsulating the drug. 

Epithilone B has also been found effective in a number of other murine studies, 

including in uterine serious carcinoma, and has been encapsulated in PLA-

HPG.79 While our current tumor model employs subcutaneous tumors, we may 

also study NP efficacy in other tumor models, such as chemically induced tumors 

via topical application of DMBA and TPA. For these models, cutaneous 

application of treatments may be used in conjunction with other delivery 

methods, such as microneedles, ultrasound, or tape-stripping.94  

Aside from directly targeting malignant tumor cells, the local immune 

system may also be an effective target for antitumor therapies. Our study found 

significant NP uptake both in Langerhans cells and T-cells in the local tumor 

environment, as well as in cells in the draining lymph node. Immune-stimulating 

drugs, such as imiquimod or interferons, may therefore be effectively delivered 

by NP encapsulation. Imiquimod is currently used as a topical therapy to 

stimulate the local immune system to attack tumor cells; encapsulation in NPs 

may prolong and enhance the effects of the drug. Additionally, co-encapsulation 
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simultaneous administration with a chemotherapeutic drug or may produce an 

additive or synergistic effect.  

In addition to the potential of NP delivery in the treatment of cutaneous 

malignancies, NP encapsulation can also enhance existing preventative skin 

cancer strategies. Our research group recently developed a novel, BNP-based 

sunblock that enhances duration of protection and minimizes the production of 

reactive oxygen species typically associated with chemical UVR-blocking 

agents.95 These benefits are a result of BNPs engineered for minimal release of 

drug over time and adherence to the stratum corneum. We also plan to use our 

NP delivery platform to provide post-UV protection in the form of antioxidants and 

“triplet-state quenchers” to counteract free radicals and oxidative stress that can 

lead to DNA damage hours after sun exposure.96 

In conclusion, our study demonstrates that polymer-based NPs are a 

promising drug delivery system for chemotherapeutic treatment of skin cancer, 

and that CPT/BNPs may have the capacity to definitively treat PDV SCC. While 

surgery will likely remain an important therapy for skin cancer, an NP-based 

treatment may offer an improved therapeutic option for patients with lesions 

affecting large surface areas or who are otherwise poor candidates for surgical 

therapy. NP delivery may also allow post-surgical treatment in the surgical bed to 

prevent recurrence and eliminate any remaining cancer cells. Through these 

methods, NP encapsulation may enhance the prevention and treatment of skin 

cancer, offering superior efficacy when compared to existing preventative and 

therapeutic methods.  
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SUPPLEMENTAL APPENDIX 

 

Figure S1. Sample gating for flow cytometry data shows how cell types were 

defined. (A) Gating of epidermal cells for viability (EMA-); myeloid lineage 

(CD45+); and Langerhans cells (CD45+, CD3+, MHCII-) or T-cells (CD45+, 

CD3-, MHCII+). (B) Gating of tumor cells for viability (EMA-) or myeloid lineage 

(CD45+). 
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