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Abstract 

Temporal lobe epilepsy remains a common and complex clinical entity whose 

underlying disease pathology is incompletely understood.  While many structures been 

identified in contributing to these seizures, particular note should be given to the 

thalamus.  Previous studies with imaging techniques and neurostimulation have 

suggested certain thalamic nuclei of interest, but their precise activity during seizures 

has yet to be elucidated.  The goal of this study was to perform population and single 

neuron recordings of several different thalamic nuclei during temporal lobe seizures, 

namely, the anterior (ANT), centrolateral (CL) and ventral posteriomedial (VPM). We 

performed these studies in an established rat model of temporal lobe epilepsy.  We 

found that multiunit activity (MUA) increased during seizures in ANT and VPM, and 

decreased in CL.  Additionally, single unit juxtacellular recordings showed a decreased 

firing rate and a switch to increased burst firing in CL.  Finally, analysis of MUA in VPM 

showed a significant increase in spindles during seizures.  These results reinforce our 

hypothesis that different thalamic nuclei have different roles in temporal lobe epilepsy, 

and generally support their previously hypothesized physiologic and pathologic 

functions.  As a limbic nucleus, ANT participates in seizure propagation.  CL, on the other 

hand, is a component of arousal circuitry and likely participates in decreased 

consciousness during seizures.  Lastly, the increased spindle activity in VPM is also seen 

in sleep or light anesthesia, and may contribute to cortical dysfunction.  
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Statement of Purpose 

Previous work in rodent models of focal limbic epilepsy have suggested the 

variable roles of different thalamic nuclei in the disease. While some are involved in 

propagation of seizures to the cortex, others have been implicated in loss of 

consciousness.  It is our aim to record precise measurements of neuronal activity in 

several targeted thalamic nuclei to better characterize their individual roles in focal 

limbic epilepsy.   We hypothesize that different thalamic nuclei will show different 

behavior during seizures based on previous understanding of their physiologic roles. 
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Introduction 

Epilepsy is an unfortunately common disease entity that can cause significant 

morbidity and mortality amongst its victims (1).  While epilepsy varies significantly in its 

clinical presentation, from mild sensory predominant focal seizures, to the more severe 

generalized seizures that leave patients unconscious and pose significant impact to their 

quality of life. These latter patients may be unable to hold a job, drive, or effectively 

care for themselves, if their seizures are uncontrolled by medical therapy. While 

advances in pharmacology have made seizure treatment more effective, further 

characterizing the pathophysiology of epilepsy may reveal new treatment paradigms 

and reduce disease burden. 

Temporal lobe epilepsy is a subtype of epilepsy characterized by an 

epileptogenic focus within the temporal lobe, and is the most common subtype in adults 

and adolescents.  Clinically, it usually manifests with an aura, typically remembered, that 

preceeds the seizure.  These auras are occasionally smells or tastes, but more frequently 

are less tangible; sensations of déjà vu or falling are common.  The seizures themselves 

are typically complex partial, with brief loss of consciousness, and, in some patients, full 

generalization (2).  For those with focal limbic seizures, loss of consciousness has been 

ascribed to interruptions in key subcortical arousal systems (3, 4). 
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While many structures have been implicated in seizure pathophysiology and 

propagation, of particular note for limbic seizures is the thalamus.  Critically involved in 

sensory inputs and many other neurocognitive processes, certain thalamic nuclei also 

serve as a processing center for information from the limbic system before transmission 

to the cortex.  This pathway can be significant in propagation of focal (and particularly 

temporal lobe) seizures. Certain thalamic nuclei such as the anterior nucleus (ANT), have 

well defined roles in the limbic system and have long been suggested as critical to 

seizure propagation (5).  In patients with focal limbic seizures, morphometric MRI shows 

ANT volume loss correlating with volume loss in both the mesial temporal cortex and 

hippocampus (6).    

Impairment of thalamic function can also play a role in the impaired 

consciousness seen in focal limbic seizures. More recent work using high field blood-

oxygen-level dependent (BOLD) fMRI has demonstrated suppression in the intralaminar 

thalamus during limbic seizures, which resolved postictally (7). The same study was able 

to correlate this suppression with a concurrent decrease in choline in the same 

structure, suggesting a role for this region in consciousness circuits.  While these data 

are exciting, more direct measurement of thalamic activity is needed.  BOLD fMRI data 

can be misleading as to base neuronal activity. While an increase in CBF has been 

correlated with increased neuronal activity in the thalamus, contrary findings have been 

noted in the hippocampus and striatum (8, 9).  In addition to confirming the 



10 

 
aforementioned BOLD data, direct measurement of neuronal activity can also assess 

firing rate and pattern, rather than simply an increase or decrease in overall activity.   

The present study focuses on that goal: more precisely measuring the 

electrophysiological changes in the thalamic structures during seizures.  For analyzing 

activity of these structures we measure their multiunit activity (MUA) and single unit 

activity (SUA).  MUA is a measurement of the spiking activity of a population of neurons 

and is useful for assessing the temporal response of brain structures to different stimuli.  

SUA, on the other hand, looks at single neurons and can elicit information on firing rates 

and patterns.   

In this study, we present findings of an increase in ictal MUA in anterior thalamic 

nucleus (ANT) and ventral posteriomedial nucleus (VPM), and a decrease in ictal MUA in 

centrolateral (CL).  These suggest varying roles for these different nuclei in focal 

seizures.  For ANT, this could support previous theories of a role as a junction for seizure 

propagation.  For CL, this could support previous findings as an important nucleus for 

arousal.  Additionally, our measurements of SUA indicate a markedly decreased rate of 

fire amongst individual neurons in CL, coupled with an ictal shift towards burst firing.  

This firing method has been observed in other states of decreased consciousness, such 

as sleep and anesthesia (10).  These last findings suggest a role in loss of consciousness 

for CL.  Finally, we also examine the prevalence of spindle patterns of neuron firing in 

VPM, and report a significant increase during seizures. As spindles are classically seen in 
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states of decreased arousal (e.g. sleep and light anesthesia), this finding suggests a 

shared etiology of impaired consciousness and an interplay between the thalamus and 

other subcortical structures in arousal.  
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Materials and Methods 

This project was the result of a team effort, with members at all stages of 

training, from undergraduates to postdocs.  Different team members were responsible 

for different components.  Li Feng and I performed the electrode implantation surgeries 

and electrophysiological data acquisition.  Other components, including histology, were 

accomplished by other team members.  

Animals 

The Yale University Institutional Animal Care and Use Committee approved all 

procedural protocols.  38 adult Sprague-Dawley rats weighing 180-280 grams (Charles 

River Laboratories) were used for experiments.  Previous studies of these rodents with 

temporal lobe epilepsy have demonstrated greater success rate in female rodents (11, 

12), and so all experiments were conducted in females.  30 of these rodents were used 

in measurements of MUA in thalamic nuclei, and eight were used in juxtacellular SUA 

recordings from CL. 

Surgery and electrode implantation 

All animals were first deeply anesthetized with 90 mg/kg ketamine (Henry Schein 

Animal Health, Ashburn, VA) and 15 mg/kg xylazine (AnaSed; Llyod Laboratories, 
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Quezon City, Philippines) injected intramuscularly.  Responsiveness to pain was checked 

every 15 minutes by toe pinch, and animals were kept under deep anesthesia during 

electrode implantation.  Animals were kept warm by use of a heating pad set to 37C.  In 

preparation for electrode placement, burr holes were placed stereotactically above the 

locations of electrode placement.  All coordinates are reported in reference to bregma 

(13).  A tungsten monopolar microelectrode (UEWMGGSEDNNM; FHC) with impedance 

of 3 - 4 MΩ was placed at an angle of 20 degrees from vertical in the right lateral 

orbitofrontal cortex (LO) at coordinates anterior-posterior (AP) +4.2mm, medial-lateral 

(ML) -2.2 mm, superior-inferior (SI) -4.2 mm.  For seizure initiation and local field 

potential (LFP) recording, twisted pair bipolar electrodes with tips separated by 1mm, 

insulation shaved distally to 0.3 mm, and electrode tips in the coronal plane were 

implanted into the dorsal hippocampus at (HC) at coordinates AP -3.8, ML  2.5, SI -3.2 

mm.  Additionally, a stainless steel anchoring screw (0-80 x 3/32; PlasticsOne, Roanoke, 

VA) was placed caudal to the hippocampal electrode and was affixed to this electrode 

with acrylic dental cement (Lang Dental Manufacturing, Wheeling, IL; powder: REF 1220, 

jet liquid: REF 1403) for stability. MUA recordings were accomplished by placement of 

monopolar tungsten microelectrodes in coordinates corresponding to their nuclei.  For 

ANT, these were AP -1.4 mm, ML 1.5 mm, SI -5.6 mm. For CL, these were AP -2.8 mm, 

ML 1.5 mm, SI -5.2 mm. For VPM, these were AP -3.3 mm, ML 2.4 mm, SI -6.2 mm. 

Juxtacellular recordings from CL were accomplished by placement of a glass 

electrode placed at the same coordinates as above with a micromanipulator (AP -2.8 
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mm, ML 1.5 mm, SI -5.2 mm) similar to procedures described elsewhere (7, 14-16).  

Borosilicate glass capillaries (#1B150F-4, World Precision Instruments) measuring 1.5 

mm by 100 mm were pulled on a Flaming/Brown micropipette puller (Sutter 

Instruments, P-1000 horizontal puller), and then bumped under microscopy to form a 

flat electrode tip.  These capillaries were then filled with with 4% Neurobiotin (Vector 

Laboratories, SP-1120) in saline (0.9% NaCl).   

Seizure initiation 

The protocol for this model of limbic seizure initiation has been described 

previously (17).  Seizures were initiated several hours after the completion of electrode 

implantation, to allow time for the animal to come out of deep anesthesia.  Light 

anesthesia status was assessed by the presence of less than 3 slow waves on LO LFP 

every 10 seconds, while the animal was still unresponsive to toe pinch stimulation.  

Seizures were then triggered by a 2 second 60Hz biphasic square pulse of variable 

current from a stimulator (A-M Systems, Model 2100).  The current was manually 

selected to elicit a seizure of at least 30 seconds (assessed based on polyspike 

hippocampal MUA) and did not secondarily generalize.  This latter criterium was 

assessed by polyspike activity in the LO LFP, and any seizures that did generalize were 

excluded from analysis.  The current required to trigger an appropriate seizure varied 

from 100 – 900 μA.  Currents at smaller amplitudes tended to be insufficient, and at 

larger amplitudes tended to generalize. 
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Signal acquisition and recording 

MUA sampling electrodes were connected to amplifiers (A-M Systems, Model 

1800).  Their signals were recorded with 1000x amplifier gain, and then high pass 

filtered at 400-10,000 Hz on an analog filter (Model 3364; Krohn-Hite). They were then 

digitized on a Power 1401 (CED) at a sampling rate of 20 kHz to ensure sufficient 

resolution.  These data were then imported to Spike2 (CED) software for analysis (see 

below). 

Similar to above, LFP signals from LO were recorded at 1000x amplifier gain on a 

microelectrode amplifier (A-M Systems, Model 1800), but were filtered at 0.1 – 100 Hz 

on an analog filter (Model 3364; Krohn-Hite).  The signals were then digitized on a 

Power 1401 (CED) at a sampling rate of 1 kHz to minimize file size.  These data were 

then imported to Spike2 (CED) software for analysis (see below).   

 SUA signals from placed electrodes were acquired with an Axoclamp-2B 

amplifier (Molecular Devices, x10 gain, current clamp mode).  These signals were 

digitized at 20,000 Hz with a Power 1401 and Spike2 software (as above, both from 

CED). Once a neuron signal was stably recorded during the baseline, ictal, postictal, and 

recovery epochs, it would be labeled by passing current pulses (0.6–10 nA, pulse 

duration 150 ms, 3 Hz) through the electrode tip to eject the Neurobiotin, for later 
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placement confirmation with histology. These current pulses were driven for > 15 min to 

improve labelling. 

Histology 

Animals were perfused transcardially with 0.2% heparinized phosphate-buffered 

saline (PBS) (APP Pharmaceuticals, Lake Zurich, IL) followed by 4% paraformaldehyde 

(PFA) (JT Baker, Center Valley, PA) in PBS. The brain was then removed and post-fixed 

for at least 12 hours in 4% PFA in PBS at 4 C. Brains were washed three times in PBS in 

preparation for slicing, placed in 2% agarose gel (American Bioanalytical, Natick, MA) 

and cut at 60 µm on a Vibratome (Leica Microsystems, Wetzlar, Germany).  MUA 

electrode placement was confirmed by the electrode track after staining with cresyl 

violet (FD NeuroTechnologies, Columbia, MD). 

Juxtacellular electrode placement was confirmed by nickel stain.  Brain sections 

were incubated for 10 min in 0.7% hydrogen peroxide in cold PBS, and then in 

biotinylated peroxidase (1:200, “B” component of standard ABC [avidin-biotin 

peroxidase complex] kit, Vector Laboratories) overnight. Using 3-3'-diaminobenzidine 

tetrahydrochloride (DAB) as a chromogen, the neuron was then intensified with nickel 

(Ni) by incubating the sections in a solution containing 0.05% DAB and 0.038% nickel 

ammonium sulfate for 5 minutes and then adding hydrogen peroxide to a final 

concentration of 0.01%, and agitating for an additional 5 minutes. The slices were then 
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rinsed thoroughly to remove any excess Ni-DAB not in the neuron of interest. The slices 

were then mounted on polarized slides (ThermoScientific, Waltham, MA, U.S.A.) and 

dried for at least 48 hours.  In order to stain other brain structures, the slices were then 

stained with Cresyl Violet as above.  Coverslips (Fisher Chemicals, Pittsburg, PA) were 

applied.  Images of slices at 60x and 250x were taken on a compound light microscope 

(Carl Zeiss) with a digital camera (Motic), and digitally stitched together (Microsoft 

Image Composite Editor). Ni-DAB stained neurons were identified their black-deep 

brown color. Neuron locations in the CL were confirmed when they fell no more than 

1.5 mm ventral to the hippocampus, and were just lateral to the stria medullaris/lateral 

habenula complex or the mediodorsal thalamic nucleus. 

Statistics and Data Analysis 

All data were analyzed in Spike2 (CED) and Excel (Microsoft, Redmond, WA).  For 

MUA, spindle power, and LFP delta power analysis, analysis epochs were defined as 

follows:  The baseline epoch was the 10 seconds prior to seizure onset, the ictal period 

was the first 30 seconds of seizure activity (defined by polyspike discharges from on the 

hippocampal LFP electrode), the post-ictal epoch was defined as the 10 seconds 

following seizure offset, and the recovery epoch was defined as the last 10 seconds 

before the animal was re-anesthetized or the experiment terminated.  Neuronal firing 

was assessed in MUA through analysis of root mean square voltage (Vrms), as validated 

in epilepsy models elsewhere as matching neuronal firing based on spike sorting (9, 17, 
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18).  This was used in ANT, CL, and VPM recordings, in consecutive overlapping one 

second time bins.  

Spindle waves were analyzed by downsampling the MUA from 20 kHz (as above) 

to 100 Hz, which resulted in an amplitude profile corresponding to the 7-14 Hz spindle 

activity and removed most background 7-14 Hz LFP signal.  With this amplitude profile, 

we then measured power in the downsampled MUA using 2.56 second overlapping bins 

to obtain “spindle power”.  In addition to thalamic nuclei, we also assessed cortical 

activity by recording LO local field potential (LFP) during limbic seizures.  Using Spike2 

(CED) we calculated delta (0-4 Hz) power in 1 second overlapping time bins.  

To show a time course of mean percent changes for MUA Vrms, “spindle power” 

and delta power, we plotted [(ictal signal - mean baseline)/mean baseline] x 100%, for 

consecutive 1 second nonoverlapping intervals. We then calculated the mean percent 

changes for each epoch.  Although it may be intuitive to average across all seizures, this 

approach is subject to outlier animals if it has many seizures.  The alternative, averaging 

within each animal first, is subject to outliers with few seizures.  While we performed 

both analyses, the figures shown here were performed after averaging within each 

animal first, as this approach generates a smaller sample size and is more conservative. 

Repeated-measures analysis of variance (ANOVA) was used to detect 

electrophysiological changes in CL, ANT, VPM, and LO by contrasting values in the 
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preseizure baseline with ictal, postictal, and recovery epochs. All statistical tests were 

performed using SPSS 17 (IBM), and significance level was set at p < 0.05. 

SUA was spike sorted using Spike2, and single units were identified with 

template matching.  Using an in-house MATLAB (R2009a, The MathWorks) program, we 

generated and analyzed Raster plots of neuron firing and burst firing over the different 

time epochs (baseline, ictal, and postictal, as above).  Histograms of mean firing rate 

were calculated in 1 second overlapping bins for each epoch.  Only data from electrodes 

whose correct locations were confirmed on histology were analyzed.    

Interspike interval (ISI) analysis 

For analysis of SUA, we looked at the ISI in the ictal period versus baseline.  ISI is 

defined as the time in milliseconds between sequential peaks in action potentials (19).  

These measurements were exported to MATLAB (R2009a, The MathWorks), where we 

generated logarithmic histograms of the data.  For a qualitative assessment of the 

change in firing rate, we compared the fraction of action potentials that occurred in 

tonic versus burst firing patterns using χ2 analysis.  As established in prior studies, we 

defined burst firing as ≥ 2 consecutive action potentials with an ISI ≤ 10 milliseconds 

(20). 
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Results 

LO LFP Activity during seizures 

The use of monitoring LFP in LO has been well established for monitoring of 

cortical activity in this model of temporal lobe epilepsy (17, 21).  In this study, we used 

these recordings to correlate simultaneous activity in the cortex with the thalamic nuclei 

of interest.  LFP during seizures in the cortex shows stereotypical large amplitude slow 

waves, which we quantified by measuring delta-band power (0 – 4 Hz) in each of the 

epochs.  As has been previously shown, delta power significantly (p < 0.05) increased in 

LO during ictal and postical epochs, and returned to baseline levels in the recovery 

epoch (Figure 1). 

ANT MUA recordings demonstrate trend of increased Vrms during limbic seizures 

ANT is a complex and fascinating structure.  Anatomically, it rests that the 

superior region of the thalamus, segmented off from the rest of the structure by the 

anterior internal medullary lamina.  It is divided into 3 subdivisions, anteroventral, 

anterodorsal, and anteromedial (5).  ANT has connectivity to the hippocampus, the 

anterior and posterior cingulate cortices, and the retrosplenal cortex, amongst others.  

Physiologically, its role in the limbic system makes it a significant player in circuits 

involved in episodic memory and arousal.  
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Pathologically, it is implicated in limbic seizure propagation and maintenance.  As 

such, it has been considered a promising target for deep brain stimulation in the 

treatment of medically refractory epilepsy (22, 23).  Most notably, stimulation of this 

nucleus was explored in the recent SANTE trial for drug-resistant epilepsy (24).  The 

SANTE trial was an RCT which targeted ANT with DBS in patients with medically 

uncontrolled epilepsy.  Over the course of 4 months, patients who received DBS 

demonstrated a 25% decrease in seizure reduction rate over controls. Subjects did have 

some notable side effects (notably some memory impairment), and the device has not 

approved by the FDA (25). 

As a critical player in the limbic system previously implicated in epilepsy, we 

would expect significant changes in ANT during limbic seizures.  We performed 

measurements of MUA activity in ANT over the course of 31 distinct focal limbic seizures 

in 10 different animals (Figure 2).  We found that ANT neurons tended to show ictal 

increased firing, but this trend did not meet significance (p < 0.05) (Figure 3).    

While this finding was not significant when all seizures were examined, the 

majority of animals (8/10) demonstrated a significant increase in MUA Vrms during 

seizures.  This increase was not significant when data were first pooled with each 

animal, nor was it significant when seizures were pooled across animals.  Figure 4 shows 

electrode locations within ANT after cresyl violet staining for each experiment. 
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MUA Vrms decreases in CL during limbic seizures 

The intralaminar thalamus has long been recognized as a key player in arousal 

and awareness as an important relay in the ascending reticular activating system 

between the brainstem and cortex (26).  Clinically, stimulation of this region has been 

correlated with increased arousal in humans (27), in addition to attention and goal-

seeking behavior(26).  Recent studies have elucidated the role of this region in 

decreased arousal during seizures, and have narrowed our focus to a specific nucleus 

within it: the centrolateral nucleus (7, 28).   

We performed measurements of MUA in CL over the course of 30 distinct focal 

limbic seizures in 9 different animals (Figure 5).  Ictally, MUA Vrms was found to be 

significantly decreased on average (p < 0.05, Figure 6).  Figure 7 confirms electrode 

locations within CL after cresyl violet staining. 

Juxtacellular recordings in CL show a decreased firing rate and a shift from tonic to burst 

firing 

We conducted juxtacellular recordings to more precisely assess the behavior of 

neurons in CL in 8 animals, assessing the activity of 12 neurons during 14 seizures.  Our 

MUA recordings had shown decreased activity in the structure, but these recordings do 

not show the firing rate or pattern of individual neurons.  We found that the neurons in 
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CL had a significantly decreased firing frequency during seizures.  The baseline firing 

rates varied between neurons, but 11/12 neurons examined showed a decreased firing 

rate during seizures.  The average firing rate decreased by a statistically significant (p < 

0.05) 51.87 ± 19.29% during the ictal epoch compared to preictal baseline (Figure 8A,B). 

In addition to a decrease firing rate, we observed a change in firing pattern.  

Typically, in baseline epochs, these neurons would demonstrate a tonic firing pattern, 

defined as consecutive spikes with > 10 ms interval between them.  During ictal and 

postical epochs, we observed a much greater proportion of firings in burst pattern (χ2 =  

634.1, 223.6, respectively, p < 0.0001).  These neurons generally returned to baseline 

firing patterns in the recovery epoch (Figure 8C-E). 

The location of each neuron was confirmed by sectioning the brain and staining 

with Ni-DAB and cresyl violet, as described above.  The position of these electrodes are 

shown in Figure 9. 

MUA Vrms and spindle power in VPM increase during limbic seizures 

Physiologically, spindles are thought to play a role in both sensory processing 

and long term memory consolidation (29, 30).  As they are most typically seen during 

states of decreased arousal, recording their presence during seizures could indicate if 

and how this pathway was interrupted in limbic epilepsy.  Within the thalamus, spindles 
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are most typically seen in relay nuclei (31), such as VPM.  VPM normally acts as a relay in 

for somatosensory afferents from the face, with projections to the postcentral gyrus and 

primary somatosensory cortex. 

 During 30 focal seizures in 11 rodents, MUA Vrms measurements in VPM 

showed a significant (p < 0.05) increase in MUA during seizures (Figure 10).  In the same 

experiments, we also found a significant (p < 0.05) increase in spindle power ictally 

compared to baseline (Figure 11).  Both spindle power and MUA returned to normal 

during the recovery epoch. Figure 12 shows electrode locations within VPM after cresyl 

violet staining. 
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Discussion 

We found varying activity in our investigation of neuronal activity in ANT, CL, and 

VPM during focal limbic seizures.  While CL demonstrated decreased ictal population 

firing on MUA measurements, both ANT and VPM showed increased ictal population 

firing relative to baseline.  Examination of spindle waves within VPM showed a sharp 

increase in frequency.  Finally, SUA within CL showed a decrease in firing rate and an 

increase in burst firing during seizures.  While results in ANT did not reach statistical 

significance (p <0.05), the results do generally support the hypothesis that different 

thalamic nuclei play significantly different roles in focal limbic seizures.   

These last findings generally support the previous understanding of ANT in 

epilepsy.  With its sophisticated connections to the hippocampus and mammillary 

bodies for memory, it is unsurprising that it plays a role in focal limbic epilepsy (32).  

Indeed, lesions to the anterior thalamus are associated with anterograde amnesia, 

suggesting a role as one of the primary outputs from the hippocampus in memory.  

Assuming hippocampal seizures are likewise transmitted to ANT, the increased MUA we 

recorded makes sense.  Paralleling our recording from ANT, we observed increased LFP 

in HC during seizures, with decreased potential in the postictal epoch.  This supports a 

model for seizure propagation from the hippocampus and to the cortex via ANT.  This 

could suggest that stimulation in ANT serves a disruptive function which interrupts this 
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pathway, limiting focal limbic seizures, and explaining the therapeutic attributes of this 

stimulation in epilepsy. 

While CL’s role in epilepsy is less well established than ANT, it has a role in 

arousal that is becoming increasingly clear (26).  In animals, increased activity of this 

nucleus has been tied to visuomotor stimuli (33, 34).  In human experiments, 

intralaminar stimulation has been successful in improving certain cognitively mediated 

behaviors in a patient with severe traumatic brain injury (27) and in producing 

behavioral and electrographic arousals from spontaneous sleep (35).   

While no experiments with CL stimulation have been performed in humans with 

epilepsy, stimulation of other intralaminar nuclei have shown promise in rodents.  

Bilateral high-frequency CL stimulation improved postictal electrophysiology after focal 

limbic seizures, demonstrating decreased cortical slow waves and increased 

desynchronization (28).  Perhaps most exciting during that study was a resumption of 

baseline exploratory behavior in the postictal state. Further progress was made when 

bilateral CL stimulation was combined with bilateral stimulation of the pontine nucleus 

oralis, a structure in the pontine reticular formation, which has previously been shown 

to promote wake-like electrophysiology when stimulated (36, 37).  With this paradigm, 

stimulated rodents showed behavioral arousal during seizures, resuming apparently 

physiologic exploratory behavior (38).  Our findings of decreased ictal MUA activity 

support previous understanding of the nucleus’s importance in promoting arousal.  
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The SUA recordings from CL demonstrated a shift from tonic solitary spikes at 

baseline and converting to burst firing ictally.  These two patterns of firing are 

physiologically observed in many thalamic relay cells, and reflect the varying voltage-

dependent transmembrane conductance (39).  There are subtle, but significant, 

differences in the processing of inputs during each of the firing patterns, allowing for a 

degree of signal filtering and promoting at the thalamic level.  Some thalamic nuclei, 

notably in the lateral geniculate nuclei, typically fire tonically, but respond to visual 

stimuli more vigorously when switching to burst mode.  Similarly, cells in the thalamic 

have been observed to enter burst mode when entering slow wave sleep or deep 

anesthesia in animals (10).   

While our findings do not prove that the switch to burst firing during limbic 

seizures is responsible for loss of consciousness, these findings do support a model that 

places the decreased arousal in limbic seizures in the same paradigm as that seen in 

anesthesia or slow wave sleep.  Furthermore, the putative roles of CL as part of a larger 

model does suggest that its activity may contribute to decreased cortical activity during 

seizures.  This model, the network inhibition hypothesis, states that suppression of 

subcortical structures, including the upper brainstem reticular formation and 

intralaminar thalamic nuclei, is fundamental to loss of consciousness in focal limbic 

epilepsy (40, 41). 
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Our recordings of MUA in VPM correlated well with LFP in LO.  Both showed ictal 

and postictal increases in Vrms and delta power respectively, which returned to baseline 

levels in the recovery epochs.  Moreover, the increase in cortical slow waves in LO was 

accompanied by increased spindle power in ictal and postical epochs. Spindle waves are 

a well described finding in thalamocortical networks during slow wave sleep, sensory 

processing, and generalized seizures.  They typically appear as 7-14 Hz oscillations that 

increase and decrease in amplitude every 2-4 seconds (42).  They are thought to be 

generated in the thalamus and more specifically the thalamic reticular and relay nuclei 

(31).   Interestingly, this receives significant cholinergic input from the 

pedunculopontine tegmental nucleus, a major component of the reticular activating 

system (43).  Much of the support for the network inhibition hypothesis stems from 

observations that subcortical cholinergic suppression is involved in decreased arousal 

during the ictal and postictal phases of focal temporal lobe seizures (7, 44, 45).  It is 

possible that the suppression of cholinergic afferents to VPM, in addition to the 

thalamic reticular nucleus, contributes to the formation of sleep spindles, as observed in 

this study.   

While we have gained significant insight into the behavior of these nuclei, there 

are many questions that remain unanswered.  Further studies could expand our results 

into other areas of the brain.  Our study placed significant stress on the interplay 

between these nuclei and other subcortical structures implicated in arousal, notably the 

thalamic reticular nucleus.  Additionally, findings from incidental neurostimulation to 
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this area during seizures has suggested that stimulation of the thalamic reticular 

nucleus, like other CL and the pontine nucleus oralis, may help restore arousal during 

seizures.  An assessment of its behavior during seizures could be insightful as to its role 

towards both arousal and sleep spindle formation.  Similar studies could also be 

performed in pontine nuclei as well, as suspected components of subcortical arousal 

circuitry. 

One additional limitation was the use of anesthesia.  The cocktail we used was 

mild, but could have altered the underlying neurophysiology.  Other studies using less 

invasive techniques (EEG and imaging) have been accomplished without anesthesia, but 

these do not approach the accuracy of intracranial, direct measurements. Rodent 

models of temporal lobe epilepsy have been used successfully in experiments without 

anesthesia (38), and we have some measurements of MUA from these.  No studies have 

done juxtacellular readings in unanesthatized animals, and this does present a logistical 

and technical challenge to future investigators.  

This study provides precise measurements of several thalamic nuclei during focal 

limbic seizures.  These nuclei, ANT, CL, and VPM, showed different activity, reflecting 

different roles in seizure pathology.  The recordings, when placed in the greater context 

of other studies, allow us to postulate that some of these locations are involved in 

seizure propagation, while others are involved in suppression of arousal.  While future 

studies will have to further clarify the sophisticated pathways underlying epilepsy, this is 
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a significant step in promoting our understanding.  And with greater understanding, we 

may develop novel therapeutics or interventions to lessen the burden of those with 

epilepsy. 
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Figure 1: Change of delta power in various time epochs in LO 

Delta-band power (0 -4 Hz) power is increased in LO in the ictal and postictal epochs, 

compared to baseline. It returns to baseline in the recovery epoch. Plot on left shows 

mean ± SEM at each time point, using 1 second bins.  Histogram at right plots mean 

delta power at each epoch with error bars indicating SEM.  ANOVA revealed significant 

differences between epochs, indicated by an asterisk.  Data from 91 seizures in 30 

animals. Reproduced from Feng et al., 2017. 
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Figure 2: A representative example of MUA recordings in ANT during a seizure 

(A) Recordings of HC LFP, ANT MUA, and LO LFP during baseline, ictal, and postictal 

epochs.  Note the solid spike corresponding to the 2 second HC stimulus. (B): 5 second 

samples of the aforementioned three epochs selected from the highlighted region and 

expanded over time.  Note the increase in ANT MUA amplitude between baseline and 

ictal periods, and the subsequent decrease in the postictal period.  This roughly 

correlates with LFP recordings from HC, which also showed increased activity ictally with 

postictal suppression. Reproduced from Feng et al., 2017. 



36 

 
 

 

 

 

 

Figure 3: MUA Vrms in ANT 

 

MUA increased in the ictal and decreased in the postical periods, compared to baseline, 

although the former did not reach statistical significance (p < 0.05).  Plot on left shows 

mean ± SEM at each time point, using 1 second bins.  Histogram at right plots mean 

MUA Vrms at each epoch with error bars indicating SEM.  ANOVA revealed significant 

differences between epochs, indicated by an asterisk.  Data from 31 seizures in 10 

animals. Reproduced from Feng et al., 2017. 
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Figure 4: Histology showing location of MUA electrodes in ANT 

(A) Representative example of brain slice post staining demonstrating electrode track 

and position of tip.  (B) Map of rat brain at AP -1.8 mm from bregma with area 

corresponding to A outlined in pink. (C) Locations of electrode tips from rodents shown 

in red, confirming position in ANT. AM, Anteromedial nucleus of thalamus; AD, 

anterodorsal nucleus of thalamus; AVDM, anteroventral nucleus of thalamus, 

dorsomedial part; AVVL, anteroventral nucleus of thalamus, ventrolateral part; PT, 

paratenial nucleus of thalamus; Rt, reticular nucleus of thalamus; VA, ventral ANT; DG, 

dentate gyrus. Reproduced from Feng et al., 2017. 
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Figure 5: A representative example of MUA recordings in CL during a seizure 

(A) Recordings of HC LFP, CL MUA, and LO LFP during baseline, ictal, and postictal 

epochs.  Note the solid spike corresponding to the 2 second HC stimulus. (B) 5 second 

samples of the aforementioned three epochs selected from the highlighted region and 

expanded over time.  Note the decrease in CL MUA amplitude between baseline and 

ictal periods. Reproduced from Feng et al., 2017. 
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Figure 6: MUA Vrms in CL 

MUA decreased in the ictal period, compared to baseline.  This decrease gradually 

resolved during the postictal epoch, and was at baseline in the recovery epoch.  Plot on 

left shows mean ± SEM at each time point, using 1 second bins.  Histogram at right plots 

mean MUA Vrms at each epoch with error bars indicating SEM.  ANOVA revealed 

significant differences between epochs, indicated by an asterisk.  Data from 30 seizures 

in 9 animals. Reproduced from Feng et al., 2017. 
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Figure 7: Histology confirming location of MUA electrodes in CL 

(A) Representative example of brain slice post staining showing electrode track and 

position of tip.  (B) Map of rat brain at AP -3.14 mm from bregma with area 

corresponding to A outlined in pink. (C) Locations of electrode tips from rodents shown 

in red, confirming position in CL. MD, Mediodorsal nucleus of thalamus; MDL, 

mediodorsal nucleus of thalamus, lateral part; MDM, mediodorsal nucleus of thalamus, 

medial part; MDC, mediodorsal nucleus of thalamus, central part; LDDM, laterodorsal 

nucleus of thalamus, dorsomedial part; PC, paracentral nucleus of thalamus; VL, 

ventrolateral nucleus of thalamus; Po, posterior nuclear group of thalamus; DG, dentate 

gyrus. Reproduced from Feng et al., 2017. 
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(A) Raster plot of all spikes in recorded neurons in labeled epochs.  Each line indicates 

one spike. (B) Histogram of mean firing rates over time for each epoch.  Data sorted into 

1 second nonoverlapping bins. (C) Raster plot of each epoch with lines representing 

each burst.  Each line represents a burst of at least 2 spikes.  (D) Histogram of spikes 

Figure 8: Neurons in CL show a decreased firing rate and increased burst firing during 

seizures 
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from Figure 8A sorted by length of ISI in milliseconds.  Dashed line indicates 10 

milliseconds, the cutoff between burst and tonic firing.  (E) Comparison of the 

percentage of spikes falling into burst to tonic criteria in the different epochs.  There 

was a dramatic increase in the proportion of neurons burst firing in the ictal and postical 

periods. (A-E) Data from 12 neurons during 14 seizures in 8 animals.  Reproduced from 

Feng et al., 2017. 

  



43 

 

 

Figure 9: Histology confirming location of SUA electrodes in CL 

(A) Representative example of brain slice post Ni-DAB and cresyl violet staining 

demonstrating position of stained neuron. (B) Map of rat brain at AP -2.8 mm from 

bregma with CL in green. (C) Locations of stained neurons from rodents shown in red, 

confirming position in CL. MDC, Mediodorsal nucleus of thalamus, central part; MDL, 

mediodorsal nucleus of thalamus, lateral part; LDDM, laterodorsal nucleus of thalamus, 

dorsomedial part; PC, paracentral nucleus of thalamus; Po, posterior nuclear group of 

thalamus; DG, dentate gyrus. Reproduced from Feng et al., 2017. 
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Figure 10: A representative example of MUA recordings in VPM during a seizure 

(A) Recordings of HC LFP, VPM MUA, and LO LFP during baseline, ictal, and postictal 

epochs.  Note the solid spike corresponding to the 2 second HC stimulus. Asterisks mark 

spindles.  Ictally, spindle frequency increases dramatically, and returning to baseline in 

the postictal period. (B) 5 second samples of the aforementioned three epochs selected 

from the highlighted region and expanded over time.  Note the increase in VPM MUA 

amplitude between baseline and ictal periods. Reproduced from Feng et al., 2017. 
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Figure 11: MUA Vrms and Spindle Power in VPM 

(A) MUA Vrms increased in the ictal and postical periods on average, compared to 

baseline. (B) Spindle power (7-14 Hz) increased in the ictal and postictal periods, 

compared to baseline. In the recovery period however, there was a significant decrease 

in spindle power. (A and B) Plots on left show mean ± SEM at each time point, using 1 

second bins.  Histograms at right plot MUA Vrms and spindle power at each epoch with 

error bars indicating SEM.  ANOVA revealed significant differences between epochs, 

indicated by an asterisk. Data from 30 seizures in 11 animals. Reproduced from Feng et 

al., 2017. 
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 Figure 12: Histology confirming location of MUA electrodes in VPM 

(A) Representative example of brain slice post staining demonstrating electrode track 

and position of tip.  (B) Map of rat brain at AP -3.6 mm from bregma with area 

corresponding to A outlined in pink. (C) Locations of electrode tips from rodents shown 

in red, confirming position in VPM. AM, Anteromedial nucleus of thalamus; VPM, VPM 

nucleus of thalamus; CL, CL nucleus of thalamus; Po, posterior nuclear group of 

thalamus; VPL, ventral posterior lateral nucleus of thalamus; Rt, reticular nucleus of 

thalamus. Reproduced from Feng et al., 2017. 
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