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Abstract 
 
 
The Precision Medicine Initiative aims to advance Medicine from “one-size-fits-all” 

treatments to more individualized approaches. Clinical trials evaluate treatments by 

analyzing average outcomes, and thus risk overlooking potential differences in treatment 

effect among different subsets of the study population. The use of multivariate models 

has been proposed as a way to identify heterogeneity of treatment effect and to determine 

patients’ individualized treatment risks and benefits. 

 

We analyzed the Randomized Evaluation of Long-Term Anticoagulation Therapy 

(RELY) trial of dabigatran versus warfarin in patients with atrial fibrillation, to determine 

if the application of multivariate predictive models could demonstrate heterogeneity of 

treatment effect among the study population. We developed two models to predict 

patients’ risk of stroke or systemic embolism and risk of major bleeding if treated with 

dabigatran or warfarin. We then applied these models to the individual patients in the RE-

LY trial, and determined patients difference in risk if treated with dabigatran versus 

warfarin. Individual difference in stroke risk for dabigatran 110mg and 150mg versus 

warfarin was -0.78% ± 0.95% and -1.32% ± 1.31% and the difference in major bleeding 

risk was -1.12% ± 1.44% and -0.41% ± 2.39%, respectively. 

 

These findings demonstrate heterogeneity of treatment effect in the RE-LY trial, and the 

ability of multivariate risk models to identify distinct treatment risks for individual 

patients. Such models could be used in clinical practice provide patients and clinicians 

with individualized treatment risk information and improve treatment decisions. 
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Introduction 

 

In 1970, the famous Boston Red Sox hitter Ted Williams, known best for his 

extraordinary and yet untouched record .408 batting average, published “the science of 

hitting,” a book to teach boys and girls across America how to consistently hit a 

baseball.a He demonstrated the first rule of hitting, “get a good ball to hit,” through an 

illustration of the strike zone that showed his personal batting average for balls thrown in 

different locations (1). 

 

                                                
a	Note	the	author	is	a	fan	of	the	27-Time	World	Champion	New	York	Yankees,	not	the	Boston	Red	Sox		
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The purpose of this diagram was to show that every individual should calculate their own 

unique batting average for pitches in different locations, so they could swing at those 

pitches where they had a high average, and avoid pitches where they didn’t hit as well. 

The notion that one size doesn’t fit all, and that unique statistical profiles can inform 

individualized hitting styles, was one of the earliest and most provocative displays of the 

power of infusing the art of hitting, with science. 

 

In his 2015 State of the Union Address, President Barack Obama launched the Precision 

Medicine Initiative, with the mission of advancing Medicine from “on-size-fits-all” 

treatments to more individualized approaches. Underlying this initiative, is the premise 

that while treatments are generally developed for the “average patient,” most patients are 

not in fact, average (2). The urgency of this initiative is brought on by a recognition that 

Medicine is in an age of increasing availability of data from sources such as genomic 

profiles, advanced diagnostic imaging, wearable devices, and clinical records in 

electronic health records. This data presents the opportunity to create unique patient 

profiles that can guide personalized treatment decisions, and to achieve an age of 

“precision medicine.”(3) The use of such profiles has the potential to enhance both the 

science and the art of Medicine. In this Thesis, I evaluate the potential to use multivariate 

predictive risk models, to create individualized patient treatment risk and benefit profiles, 

that can be used by clinicians and patients to make more personalized treatment 

decisions. 

 



	
 
 

	 	 8	
	

The application of traditional randomized trials to clinical practice and the limitation of 

subgroup analyses 

 

Randomized controlled trials are the gold standard for evaluating the effectiveness of 

medical treatments. These trials are designed such that their results are generalizable, and 

can inform treatment decision for broad populations of patients. Results are usually 

reported as an overall treatment effect, defined as the average effect observed among all 

enrolled patients. However, a major limitation of this practice, is that the average effect 

may be heavily influenced by a subset of the population that has large treatment effect, 

even if much of the population saw no treatment effect (4).  In practice, clinicians need to 

figure out how to apply these average results to individual patients, each with their own 

distinct comorbidities and demographics, and consequently, potentially different risks. 

Clinical investigators commonly address this challenge by publishing subgroup analyses, 

through which patients are categorized according to an individual variable, and results are 

published for each patient subgroup. For example, a given trial might publish the results 

of an antihypertensive for men and for women, for people over the age of 65 and people 

under the age of 65, or people with diabetes and people without diabetes.  

 

While these subgroup analyses can be helpful, they face a number of challenges. First, 

they have statistical limitations. They often have very limited statistical power and 

consequently are subject to false negatives. Additionally, as the number of subgroups 

increases, false positives will increase and reliability will subsequently decrease. Burke et 

al explains the issue of false positive findings in subgroup analyses, through the analogy 
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of ordering diagnostic testing for patients with and without an indication. Following 

Bayes’ rule, positive findings in the group without an indication for testing, are more 

likely to be false positives, than if they were found in the group who had an indication. 

Similarly, adding numerous subgroup analyses to a research study, without strong 

hypotheses for each analysis, is likely to lead to false positive findings (5). Last, 

subgroup analyses, are limited to analyzing populations by categorical variables, and are 

unable to take full advantage of continuous data such as age or blood pressure (4). 

 

Second, subgroup analyses can pose dilemmas for individual treatment decision making, 

especially given their usual reporting of hazard ratios, or relative risk reduction without 

corresponding information about pre-treatment risk, or absolute risk reduction. For 

example, suppose a clinical trial compared anticoagulants A and B for stroke prevention 

in atrial fibrillation, and found drug A to be associated with lower rates of stroke for 

people over the age of 65, and drug B to be associated with lower rates of stroke for 

people with diabetes. In such a scenario, how do a 70-year-old diabetic patient and her 

physician determine which medication would be best? To answer this question, the 

physician and the patient need to know whether the absolute benefit of stroke prevention 

of drug A is larger than the absolute benefit of drug B. And to determine this absolute 

benefit, we need to know the relative risk reduction with drug A and drug B, and the pre-

treatment risk of their populations. For example, if the 10-year pre-treatment risk of 

stroke in the 65 years and older population is 10%, and drug A showed a 50% reduction 

in stroke, then the absolute decrease in stroke risk from using drug A is 5%. On the other 

hand, if the 10-year pretreatment risk of stroke in the diabetic population is 1%, then a 
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similar 50% risk reduction in using drug B, translates into a 0.5% absolute reduction in 

risk. In this case, the patient and clinician would likely choose drug A given the absolute 

risk reduction of 5% compared to the alternative absolute risk reduction of 0.5% (5). 

 

For simplicity, the scenario above compares the benefits of two drugs. However, also 

common that patients and clinicians need to weigh the benefits of an individual drug 

versus the risks of that same drug. For example, patients considering anticoagulation 

generally need to weigh the benefit of stroke or embolus prevention against the risk of 

major bleeding. In these situations, the absolute risk of the medical event trying to be 

prevented (the benefit) needs to be compared to the absolute risk of an adverse event (the 

risk). This decision-making exercise will identify patients for whom the benefit of a given 

treatment far outweigh the risks, as well as patients for whom the risks far outweigh the 

benefits. If, for simplicity, we assume the absolute risk of adverse events is the same 

across all patients, then this decision is based purely on the degree of benefit each patient 

will realize. And if the relative benefit is the same for all patients, then their absolute 

benefit from the treatment is simply a function of their pre-treatment risk (4). For 

example, an anticoagulant that carries an identical absolute risk of bleeding for all 

patients, and carries an identical relative risk reduction in stroke for all patients, might 

only be appropriate for patients who have a very high pre-treatment risk of stroke, as they 

will see a very large absolute benefit from treatment. For those patients who have a very 

small pre-treatment risk of stroke, the absolute benefit would be smaller, and might not 

outweigh the absolute risk. Thus, one of the simplest ways to determine if somebody 

should receive treatment that is associated with adverse events, is to identify their pre-
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treatment risk, in order to estimate the potential absolute benefit of treatment. Such is the 

rationale behind the CHADS and CHADSVASC2 scores to identify patients with the 

highest pre-treatment risk, and therefore the greatest potential benefit from 

anticoagulation. A similar exercise can be done to estimate the pre-treatment risk of an 

adverse event, and thus to predict the absolute risk of the adverse event occurring with 

treatment (4). 

 

However, the absolute benefit or risk of a treatment is also a function of relative risk. And 

relative risk is not necessarily uniform across a population. There may be specific groups 

of patients who have a particularly high relative risk or a particularly high relative benefit 

associated with a given treatment. The importance of identifying these different subsets 

of patients, highlights another limitation of subgroup analyses. 

 

The third challenge facing subgroup analyses the difficulty in defining a subgroup. In 

some cases, subgroup definitions are clear. For example, it is known that the HER2 

receptor plays a key role in the mechanism of action of Trastuzumab, and it would thus 

make sense to build patient subgroups based on the genetic HER2 characteristic. In such 

scenarios, in which a subgroup characteristic is clearly a part of a drug’s mechanism of 

action, the use of subgroup analyses are appropriate (4). However, the appropriate 

definition of a subgroup is not always as clear, and as a result, the usefulness of subgroup 

analyses is limited. For example, in a study of an anticoagulant, it is difficult to determine 

whether a subgroup age cutoff should be 65 versus 70 versus 75. It is possible for 

example, that the particular group of people who are 75 years and older and have 
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diabetes, have a uniquely great risk reduction from using drug A, or that those who are 

below 40 years old and do not have diabetes have a particularly strong risk of bleeding. 

These findings however, would be missed from a clinical trial that made one subgroup 

based on age greater than 65, and another subgroup based on the presence of diabetes. A 

similar scenario was seen in the GUSTO trial, which in 1993 found that patients 

benefited from tPA relative to streptokinase for acute myocardial infarction, and in the 

subgroup analysis did not find the benefit to be limited to any specific population (6). 

However, in 2002, Kent et al re-analyzed the GUSTO data using newly developed risk-

stratification tools, to predict those patients who would benefit most from treatment, and 

found that nearly all of the treatment benefits were seen among approximately 50% of 

patients who were predicted to benefit the most (7). This implied that the approximately 

50% of patients with the lower predicted benefits, saw little to no benefit from treatment, 

and given that they still faced the drug risk of bleeding, should not be given the drug in 

clinical practice (4). 

 

Given that subgroup analyses are subject to statistical limitations, conflicting relative risk 

information from different subgroups, and sub-optimal definition of subgroups, a number 

of authors have proposed greater use of multivariate risk prediction models.  
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Multivariate Risk Prediction Models 

 

Netflix, one of the most popular users of multivariate risk prediction models, is well-

known for its ability to successfully provide individual subscribers with a personalized 

list of “shows you might like.” Netflix could decide which show to recommend to a given 

subscriber by looking at their entire subscriber base and studying the ratings of “The 

Crown” versus “Mad Men,” and then recommend one of these shows to all subscribers 

accordingly. Or, they could make a recommendation to a subscriber based on whether or 

not they were over or under the age of 65, study “The Crown” versus “Mad Men” for 

these two age based subgroups, and recommend one of the shows accordingly. However, 

instead of relying on broad studies to predict subscriber preferences, Netflix has 

developed multivariate risk prediction models, that make use of individualized 

information captured from every subscriber, such as the genre of shows they watch, and 

the time of day they watch them, and the speed with which they finish them. With this 

information, Netflix can develop a multivariate predictive risk model that can classify 

that subscriber, and precisely predict the which show they will enjoy watching next.  

 

Given the massive amount of data collected from clinical research, genetic and clinical 

registries, wearable devices, and electronic health records, there is great potential for 

multivariate risk prediction models in healthcare to identify individual patients who 

would benefit from specific therapeutics and specific doses. While multivariate models 

are just one of many strategies to learn from big data, they are an important step towards 

a world in which a 56 year-old man with diabetes goes into his primary care doctors 
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office, where the physical activity data from his wearable watch, his daily glucometer 

readings, his HbA1C from the lab, his other medications from the pharmacy, and 

information about his other comorbidities, his weight and vital signs and his genetic 

profile, are all fed into an algorithm that highlights his precise individual risks and 

benefits from using metformin versus pioglitazone (8).  

 

There should still be a role for “one-size-fits-all” treatment approaches for diseases that 

are highly prevalent, and have treatments that are highly effective, with minimal risk (9). 

However, for diseases in which multiple treatment options provide different treatment 

benefits and different risks of significant adverse events, a precision approach is 

warranted. 

 

The multivariate risk prediction model has proposed as a method through which the 

variety of baseline and outcome data, categorical and continuous, can be used to predict 

patients’ individual risks and benefits with a given treatment (4). Multivariate models are 

generally produced by developing a multivariable linear regression model, and refining 

the model, by adding or removing variables, in order to strengthen its predictive 

capabilities (10). Such a model, will produce a risk formula in the format of Y (risk) = b0 

+ X1b1 + X2b2 where b0 is the model’s intercept, b1-2 are coefficients 1 and 2, and X1-2 are 

the patients variables. For continuous variables, the value of the variable is entered in the 

model. For categorical variables, the value of 1 or 0 is entered in the model, depending on 

whether that variable is or is not applicable to the patient. 
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To test the theory that multivariate risk models can improve clinical research, and 

identify a heterogeneity of treatment effect, recent studies have applied new multivariate 

risk prediction models to completed clinical trials. Salisbury et al assessed the TRITON-

TIMI-38 trial which compared prasugrel v. clopidogrel, and developed a multivariate risk 

prediction model to determine whether there was heterogeneity of treatment effect, not 

seen in the original trial analysis. They found significant heterogeneity in the both the 

risks and benefits of clopidogrel and prasugrel for different patients (11). Kernan et al 

similarly re-analyzed the IRIS trial of pioglitazone after TIA and stroke, and using two 

risk models developed from the IRIS data, and one external model, also found 

heterogeneity (12). 

 

Our study applies a similar principle to the RE-LY trial of Warfarin versus Dabigatran for 

stroke prevention in patients with atrial fibrillation in order to assess the extent to which 

different patients face different risks and benefits with each treatment.  
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The RE-LY Trial 

 

Across the United States, atrial fibrillation (AF) affects 2.7-6.1 million people, and its 

prevalence is expected to increase to 5.6-12 million by 2050 (13). AF is a cardiac 

arrhythmia, described clinically as an irregularly irregular heart beat due to irregular 

electrical conduction from the sinoatrial node. This irregular heart rhythm impedes the 

regular rhythmic output of blood from the heart, and subsequent stasis of blood can lead 

to development of blood clots in the left atrial appendage. These clots can dislodge, and 

emboli can enter the cerebral vasculature, and cause a stroke. Due to this 

pathophysiology, people with AF have a 5 times increased risk for stroke (14).  

 

To prevent stroke, AF is generally controlled with rate control and anticoagulation. 

Anticoagulation with warfarin, an oral vitamin K antagonist, has historically been the 

mainstay of treatment, but given the development of Novel Oral Anticoagulants 

(NOACs), there are now more options for anticoagulation. 

 

While warfarin is an effective treatment for AF, its administration carries substantial 

lifestyle burdens that can decrease patients’ quality of life and decrease adherence. First, 

patients taking warfarin cannot eat foods that have significant amounts of vitamin K such 

as spinach or kale, as warfarin’s mechanism of action is to antagonize vitamin K. Second, 

patients who take warfarin need to have their blood INR monitored through regular blood 

draws, and their warfarin dose adjusted accordingly, in order to ensure a therapeutic PT 
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and INR, that is sufficient to prevent stroke, but not too high as to increase risk of 

hemorrhage. 

 

The development of non-vitamin K oral anticoagulants, the anti-X inhibitors apixaban 

and rivaroxaban and the direct thrombin inhibitor dabigatran, were developed as 

attractive alternative anticoagulants to warfarin, as they reduce the burden of dietary 

restrictions and need for frequent blood monitoring. The lifestyle benefits of these 

medications however, need to be weighed against their clinical effectiveness, and 

numerous trials have compared the non-vitamin K oral anticoagulants versus warfarin for 

different clinical conditions (15-17). 
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Statement of Purpose and Hypothesis 

 

Our study focuses on the RE-LY trial which compared warfarin versus dabigatran in AF 

for the prevention of stroke (15). The RE-LY trial, conducted in 2009, included 18,113 

patients with AF who were deemed to be at increased risk of stroke. This increased risk 

of stroke was defined by factors such as a history stroke or Transient Ischemic Attack, 

age or the presence of diabetes mellitus. Exclusion criteria included patients with an 

increased risk for hemorrhage, a recent or severe stroke and active liver disease (15). 

Patients were randomized to receive either warfarin, dabigatran 110mg BID or dabigatran 

150mg BID. Patients were blinded to their dose of dabigatran, however, were not blinded 

to receiving warfarin, as blood INR needed to be monitored and warfarin doses adjusted 

in order to maintain an INR of 2.0 to 3.0. Patients were assessed for two primary 

outcomes: the presence of stroke or systemic embolism, and the presence of major 

bleeding. Other outcomes included myocardial infarction, pulmonary embolism and GI 

bleeding. The study concluded after 5 years, and found the annual rate of stroke to be 

1.69% for warfarin, 1.53% for dabigatran 110mg and 1.11% for dabigatran. The annual 

rate of major bleeding was 3.36% for warfarin, 2.71% for dabigatran 110mg and 3.11% 

for dabigatran 150mg. The analysis demonstrated that dabigatran 110mg was associated 

with similar rates of stroke and systemic embolism compared to warfarin, and a 

significantly lower rate of bleeding. Dabigatran 150mg BID was associated with lower 

rates of stroke and systemic embolism than warfarin, and a similar rate of bleeding. 

However, dabigatran 150mg, was associated with a higher rate of gastrointestinal 

bleeding (15). 
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While the RE-LY trial subgroup analyses did not reveal significant differences in 

treatment effect, we sought to determine whether an analysis of the data with multivariate 

risk models would reveal heterogeneity of treatment effect (15). Using the RE-LY data, 

we developed two multivariate predictive risk models and assessed individual patients’ 

risks of stroke or systemic embolism and their risk of bleeding, if they were treated 

warfarin, dabigatran 110mg BID or dabigatran 150mg BID. We then sought to determine 

whether there were differences individual patients’ predicted risks and benefits with each 

treatment.  

 

The hypothesis of this analysis, is that there is significant heterogeneity of treatment 

effect with dabigatran versus warfarin, regarding the risk of stroke or systemic embolism, 

and the risk of major bleeding among the RE-LY population. This hypothesis is tested 

through the development of a multivariate model, and the subsequent application of that 

model to the RE-LY data to assess the degree of heterogeneity of treatment among the 

RE-LY population. 

 

The presence of such a heterogeneity of treatment effect would demonstrate the need to 

use such a multivariate predictive risk models to aid in day to day clinical decisions 

regarding warfarin versus different doses of dabigatran for stroke prevention in AF, and 

would also demonstrate the benefit of using similar models in clinical research going 

forward.  
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Methods 

 

Population 

 

The RE-LY trial included 18,113 patients with AF who were at increased risk for stroke 

(15). Over the 2-year study period, patients were given either warfarin at a titrated dose to 

achieve an INR of 2.0-3.0, dabigatran 110mg twice a day, or dabigatran 150mg twice a 

day. Patients were regularly monitored for the presence of the primary outcomes of stroke 

or systemic embolism or major bleeding, as well as for secondary outcomes including 

pulmonary embolism, myocardial infarction and gastrointestinal bleeding. To be included 

in the study, patients were required to have a documented history of AF in the past 6 

months, as well as an increased risk of stroke, evidenced by a history of stroke or 

Transient Ischemic Attack, NYHA class II heart failure symptoms, reduced Left 

Ventricular Ejection Fraction, age greater than 75, or age 65-74 and the presence of 

hypertension, coronary artery disease or diabetes mellitus. Patients were excluded from 

the study if they had an increased risk of hemorrhage, a stroke within the past 15 days, a 

severe stroke in the past 6 months, a severe heart valve disorder, pregnancy, active liver 

disease or low creatinine clearance (15). Our study includes all patients who were 

included in the RE-LY trial and completed a 2-year course of warfarin, dabigatran 110mg 

BID or dabigatran 150mg. No additional exclusions were applied. 
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Outcome 

 

The primary outcomes of both the RE-LY trial, and this study are stroke or systemic 

embolism and major bleeding, representing the major benefits and risks of 

anticoagulation in patients with AF and a risk of stroke. 

 

Statistical Analyses 

 

Using the data from the RE-LY trial, we developed two multivariate predictive risk 

models for the two primary outcomes of stroke or systemic embolism and major 

hemorrhage. Our models were built on the methodological framework developed by 

Salisbury et al in their analysis of the TRITON-TIMI-38 study data (11). To construct 

each model, we fit a multivariable linear regression model using all variables that we 

deemed to be potentially relevant to the outcomes, based on prior research as well as the 

clinical experience of the authors. We then worked to minimize the number of variables 

in the model in order to make the models easier to use in the clinical setting. We used the 

Harrell backwards selection method to the models, to remove variables sequentially, until 

all variables retained in the model had at least a 5% contribution to the model’s predictive 

capacity (10). The included and excluded variables, and the order in which they were 

excluded are listed in Table 2, with their corresponding degree of contribution to the 

model. For each model, we calculated the discrimination (c-statistic) and calibration 

(Hosmer-Lemeshow, and used restricted cubic splines to assess the assumption that the 

continuous variables were linearly associated with the outcomes (18). 
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To assess for heterogeneity of the benefits and risks of each treatment, we applied the risk 

models to every patient in the RE-LY trial, first assuming they were treated with 

warfarin, a second time assuming they were treated with dabigatran 110mg, and a third 

time assuming they were treated with dabigatran 150mg. To characterize the population-

level heterogeneity of treatment effect, we determined for each treatment, the mean risk 

and standard deviation of stroke or systemic embolism and the mean risk of major 

hemorrhage. To characterize the individual-level heterogeneity of treatment effect, we 

calculated the absolute difference in risk or benefit between warfarin and dabigatran 

110mg, and warfarin and dabigatran 150mg. Specifically, the absolute difference in the 

risk of stroke or systemic embolism was calculated as each patients’ risk if they were 

treated with dabigatran 110mg minus their risk if they were treated with warfarin, and as 

their risk if they were treated with dabigatran 150mg minus their risk if they were treated 

with warfarin. Similarly, the absolute difference in the risk of major hemorrhage is 

calculated as each individual’s risk of major hemorrhage with dabigatran 110mg minus 

their risk with warfarin, and their risk with dabigatran 150mg minus their risk with 

warfarin. We report a density plot to demonstrate the range of absolute differences 

between dabigatran 110mg and warfarin, and dabigatran 150mg and warfarin.  

 

We report categorical variables as frequencies, and continuous variables as medians with 

interquartile ranges. 

 

All analyses were conducted using R version 3.3.1 and SAS version 9.3. 
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The initial statistical model was based on the model described by Salisbury et al, and the 

model development was conducted by Sophie Tang, at Saint Luke’s Mid America Heart 

Institute, with a research group led by Dr. John Spertus (11). Dr. Nihar Desai and I 

worked closely together to interpret the statistical output for clinical relevance, and 

worked closely with Sophie Tang to determine the data output most relevant to the 

hypothesis and project.  

 

For example, I proposed that we create “mock patients” based on the model, and worked 

with Dr. Desai and Sophie Tang to develop a risk calculator, based on the model output. 

And using this model, I created the mock patients that are included in the thesis as part of 

the two decision aids. 
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Results 

 

A total of 18,040 patients were included in the analysis, 5,983 of whom were assigned to 

dabigatran 110mg in the RE-LY trial, 6,059 of whom were assigned to dabigatran 

150mg, and 5,998 of whom were assigned to warfarin. The median age was 71.4 ± 8.6 

and 3.6% of participants were male. The ethnicity of the subjects, was 15.9% Asian, 

1.0% Black, 70.0% White, and 13.1% Other. The distribution of AF types of paroxysmal, 

permanent and persistent were 32.8%, 35.2% and 32.0%, respectively. Baseline 

characteristics included heart failure (32.0%), hypertension (78.8%), diabetes mellitus 

(23.3%) and stroke/systemic embolism/TIA (21.8%). As seen in Table 1, demographic 

and baseline characteristics were similar among all three treatment groups. 
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Table 1: Baseline Characteristics 

  

Treatment Pattern Label Total 

     P-
Value 

Dabigatran 110mg BID 
n = 5983 

Dabigatran 150mg BID 
n = 6059 

Warfarin 
n = 5998 n = 18040 

Age     0.693 

    Mean ± SD 71.3 ± 8.6 71.4 ± 8.7 71.5 ± 8.5 71.4 ± 8.6  

    Median (IQR) 72.0 (67.0, 77.0) 72.0 (67.0, 78.0) 72.0 (67.0, 77.0) 72.0 (67.0, 77.0)  

Age Grouping     0.121 

   <40 21 (0.4%) 26 (0.4%) 12 (0.2%) 59 (0.3%)  

   40<= and <50 99 (1.7%) 86 (1.4%) 89 (1.5%) 274 (1.5%)  

   50<= and <65 873 (14.6%) 916 (15.1%) 849 (14.2%) 2638 (14.6%)  

   65<= and <75 2655 (44.4%) 2574 (42.5%) 2635 (43.9%) 7864 (43.6%)  

   >=75 2335 (39.0%) 2457 (40.6%) 2413 (40.2%) 7205 (39.9%)  

Sex     0.323 

  Female 2130 (35.6%) 2228 (36.8%) 2202 (36.7%) 6560 (36.4%)  

Ethnicity     0.871 

  Asian 948 (15.8%) 961 (15.9%) 955 (15.9%) 2864 (15.9%)  

  Black 51 (0.9%) 57 (0.9%) 66 (1.1%) 174 (1.0%)  

  White 4191 (70.0%) 4258 (70.3%) 4181 (69.7%) 12630 (70.0%)  

  Other 793 (13.3%) 783 (12.9%) 796 (13.3%) 2372 (13.1%)  

Region     0.999 

  Asia 918 (15.3%) 929 (15.3%) 926 (15.4%) 2773 (15.4%)  

  Central Europe 703 (11.7%) 704 (11.6%) 706 (11.8%) 2113 (11.7%)  

  Latin America 319 (5.3%) 319 (5.3%) 316 (5.3%) 954 (5.3%)  

  USA, Canada 2150 (35.9%) 2195 (36.2%) 2152 (35.9%) 6497 (36.0%)  

  Western Europe 1541 (25.8%) 1552 (25.6%) 1543 (25.7%) 4636 (25.7%)  

  Other 352 (5.9%) 360 (5.9%) 355 (5.9%) 1067 (5.9%)  

AF Type     0.104 

  Paroxysmal 1916 (32.0%) 1974 (32.6%) 2030 (33.9%) 5920 (32.8%)  

  Permanent 2123 (35.5%) 2183 (36.0%) 2045 (34.1%) 6351 (35.2%)  

  Persistent 1941 (32.5%) 1901 (31.4%) 1922 (32.0%) 5764 (32.0%)  

Aspirin at baseline     0.086 

 2384 (39.8%) 2338 (38.6%) 2431 (40.5%) 7153 (39.7%)  

CHADS2 Score     0.666 

  Mean ± SD 2.1 ± 1.1 2.2 ± 1.1 2.1 ± 1.1 2.1 ± 1.1  

  Median (IQR) 2.0 (1.0, 3.0) 2.0 (1.0, 3.0) 2.0 (1.0, 3.0) 2.0 (1.0, 3.0)  

CHADS2 Score     0.221 

  0 151 (2.5%) 145 (2.4%) 155 (2.6%) 451 (2.5%)  
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Treatment Pattern Label Total 

     P-
Value 

Dabigatran 110mg BID 
n = 5983 

Dabigatran 150mg BID 
n = 6059 

Warfarin 
n = 5998 n = 18040 

  1 1797 (30.0%) 1810 (29.9%) 1705 (28.4%) 5312 (29.4%)  

  2 2081 (34.8%) 2129 (35.1%) 2212 (36.9%) 6422 (35.6%)  

  3+ 1954 (32.7%) 1975 (32.6%) 1926 (32.1%) 5855 (32.5%)  

History of Heart Failure     0.889 

 1929 (32.2%) 1930 (31.9%) 1915 (31.9%) 5774 (32.0%)  

Baseline Heart Failure 
Classification 

    0.268 

  NYHA I 293 (15.2%) 292 (15.1%) 295 (15.4%) 880 (15.3%)  

  NYHA II 1222 (63.4%) 1195 (62.0%) 1219 (63.7%) 3636 (63.0%)  

  NYHA III 383 (19.9%) 400 (20.7%) 352 (18.4%) 1135 (19.7%)  

  NYHA IV 30 (1.6%) 41 (2.1%) 48 (2.5%) 119 (2.1%)  

LVEF     0.723 

  <=40% 647 (22.0%) 651 (21.9%) 628 (21.2%) 1926 (21.7%)  

Baseline Hypertension  
Requiring Medical Treatment 

    0.974 

 4711 (78.7%) 4781 (78.9%) 4729 (78.8%) 14221 (78.8%)  

History of Diabetes Mellitus     0.872 

 1401 (23.4%) 1398 (23.1%) 1405 (23.4%) 4204 (23.3%)  

History of Stroke/Systemic 
Embolism/TIA 

    0.389 

 1302 (21.8%) 1357 (22.4%) 1282 (21.4%) 3941 (21.8%)  

Baseline Creatinine 
Clearance [mL/min] 

    0.846 

  Mean ± SD 73.0 ± 27.7 72.8 ± 28.2 73.0 ± 27.4 72.9 ± 27.8  

  Median (IQR) 68.7 (53.2, 87.2) 67.9 (53.0, 86.4) 68.5 (53.8, 86.6) 68.4 (53.4, 86.8)  

Creatinine Clearance     0.044 

  <30 14 (0.2%) 31 (0.5%) 29 (0.5%) 74 (0.4%)  

  30<= and <50 1127 (19.7%) 1152 (19.7%) 1048 (18.2%) 3327 (19.2%)  

  50<= and <80 2705 (47.2%) 2770 (47.5%) 2794 (48.7%) 8269 (47.8%)  

  >=80 1889 (32.9%) 1880 (32.2%) 1872 (32.6%) 5641 (32.6%)  

Weight [kg]     0.385 

  Mean ± SD 82.9 ± 19.9 82.4 ± 19.3 82.6 ± 19.6 82.7 ± 19.6  

  Median (IQR) 80.5 (70.0, 94.0) 80.0 (69.0, 93.0) 80.0 (70.0, 93.0) 80.0 (69.9, 93.4)  

Continuous variables compared using one-way analysis of variance. 
Categorical variables compared using chi-square or Fisher's exact test. 
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As seen in Table 2, patients who took warfarin had the highest rate of stroke (2.1%) and 

major bleeding (4.7%). Patients who took dabigatran 150mg had the lowest risk of stroke 

(0.9%), and patients who took dabigatran 110mg had the lowest rate of major bleeding 

(3.6%). 

 

Table 2: Outcomes 

  Treatment Pattern Label Total      P-Value 

 
Dabigatran 110mg bid 

n = 5983 
Dabigatran 150mg bid 

n = 6059 
Warfarin 
n = 5998 n = 18040  

Stroke/Systemic Embolism     < 0.001 

 84 (1.4%) 53 (0.9%) 125 (2.1%) 262 (1.5%)  

Major Bleeding     0.011 

 216 (3.6%) 261 (4.3%) 281 (4.7%) 758 (4.2%)  

 

 

To build the predictive risk models for ischemic stroke or systemic embolism and major 

bleeding, we used prior literature and clinical expertise, to choose 15 variables that could 

contribute to the risk of stroke or systemic embolism, and 16 variables that could 

contribute to the risk of major bleeding. We then conducted two multivariate logistic 

regressions using all of these 15 variables for stroke and 16 variables for major bleeding. 

The variables in this model and their analysis of effects are shown in Tables 3-A and 3-B. 
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Table 3-A: Logistic Full Model: Stroke or Systemic Embolism  
 

Type 3 Analysis of Effects 

Effect DF 

Wald 
Chi-

Square Pr > ChiSq 

Treatment Pattern 2 9.5803 0.0083 

Age 1 0.0413 0.8389 

Weight 1 0.8192 0.3654 

Sex 1 0.9691 0.3249 

Region 4 4.4377 0.3500 

Aspirin at Baseline 1 0.0236 0.8778 

AF Type 2 2.0821 0.3531 

Baseline Heart 
Failure 

1 0.8617 0.3533 

Baseline 
Hypertension 

1 1.0227 0.3119 

Baseline Diabetes 
Mellitus 

1 13.1876 0.0003 

Baseline 
Stroke/Embolus/TI
A 

1 28.1507 <.0001 

Creatinine 
Clearance 

1 6.3709 0.0116 

Age * Treatment 
Pattern 

2 6.7463 0.0343 

Baseline Diabetes 
Mellitus * 
Treatment Pattern 

2 4.4426 0.1085 

Creatinine 
Clearance * 
Treatment Pattern 

2 9.8738 0.0072 
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Table 3-B: Logistic Full Model: Major Bleeding 
 

Type 3 Analysis of Effects 

Effect DF 
Wald 

Chi-Square Pr > ChiSq 

Treatment 
Pattern 

2 27.7766 <.0001 

Age 1 1.0372 0.3085 

Weight 1 0.7499 0.3865 

Sex 1 1.5558 0.2123 

Region 4 54.7331 <.0001 

Aspirin at 
Baseline 

1 8.3936 0.0038 

AF Type 2 3.7635 0.1523 

Baseline Heart 
Failure 

1 0.5020 0.4786 

Baseline 
Hypertension 

1 1.6975 0.1926 

Baseline Diabetes 
Mellitus 

1 11.1931 0.0008 

Baseline 
Stroke/Embolus/
TIA 

1 4.9456 0.0262 

Creatinine 
Clearance 

1 36.0031 <.0001 

Age * Treatment 
Pattern 

2 19.5937 <.0001 

Weight * 
Treatment 
Pattern 

2 14.1518 0.0008 

Treatment 
Pattern * AF 
Type 

4 6.4746 0.1664 

Baseline Heart 
Failure * 
Treatment 
Pattern 

2 5.1824 0.0749 
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To create the final predictive risk models, we used the Harrell Backwards Selection 

Strategy for each model, to sequentially remove the variable that had the smallest 

contribution to the model’s predictive capacity. After the removal of each variable, the 

model was run again, and the process was repeated until all variables had a p value of less 

than 0.2. Through this process, 6 variables were removed from the stroke or systemic 

embolism model (Weight, Sex, Aspirin at Baseline, AF Type, Baseline Heart Failure, 

Baseline Hypertension) and 2 variables were removed from the major bleeding model 

(Sex, Baseline Hypertension). Tables 4-A and 4-B show the analysis of effects of the 9 

variables included in the final stroke or systemic embolism risk model, and the 14 

variables included in the final major bleeding risk model. 

 
Table 4-A: Logistic Prediction Model: Stroke or Systemic Embolism 

 

Type 3 Analysis of Effects 

Effect DF 

Wald 
Chi-

Square Pr > ChiSq 

Treatment 
Pattern 

2 9.3071 0.0095 

Age 1 0.0128 0.9098 

Region 4 7.0768 0.1319 

Baseline Diabetes 
Mellitus 

1 13.1932 0.0003 

Baseline 
Stroke/Embolus/
TIA 

1 27.7175 <.0001 

Creatinine 
Clearance 

1 9.8821 0.0017 

Age * Treatment 
Pattern 

2 6.5125 0.0385 



	
 
 

	 	 31	
	

Type 3 Analysis of Effects 

Effect DF 

Wald 
Chi-

Square Pr > ChiSq 

Baseline Diabetes 
Mellitus * 
Treatment 
Pattern 

2 4.2451 0.1197 

Creatinine 
Clearance * 
Treatment 
Pattern 

2 9.6253 0.0081 

 

 

Table 4-B: Logistic Prediction Model: Major Bleeding 

Type 3 Analysis of Effects 

Effect DF 

Wald 
Chi-

Square Pr > ChiSq 

Treatment 
Pattern 

2 27.5394 <.0001 

Age 1 1.0161 0.3135 

Weight 1 1.6399 0.2003 

Region 4 54.7754 <.0001 

Aspirin at 
Baseline 

1 8.9961 0.0027 

AF Type 2 3.9765 0.1369 

Baseline Heart 
Failure 

1 0.4419 0.5062 

Baseline Diabetes 
Mellitus 

1 11.7785 0.0006 

Baseline 
Stroke/Embolus/
TIA 

1 4.9358 0.0263 

Creatinine 
Clearance 

1 37.2981 <.0001 

Age * Treatment 
Pattern 

2 19.4564 <.0001 
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Type 3 Analysis of Effects 

Effect DF 

Wald 
Chi-

Square Pr > ChiSq 

Weight * 
Treatment 
Pattern 

2 14.0595 0.0009 

Treatment 
Pattern * AF 
Type 

4 6.5333 0.1627 

Baseline Heart 
Failure * 
Treatment 
Pattern 

2 5.3254 0.0698 

 

 

Figures 1-A and 1-B demonstrate the impact of individual patient variables on the full 

stroke or systemic embolism and major bleeding models respectively. For the stroke or 

systemic embolism model, a history of stroke/systemic embolism/TIA (OR 2.01) and 

baseline diabetes with warfarin (OR 2.00) had the largest impact on risk of stroke or 

systemic embolism. Age in warfarin (OR 1.03), and whether the patient was taking 

Aspirin (OR 1.02), had the smallest impact on risk of stroke or systemic embolism. 
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Figure 1-A (19) 

 

 

 

For the major bleeding model, history of heart failure in patients taking dabigatran 110mg 

(OR 1.52), Central Europe versus USA, Canada (OR 0.46), and age in dabigatran 150mg 

(OR 1.93) had the greatest impact on the risk of bleeding. History of heart failure in 

dabigatran 150mg (OR 0.96) and weight in warfarin (OR 1.04) had the smallest impact 

on the model. 
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Figure 1-B (19) 

 

  

 

The final multivariate predictive risk models for stroke or systemic embolism and major 

bleeding are presented in Tables 5-A and 5-B. The estimates for stroke or systemic 

embolism show the value of the intercept at -3.3677, and the estimates for major bleeding 
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show the value of the intercept at -2.8732. The Tables also show the estimates of the 

regression coefficients for each variable included in the final stroke model or bleeding 

model. Using these models, the risk of stroke or systemic embolism and the risk of major 

bleeding can be calculated for any patient based on the equation Y (risk) = b0 + X1b1 + 

X2b2 + X3b3 + X4b4, where b0 is the model’s intercept, b1-4 are the model’s regression 

coefficients, and X1-4 are the variables, defined as either 0 or 1 based on the absence or 

presence of the variable. 

 
 Table 5-A: Logistic Prediction Model: Stroke or Systemic Embolism 

 
Analysis of Penalized Maximum Likelihood Estimates 

Parameter  DF Estimate 
Standard 

Error 

Wald 
Chi-

Square Pr > ChiSq 

Intercept  1 -3.3677 1.2175 7.6507 0.0057 

Treatment Pattern A 1 0.6235 1.7072 0.1334 0.7150 

Treatment Pattern B 1 -5.9296 2.1931 7.3100 0.0069 

Age  1 0.00154 0.0136 0.0128 0.9098 

Region Asia 1 0.4461 0.1831 5.9386 0.0148 

Region Central Europe 1 -0.0432 0.2414 0.0321 0.8579 

Region Latin, Other 1 0.1238 0.2175 0.3241 0.5691 

Region Western Europe 1 0.1419 0.1706 0.6924 0.4053 

Baseline Diabetes 
Mellitus 

 1 0.6902 0.1900 13.1932 0.0003 

Baseline 
Stroke/Embolus/TI
A 

 1 0.6961 0.1322 27.7175 <.0001 

Creatinine 
Clearance 

 1 -0.0157 0.00498 9.8821 0.0017 

Age * Treatment 
Pattern 

A 1 -0.0164 0.0196 0.6982 0.4034 

Age * Treatment 
Pattern 

B 1 0.0495 0.0252 3.8623 0.0494 

Baseline Diabetes 
Mellitus * 
Treatment Pattern 

A 1 -0.5543 0.3184 3.0300 0.0817 
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Analysis of Penalized Maximum Likelihood Estimates 

Parameter  DF Estimate 
Standard 

Error 

Wald 
Chi-

Square Pr > ChiSq 

Baseline Diabetes 
Mellitus * 
Treatment Pattern 

B 1 -0.5919 0.3759 2.4803 0.1153 

Creatinine 
Clearance * 
Treatment Pattern 

A 1 0.00430 0.00731 0.3451 0.5569 

Creatinine 
Clearance * 
Treatment Pattern 

B 1 0.0234 0.00776 9.0839 0.0026 

 
 
 

Table 5-B: Logistic Prediction Model: Major Bleeding 
 

Analysis of Penalized Maximum Likelihood Estimates 

Parameter   DF Estimate 
Standard 

Error 

Wald 
Chi-

Square Pr > ChiSq 

Intercept   1 -2.8732 0.8338 11.8757 0.0006 

Treatment Pattern A  1 -3.8326 1.1614 10.8894 0.0010 

Treatment Pattern B  1 -5.9535 1.1736 25.7353 <.0001 

Age   1 0.00922 0.00915 1.0161 0.3135 

Weight   1 0.00504 0.00393 1.6399 0.2003 

Region Asia  1 -0.4659 0.1383 11.3387 0.0008 

Region Central 
Europe 

 1 -0.7622 0.1589 23.0209 <.0001 

Region Latin, 
Other 

 1 -0.6145 0.1367 20.1987 <.0001 

Region Western 
Europe 

 1 -0.5979 0.1054 32.1737 <.0001 

Aspirin at Baseline   1 0.2334 0.0778 8.9961 0.0027 

AF Type Paroxysmal  1 -0.2440 0.1553 2.4680 0.1162 

AF Type Permanent  1 0.0521 0.1512 0.1188 0.7303 

Baseline Heart Failure   1 0.0919 0.1383 0.4419 0.5062 

Baseline Diabetes 
Mellitus 

  1 0.2951 0.0860 11.7785 0.0006 

Baseline 
Stroke/Embolus/TIA 

  1 0.1996 0.0898 4.9358 0.0263 
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Analysis of Penalized Maximum Likelihood Estimates 

Parameter   DF Estimate 
Standard 

Error 

Wald 
Chi-

Square Pr > ChiSq 

Creatinine Clearance   1 -0.0152 0.00248 37.2981 <.0001 

Age*Treatment 
Pattern 

A  1 0.0353 0.0131 7.2561 0.0071 

Age*Treatment 
Pattern 

B  1 0.0560 0.0130 18.4606 <.0001 

Weight * Treatment 
Pattern 

A  1 0.00834 0.00495 2.8309 0.0925 

Weight * Treatment 
Pattern 

B  1 0.0185 0.00493 14.0500 0.0002 

Treatment Pattern * 
AF Type 

A Paroxysmal 1 0.4333 0.2319 3.4917 0.0617 

Treatment Pattern * 
AF Type 

A Permanent 1 -0.0351 0.2329 0.0227 0.8802 

Treatment Pattern * 
AF Type 

B Paroxysmal 1 0.4418 0.2233 3.9148 0.0479 

Treatment Pattern * 
AF Type 

B Permanent 1 0.1102 0.2217 0.2470 0.6192 

Baseline Heart Failure 
* Treatment Pattern 

A  1 0.3297 0.2025 2.6516 0.1034 

Baseline Heart Failure 
* Treatment Pattern 

B  1 -0.1417 0.2012 0.4962 0.4812 

 

The models were tested using a bootstrapping procedure, in which the predictive model 

was applied to a randomly selected subset of patients, and the model’s output, including 

the predicted risk of stroke, was then compared to the true results of the entire population. 

This procedure was repeated 10 times, to examine the true predictive capacity of each 

model. To examine the predicted events with the bootstrapped population compared to 

the true events of the population, the predicted events of the bootstrapped population 

were calibrated to the true events of the full RE-LY sample population. Tables 6-A and 6-

B show the parameter estimates of the population which, for the slope, are 0.98356 for 
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the stroke or systemic embolism model and 0.98247 for the major bleeding model, with 

Pr > |t| values < .001. These results demonstrate that we can reject the null hypothesis that 

the slope of the model is 0. Tables 7-A and 7-B show the test slope results with Pr>F 

values of 0.8311 and 0.7318 for the stroke or systemic embolism model and major 

bleeding model respectively, demonstrating that we cannot reject the null hypothesis that 

the slope is 1. The proximity of the slope to 1, is demonstrated by the R-square values of 

0.9560 for the stroke or systemic embolism model, and 0.9802 for the major bleeding 

model. The proximity of the slope to 1 demonstrates the strength of the model’s 

predictive capacity. The calibration is demonstrated graphically in Figures 2-A and 2-B, 

with each event rate for each bootstrap sample against its respective population. The 

proximity of the intercept towards 0 and the R-Square to 1, and the proximity of the 

calibration graph to the 45-degree line, demonstrate the linearity of the calibration and 

therefore the predictive strength of the model. The c-statistic, or area under the curve, is 

0.675 for the stroke or systemic embolism model and 0.694 for the major bleeding model.  
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Table 6-A: Stroke or Systemic Embolism Prediction Model Calibration 
 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 -0.00022276 0.00136 -0.16 0.8743 
Slope 1 0.98356 0.07458 13.19 <.0001 

 
 

Table 6-B: Major Bleeding Prediction Model Calibration 
 

Table 6-B Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 0.00009327 0.00255 0.04 0.9718 
Mean 1 0.98247 0.04938 19.90 <.0001 

 

Table 7-A: Stroke or Systemic Embolism Prediction Model Calibration 

Test Slope Results for Stroke or Systemic Embolism 

Source DF 
Mean 

Square F Value Pr > F 
Numerator 1 2.833789E-7 0.05 0.8311 

Denominator 8 0.00000583   
R-Square 0.9560 
C-Statistic 0.675 

 

Table 7-B: Major Bleeding Prediction Model Calibration 

Test Slope Results for Major Bleeding 

Source DF 
Mean 

Square 
F 

Value Pr > F 
Numerator 1 0.00000251 0.13 0.7318 
Denominator 8 0.00001993   
R-Square 0.9802 
C-Statistic 0.694 
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Figure	2-A	
	

 

 

Figure 2-B 
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We then applied the predictive risk model to each patient in the RE-LY trial to assess for 

heterogeneity of treatment effect of both dabigatran 110mg and 150mg versus warfarin. 

The following tables show the number of patients who had a statistically significant 

difference between their stroke or systemic embolism, or major bleeding risk with 

dabigatran or warfarin. As seen in Tables 8-A and 8-B, 30.37% and 46.45% of patients 

had statistically significant differences in their risk of stroke or systemic embolism and 

major bleeding, respectively, with dabigatran 110mg versus warfarin. As seen in Tables 

9-A and 9-B, 70.88% and 47.58% of patients had statistically significant differences in 

stroke or systemic embolism and major bleeding risk, respectively, with dabigatran 

150mg versus Warfarin. 

 

Table 8-A 

Stroke/Systemic Embolism log(odds): Dabigatran 110mg - 
Warfarin Significance 

Significance Frequency Percent 
Cumulative 
Frequency 

Cumulative 
Percent 

Non- 
Significant 

12562 69.63 12562 69.63 

Significant 5478 30.37 18040 100.00 
 

Table 8-B 

Major Bleeding log(odds): Dabigatran 110mg - Warfarin 
Significance 

Significance Frequency Percent 
Cumulative 
Frequency 

Cumulative 
Percent 

Non- 
Significant 

9661 53.55 9661 53.55 

Significant 8379 46.45 18040 100.00 
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Table 9-A 

Stroke/Systemic Embolism log(odds): Dabigatran 150mg - 
Warfarin Significance 

Significance Frequency Percent 
Cumulative 
Frequency 

Cumulative 
Percent 

Non- 
Significant 

5254 29.12 5254 29.12 

Significant 12786 70.88 18040 100.00 
 

Table 9-B 

Major Bleeding log(odds): Dabigatran 150mg - Warfarin 
Significance 

Significance Frequency Percent 
Cumulative 
Frequency 

Cumulative 
Percent 

Non- 
Significant 

9457 52.42 9457 52.42 

Significant 8583 47.58 18040 100.00 
 

 

It is important to note however, that the frequency of patients who had a statistically 

significantly different risk with dabigatran versus warfarin, includes both patients with an 

increased risk and patients with a decreased risk. Figures 3 and 4 demonstrate the 

distribution of this risk, distinguishing patients with and without a statistically significant 

difference by color and distance from the fit line, and by whether they had an increased 

or decreased risk, by position above or below the fit line, respectively, with dabigatran. In 

Figure 3-A for example, all patients who had a statistically significant risk of stroke or 

systemic embolism with dabigatran 110mg, had a decreased risk. With regard to bleeding 

risk in Figure 3-B however, while most patients had a decreased risk with dabigatran 

110mg, some patients had an increased risk. The greatest distribution between increased 
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and decreased risk is seen in Figure 4-B, which demonstrates that many patients had a 

decreased risk of bleeding with dabigatran 150mg, and many patients that had an 

increased risk of bleeding.  

 

Figures 3A-3B: Dabigatran 110mg - Warfarin Significance 

                           Figure 3-A                                                         Figure 3-B 

                                      

                                

     Figures 4A-4B: Dabigatran 150mg - Warfarin Significance 

   Figure 4-A                                                           Figure 4-B 
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To further examine the heterogeneity of treatment effect, we put each patient through the 

model to determine their risk of stroke or systemic embolism and risk of major bleeding 

with dabigatran 110mg, dabigatran 150mg, and warfarin. We then calculated the 

differences in these risks as risk of stroke or systemic embolism with dabigatran minus 

risk of stroke or systemic embolism with warfarin, and risk of major bleeding with 

dabigatran minus risk of major bleeding with warfarin. As seen in Table 10, the mean 

difference of risk between dabigatran 110 and Warfarin was -0.78% ± 0.95% for stroke 

or systemic embolism and -1.12% ± 1.44% for major bleeding. The mean difference of 

risk between dabigatran 150mg was -1.32% ± 1.31% for stroke or systemic embolism 

and -0.41% ± 2.39% for major bleeding. These ranges of risk differences for dabigatran 

110mg and 150mg versus warfarin are demonstrated graphically in Figures 5-6. All areas 

of the curves to the left of 0, represent those patients with a smaller risk of stroke or 

systemic embolism, or major bleeding with dabigatran, and all areas to the right of the 

curves represent those patients with a smaller risk of stroke or systemic embolism or 

major bleeding risk with warfarin. The fact that all curves cross the zero line 

demonstrates the range of treatment superiority with regard to a given risk. The width of 

the curves, particularly with regard to major bleeding demonstrates the range of benefits 

for different patients of using one anticoagulant versus the other. 
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Table 10: Logistic Predictive Probability Difference between Dabigatran and 

Warfarin 

Logistic Predictive 
Probability 
Difference of: N Mean Std Dev Minimum Maximum 
STROKSE: 
Dabigatran 110mg - 
Warfarin 

17237 -0.0077530 0.0095157 -0.0932936 0.0215243 

Major Bleeding: 
Dabigatran 110mg - 
Warfarin 

17226 -0.0112073 0.0143663 -0.0776957 0.2324420 

STROKSE: 
Dabigatran 150mg - 
Warfarin 

17237 -0.0131816 0.0131320 -0.1156282 0.0329962 

Major Bleeding: 
Dabigatran 150mg - 
Warfarin 

17226 -0.0041146 0.0238650 -0.0893168 0.6339190 

 

 

Figure 5 
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Figure 6 

 

 

To determine the range of patients for whom dabigatran 110mg or dabigatran 150mg 

would be superior to warfarin, regarding the risk of stroke or systemic embolism and 

major bleeding, we plotted the all patients’ risk on a chart with a two axes chart, one for 

each risk (Figures 7 and 8). The X-axis is defined as risk of stroke or systemic embolism 

with dabigatran minus risk of stroke or systemic embolism with warfarin, and therefore, 

all patients who fall below the zero line, have a lower risk of stroke or systemic embolism 

with dabigatran, and those who fall above the zero line have a lower risk of stroke or 

systemic embolism with warfarin. The Y-axis is defined as risk of major bleeding with 

dabigatran minus risk of stroke or systemic embolism with warfarin, and therefore all 

patients who fall to the left of the zero line, have a lower risk of major bleeding with 

dabigatran, and those who fall to the right of the zero line, have higher risk of major 

bleeding with dabigatran. In summary, those patients who fall in the lower left quadrant 
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of the chart would benefit from dabigatran relative to warfarin, as their risk of stroke or 

systemic embolism and major bleeding are both lower with dabigatran. Those patients 

who fall in the upper right quadrant of the chart would benefit from warfarin relative to 

dabigatran, as their risk of stroke or systemic embolism and major bleeding are both 

lower with warfarin. However, in the upper left and lower right quadrants, there are 

decisional conflicts. The patients in the upper left-hand corner have a lower risk of stroke 

with warfarin, but a lower risk of bleeding with dabigatran. The patients in the lower 

right-hand corner have a lower risk of stroke with dabigatran, but a lower risk of bleeding 

with warfarin. For those a lower these patients in the upper-left, and lower-right hand 

corners of the chart, treatment decisions could be made via a well-informed shared-

decision-making process, taking into account patients’ concerns, values and differences 

in risk-tolerance between stroke or systemic embolism or major bleeding. 

 

Figures 7 and 8 show that for dabigatran 110mg and 150mg versus Warfarin, there are 

patients whose stroke or systemic embolism and major bleeding risk combinations fall in 

all four classifications. The most notable difference between the two figures is that 

dabigatran 150mg figure has many more patients with a lower risk of bleeding with 

warfarin, thus explaining why this figure has so many patients who fall in the upper right 

quadrant where patients have both a lower stroke or systemic embolism and major 

bleeding risk with warfarin.  
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Figure 7 

 

 

Figure 8 
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Discussion 

 

In this analysis, we used data from the RE-LY trial to develop two multivariate risk 

models to predict patients’ risk of stroke or systemic embolism, and risk of major 

bleeding, with treatment with warfarin, dabigatran 110mg and dabigatran 150mg. We 

applied these risk models to each patient in the RE-LY trial, found significant 

heterogeneity among patients in the benefits and risks of using the three different 

medications. For example, some patients derive a much greater benefit than others in 

stroke or systemic embolism risk reduction from using dabigatran 110mg versus 

warfarin. And other patients derive a much greater risk than others in major hemorrhage 

when using dabigatran 150mg compared to warfarin. The range of this heterogeneity of 

treatment effect is demonstrated by Table 8 and figures 6-7, which show the distribution 

of the differences in absolute risk reduction for each patient when using dabigatran 

150mg and dabigatran 110mg versus warfarin. The mean difference (dabigatran minus 

warfarin) in the risk of stroke was -0.78% ± 0.95% for dabigatran 110mg and -1.32% ± 

1.31% for dabigatran 150mg. The mean difference in the risk of major bleeding was -

1.12% ± 1.44% for dabigatran 110mg and -0.41% ± 2.39% for dabigatran 150mg. These 

findings confirm our hypothesis that there is a heterogeneity of treatment effect with 

regard to dabigatran and warfarin.  

 

The heterogeneity of treatment effect was explained by Figures 2-A and 2-B, which show 

the contributions of individual characteristics to the risk of stroke or major bleeding. 

Certain variables such as a history of diabetes or heart failure increased the risk of stroke 
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or systemic embolism or major bleeding, respectively. Whereas other variables, such as 

male gender or region decreased the risk of stroke or systemic embolism or major 

bleeding, respectively. These opposing risk factors, with their different weight, can 

complicate clinical decision making, and highlight the need for multivariate prediction 

models to accurately and objectively weigh individual risks and benefits. 

 

These findings build on recent studies to demonstrate the importance of analyzing clinical 

trials for heterogeneity of treatment effect using multivariate risk models.  Salisbury et 

demonstrate the heterogeneity of treatment effect between clopidogrel and prasugrel in 

the TRITON-TIMI 38 trial, and by Kernan et al to demonstrate the heterogeneity of 

treatment of pioglitazone post stroke or TIA in the IRIS trial (11,12). Our application of 

multivariate risk models to the RE-LY trial similarly found heterogeneity of treatment 

effect, that was previously unknown, adding to further evidence regarding the potential 

benefit of multivariate predictive risk models to clinical care.  

 

To assess the potential impact of these findings, it is important to return to the current 

state of clinical practice and decision making with regard to dabigatran and warfarin. In 

the U.S. clinicians and patients choose between doses of dabigatran 150mg and 75mg and 

warfarin based on the findings of clinical trials such as RE-LY, and their respective 

subgroup analyses. However, while the findings of these trials report means, medians, 

standard deviations and the results that are best for the population as whole, they don’t 

necessarily reflect the results for patients at the extremes of the treatment effect. For 

example, the RE-LY trial found that for the population as a whole, there were similar 
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risks of major bleeding with dabigatran 150mg versus warfarin warfarin (15). Our 

analysis does not dispute this finding, but rather notes that for certain patients there is a 

significantly increased risk of bleeding with dabigatran 150mg compared to warfarin.  

 

Trials such as RE-LY do publish subgroup analyses to account for this heterogeneity of 

treatment effect. However, these subgroup analyses have numerous statistical limitations, 

can pose opposing risk contributions from the application of different subgroups, and are 

not easy for a clinician to practically apply to individual patients in the clinical setting. 

Furthermore, while these subgroup analyses certainly narrow the population to the 

individual, they still generalize results to a population that shares only one characteristics. 

This is akin to Netflix recommending a movie to a 70-year-old woman, because that 

movie has been popular among people over the age of 65. Much like Netflix is able to 

make a movie prediction to this woman based on her age, gender, the time it takes her to 

finish a TV show, and the actresses in previous shows she has finished, modern medicine 

has the potential to make individualized medication recommendations based on multiple 

individual characteristics.  

 

Most importantly, our findings that there are both patients for whom dabigatran or 

warfarin would reduce their risk of stroke and bleeding, demonstrates the potential for 

more individualized decisions to improve patient health. These data are displayed 

graphically in figures 7 and 8 showing each patients risk along two axes, for risk of 

stroke and risk of major bleeding. Those patients who are in the lower left, and upper 

right quadrants showed both a greater absolute risk reduction in both stroke or systemic 
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embolism and major hemorrhage with dabigatran and warfarin, respectively. The 

challenge in the clinical setting, is to identify which quadrant a given patient would fall 

in, such that their risk of stroke or major bleeding could be minimized. 

 

The basis of these findings in a multivariate predictive risk model, highlights the potential 

for this model to be used in clinical practice to predict patients risks of stroke or bleeding 

with dabigatran versus warfarin. Before this risk model is used clinically, it will need to 

be tested in further populations. However, if validated, it’s use in clinical practice would 

be beneficial, and feasible. Multivariate predictive risk models are already in widespread 

use, with clinicians and patients using multivariate risk scores such as CHADSVASC2 

and HASBLED to predict their individual benefits and risk with using anticoagulation. 

This multivariate predictive risk model could be used in a similar way to help clinicians 

and patients make a fully informed, individualized decision about a medication at the 

point of care.  

 

While such a tool would identify those patients who would clearly benefit from warfarin 

or dabigatran with regard to both stroke and bleeding risk, there will also be patients who 

have the lowest stroke risk with one medication, and the lowest bleeding risk with the 

other medication. These patients are represented by the upper left and lower right 

quadrants in Figures 7 and 8. These treatment decisions pose a challenge, that will require 

careful evaluation of the degree of risks and benefits with different given treatment, and a 

shared decision-making process to identify the treatment that would best align with 

patient preferences and values. 
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To facilitate the decision-making around treatments that carry both a benefit and a risk 

with regard to other available treatments, Salisbury et al, proposed the calculation of a 

“net clinical benefit score” (11). The net clinical benefit is defined as the benefit to risk 

ratio. As applied to our findings, net clinical benefit would be defined as the ratio of the 

reduction of risk in stroke or systemic embolism (the benefit), to the increase in risk of 

bleeding. For each patient, the benefit of a given treatment, or reduction in risk of stroke 

or systemic embolism, would be calculated as the absolute difference of the predicted risk 

of stroke or systemic embolism for warfarin minus the predicted risk with dabigatran. 

The risk, or increased risk of major hemorrhage, would be calculated as the absolute 

difference of the predicted risk of major hemorrhage with warfarin minus the predicted 

risk with dabigatran. For each patient a benefit to risk ratio >1, or an absolute benefit with 

dabigatran that is greater than the absolute risk with dabigatran, would signify a net 

benefit with dabigatran relative to warfarin. A ratio of <1, or an absolute benefit with 

dabigatran less than the absolute risk increase with dabigatran, indicates a net benefit 

with warfarin relative to dabigatran.  

 

In clinical practice, patients and clinicians may have their own individual perspectives on 

the amount of benefit required to outweigh a given risk. For example, some patients and 

clinicians might feel that preventing stroke or systemic embolism is twice as important as 

avoiding major hemorrhage, while others might feel that preventing stroke or systemic 

embolism is half as important as avoiding major hemorrhage. In the first group who put 

greater emphasis on reducing stroke, a benefit to risk ratio of >0.5 would be required to 

signify a net clinical benefit with dabigatran relative to warfarin. For the second group 
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who put greater emphasis on avoiding hemorrhage, a benefit to risk ratio of >2 would be 

required to signify a net clinical benefit with dabigatran relative to warfarin (11). 

 

The presentation of such a net clinical benefit score could help patients and clinicians 

simplify challenging decisions. Such a tool could be part of a larger strategy to 

communicate risk in an intuitive fashion, and to facilitate the use of multivariate 

predictive models in clinical decision making.  
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Effective presentation of risk models to facilitate shared decision making  

 

The promise of individualized patient data, is its potential to guide clinical decision-

making. Thus, as we develop methods to provide more individualized data, we must also 

develop tools to present the data in a way that can most effectively aid decision-makers.  

 

These tools can be used as part of the shared-decision making model, which is designed 

to enhance patient clinician communication, and ensure treatment decisions that are 

backed by all available evidence, and align with patient values (20). Shared decision 

making is recommended by the American Heart Association for anticoagulant treatment 

decisions in AF, to ensure that treatment decisions are aligned with patient’s values (14). 

 

The shared decision-making model consists of a clinician and patient forming a 

partnership, through which the clinician explains the risks and benefits of different 

treatment options, patients explain their experiences, values and thoughts about different 

treatments, and together the patients and clinicians discuss their thoughts about the 

treatment options, and agree on a course forward (20-23). There is of course a range of 

the degree to which different patients wish to be involved in the decision-making process, 

and it is important for clinicians, at the outset, to ask patients what they would prefer. 

This might range from the patient seeking information and making the decision, to the 

patient asking the doctor’s opinion and then making the decision, to asking the doctor to 

make a decision by themselves (24). However, it is important that clinicians do not 

assume patient deference to their provider, as it has been shown that patients randomized 
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to participate in shared decision making versus usual care, report greater satisfaction 

(20,25). 

 

Visual decision aids can greatly enhance the shared decision-making process by helping 

the clinician convey treatment risk and benefit information in a clear and easy to 

understand manner (20). Effective decision-aids incorporate a number of principles that 

have been learned from behavioral decision-making science and studies of past decision 

aids. 

 

First, decision-aids should avoid use of number needed to treat statistics and relative risk 

statistics. Number needed to treat is a difficult concept for many patients to understand, 

and relative risk can lead both patients and clinicians to perceive an exaggerated risk or 

treatment effect. As an example of this phenomenon with relative risk, a patient who is 

told that a given treatment will reduce their risk of stroke by 50%, is will likely be more 

inclined to use the drug than if they were told that it reduced their risk of stroke from 2% 

to 1% (26). Furthermore, as previously discussed, a relative risk reduction of 50% may 

have significantly different implications for a patient who sees their risk decrease from 

20% to 10% versus a patient who sees their risk decrease from 2% to 1%. Therefore, in 

order to avoid an exaggeration of treatment effect, and to ensure that risks are truly 

individualized, decision-aids should present risks as absolute risks (24,27,28). 

 

In addition to presenting risks as absolute risks, it is also important for decision aids to 

convey the incremental change in risk, from the patient’s baseline risk. If a clinician tells 
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a patient that they have a 5% risk of major bleeding over the next 10 years with a given 

anticoagulant, they may incorrectly assume that all of their bleeding risk is due to the 

anticoagulant, and that their risk without treatment would be 0%. Therefore, if the patient 

has a 4% baseline risk of bleeding without treatment over the course of 10 years, it is 

important to convey that information, and to explain that taking the anticoagulant will 

add 1% to their absolute risk of bleeding over 10 years (27,28). 

 

Similarly, it may be helpful to provide patients with contextual absolute risk information 

about their other health risks, as a basis of comparison for the risks associated with 

treatments. For example, if a patient is weighing whether to take a drug that is associated 

with a 1% absolute risk of bleeding over 10 years, it may be helpful for them to 

understand that their absolute risk of carotid artery disease over that same period is 40% 

(27). 

 

When comparing the absolute risks associated with multiple treatments, it is important 

for decision aids to convey those risks in consistent formats. That is, if one risk is 

presented as a percent, the other risk should be presented as a percent, not as a frequency 

ratio. People, especially with lower numeracy, which tends to decrease with age, may 

have difficulty comparing a 7% risk to a 5/100 risk, and it has been found that people 

tend to be biased, in perceiving frequencies as being greater than percents (27,29,30). 

Therefore, a 7% risk should be compared to a 5% risk, or a 7/100 risk should be 

compared to 5/100 risk. Furthermore, if the risks are presented as frequency ratios, it is 

important that the ratios have identical denominators. A 2/50 risk of bleeding with drug A 
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should not be compared to a 6/75 risk with drug B. Rather, this should be presented as a 

4/100 risk with drug A, compared to an 8/100 risk with drug B. Additionally, it is best to 

avoid presenting frequencies in a “1 in x” format, as this has been found to be difficult for 

patients to understand (27,31). And, when possible, it is best to use smaller denominators. 

A 1/10 risk is found to be much better intuitively understood than a 1/100 risk (27,32). 

 

There is significant debate on the role of narrative language on decision aids. The 

generally agreed upon notion is that “words matter.” The challenge then is to determine 

when they serve to add helpful additional information, versus when they introduce or 

exacerbate anecdote bias. For example, the inclusion of patient testimonials on decision 

aids has been found to make patients more concerned about the severity of bad outcomes 

(27,33). For a patient who views a cerebral hemorrhage as akin to a bruise on their 

forehead, the inclusion of such a testimonial would be warranted. However, for the 

patient whose friend recently died of a cerebral hemorrhage, the sharing a testimonial of 

cerebral hemorrhage might further bias them to overestimate the likelihood of a 

hemorrhage in their decision-making process. In fact, one of the greatest benefits of 

visual decision-aids, is their ability to reduce anecdote bias, and allow patients and 

clinicians to consider data is as objective a way as possible, so they can make decisions in 

line with their values (27,34). 

 

Language can also be added to decision-aids in order to “label” results. For example, 

rather than only telling patients that the risk of hemorrhage is 1% with one drug and 5% 

with another drug, a decision aid could label the 1% risk as “low,” and the 5% risk as 
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“high.” Patients given decision aids with labels were found to be more likely to 

incorporate risk information in their decision-making (27,35). 

 

Decision-aids can introduce “framing effects” through which different presentations of 

identical information, can lead to different patient decisions. Numerous studies have 

demonstrated that patients are more likely to tolerate risky medications or procedures if 

the risks of procedures were framed in a positive as opposed to negative frame (27,36). 

For example, Levin et al, showed that people were hypothetically more willing to 

undergo a procedure with a 50% success rate than a procedure with a 50% failure rate 

(37).  This line of reasoning suggests that patients would be more inclined to take an 

anticoagulant if they are told “95% of patients with AF who take Warfarin don’t have a 

stroke within 10 years,” compared to being told that “5% of patients with AF who take 

warfarin have a stroke within 10 years.”b The presence of framing effects should not be 

used to influence patient decisions, but should be considered as potential sources of 

biases in patient decisions. 

 

The “recency effect” is another bias that can be introduced by decision aids. In this bias, 

patients are more likely to place greater emphasis on the piece of information they heard 

last (28,38). For example, if a patient is first told about an anticoagulant’s association 

with hemorrhage, and are then told about its’ effect on stroke prevention, they may place 

disproportionate weight on the drug’s impact on stroke prevention. And if they are first 

told about stroke prevention, and then told about hemorrhage, they may place greater 

                                                
b	This	a	hypothetical	deduction	of	previous	study	findings,	and	has	not	itself	been	studied.	
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emphasis on hemorrhage.c To reduce this bias, decision-aids can summarize all presented 

information, prior to the patient decision, such that the value patients place on a given 

treatment characteristic, is consistent with their own personal values and not with the 

order in which it was presented (28). 

The visual presentation of decision-aids may also influence comprehension. First, while 

the use of numbers to present statistical information, may be the best way to convey 

precise, or verbatim, information, there are many benefits to conveying information 

through pictographs. Pictographs present statistics by using different colored icons 

(usually ovals, smiley faces, or bathroom symbols) to represent the affected proportion of 

an at-risk population. For example, to convey that 3/100 people who take an 

anticoagulant get a cerebral hemorrhage within 10 years, a pictograph might display 100 

bathroom figures, and color three of them red, signifying the likelihood of cerebral 

hemorrhage. Though it has been proposed that these three red figures be spread out 

among the pictograph, to emphasize the randomness of an event occurring, it has been 

found that comprehension increases when they are grouped together (27,39). Pictographs 

can be intuitively easy to understand, and have been shown to be better than bar graphs in 

conveying “gist” knowledge. Furthermore, while the use of numbers is the most effective 

way to convey precise, or verbatim, information, pictographs are superior to pie graphs in 

conveying verbatim knowledge (28,40). 

 

The major benefit of pictographs however, is their ability to address “denominator 

neglect” (41). Through this bias, people tend to overweigh numerators, and under weigh 

                                                
c	This	a	hypothetical	deduction	of	previous	study	findings,	and	has	not	itself	been	studied.	



	
 
 

	 	 61	
	

denominators. For example, many people are likely to believe that a 15/100 risk is greater 

than a 2/10 risk (41). Icon arrays draw people’s eyes to the denominator, to help them 

understand the context of the numerator and to get a more accurate understanding of their 

risk. The presentation of too much information can distract patients from key points such 

as the denominator, and it is therefore essential that pictographs include only the most 

important information (28,42). 

 

In addition to “neglecting” the denominator, it is also common for people to 

misunderstand the meaning of the denominator. For example, a patient who is told they 

have a 3/100 risk of hemorrhage, may assume that every 3/100 times they take an 

anticoagulant, they can expect to get a hemorrhage, and that nearly everybody eventually 

gets a hemorrhage (27,43). Icon arrays provide a shared mental model through which 

clinicians can work with patients to ensure that they accurately understand the meaning 

of the denominator and how it relates to their individual risk. 

 

Finally, icon arrays have the potential to address neglect of a time course. Risk is defined 

as events/at risk population over a given time period. However, this time period is often 

neglected. For example, patients who are told they have a 10-year, 3/100 risk of 

hemorrhage may assume that every single year, for 10 years, 3 people out of 100 will 

suffer a hemorrhage, for a total of 30 people out of 100 at the end of 10 years. Icon arrays 

should clearly display the time course of a risk, and again, help clinicians and patients 

work together under a shared mental model (27). 
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The use of shared decision making with decision aids increases patients’ knowledge of 

pre-treatment risk and treatment options, increases patient engagement and decreases 

decisional conflict (20,44,45). Furthermore, decision-aids that are tailored to patient’s 

individual profile have been shown to have a particularly strong positive impact on 

patient comprehension (27,46). There have also been number of studies of shared 

decision making and decision aids regarding anticoagulation in AF. While many of these 

studies were done without individual risk models and prior to non-vitamin K oral 

anticoagulants, similar to other studies of shared decision-making, they found that 

patients who underwent shared decision making, had greater understanding of treatment 

options, and decreased decisional conflict (20,47). 

 

The multivariate predictive risk models for stroke or systemic embolism and major 

bleeding developed in this analysis, if validated, could be incorporated into decision-aids 

in order to help clinicians and patients with AF and an increased risk of stroke, work 

together to make decisions about anticoagulation with dabigatran versus Warfarin. The 

following icon arrays were generated using http://www.iconarray.com, a tool developed 

by the Risk Science Center at the University of Michigan, which incorporates many of 

the lessons from the decision-aid literature, to create effective decision-aids (48). 

 

These are examples of decision-aids that could be presented to two different patients. The 

first patient is Frank, a 62-year-old, 85 kg man with diabetes, a creatinine clearance of 85 

ml/min, a history of TIA, and permanent AF, who is taking Aspirin, and has no history of 

heart failure. The second patient is Maria, an 87-year-old, 58 kg woman who also has 
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diabetes, a creatinine clearance of 85ml/min, has persistent AF and is taking aspirin, and 

has no history of stroke, systemic embolism, TIA or heart failure. 

 

For each patient, the decision-aids show their risk of stroke with dabigatran 150mg and 

warfarin, side-by side, and below that, their risk of major bleeding with dabigatran 

150mg and warfarin, side-by side. 

 

As seen in the decision-aids, both patients face decisional challenges. Frank’s risk of 

stroke is higher with warfarin, at 3.84% than it is with dabigatran, at 0.92%. However, his 

risk of major bleeding is lower with warfarin, at 8.43% than it is with dabigatran, at 

13.1%. Maria’s risk of stroke is slightly higher, with warfarin, at 2.4% than it is with 

dabigatran, at 1.49%. However, her risk of major bleeding is much lower with warfarin, 

at 8.51% than it is with dabigatran at 22.12%. 

 



	
 
 

	 	 64	
	

 



	
 
 

	 	 65	
	

 



	
 
 

	 	 66	
	

Frank and Maria, could both look at these personalized decision-aids with their physician, 

as part of a regular office visit, in order to understand the different risks and benefits 

associated with an anticoagulant, and alongside other considerations such as lifestyle 

implications, could make a fully informed choice that aligns with their respective values. 

Frank might have a very active lifestyle, and given his relatively young age of 62 and his 

history of TIA, might be very concerned about a stroke causing functional limitation, and 

might be willing to accept the risk of major bleeding requiring a transfusion. In this case, 

Frank would likely choose dabigatran given that it decreases his risk of stroke by close to 

3% relative to warfarin, even though it is associated with an over 4% increased risk of 

bleeding. Maria on the other hand, at age 87, might have numerous functional limitations, 

and might be more concerned about being hospitalized for major bleeding issues than she 

is about new functional limitations from a stroke. In this case, Maria might be 

unimpressed by the approximately 1% decreased risk of stroke with dabigatran relative to 

warfarin, but might be very concerned by the nearly 14% increased risk of major 

bleeding with dabigatran and would therefore be likely to choose warfarin. In such cases 

where patients place different weight on the risks of stroke and major bleeding, a net 

clinical benefit score as discussed earlier, could also play a role in calculating for the 

patient, which treatment choice would best align with their values and preferences.  

 

Such an aid could also theoretically be interactive, and further engage patients by 

providing them an opportunity change the variables in the model. For example, Frank 

could see how his risk of stroke will change as he gets older, and Maria could see how 

her risk of major bleeding would change if her creatinine clearance were to decrease. 
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It is important to note that this graphic has not been tested, and only serves to highlight 

how a pictograph decision-aid could potentially convey information from the predictive 

risk model to patients as part of their usual care. Decision-aids should be studied for 

effectiveness with regard to decisional factors such as patient comprehension, decisional 

conflict and decision comfort. 

 

While risk models can be created, and decision-aids can be built, they will only be 

valuable if patients and clinicians use them during clinical practice. Given the potential 

for numerous risk models to be developed and updated over the coming years and 

decades, it is important to build an infrastructure that provides patients and clinicians 

with the latest and most relevant risk models in an easily accessible manner. One 

potential example of such an infrastructure, would be a risk calculator that is 

automatically built in to the electronic medical record, and that quickly displays decision 

aids onto a tablet that is readily available in the exam room, or to a patient’s smartphone. 

In addition to improving awareness and accessibility of newly developed risk models, 

one of the biggest challenges to the use of shared decision making and decision aids, is 

their potential impact on clinical workflow. Studies have found that shared decision 

making can add approximately 3 minutes to a clinical encounter (20,49). While 

incorporating automated systems into electronic medical records may add some 

efficiency, it is also important that shared decision making is valued by payers and health 

systems, such that time for shared decision making is allocated as a part of standard 

practice.  
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Conclusion 

 

This study demonstrates that there is heterogeneity of treatment effect between 

dabigatran 110mg and dabigatran 150mg versus Warfarin for the RE-LY population. 

These findings were demonstrated through a multivariate predictive risk model that has 

the potential to be used in clinical practice to predict treatment effect. However, prior to 

use in clinical practice, the effectiveness predictive risk model will need to be evaluated 

against other populations. If validated, this model could enhance the shared decision-

making process by providing patients with easy-to-understand individualized information 

about their predicted risks and benefits with a given treatment. 

 

However, there are a number of limitations to our study. 

 

First, the multivariate predictive risk model has not been tested against independent 

populations outside of the RE-LY trial. To account for this limitation, we conducted a 

bootstrapping procedure, which tested the model on small samples of the RE-LY 

population against the rest of the population. However, internally validated models, due 

to the fact that they developed and tested with the same population, may be subject to 

limitations in generalizability. Thus, prior to use in clinical practice, it is important for 

this model to be tested external, independent samples. 

 

Second, the generalizability of our model is limited by the inclusion and exclusion 

criteria of the RE-LY trial. Patients in the RE-LY trial were limited to those with AF and 
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an increased risk of stroke. Patients who were pregnant, had active liver disease, a 

creatinine clearance below 30 ml/min, or had a severe heart valve disorder were excluded 

from the study. However, the RE-LY trial population was designed to include those 

patients most likely to face a treatment decision of dabigatran versus warfarin, and 

despite the limitations of the inclusion and exclusion criteria, the model designed in this 

study should still have widespread clinical applicability. 

 

Third, the c-statistic, or area under the curve of our model, was only is 0.675 for the 

stroke model and 0.694 for the major bleeding model. These c-statistics represent some 

limitation in the degree of discrimination of the model and its ability to predict events 

versus non-events. However, as noted by Salisbury et al, predictive models with modest 

c-statistics are superior to the generalization of findings across a broad population, and 

models with c-statistics greater than 0.60 have been shown to be effective (4,11). 

 

Last, the models in this study only predict individualized risk for stroke and systemic 

embolism, and major bleeding. Patients may also be interested in other individualized 

information, such as their risk of myocardial infarction with each treatment option, or 

lifestyle implications of each medication. However, stroke and systemic embolism and 

major bleeding were selected for this study, because they are generally seen as the 

biggest risk and benefit concerns of anticoagulant choice in patients with AF and an 

increased risk of stroke. And these individualized risks do not need to be used in 

isolation, but rather as information alongside other considerations such as lifestyle 

implications as part of a comprehensive treatment decision.  



	
 
 

	 	 70	
	

Despite these limitations, this analysis shows that heterogeneity of treatment effect exists 

in the RE-LY trial, building on evidence that it exists in other trials. The multivariate 

model developed in this study demonstrates the potential of this model, if further 

validated, to be used in clinical practice to help patients understand their individualized 

risk and benefit with regard to taking warfarin or different doses of dabigatran.  

 

The increasing amount of data available in medicine poses a potential for unique 

statistical profiles to be developed for patients, such that they can make individualized 

decisions to maximize their benefits, minimize their risks and improve their health. The 

use of multivariate predictive risk models, such as that published in this analysis, have the 

potential to move clinical practice closer to this goal of precision medicine. 

 

But for multivariate predictive risk models to be used effectively in clinical practice, their 

findings must be clearly communicated and easily understood. In addition to recognizing 

the potential of unique statistical profiles to help batters hit a baseball, Ted Williams 

communicated this potentially complicated concept through a simple illustration of the 

strike zone that could be intuitively understood by boys and girls across cultures and 

generations. Using the science behind visual decision aids and effective presentation of 

statistics, we too can work to ensure that it is just as intuitive for a patient and clinician to 

use a risk model to choose between dabigatran and warfarin, as it was for a young 

baseball hitter to use Ted Williams’ strike zone graphic to choose “a good ball to hit” (1). 
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