
University of Nebraska at Omaha
DigitalCommons@UNO

Journal Articles Department of Biomechanics

10-10-2018

On the choice of multiscale entropy algorithm for
quantification of complexity in gait data
Peter C. Raffalt
Charité–Universitätsmedizin Berlin

William Denton
University of Nebraska at Omaha, wdenton@unomaha.edu

Jennifer M. Yentes
University of Nebraska at Omaha, jyentes@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/biomechanicsarticles

Part of the Biomechanics Commons

This Article is brought to you for free and open access by the Department
of Biomechanics at DigitalCommons@UNO. It has been accepted for
inclusion in Journal Articles by an authorized administrator of
DigitalCommons@UNO. For more information, please contact
unodigitalcommons@unomaha.edu.

Recommended Citation
Raffalt, Peter C.; Denton, William; and Yentes, Jennifer M., "On the choice of multiscale entropy algorithm for quantification of
complexity in gait data" (2018). Journal Articles. 222.
https://digitalcommons.unomaha.edu/biomechanicsarticles/222

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Nebraska, Omaha

https://core.ac.uk/display/232774577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fbiomechanicsarticles%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fbiomechanicsarticles%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fbiomechanicsarticles%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/biomechanicsarticles?utm_source=digitalcommons.unomaha.edu%2Fbiomechanicsarticles%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/biomechanics?utm_source=digitalcommons.unomaha.edu%2Fbiomechanicsarticles%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/biomechanicsarticles?utm_source=digitalcommons.unomaha.edu%2Fbiomechanicsarticles%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/43?utm_source=digitalcommons.unomaha.edu%2Fbiomechanicsarticles%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/biomechanicsarticles/222?utm_source=digitalcommons.unomaha.edu%2Fbiomechanicsarticles%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fbiomechanicsarticles%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fbiomechanicsarticles%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages


1 
 

ORIGINAL RESEARCH ARTICLE 

 

Title: 

On the choice of multiscale entropy algorithm for quantification of complexity in gait data 

 

Authors: 

Peter C. Raffalt
1,2

, William Denton
3
 and Jennifer M. Yentes

3
 

 

Affiliations: 

1)
 
Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité – 

Universitätsmedizin Berlin, Philippstrasse 13, 10115 Berlin, Germany.
 

2) Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 

Copenhagen N, Denmark
 
 

3) Center for Research in Human Movement Variability, Department of Biomechanics, 

University of Nebraska at Omaha, 6160 University Drive, 68182-0860 Omaha, NE, USA. 

 

Corresponding Author: 

Jennifer M. Yentes 

Center for Research in Human Movement Variability  

University of Nebraska at Omaha 

6160 University Drive  

68182-0860 Omaha, NE, USA 

Email: jyentes@gmail.com 

Office phone: 402 554 3251 

  

*Revised manuscript (clean)
Click here to download Revised manuscript (clean): Manus clean.docx

mailto:jyentes@gmail.com
http://ees.elsevier.com/cbm/download.aspx?id=386691&guid=18527e83-6834-473d-b4a5-50cc2d79cf5a&scheme=1


2 
 

Abstract 

The present study aimed at identifying a suitable multiscale entropy (MSE) algorithm for 

assessment of complexity in a stride-to-stride time interval time series. Five different algorithms 

were included (the original MSE, refine composite multiscale entropy (RCMSE), multiscale 

fuzzy entropy, generalized multiscale entropy and intrinsic mode entropy) and applied to twenty 

iterations of white noise, pink noise, or a sine wave with added white noise. Based on their 

ability to differentiate the level of complexity in the three different generated signal types, and 

their sensitivity and parameter consistency, MSE and RCMSE were deemed most appropriate. 

These two algorithms were applied to stride-to-stride time interval time series recorded from 

fourteen healthy subjects during one hour of overground and treadmill walking. In general, 

acceptable sensitivity and good parameter consistency were observed for both algorithms; 

however, they were not able to differentiate the complexity of the stride-to-stride time interval 

time series between the two walking conditions. Thus, the present study recommends the use of 

either MSE or RCMSE for quantification of complexity in stride-to-stride time interval time 

series.  

 

Keywords: stride time fluctuations; overground; treadmill; walking; nonlinear dynamics; 

methodology 
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Introduction 

The ‘Loss of Complexity’ theory by Lipsitz and Goldberger proposes that the process of 

aging is associated with a decrease in the complexity of different physiological systems (e.g. 

cardiovascular, hormonal, and neurological) which leads to reduced adaptability in the functions 

of these systems [1]. As an elaboration of this theory, it has been suggested that changes in the 

complexity of the physiological system can be linked to different pathologies [2-5]. A variety of 

nonlinear tools have been applied to assess this complexity in physiological signals in humans 

(e.g. heart rhythms, blood pressure, breathing frequencies) [4, 6-9].  

A key characteristic of the complex nonlinear behavior of human signals is predictability, 

which can be quantified by entropy [10-12]. Entropy has been applied to stride time intervals and 

joint kinematics during walking [13-20]. Sample entropy (SaEn) is the most popular method 

used to quantify predictability of a system and has been proven to be methodologically stable 

[14]. In the past, many have stated that increased entropy equates to an increase in complexity; 

however, it is questionable if this holds true. According to the description by Delignières and 

Marmelat, complexity and complication are very different concepts [21]. Complication refers to 

many uncorrelated components, where each component can be analyzed and eventually the 

entirety of the system has been analyzed. However, in a complex system, a large number of 

components are intricately related (“infinitely entangled”) and the system cannot be decomposed 

into individual components [21]. Thus, stating that SaEn calculated solely from one single time 

series, capturing information regarding the amount of complexity of the underlying system, is 

incorrect.  

Based on the argument that complexity of biological systems originates from the 

particular interaction of components on multiple scales [4, 22], Costa and colleagues introduced 
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in 2002 multiscale entropy (MSE) as a useful tool to quantify the complexity of biological 

signals [22]. MSE rescales the original time series by successively averaging an increasing 

number of consecutive data points into new, coarse-grained time series and calculates the SaEn 

of each coarse-grained time series. This enables quantification of the complexity of a time series 

on shorter and longer scales [4, 22]. In a series of studies, Costa and colleagues applied MSE to 

estimate the complexity of heart rate fluctuations in different populations [22-26]. Furthermore, 

MSE has been utilized to estimate the complexity of trunk kinematics, stride time intervals, and 

lower leg muscle activity during human gait [27-31]. In a recent study, Bizovska and colleagues 

applied MSE to the trunk acceleration of young and older women during treadmill and 

overground walking and observed that complexity differed between the two walking conditions 

in older but not younger individuals [32]. Using the same approach, Bisi and Stagni recently 

observed a maturation effect on trunk acceleration complexity during walking in children, 

adolescents, and young adults [33].  

When applied to stride time intervals, MSE has revealed higher levels of complexity 

during walking at self-selected speed compared to slower and faster walking [27]. Thus, MSE 

applied to human locomotion can reveal important information regarding the complexity of gait 

dynamics.  

Since the introduction of the original MSE algorithm, a number of ‘competing’ 

algorithms have been presented to overcome potential methodological drawbacks [34]. Refined 

composite multiscale entropy (RCME) was suggested by Wu and colleagues [35] to have lower 

probability of inducing undefined entropy of the different scales compared to previous suggested 

MSE versions [34, 35]. MSE has been criticized for not detecting the presence of high frequency 

in the signal in question and for a lack of adaptability to nonstationary/nonlinear signals [36]. To 
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address these issues, intrinsic mode entropy (IME) computes intrinsic mode functions of the 

signal in question and calculates the SaEn of the cumulative sums of each of the intrinsic mode 

functions [36]. Most versions of MSE algorithms use the original SaEn algorithm by Richman 

and Moorman [12] for entropy calculations. However, one potential drawback of this algorithm 

is the Heaviside function used to measure the degree of match between two vectors, which 

presents a discontinuous and hard boundary. To overcome this, fuzzy entropy uses fuzzy 

membership functions instead of the Heaviside function, which was found to additionally 

improve parameter consistency and data length independence [37]. Fuzzy entropy was later 

incorporated into a multiscale framework (multiscale fuzzy entropy – MSFE) by Xiong and 

colleagues [38]. The authors of the original algorithm, Costa and Goldberger, introduced 

generalized multiscale entropy (GMSE) in 2015, which addresses the coarse-graining procedure 

[23]. Instead of using the average of consecutive data points when rescaling the original time 

series, the authors used the variance of each non-overlapping segment of the time series [23]. 

Thus, GMSE quantifies the dynamics of the volatility (variance) of a signal.  

Although numerous studies have introduced new versions of the MSE algorithm, few 

studies have compared the performance of different versions [35, 38]. Several criteria could be 

posed for the evaluation of the performance of the MSE algorithm. When applied to both 

theoretical and biological signals, a useful algorithm should be able to distinguish between 

signals with different temporal structure. Furthermore, the algorithm should have relatively high 

parameter consistency when applied to both theoretical and biological signals.  

The present study aimed at identifying a suitable MSE algorithm for assessment of 

complexity in stride-to-stride time interval time series. Five different versions of the MSE 
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algorithm were included in the present study; the original MSE [22], RCMSE [35], IME [36], 

MSFE [38] and GMSE [23]. 

To identify an appropriate MSE algorithm(s), we proposed three criteria: First a suitable 

algorithm would be able distinguish between three theoretical signals with different temporal 

structure. Secondly, the algorithm(s) would have high sensitivity (i.e. consistently returning the 

correct level of complexity in accordance with the expected complexity of the theoretical time 

series in question). Thirdly, the algorithm(s) would possess relatively high parameter 

consistency.  

In order to test the application of the identified algorithm(s) to gait data, the complexity 

in stride-to-stride time intervals obtained under two different walking conditions (overground 

and treadmill) was quantified. Additionally, the sensitivity and parameter consistency of the 

algorithm(s) were investigated.  

Based on the results of the present study, it was possible to experimentally support the 

choice of a specific algorithm for assessment of complexity in stride-to-stride time intervals in 

future studies. 
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Methods 

The present study included new analyses of both theoretical and biological data collected 

during the experimental part of a previous study [39]. The theoretical data consisted of 20 time 

series of three different theoretical signals of 2500 data points. The colored noise generator 

function in Matlab (Math Works R2011b) was used to create a pink noise signal (power 

spectrum of 1/f), considered to be chaotic, and a white Gaussian noise signal (constant power 

spectrum), considered to be random. A sine wave signal with added white noise, considered to be 

highly predictable, was created by the following equation: 

Equation 1:                                

The three signals were selected to represent three different levels of complexity with the pink 

noise signal having the highest complexity, the white noise signal having an intermediate level of 

complexity, and the sine wave signal with added white noise having lowest level of complexity. 

The biological data consisted of stride-to-stride time interval time series obtained from healthy 

individuals during one-hour trials of overground and treadmill walking. The experimental setup 

is described below.  

Subjects 

Fourteen young healthy adults with no diagnosed lower limb injuries within the past year 

volunteered to participate in the present study. They had a mean (± SD) age of 25.0 years (± 4.2), 

height of 170.8 cm (± 11.9) and body mass of 69.4 kg (± 16.9). The subjects were informed of 

the experimental conditions and gave their written consent to participate in the study. The study 

was approved by the by the Institutional Review Board of the University of Nebraska Medical 

Center and the study was carried out in accordance with the approved guidelines. 



8 
 

Protocol 

The subjects reported to the laboratory on two separate occasions. During the first visit, 

the subjects walked for one hour on a circular track (circumference 1/8 mile = 201.1m). During 

the second visit, the subjects completed one hour of treadmill walking. During both the 

overground and treadmill walking trials, the subject walked at their self-selected speed. During 

both walking trials, heel strikes were recorded at a sampling rate of 148 Hz by footswitches 

(Trigno™ 4-channel FSR Sensor, Delsys Inc., Natick, MA) placed under both heels.  

Analysis 

The theoretical signals were subjected to the original MSE algorithm and the four 

alternative versions following the procedures described below. The algorithms that met the 

expectation of returning the pink noise signal with the highest level of complexity, the white 

noise signal with the intermediate level of complexity, and the sine wave signal with added white 

noise having the lowest level of complexity, were also applied to the stride-to-stride time 

intervals signals. The heel strike data from both feet was transferred to Matlab (MathWorks 

R2011b) and stride time intervals of the right foot were calculated for both the treadmill and 

overground trial. After elimination of the first and last five minutes of the trial, each stride-to-

stride time interval time series was cut to contain 2500 strides.   

The original multiscale entropy algorithm 

The MSE procedure rescaled the original time series by dividing it into non-overlapping 

windows of length τ and averaging the data points within each window, creating new time series 

[4, 27]. The k’th coarse-grained time series   
       

       
         

   of x was defined as 

equation 2:  

Equation 2:     
  

 

 
    

      
           for 1 ≤ j ≤ 

 

 
, 1 ≤ k ≤ τ 
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According to this procedure, for a singular time series = [1 2 3 4 5 6 7 8 9 10 11 12], the 

first rescaled time series = [1.5 3.5 5.5 7.5 9.5 11.5], the second rescaled time series = [2 5 8 11] 

and the third rescaled time series = [2.5 6.5 10.5]. The theoretical time series were rescaled 20 

times and the stride-to-stride time interval time series were rescaled 6 times. For each new 

rescaled time series and the original time series, SaEn was calculated using the method presented 

by Richman and Moorman [12]. For the time series                   of the length N, 

template vectors with dimension m were constructed as:   
                        for 1 ≤ i ≤ 

N – m. Matches    were counted when the distance between two template vectors was smaller 

than a predefined critical limit r. The distance d was calculated by equation 3: 

Equation 3:     
     

    
  

 
  for 1 ≤ i, j ≤ N – m, j ≠ i. 

This procedure was repeated for m = m + 1 and matches      were counted. SaEn was defined 

as the logarithm of the ratio between      and    (equation 4): 

Equation 4:          
    

   

Refined composite multiscale entropy 

The coarse-grained procedure of RCMSE was the same as in MSE but the SaEn 

calculation is different [35]. The procedure consisted of two steps. First, at a scale factor of τ, the 

number of matched vector pairs,     
    and     

 , was calculated for all τ coarse-grained series. 

Secondly,      
  and       

    represent the mean of     
    and     

  for 1 ≤ k ≤ τ. RCMSE, for each 

scale factor τ, was defined as the logarithm of the ratio between      
    and       

  (equation 5). 

Equation 5:           
     

   

     
         where      

    
 

 
     

    
    and      

  
 

 
     

  
    

Intrinsic mode entropy 
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The coarse-grained procedure of MSE was replaced by multilevel filtering of the original 

signal in IME by using empirical mode decomposition to decompose the time series into 

waveforms modulated in amplitude and frequency [40]. The first iteration of the algorithm 

extracted the first intrinsic mode function (IMF). A residual was calculated as the difference 

between the original time series and the IMF time series. The second IMF was extracted by 

rerunning the empirical mode decomposition on the residual. This procedure was repeated to 

extract the subsequent IMFs. Thus, the original signal x(t) was represented as the sum of IMFs 

and the residual component.                    
    where           

  denoted as the K 

extracted empirical modes and       as the residual. IME was achieved by calculating SaEn of 

the cumulative sums (    
 ) of the IMFs up to the order of k [36] (equation 6): 

Equation 6:      
           

 
    

Multiscale fuzzy entropy 

MSFE used the same coarse-graining procedure as the original MSE algorithm. The 

function, which determined matches of vector pairs in the SaEn procedure, was a Heaviside step 

function (equation 7) that is discontinuous and makes a binary decision.  

Equation 7:     
      
      

  

In MSFE, this function was replaced by Gaussian function μ [38] (equation 8): 

Equation 8:                
 

        
   

 
   

where r was a location parameter which determined the location of the function (at which point 

the function takes a value of 0.5) and c was the shape parameter deciding the steepness of the 

function (ranging from 0 to 1/ln2) [38]. 

Generalized multiscale entropy 
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GMSE introduced a family of coarse-graining procedures in which the averaging 

function can be substituted with other functions. In the study by Costa and Goldberger [23], they 

used a variance function which was adopted by the present study (equation 9): 

Equation 9:     
 

     
         

    

Following this coarse-graining procedure, SaEn was calculated for each rescaled time series.  

Quantification of complexity 

The five different versions of MSE were applied to the theoretical signals and their 

respective 20 rescaled time series. In accordance with Costa et al. 2003 [27], only 6 rescaled time 

series were used for the MSE algorithm(s) applied to the stride-to-stride time intervals time 

series. The entropy values for each algorithm were plotted as a function of the number of 

rescaled time series and the area below the curve was calculated as a quantification of 

complexity [4]. 

Choice of input parameters and parameter consistency 

Our previous studies have shown SaEn calculations to be sensitive to the selection of the 

input parameters [14, 20].  To investigate parameter consistency, a range of values of each input 

parameter was included. The input parameter, m, was the length of the vectors being compared 

and r was the similarity criterion. For all algorithms, an m = 2 and 3 and r = 0.1, 0.15, 0.2, 0.25 

and 0.3 were selected as input parameters. The results from the analyses using m=2 and r=0.2 are 

presented in the results paragraph. The results from the analyses using the other input parameters 

are presented in the supplementary material. For the MSE, RCMSE, MSFE, and GMSE, the 

coarse-graining procedure resulted in a successive reduction in the length of each new rescaled 

time series. The rescaled time series at scale 20 consisted of 125 data points for the theoretical 

signals and 416 data points at scale 6 for the stride-to-stride time interval time series. This was 
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not the case for IME, where the length of time series was kept constant across all rescaled time 

series. 

Statistics 

The sample entropy measure was plotted as a function of scale for each theoretical signal 

and each algorithm (Figure 1) for visual inspection. For the first criteria, the difference in the 

estimation of complexity in the three theoretical signals between the five MSE algorithms, was 

assessed using a one-way, repeated measure ANOVA with signal type as the independent factor. 

In case of significant effect of signal, a Holm-Sidak post-hoc test was applied. To evaluate the 

second criteria, the sensitivity of the five MSE algorithms when applied to the theoretical signals, 

the percentage of correct estimates of complexity (i.e. the complexity of pink noise being the 

highest, white noise being intermediate, and the sine wave with added noise being the lowest) 

out of the 3 x 20 signal iterations was calculated. Furthermore, the consistency in the complexity 

estimation of each algorithm was calculated as the coefficient of variation across the 20 iterated 

signals of each type. The third criteria of parameter consistency for each of the five algorithms 

was qualitatively evaluated (figures are presented in the supplementary material). 

Using the selected algorithms based on the differentiation of the theoretical signals, the 

difference in the estimation of complexity between the two walking conditions was established 

using a paired Student’s t-test. Furthermore, the sensitivity of the selected algorithms, when 

applied to the stride-to-stride time interval time series, was quantified by calculating the 

percentage of subjects that exhibited a difference in complexity between the two conditions 

when exceeding a critical limit. The critical limit was based on a modification of the Cohen’s d 

effect size equation and calculated as 0.8 multiplied by the pooled standard deviation of the 

complexity values from the two conditions [41]. Parameter consistency was qualitatively 
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evaluated for the selected algorithms applied to the stride-to-stride time signals. In all cases, the 

level of significance was set to 5%. All statistical calculations were performed in Sigmaplot 

(Systat Software, Inc. 2014, version 13.0, Germany).   
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Results 

Theoretical signals 

The results from the five multiscale analyses with m=2 and r=0.2 applied to white noise, 

pink noise, and the sine wave with added noise are presented in Figure 1. For MSE and RCMSE, 

the entropy decreased with increasing scale for white noise and the sine wave with added noise, 

while entropy was relatively unchanged for pink noise. For MSFE, the entropy of white and pink 

noise showed the same tendency as for MSE and RCMSE; although, the values were lower. In 

contrast, the sine wave with added noise increased with increasing scale. The GMSE showed a 

similar pattern to MSFE; however, for the sine wave with added noise, the entropy remained 

relatively constant across scales. At lower scales, the entropy of white noise was higher 

compared to pink noise and vice versa at higher scales. For the IME, the entropy from all three 

signals increased from the first to the second scale. While the entropy of white noise did not 

change with an increase in scale, the entropy of pink noise decreased until scale 8, after which it 

remained constant. Entropy of the sine wave with added noise exhibited the same pattern but 

decreased even more until scale 4, after which it remained constant.  

Complexity, calculated as the area below the multiscale curves, for the three signals and 

the five algorithms is presented in Figure 1. There was a significant effect of signal type (p < 

0.001) for all five algorithms. Post-hoc tests revealed MSE, RCMSE and IME had significant 

differences between the complexities of the different signal types (p < 0.001 in all cases). The 

MSFE showed significant differences between pink noise and the two other signals, but no 

difference between white noise and the sine wave with added noise. The GMSE showed 

significant differences between the sine wave signal with added noise and the two other signal 

types (p < 0.001 in both cases), but no difference between pink and white noise (Figure 1). The 
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results presented in the supplementary material showed, in general, the same tendencies when 

m=2 across different r values. However, when using m=3, the outcome of the MSFE and GMSE 

analyses changed compared to m=2 (see supplementary material for details).  

The quantification of sensitivity demonstrated that MSE and RCMSE, in all cases, 

returned the expected ranking of complexity among the three signals (Table 1). In contrast, 

MSFE, GMSE and IME all returned white noise to have higher complexity compared to pink 

noise. While GMSE and IME confirmed the between-signal levels of complexity for white noise 

and pink noise versus sine wave with added noise, this was not the case for MSFE (Table 1). The 

coefficient of variation ranged between 2.2 and 4.5% for MSE, RCMSE, and GMSE and 

between 0.3 and 8.6% for MFSE and IME (Figure 2).  

The qualitative evaluation of parameter consistency was conducted of figures similar to 

Figure 1 for m=2 and 3 and r=0.1, 0.15, 0.2, 0.25 and 0.3, respectively. These figures are 

presented in the supplementary material. MSE, RCMSE and IME showed in general a good 

parameter consistency for both m=2 and m=3 and for r greater than 0.15. When applying 

different m-values to MFSE and GMSE, these algorithms showed less parameter consistency.  

Stride-to-stride time interval time series 

Based on the results from the analyses of the three theoretical signals, the MSE and 

RCMSE were applied to the stride-to-stride time interval time series from overground and 

treadmill walking with m=2 and r=0.2. The SaEn was plotted as a function of scale for the two 

conditions and presented in Figure 3. MSE and RCMSE revealed a similar pattern for both 

walking conditions, decreasing SaEn at increasing scales.  
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The complexity of the stride-to-stride time interval time series did not differ between 

walking conditions for the two algorithms (Figure 3). The two algorithms estimated 

approximately the same level of complexity.  

The quantification of sensitivity revealed that both MSE and RCMSE could differentiate 

the complexity of the stride-to-stride time intervals time series for more than 50% of the subjects 

(Table 2). However, both algorithms were inconsistent in their differentiation of conditions and 

returned between 21 and 28% of the subjects to have higher complexity during overground 

walking and between 28 and 36% to have higher complexity during treadmill walking. The 

coefficient of variation for the MSE applied to the stride-to-stride time interval time series was 

8.0 and 10.9% for the overground and treadmill walking, respectively. For the RCMSE the 

coefficient of variation was 7.8 and 10.5%, respectively.   

Figures similar to Figure 3 for m=2 and 3, and r=0.1, 0.15, 0.2, 0.25 and 0.3, respectively 

(presented in the supplementary material), were used for the qualitative evaluation of parameter 

consistency. Good parameter consistency was observed for both algorithms especially when r 

was above 0.15. Complexity appears to be more affected by changes in r compared to changes in 

m; however, both did not differ between walking conditions for any of the investigated 

parameter combinations.   
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Discussion 

The present study aimed at identifying a suitable MSE algorithm for assessment of 

complexity in stride-to-stride time interval time series. Five different versions of the MSE 

algorithm were included. The performance of the five algorithms was evaluated based on three 

raised criteria related to their ability to differentiate the complexity, sensitivity, and parameter 

consistency of 20 iterations of white noise, pink noise and sine wave with added noise. The best 

performing algorithms were then applied to stride-to-stride time interval time series to 

investigate if the selected algorithm could differentiate the level of complexity between the two 

walking conditions.  

Theoretical signals 

The first criterion suggested that an appropriate algorithm should be able to separate the 

level of complexity in a time series. Based on the definition of complexity by Delignieres and 

Marmelat [21], it seemed reasonable to assume that theoretical signals with very different power 

spectrum (e.g. white and pink noise, and a sine wave with added noise) are expected to have 

distinguishable levels of complexity. Thus, any suitable algorithm would be able to differentiate 

between the three included signals based on the level of complexity. A pink noise-like behavior 

has been observed in many biological structures and in the behavior of biological systems and 

has been linked to a high complexity [8]. Furthermore, the presence of long range correlations in 

pink noise agrees well with the notion that components within a complex system are intricately 

related (“infinitely entangled”) [21]. The uncorrelated nature of white noise suggests a lower 

complexity, more likely increased complication, compared to the pink noise. Finally, the 

combination of a predictable sine wave with added white noise provides a signal with a strong 

presence of long range correlation. Thus, the quantified complexity should be highest in the pink 
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noise, intermediate in white noise, and lowest in the sine wave with added noise. In the present 

study, only MSE and RCMSE fulfilled this prediction. Both MFSE and IME returned white 

noise with higher complexity compared to pink noise. GMSE was not able to distinguish 

between white and pink noise and return the sine wave with added noise with the lowest 

complexity. Based on these observations, MSE and RCMSE appeared to best quantify 

complexity. It is unknown why differences between algorithm’s outcome exist. In a previous 

study, Chen and colleagues [42] compared SaEn and fuzzi entropy applied to sine wave signal at 

50 and 100 Hz. Both algorithms returned the high-frequency signal to have higher entropy values 

compared to the low-frequency. This observation was later confirmed and elaborated by the 

same group in 2009 [37] who found that both algorithms differentiated a high- and low-level 

complexity stochastic model according to the expectation. Furthermore, the authors observed an 

almost similar classification ability of the sample and fuzzy entropy algorithms. These studies 

would suggest a similar quantification of complexity by the MSE, RCMSE and MFSE which 

was not observed. Neither the study by Amound and colleagues [36] who introduced IME or the 

study by Costa and colleague [23] who introduced GMSE investigated the performance the 

algorithms on theoretical data with known different complexity.  

The second criterion also supported that MSE and RCMSE were the most appropriate 

algorithms as they both returned a sensitivity of 100% for all signal comparisons. The coefficient 

of variation was below 5% for both algorithms regardless of the investigated signal. The range of 

coefficients of variation for the other algorithms was in general larger compared to MSE and 

RCMSE. This suggests that MSE and RCMSE have an acceptable precision regardless of the 

type of signal.    
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The third criterion addressed an important methodological aspect of the use of SaEn. Our 

previous studies have shown the importance of controlling SaEn for parameter consistency when 

applied to stride-to-stride time interval time series [14, 20]. Therefore, the present study applied 

a range of each input parameter. The results showed, in general, good parameter consistency for 

both m=2 and m=3 and for r greater than 0.15 for MSE, RCMSE and IME when applied to the 

theoretical signals. In contrast, MFSE and GMSE were observed to have less parameter 

consistency with different m-values. A low parameter consistency implies that minor changes in 

input parameters could lead to significant changes in the outcome values. Thus, the interpretation 

between-group or between-trial design studies could be biased by the selected input parameters. 

Furthermore, comparisons between studies using different input parameters would be 

compromised by this low parameter consistency. Thus, MSE, RCMSE and IME seemed to be the 

most appropriate algorithms.  

Based on the evaluation of the three raised criteria, MSE and RCMSE were chosen as the 

most appropriate algorithms. While these two algorithms are closely related and perform 

similarly well, the other five algorithms are substantially different. The intrinsic mode function 

and subsequent summarizing of the signal in the IME algorithm introduces a smoothing effect 

which potentially removes information from the investigated signals related to the inherent 

complexity [36]. The MFSE uses a fuzzy membership functions instead of a Heaviside function 

in the SaEn calculations [37, 38]. The fuzzy membership functions appear to lower the calculated 

SaEn across all scales for white and pink noise, but increase it for sine wave with added noise 

across all scales. The latter seems contra intuitive as the rescaling procedure of averaging 

subsequent data points should remove unpredictability at higher scales for the sine wave with 

added noise. Apparently, the fuzzy membership functions identification of matching vectors in 
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the time series was not able to assess this aspect. Finally, the GMSE differs from MSE and 

RCMSE by quantifying the dynamics of volatility (variance) of the signal in question and not the 

dynamics of mean [23]. It is unknown how this measure should be related to the definition of 

complexity proposed by Delignières and Marmelat [21]. 

Stride-to-stride time interval time series 

To further verify the use of the MSE and RCMSE algorithms on biological data, the 

present study applied both algorithms on hour long stride-to-stride time interval time series 

recorded during overground and treadmill walking. Previous studies have observed differences in 

movement dynamics between overground and treadmill walking [39, 43], suggesting that the 

complexity in stride-to-stride time interval time series would differ between these two 

conditions. Furthermore, assuming that treadmill walking imposes a constraint condition related 

to the stride time, stride length and stride speed fluctuations, the unconstraint nature of 

overground walking would exhibit higher complexity [27, 44, 45]. However, neither MSE nor 

RCMSE could differentiate the level complexity between the two walking conditions. This was 

true for all input parameter combinations and confirmed by the sensitivity analysis, which 

showed very inconclusive results regarding a differentiation of the level of complexity in the 

time series from the two walking conditions.  

These observations indicate that either the applied algorithms were not able to detect the 

difference in complexity between the two walking conditions, or that no difference in complexity 

between the two conditions exists. Similar to the present results, Lindsay and colleagues [46] did 

not observe differences when applying MSE to the stride-to-stride time interval time series 

recorded during overground and treadmill running at preferred running speed. However, when 

running speed was altered beyond or below the preferred speed, overground running exhibited 
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higher levels of complexity. It is unknown if similar speed related alterations during walking 

would induce differences in complexity between the two conditions. In the original paper by 

Costa and colleagues [27], differences in complexity were observed between walking at 

preferred walking speed and slower and faster walking speeds. Thus, the complexity of stride-to-

stride time intervals seems to be more sensitive to the constraints posed by changes in walking 

speed than the constraints posed by change in walking conditions (overground vs. treadmill). 

This could explain the lack of difference in complexity observed by the present study, since the 

subjects walked at their preferred walking speed, which was not expected to differ between 

conditions. However, the results of the present study do support the study by Bizovska and 

colleagues, where no effect of walking condition was observed when assessing MSE from trunk 

acceleration signals recorded during treadmill and overground walking in young women [32].  

While several studies have applied nonlinear methods to demonstrate differences in the 

stride-to-stride time interval dynamics between different age groups and between individuals 

with various pathologies and healthy individuals [5, 13, 47, 48], to the best of our knowledge, no 

studies have used MSE algorithms. However, the lack of ability to differentiate between walking 

condition of the MSE algorithms should be kept in mind before conducting such studies in the 

future. Furthermore, the present study included 2500 stride recorded during hour long walking 

trials. While this is possible with young healthy subjects, it is an unrealistic protocol for most 

frail and pathological populations. It was beyond the scope of this study to address the required 

number of stride for a stable estimation of complexity using these algorithms. However, it is 

important to keep in mind that for both MSE and RCMSE the number of data points decreased 

significantly with each scale. In the present study, the sixth scale included 416 data points. In our 

previous study, we have observed that calculating SaEn on stride-to-stride time interval time 
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series including less than 200 strides might be questionable [14]. Thus, including a minimum of 

200 data points for the sixth scale would require 1200 stride in total. While lower than the 

number of strides used in the present study, this may not be feasible for frail or pathological 

populations. 

Conclusion 

Based on the results of the present study, MSE and RCMSE were able to distinguish 

between the three different theoretical signals in accordance with the prediction. Furthermore, 

both the sensitivity analysis and parameter consistency evaluation supported the use of these two 

algorithms. This advocated for the use of either MSE or RCMSE to quantify complexity in the 

biological time series. Finally, it is possible that the remaining three algorithms have inherent 

bias towards quantifying complexity in light of the definition by Delignières and Marmelat [21]. 

MSE and RCMSE were not able to differentiate the complexity in the stride-to-stride time 

interval time series during the two walking conditions. This is potentially due to 1) either the 

algorithms were not sensitive enough to detect differences or 2) simply, that no differences exist. 

Based on the body of literature thus far, it appears that speed may affect complexity of walking 

more so than walking condition (overground vs. treadmill). Future studies are needed to confirm 

or refute this hypothesis. If future studies are to use MSE or RCMSE on stride-to-stride time 

intervals, it is recommended that caution be given to the length of data, considering the coarse-

graining procedure shortens the time series with each scale. We recommend that future studies 

use either MSE or RCMSE for quantification of complexity due to its ability to differentiate 

signals with different complexity and its acceptable sensitivity and high parameter consistency.  
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Supplementary material 

See the supplementary material for the test of parameter constancy for the algorithms 

applied to both the theoretical and biological signal.  
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Figure 1: Multiscale entropy of theoretical signals  

MSE, RCMSE, MSFE, GMSE, IME and complexity for white and pink noise and a sine wave 

with added noise signals with m=2 and r=0.2. Asterisk indicates significant differences between 

the level of complexity.  

 

Figure 2: Complexity coefficient of variation of the theoretical signals 

Coefficient of variation of the estimated level of complexity of the three theoretical signals using 

the MSE, RCMSE, MSFE, GMSE and IME algorithms with m=2 and r=0.2. High coefficient of 

variation indicates low sensitivity of the algorithm in question.  

 

Figure 3: Multiscale entropy of stride time intervals 

MSE and RCMSE and complexity of the stride time intervals time series during overground and 

treadmill walking with m=2 and r=0.2.  
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Summary 

Complexity of various physiological systems has been suggested to be linked to the health status 

of the system. In human walking, the dynamics of stride-to-stride time interval time series has 

been used to investigate the effect of neuromuscular diseases and injuries on motor control. 

Thus, the quantification of complexity in these time series could reveal relevant information of 

the dynamics of human walking. Multiscale entropy is based on the quantification of regularity 

on multiple scales of a given time series and has been suggested useful to assess complexity. 

Numerous competing versions of multiscale entropy have been proposed as improvements of the 

original algorithm. However, it remains unknown which algorithm is suitable to apply to stride-

to-stride time interval time series. We applied different multiscale algorithms to both theoretical 

and biological time series and investigated their ability to differentiate signals with different 

temporal dynamics, their sensitivity and their parameter consistency. We observed that the 

original multiscale entropy and refined composite multiscale entropy algorithm outperformed the 

other algorithms. Thus, future studies should use these algorithms when quantifying complexity 

in stride-to-stride time interval time series during human walking. 



Table 1: Sensitivity of the five MSE algorithms expressed as the percentage of corrected ranked 

signals (white noise, pink noise and sine wave with added noise) based on their estimated 

complexity for m=2 and r=0.2.  

 MSE RCMSE MSFE GMSE IME 

White < Pink 100 100 0 0 0 

White > Sine wave  100 100 25 100 100 

Pink > Sine wave 100 100 5 100 100 

Mean  100 100 10 66.7 66.7 

 

 

Table_1



Table 2: Sensitivity of the MSE and RCMSE algorithm applied to the stride-to-stride time 

interval time series from the overground (OG) and treadmill (TM) conditions and the percentage 

of subjects which return complexity during OG higher compared to TM, TM higher compared to 

OG and no differences between the two conditions.  

 Sensitivity OG > TM OG < TM OG ≈ TM 

MSE 64.3 % 28.6 % 35.7 % 35.7 % 

RCMSE 50.0 % 21.4 % 28.6 % 50.0 % 

 

 

Table_2
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