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Abstract

Nonsense Mutations in the Human B Globin Gene 
Affect mRNA Metabolism

Susan J. Baserga 

Yale University 

1988

A common mutation causing thalassemia in Mediterranean populations is an amber (UAG) 

nonsense mutation at the 39th codon of the human B globin gene, the B-39 mutation. Studies of 

mRNA metabolism in reticulocytes from patients with B-39 thalassemia and studies using 

heterologous transfection systems have suggested the possibility that this mutation affects not 

only protein synthesis but also alters mRNA metabolism. This phenomenon has been 

investigated further by two approaches. A careful series of RNA expression studies were 

performed comparing expression of B-39 to B-normal (B-nl). These experiments led to the 

conclusion that the defect in expression of the B-39 mRNA resides in the nucleus. A number of 

nonsense and missense mutations of the B globin gene were constructed by 

oligonucleotide-directed site-specific mutagenesis. Their expression was studied in a 

heterologous transfection system. These studies strongly suggest that the presence of a nonsense 

mutation (but not a missense mutation) in B-globin mRNA decreases the accumulation of its 

mRNA. Decreased B-globin mRNA accumulation can be caused by the presence of a nonsense 

mutation, independent of its type or location.
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Chapter 1

Introduction to fi° thalassemia

Thalassemia is one of a group of hereditary anemias associated with defective production

of the hemoglobin molecule in erythroid cells found primarily in the human population living in
«

the Mediterranean area and in Asia. Human hemoglobin in the adult (HbA) is a tetrameric

protein consisting of 2 a  chains and 2 B chains. Thalassemia is characterized by decreased,

and in some cases absent, synthesis of the affected chain (a,(3). The resultant aggregates of the 

excess chain precipitate in erythrocytes and cause their premature destruction resulting in a 

hemolytic anemia. Persons afflicted by severe homozygous B thalassemia rarely live beyond 

the third decade and require transfusions throughout life. Elucidation of the molecular basis of 

the thalassemia syndromes will result in better methods for treatment, management and 

prevention of the disease. A complete review of the literature of hemoglobinopathies, 

including the thalassemia syndromes, can be found in Bunn and Forget (1986) and in 

Weatherall and Clegg (1982).

The study of B thalassemia at the molecular level has formed the basis for the study of 

gene expression in mammalian systems. B-thalassemia describes a condition in which there is 

less B chain synthesis than normal. The genes from this disorder have been cloned and studied 

in vivo and in vitro through the use of techniques of recombinant DNA technology. In the 

normal pathway of gene expression, after the gene is transcribed, the RNA is processed and 

polyadenylated, transported from the nucleus into the cytoplasm, and then translated. This is 

diagramed in Fig. 1.1. Mutations have been described which cause thalassemia by affecting 

many of the steps in the process of gene expression including: 1) transcription initiation
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(efficiency and specificity), 2) splicing of the mRNA precursor and 3) polyadenylation of the 

mRNA.

Originally, two types of B thalassemia were recognized, B+ and B\ based on the amount 

of B chain measureable in erythroid cells from patients peripheral blood. In B+ thalassemia, 

some B chain is produced, though in reduced amounts, while in B* thalassemia, there is no B 

chain synthesis. It is with the causes of B° thalassemia that I will be concerned.

B° thalassemia can be caused both by mutations which create error in mRNA processing 

and by mutations which create nonsense or frameshift mutations. Except in rare cases, these 

mutations are associated with the complete absence of translatable mRNA (Benz et al., 1978; 

Old et al., 1978). In many cases, low levels of steady-state B mRNA are associated are 

associated with B“ thalassemia (Benz et al., 1978; Old et al., 1978; Belhani et al., 1980). With 

the advent of gene cloning techniques, the explanation for these phenotypes can be related to 

alterations in structural or regulatory regions of the B-globin locus. Many of the B globin genes 

isolated from patients with B°-thalassemia contain single base subsitutions that create in phase 

translation termination or nonsense mutations. In the sequence coding for the B globin gene 

there are 29 positions at which a single nucleotide substitution could produce a termination 

codon. In this dissertation I will concentrate on the B° thalassemias caused by these 

substitutions.

Several nonsense mutations have been described in patients with B° thalassemia. The 

codon at which the mutation occurs designates the name of the mutation; there are 146 codons 

in human B globin mRNA. Nonsense mutations have been described at B-15 (Kazazian et al., 

1984), B-17 (Chang and Kan,1979), B-37 (Boehm et al., 1986), B-39 (Moschonas et al.,
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1981; Orkin et al., 1981; Trecartin et al., 19.81; Pergolizzi et al., 1981; Gorski et al., 1982),

8-43 (Atweh et al., 1988) and 8 -121 (Kazazian et al., 1986). Hb McKees Rocks (8145 —> 

term; Winslow et al., 1976) probably also has a nonsense mutation in the 8 chain. Although 

this mutation has not been identified by direct means, the data indicate that the protein is just 

one amino acid short of the normal length. This mutation creates a hemoglobin variant that is 

not associated with thalassemia. The mutations described by DNA sequencing also vary in 

type of nonsense mutation. There are 3 stop codons in non-mitochondrial eukaryotic mRNAs: 

amber (UAG), ochre (UAA) and opal (UGA). The 8-15,8-17,8-39 and 8-43 are all amber 

(UAG) mutations. The B-37 is an opal (UGA) mutation and the 8-121 is an ochre (UAA) 

mutation.

The two most thoroughly studied nonsense mutations in the human B-globin gene are the 

8-17 and B-39 mutations. The first mutation to be described was the 8-17 (Chang and Kan, 

1979) in a Chinese patient The mutation was identified by DNA sequencing of 

single-stranded cDNA fragments. The gene has never been cloned. The B-39 mutation is a 

common mutation which causes thalassemia in the Mediterranean population. This mutation 

was described simultaneously by four different groups (Moschonas et al., 1981; Orkin et al., 

1981; Trecartin et al., 1981; Pergolizzi et al., 1981; Gorski et al., 1982). The DNA sequence 

of the cloned gene has been determined. The 8-15 mutation was described by direct DNA 

sequence analysis of a gene cloned from an Asian Indian patient The B-37 mutation, which 

abolishes an Ava II restriction site, was described in a Saudi Arabian patient by selective 

oligonucelotide hybridization of the patient's genomic DNA (Boehm et al., 1986). The 

8-121mutation, which abolishes the EcoRl site in the third exon, was described as a 

spontaneous mutation in a child bom to a Greek-Cypriot mother and a Polish father. The 

8-121 gene was cloned and the mutation identified by direct DNA sequencing. The 8-43 was
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recently described in a Chinese patient by direct DNA sequencing of the cloned B-globin gene 

(Atweh et al., 1988). Further study of the original patient with the B-17 mutation has shown 

that this patient is heterozygous for the B-43 mutation (George Atweh, personal 

communication). This handful of mutant B globin genes are those in which a single base 

substitution creates a nonsense mutation at the site of the mutation.

Studies of mRNA metabolism of the B-17 and B-39 mRNAs in patients' peripheral blood 

have suggested that nonsense mutations have a novel effect on mRNA metabolism. 

Translatability of the mRNA appears to affect mRNA metabolism. Chang et al. (1979) 

examined the level of B-17 mRNA present in one patient’s reticulocytes and found that it was 

15% of normal. Two groups (Trecartin et al., 1981; Moschonas et al., 1981) examined the 

level of B-39 mRNA in reticulocytes from two different patients with B° thalassemia and found 

it to be 3-5% of normal. For both the B-17 and B-39, the only mutation present in each is the 

mutation that creates the premature termination codon. Takeshita et al. (1984) confirmed that 

the levels of B-39 mRNA are reduced in vivo but extended the finding with a kinetic analysis 

of B-globin synthesis and stability. Patients' erythroblasts were incubated for 20 minutes with

3H-uridine (the "pulse") and "chased" with nonradioactive uridine for 20 hours. The B/a

*5

H-mRNA ratio was measured at the end of the pulse and the end of the chase in the nucleus 

and in the cytoplasm. It was found that the small amount of B mRNA in the cytoplasm was 

stable for 20 hours. However, the level of mRNA during the pulse alone was higher in the 

nucleus than in the cytoplasm by 2 to 2.5-fold. These results suggest that the defect in B-39 

mRNA accumulation occurs first in the nucleus shortly after or concurrent with transcription or 

during nuclear-cytoplasmic transport of the mRNA.
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It is more convenient to study mRNA metabolism in an in vitro system than it is to study it 

in erythroblasts from patients' peripheral blood. Fortunately, the results obtained from in vivo 

studies were reproducible in a heterologous transfection system by surrogate or reverse 

genetics (Takeshita et al., 1984; Nienhuis et al., 1984). The cloned B-39 and normal B globin 

genes (B-nl) were expressed from their own promoters on a vector, PTL9, that contains both 

the SV40 origin of replication and the SV40 enhancer. Takeshita et al. (1984) expressed their 

constructs in COS cells, a monkey kidney cell line that constituitively expresses the SV40 T 

antigen while Nienhuis et al. (1984) expressed their constructs in HeLa cells. In both cases the 

results are similar. The level of B-39 mRNA is reduced five to ten-fold when compared to B-nl 

mRNA when total mRNA is analyzed by SI nuclease analysis. The level of B-39 mRNA is 

also reduced when the mRNA is analyzed in nuclear and cytoplasmic fractions. To examine 

whether cytoplasmic instability was the cause for decreased level of B-39 mRNA, the 

transfected cells were incubated for 3-12 hours with actinomycin D. The mRNA levels for 

both the B-nl and B-39 mRNAs were essentially the same before and after actinomycin D 

incubation. These results argue that cytoplasmic stability is not the cause of the defect in B-39 

mRNA metabolism. The 3-12 hour period of actinomycin D incubation should be sufficient to 

detect a defect in B-39 mRNA stability since it has been shown that the reduction in B-39 

steady-state levels occurs within 20 minutes of transcription in vivo (Benz et al., 1981).

These results suggest that the defect in metabolism of the B-39 mRNA is intranuclear, either in 

nuclear stability or in nuclear-cytoplasmic transport.

Atweh et al.(1988) have used a heterologous transfection system to study mRNA 

metabolism of the B-43 (UAG) mRNA. They used a different expression vector than the one

used above, a vector known as TtSVplac. This vector also contains the SV40 origin of 

replication and the enhancer region. The constructs were transfected into HeLa cells.
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Steady-state B-43 mRNA was reduced when compared to B-nl in the heterologous system, 

mimicking the in vivo observations. The fidelity of these studies is neither vector nor cell type 

dependent.

In contrast to the results obtained by several groups, Moschonas et al. (1981) found no 

difference in steady-state mRNA levels for the B-39 and B-nl mRNAs after expression in HeLa 

cells. They studied expression of B-39 mRNA from a genomic fragment identical to the one 

subcloned by Takeshita et al. (1984) and Humphries et al. (1984), the 4.7 kb Bgl II fragment. 

The expression vector they used, an SV40-pBR328 construct, was different from the two 

described above. The reason for the difference between these results and those described in the 

experiments above is not known.

Y.W. Kan and his colleagues have proposed a potential gene therapy for B-thalassemia 

caused by nonsense mutations by introduction of the appropriate suppressor tRNA into bone 

marrow cells. Although this goal has yet to be achieved, important steps toward this goal have 

been accomplished. Chang et al. (1979) were the first to suppress a nonsense mutation in 

human mRNA. They translated poly-A+ B-17 mRNA isolated from patient's peripheral blood 

in a rabbit reticulocyte lysate system in the presence of a serine-inserting amber suppressor 

tRNA from Saccharomyces cerevisiae. The expected sized B-globin chain was obtained. 

Temple et al. (1982) extended these studies in a cellular system. They studied suppression of 

the B-17 mutation 'mXenopus oocytes. Xenopus oocytes were microinjected with a synthetic 

human suppressor tRNA ^  gene. Twenty hours later, poly A+ B-17 mRNA was 

microinjected into these cells. After labeling of the cellular protein with 35S-methionine, the 

presence of the B- chains was examined by immunoprecipitation. The presence of the 

suppressor tRNA allowed the synthesis of the authentic B chain. It has been much more
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difficult to successfully express the suppressor tRNA constitutively in tissue culture cells (Ho 

et al., 1986; Hudziak et al., 1982), and because of this investigators are now designing 

systems with inducible expression of suppressor tRNAs. There are at least three conditions 

which must be met in order to obtain efficient suppression in mammalian cells: 1) high levels of 

expression of suppressor tRNA are necessary, 2) the context of the nonsense mutation must be 

favorable for suppression and 3) amino acylation of the suppressor tRNA must occur.

Takeshita et al. (1984) used nonsense suppression as a tool to investigate the mechanism 

of the reduction in B-39 mRNA levels. They co-transfected a Xenopus tyrosine-inserting 

suppressor tRNA with the B-39 and B-nl genes. In the presence of the suppressor tRNA, the 

level of B-39 mRNA was restored to normal; there was no effect on the level of B-nl mRNA. 

These results suggest that it is the presence of the translation termination codon that causes the 

defect in mRNA metabolism. Nonsense suppression will be discussed in detail in chapter 3.

There are seven frameshift mutations which cause B° thalassemia (Bunn and Forget, 1986). 

These are small deletions or insertions that change the translational reading frame of the 

B-globin gene and place a premature termination translation termination codon in the new 

reading frame. Of these mutated B-globin genes, only two have been analyzed for defects in 

mRNA metabolism. The first gene studied was cloned from a Turkish individual (Orkin and 

Goff, 1981). DNA sequence analysis indicates that the gene contains a dinucleotide deletion at 

codon 8 that produces a termination codon at the position of the new 21st codon. Although the 

data are not shown, the authors state that the mutant B mRNA is deficient in this patient's 

reticulocytes. The second gene studied was cloned from a Kurdish Jewish individual 

(Kinniburgh et al., 1982). Analysis of the cloned gene indicates that it contains a 1 base pair 

deletion at codon 44 that produces a termination codon at the new 60th codon. The level of
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6-44 (-1) mRNA in patients' reticulocytes is reduced about 40 fold when compared to normal. 

Further studies using actinomycin D indicate that the half-life of the 6-44 (-1) is reduced from 

the normal 24 hour half-life to 30 minutes (Maquat et al., 1981). However, they did not 

fractionate the mRNA and therefore may be observing an intranuclear phenomenon. This 

remains the only 6-globin gene with a nonsense mutation for which there is presented evidence 

for cytoplasmic instability.

Maquat and Kinniburgh (1985) were not able to reproduce these findings in a heterologous 

transfection system. They found that the 6-44 (-1) mRNA in HeLa cells was relatively stable 

when compared to normal. They conclude that there are factors in erythroid cells but not in 

cervical carcinoma cells that modulate the instability of the 6-44 (-1) mRNA. Unfortunately, 

they did not include in their studies a mutated 6- gene which is known to produce a decrease in 

mRNA levels like the 6-39. Because of this, it is difficult to say whether their observations for 

the 6-44 (-1) are a property of this mRNA or merely an artifact of this system.

In addition to these 6 thalassemia lesions, there are two a  thalassemia lesions which are

associated with a decrease in the level of their mRNA. A mutation in the a2-globin gene 

which changes the translation initiation codon ATG to ACG creates a nonfunctional mRNA

(Pirastu et al., 1984). The a2 :a l ratio was reduced from the normal of 3:1 to 1:1. The

steady-state mRNA levels of the mutant a2-globin gene were reduced by about 70%. Reduced 

mRNA levels have also been reported for hemoglobin Constant Spring (HbCS). HbCS has an

elongated a  chain of length 172 amino acids instead of the normal 141. The elongated <x chain 

is thought to result from a mutation in the normal translation termination codon which allows
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read-through of the 3' untranslated region until another in phase termination codon is reached. 

The amount of HbCS mRNA present in patients' peripheral blood is minimal. The mechanism

for the reduced mRNA levels for either of these a  thalassemia lesions is not understood.

For nonsense and frameshift mutations in B-globin genes, there is an effect of 

translatability of the mRNA on mRNA metabolism. Furthermore, as seen with the B-39 

mutation, translatability can affect intranuclear mRNA metabolism. This would be a new level 

of control in the pathway of gene expression. I chose to characterize this phenomenon in two 

ways. My first approach was to investigate the mechanism of the defect in intranuclear 

metabolism of the B-39 mRNA. My second approach was to extend the findings for the B-39 

mRNA to other nonsense mutations in the human B globin gene. In this way I have undertaken 

steps toward understanding the normal and abnormal processes of mRNA metabolism.
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Fig.1.1. An outline of the pathway of B-globin gene expression. A

precursor mRNA is transcribed from the DNA in the nucleus. The precursor mRNA is 

capped, polyadenylated and spliced before it is transported out of the nucleus into the 

cytoplasm. In the cytoplasm the mRNA is translated into protein.
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Chapter 2

Studies on the mechanism of the metabolism of the human B-globin mRNA

Introduction

Many of the steps in B-globin gene expression have been well-studied. mRNA is 

transcribed from DNA, spliced, polyadenylated, and then translated into protein in the 

cytoplasm. Less is known about the determinants of nuclear and cytoplasmic globin mRNA 

stability and about nuclear-cytoplasmic transport. The B-39 gene causes thalassemia because it 

encodes a truncated non-functional globin protein chain. Although the nonsense mutation at 

codon 39 affects translation, studies from our laboratory and others suggest that this mutation 

has an additional effect on mRNA metabolism (Takeshita et al., 1984; Humphries et al., 1984). 

There is reduced accumulation of the B-39 mRNA when compared to B-nl in both patient's red 

blood cells and in a heterologous transfection system. Since there is also reduced accumulation 

of B-39 mRNA in the nucleus, it has been hypothesized that the defect in expression of the 

B-39 gene is intranuclear.

The unusual phenotype of the B-39 mutation suggests that a novel element in the regulation 

of gene expression may be uncovered by further investigation. Cell lines which bear the B-39 

and B-nl genes integrated into their genome were constructed and analyzed. I have investigated 

potential differences between expression of the B-39 and B-nl genes in 1) steady-state levels of 

total, nuclear and cytoplasmic mRNA, 2) mRNA half-life, 3) accuracy of mRNA initiation and 

splicing, 4) mRNA polyadenyation and 5) transcription initiation. I have taken a novel 

approach by studying mRNA half-life using a biologic assay. AF8 cells, a BHK-derivative 

that are temperature-sensitive for RNA polymerase n, were transfected with the B-nl and B-39
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genes. At the non-permissive temperature, RNA polymerase II transcription is blocked. At 

present there is no system in which nuclear-cytoplasmic transport can be directly studied. In 

addition, the effect of translation inhibitors was tested on B-nl mRNA metabolism. In this 

chapter I will present and discuss the experiments that I have designed to determine at which 

step in gene expression the defect in B-39 mRNA metabolism occurs.
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Materials and Methods

Cell lines. AF8 cells were obtained from Renato Baserga, Temple University. AF8 

cells are a temperature-sensitive RNA polymerase II derivative of BHK, a Syrian hamster cell 

line (Meiss and Basilico, 1972; Burstin et al., 1974). They were maintained in Dulbecco's 

modified Eagle's medium (DMEM), 10% fetal calf serum, 2 mM glutamine, 50 U/ml of 

penicillin, 50 [ig/ml of streptomycin. The cells were grown at the permissive temperature of 

34°C. Experiments at the non-permissive temperature were performed at 40°C.

Bacterial strains. HB101 was used for routine growth of plasmid DNA. The 

genotype of HB101 is F-, hsdS 20 (r-g, m-g^ recA13, ara-14, proA2, lacYl, galK2, rpsL20

(Smr), xyl-5, mtl-1, supE44, X-.

Plasmids. The B-39 and B-nl globin genes uset^in these experiments were subcloned 

into an SV40-based expression vector by Kenichi Takeshita (Takeshita et al., 1984). The B-39 

gene was cloned from a patient with B°-thalassemia and the 5 kilobase (kb) Bgin fragment was 

subcloned into a pTL9 expression vector. PTL9 (Humphries et al., 1982.) consists of the 

SV40 72 base pair (bp) repeats, an SV40 origin of replication and pBR322 sequences. The 

B-nl gene was subcloned into this vector by exchanging the 1.8 kb BamHl fragment of the B-nl 

gene for the B-39 gene. The human B-nl gene was obtained from Tom Maniatis (Lawn et al., 

1978). When I obtained the B-39 and B-nl genes subcloned into the pTL9 expression vector, I 

believed that the vector was as described in Humphries et al., 1982. By restriction site analysis 

I was able to confirm that the vector is actually an earlier generation than that described, and
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contains the "poison" sequences described by Lusky and Botchan (1981).

PSV2neo (Southern and Berg, 1982) was obtained from Michael Liskay, Yale University, 

y actin (Gunning et al., 1983) was obtained from Larry Kedes, Stanford University.

PSV2G, a plasmid bearing the early and late genes of Sv40, was obtained from Renato 

Baserga, Temple University.

Plasmids were grown and harvested by the alkaline lysis procdure (Maniatis et al., 1982). 

All plasmid preparations of the B-39 were checked for the presence of the mutation by digestion 

with Mae I.

Transfections. Transfections were performed by the calcium phosphate method 

(Graham and van der Eb, 1973; Wigler et al. 1979). Five |ig of either the B-nl or B-39 

plasmid DNA was mixed with 0.5 mg of pSV2neo and 12 (ig of calf thymus DNA in 0.5 ml 

2X HEBS (280 mM NaCl, 50 mM Hepes, 1.5 mM sodium phosphate, pH 7.05). An equal

volume of 0.25 M CaCl2 was added, the solution was vortexed and incubated at room

temperature for 20-30 minutes. The precipitate was added to sub-confluent AF8 cells in 100 

mm plates for 6-12 hours. DMSO shock (20%) was performed, the cells were washed with 

PBS, and incubated overnight at 37°C. The next day the cells were sub-cultured and portions 

(1 ml, 0.8 ml, 0.4 ml and 0.2 ml) of a 4 ml cell suspension were plated. On the following day 

the medium was changed and G418 (lmg/ml) was added for 7 days. On the eighth day G418 

concentration was reduced to 0.5 mg/ml and continued for 7 more days. At this time, 

individual colonies of each type were picked with cloning rings and expanded. One plate of 15
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colonies of the B-nl transfection was pooled. All cell lines were maintained in G418 selection 

(0.5 mg/ml). The cell lines were frozen in DMSO and stored in liquid nitrogen.

DNA isolation. Genomic DNA was isolated from each cell line according to the 

method of Liskay and Evans, 1980.

RNA isolation. All RNA was isolated from sub-confluent T-150 cm^ flasks. Total 

RNA was isolated by the differential precipitation method of Chirgwin et al (1979). 

Cytoplasmic and nuclear mRNA were isolated by NP40 lysis using vanadyl ribonucleoside as 

an RNAse inhibitor (Favaloro et al., 1980). Nuclear RNA was isolated from the pellet using 

the method of Chirgwin et al (1979).

Southern blots. Southern blots (Southern,1975) were performed as described by 

Maniatis et al.(1982).

Northern blots. Northern blots were performed as described by Maniatis et al. (1982).

Nick Translations. Nick-translated ^P-labelled probes for Southern and Northern 

blots were prepared using the BRL nick translation kit, according to the manufacturers' 

directions. All probes were prepared as agarose-gel purified fragments by standard procdures 

(Maniatis et al., 1982). Probes: 1.8 kb BamHl fragment of the human 8-globin gene, Xba-Pst

fragment of y  actin, Kpn-Rl fragment of pSV2G.

Half-life experiments. Two kinds of experiments were performed to determine the 

half-life of the B-39 and B-nl mRNA's. One experiment took advantage of the ts RNA

*
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polymerase II in AF8 cells. Cells bearing either the B-nl and B-39 genes were placed at the 

non-permissive temperature (40°C) for up to 50 hours. At this temperature, RNA polymerase 

II activity declines with a half-life of 12 hours. Total RNA was isolated at various time points 

and analyzed by Northern blots. Relative half-life of the B-nl and B-39 genes was also 

determined by incubation of the cell lines with actinomycin D (10 |!g/ml) for up to 3 hours. At 

this time, RNA was isolated and analyzed by Northern blots.

SI nuclease analysis. SI nuclease analysis of total RNA was performed according to 

the method of Ley et al. (1982), using a uniformly labelled M13 probe.

Purification of poly A+ mRNA. Poly A+ mRNA was prepared from total RNA or 

from cytoplasmic RNA by passsage over oligo-dT cellulose according to the method of Aviv 

and Leder (1972). RNA was passed twice over this column.

Nuclear run-offs. Nuclear run-offs were performed according to Engel et al.(1985). 

Incorporation of ̂ ^P-UTP was standardized to be linear for a reaction length of 10-20 minutes 

and 3 X 10  ̂nuclei. Approximately 2 X lO^cpm were hybridized to Southern blots of 

plasmid DNA. The two plasmids used on the Southern blot contained subclones of the human

B-globin gene and y  actin.

Translation inhibitors. Cycloheximide (25 fig/ml), an inhibitor of peptide 

translocation, was added to AF8 cells for 3 hours. This concentration of cycloheximide has 

been shown to inhibit 90-95% of protein synthesis. Concentrations of cycloheximide 10 

jig-500 pg/ml were found to arrest protein synthesis in AF8 cells at 1 hour after addition 

(Sergio Ferrari and Renato Baserga, personal communication). Sodium fluoride (NaF, 10
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mM), an inhibitor of translation initiation, was added to AF8 cells for 3 hours. After 3 hour 

pulses, total RNA was isolated and analyzed by Northern blots.
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Results

Transfection of AF8 Cells. Stable transformants of AF8 cells were obtained by 

co-transfection of either the fi-39 gene or the B-nl gene with pSV2neo (Fig. 2.1) The B-globin 

genes were cloned into a pTL9 expression vector. Colonies resistant to G418 (0.5 mg/ml) 

after 2 weeks of selection were cloned and expanded. Cells from 4 colonies bearing the B-nl 

gene, including one which is a pool of 15 colonies, and cells from 4 colonies bearing the B-39 

gene were studied in detail.

Southern blot analysis. Southern blot analysis of genomic DNA from these cell lines 

showed an intact B-globin gene in all cases (data not shown). In some cells lines a small 

amount of rearrangement was also seen. In the B-nl cell lines the copy number varied from 2 to 

10 copies/cell while in the B-39 cell lines the copy number was always greater than that of the 

B-nl cell lines and varied from 10-50 copies/cell.

Northern blot analysis. Total RNA was isolated from subconfluent culutres of B-nl 

and B-39 cell lines. Four B-nl and four B-39 cell lines, as well as the AF8 parent cell line, were 

analyzed. Northern blot analysis of 10 pig of each was performed with a nick-translated B

globin-specific probe. Two |xg of reticulocyte mRNA was run to check for the correct size 

B-globin transcript. As shown in Figure 2.2, in all cases the amount of 10S globin mRNA was 

greatly reduced in the B-39 cell lines when compared to the B-nl cell lines. Even if cell lines of 

similar copy number are compared (w l 3 v s .  39.1), the amount of 10S mRNA is reduced about 

5-fold in the B-39 line when compared to the B-nl cell line. The pooled line is designated wt.0. 

There are also a number of high molecular weight transcripts present in the B-39 cell lines 

which hybridize to the B-globin probe. At first I was intrigued by these bands since it was
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possible that they represented unspliced pre-B-39 mRNA transcripts. I performed Northern 

blots using a B-globin intron-specific fragment (the Hinf fragment from the B-globin large 

intron) and saw no difference in hybridization between the B-nl and the B-39 cell lines (data not 

shown). I than performed Northern blots using SV40-specific sequences (pSV2G) as a probe 

and saw hybridization in both the B-nl and B-39 lanes (data not shown), although no discrete 

bands were present It is likely that the high molecular weight transcripts represent 

read-through transcripts. The presence of these transcripts is probably related to copy-number, 

since they are also present in the B-nl cell line with the highest copy number, wt.3.

To show that the same amount of RNA was loaded in each lane, the nitrocellulose was

stripped and re-hybridized to a nick-translated human y  actin probe. In Figure 2.2, the bottom

panel depicting the y  actin hybridization indicates that slightly less RNA was loaded in some of 

the B-nl lanes.

In this experiment I have shown that the level of B-39 mRNA is reduced when compared to 

B-nl in a stable expression system.

Half-life experiments. To analyze the relative half-life of B-nl (wt.l) and B-39 (39.2) 

mRNA's in AF8 cell lines, cells were placed at the non-permissive temperature (40°) for 30 and 

50 hours. At this temperature, RNA polymerase II activity decays with a half-life of about 10 

hours and cannot be measured by 48 hours (Rossini et al., 1980). Therefore, at 40°C, 

synthesis of new mRNA's ceases. As a control, total RNA was isolated from AF8 cells before 

shift-up to the non-permissive temperature. Ten |ig of each RNA was analyzed on a Northern 

blot using a B-globin specific probe ( Fig. 2.3). The data show that both the B-nl and the B-39
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10S mRNA's are stable up to 50 hours after shift-up to the non-permissive temperature. To 

check for even loading of mRNA, following hybridization the nitrocellulose was stained with 

methylene blue which stains the rRNAs.

To confirm the biological half-life experiments, an actinomycin D incubation was 

performed. Actinomycin D was added to subconfluent AF8 cells bearing either the B-nl (wt.l) 

or B-39 (39.2) genes for 3 hours. Total mRNA was isolated before addition of the drug and at 

3 hours after the addition of the drug. Equal amounts (10 |ig) were analyzed on a Northern 

blot. ( Fig. 2.4) The blot indicates that, at least for 3 hours, both the B-nl and the B-39 

mRNA's are stable in cell lines.

Splicing and initiation of B-39 mRNA. SI nuclease analysis was performed on 

total RNA from the B-nl and B-39 cell lines. A uniformly labelled M13 probe was used. This 

probe hybridizes to all 3 exons of the human B-globin gene. With this probe I could examine 

whether the B-39 mRNA was incorrectly spliced or initiated. As shown in Figure 2.5, both the 

B-nl and B-39 mRNA's are correctly initiated and correctly spliced.

Polyadenylation of B-39 mRNA. Polyadenylated mRNA was isolated from 1 B-nl 

(w tl) and 1 B-39 (39.4) cell line by passage over oligo-dT cellulose. The polyadenlylated 

fraction was collected and concentrated by ethanol precipitation. Analysis of 5 |ig each of total 

RNA, poly-A- mRNA and poly-A+ mRNA on a Northern blot with a B-globin specific probe 

shows enrichment of the 10S mRNA in the poly-A+ fraction (Fig. 2.6). No hybridization is 

seen to the poly-A- lane in either case. Both the B-nl and B-39 mRNA’s are polyadenylated.

Fractionation of B-39 mRNA. Nuclear and cytoplasmic mRNA were fractionated
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from 1 B-nl cell line (w tl) and from 1 B-39 cell line (39.2). The relative amount of B-nl and 

B-39 mRNA present in each was investigated. The results of a Northern blot demonstrate that 

the relative amounts of each B mRNA are the same whether total or cytoplasmic mRNA was 

isolated (data not shown). Figure 2.7 shows a Northern blot of equal amounts of poly-A+ 

total mRNA and poly-A+ cytoplasmic mRNA for the B-nl and the B-39 cell lines. It shows that 

cytoplasmic poly-A+ mRNA from 39.2 accumulates in reduced amounts when compared to 

wt.l. Nuclear B-39.2 mRNA is also present in reduced amounts when compared to B-nl (data 

not shown).

Transcription initiation rate of B-39 mRNA. Nuclear run-off transcription was 

performed on 1 B-nl (wt.l) and 1 B-39 (39.2) cell line. The rates of transcription initiation of 

the 2 globin mRNA's were compared (Fig 2.8). The rate of transcription initiation of each B 

mRNA was also compared to the rate of transcription initiation of other plasmid sequences in 

the transfected construct. Each lane was traced by densitometry and the amount of 

hybridization to the B-globin sequences was normalized to the amount of hybridization to the 

plasmid sequences (data not shown). When these calculations were made, the 39.2 mRNA 

was found to be initiated at a rate about half that of the wt.l mRNA. This difference is not 

large enough to account for the difference in steady-state levels of the B-nl and B-39 mRNAs.

Translation inhibitors. Cycloheximide (25 (ig/ml) or sodium fluoride (10 mM) were 

added to 1 B-nl cell line to investigate whether a reduction in the level of B-nl mRNA could be 

achieved by the presence of translation inhibitors. Total RNA was harvested after 3 hours of 

incubation. The relative amount in each was compared by Northern blot analysis. Fig 2.9

shows that there is no change in the relative amount of B-globin mRNA or y  actin for either the 

cycloheximide or sodium fluoride treated cells.
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Fig.2.1. Transfection of AF8 cells. Shown is the outline of the procedure used to 

produce AF8 cell lines with stably integrated copies of either the B-nl or B-39 genes. The B-nl 

or B-39 globin genes were sub-cloned into an SV40 expression vector and co-transfected with 

a pSV2neo plasmid into AF8 cells. AF8 cells are a temperature-sensitive RNA polymerase II 

derivative of BHK cells and do not express B-globin in the untransfected state. After selection 

in G-418, individual neomycin resistant colonies and pools of neomycin resistant colonies (see 

text) were expanded and analyzed for globin gene expression.
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Fig.2.2. Steady-state mRNA analysis of B-nl and B-39 AF8 cell lines.

Shown is a Northern blot of 10 jJ.g of total mRNA from 4 B-39 AF8 cells lines and from 4 B-nl 

cell lines. The Bwt.0 cell line is made form a pool of neomycin resistant colonies. All the other 

cell lines are from single neomycin resistant colonies. The top panel shows hybridization to a 

B-globin probe; the normal-sized B-globin mRNA is indicated. The larger hybridizing 

transcripts are discussed in Results-Northern blot analysis. The bottom panel shows the

rehybridization of a y actin probe to the same filter.
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Fig.2.3. Biological half-life analysis of representative B-nl (wt.l) and 

B-39 (39.2) AF8 cell lines. Shown is a Northern blot using a B-globin specific probe of

10 |ig of total RNA from both B-nl and B-39 cell ines at 2 time points after shift-up to the 

non-permissive temperature.
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Fig.2.4. Half-life analysis of representative B-nl and B-39 AF8 cell lines 

by actinomycin D. Representative B-nl (wt.l) and B-39 (39.2) AF8 cell lines were used in

this analysis. Shown is a Northern blot using a B-globin specific probe on 10 jig of total RNA 

before and 3 hours after addition of actinomycin D.
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Fig.2.5 Splicing and intiation of B-nl and ft-39 mRNA. Shown is an SI 

nuclease analysis using a uniformly labelled Ml 3 probe of both the B-nl and B-39 AF8 cell 

lines. The individual exons are indicated. The double band seen in all lanes at the exon 1 

position is an S1 artifact. The B-39 panel was exposed 7 timess longer than the B-nl panel.
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Fig.2.6 Polyadenylation of B-39 mRNA. Shown is a Northern blot using a

B-globin specific probe of 5 jig of total RNA, poly A' and poly A+ RNA from 1 B-nl (w tl) 

and 1 B-39 (39.4) cell line. The poly A+ RNA was isolated by two passages over oligo-dT 

cellulose.
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Fig.2.7. Fractionation of B-39 mRNA. Shown is a Northern blot using a

B-globin specific probe of 5 pg B-nl (wt.l) or B-39 (39.2) poly A+ RNA isolated from either 

the whole cell or form the cytoplasm of the AF8 cell lines.
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Fig.2.8. Transcription initiation rate of B-39 mRNA. -^P-labelled nuclear 

run-off mRNA from 1 AF8 B-nl cell line (w tl; top panel) and from 1 AF8 B-39 cell line (39.2;

bottom panel) was hybridized to plasmid, B-globin and y actin DNA sequences immobilized on 

a nitrocellulose filter.
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Fig.2.9. The effect of translation inhibitors on B-globin mRNA levels.

Shown is a Northern blot of 10 |lg of total mRNA from a B-nl (w tl) cell line before and after 

3 hours of treatment with either cycloheximide or sodium fluoride. The top panel shows

hybridization to a y actin probe and the bottom panel to a B-globin probe.
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Discussion

Summary. The aim of these experiments was to investigate the mechanism which 

reduces accumulation of the human B-39 mRNA when compared to B-nl in mammalian cells.

It had been suggested from studies in transient expression systems that the defect in 

expression of the B-39 mRNA was likely to be intranuclear (Takeshita et al, 1984, Humphries 

et al., 1984). The results presented here have confirmed and extended their work. In order to 

have a constant source of mRNA, AF8 cell lines which constitutively express either the B-39 

mRNA or the B-nl mRNA were constructed. The phenomenon of decreased B-39 mRNA 

accumulation when compared to B-nl was reproduced in these stable cell lines for total, 

cytoplasmic and nuclear B mRNA. I have applied the techniques of molecular biology to study 

these well-characterized cell lines in order to focus on the point in the pathway for gene 

expression at which the defect in expression occurs. I investigated whether there was a defect 

in 1) the transcription initiation rate, 2) the accuracy of transcription initiation and mRNA 

splicing, 3) polyadenylation or 4) the mRNA half-life. I found that 1) transcription initiation 

frequencies of the B-39 and the B-nl mRNA’s are approximately equal, 2) B-39 and B-nl 

mRNA’s are correctly initiated, 3) B-39 and B-nl mRNA's are correctly spliced, 4) B-39 and 

B-nl mRNA's are polyadenylated, 4) B-39 and B-nl mRNA's are stable for up to 50 hours after 

shift-up to the non-permissive temperature in AF8 cells, and 5) B-39 and B-nl mRNA’s are 

stable for at least 3 hours in actinomycin D. I have investigated and eliminated a number of 

possible explanations for the defect in expression of the B-39 mRNA. However, I was not 

able to investigate 2 remaining control points for gene expression: intranuclear mRNA stability 

and nuclear-cytoplasmic mRNA transport Based on the data that I have generated, the 

hypothesis that I favor to explain the reduced accumulation of the B-39 mRNA is as follows. 

Either there is a primary defect in nuclear-cytoplasmic transport of the B-39 mRNA with a
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secondary defect in intranuclear stability or there is a primary defect in intranuclear stability of 

the 6-39 mRNA.

Experimental design. Although the techniques I have used are fairly standard, there 

are a few inherent problems with them that I would like to discuss. As I mentioned in the 

Results section, there are a number of high molecular transcripts present in the B-39 cell lines 

which hybridize to the B-globin probe ( see Fig.2.2). Because they also hybridize to an 

SV40-specific probe but not to a B-globin intron-specific probe, I have concluded that they are 

probably read-through transcripts. The presence of these transcripts makes the interpretation of 

the nuclear run-off data more difficult. In the nuclear run-off experiments I saw a small 

decrease in the transcription initiation rate of the B-39 mRNA when compared to the B-nl 

mRNA. The decrease was not large enough to explain the difference in expression of the 2 

mRNAs. However, if transcription initiation of the read-through transcripts is also being 

measured in the nuclear run-off assays, then the actual difference between transcription 

initiation of the B-39 and B-nl mRNAs could be much larger. It is therefore still a possibility 

that the defect in expression of the B-39 mRNA lies in its transcription initiation. Since the 

presence of read-through transcripts is probably related to gene copy number, B-39 cell lines 

with a low copy number could be constructed and then assayed for transcription initiation 

efficiency.

A further problem is that the nuclear run-off analysis presented here, although carefully 

standardized, represents data from 1 successful experiment A liquid nitrogen freezer accident 

in September of 1985 killed all the cell lines described in this chapter. Neither the nuclear 

run-off assays nor the translation inhibitor experiments could be confirmed with these original 

cell lines. Furthermore, experiments to test the half-life of the B-39 mRNA in the nucleus
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could not be performed. This would be particularly important since there is evidence from my 

work and from others (Takeshita et al., 1984; Humphries et al.,1984) that the level of B-39 

mRNA which accumulates in the nucleus is reduced when compared to B-nl.

I have hypothesized that the non-translatability of the B-39 mRNA influences its mRNA 

metabolism. However, it may be that it is merely the presence of a base pair substitution, 

coincidentally a nonsense mutation, which influences mRNA metabolism. I do not believe 

that this is the case because of 2 lines of investigation. First, experimental evidence will be 

presented in the next chapter that missense mutations at codon 39 do not affect mRNA 

metabolism. Second, amber nonsense suppressor tRNA genes co-transfected with the B-39 

gene restore the level of B-39 mRNA to that of B-nl (Takeshita et al., 1984). I have attempted 

to repeat the suppression experiments by transfecting the suppressor tRNA genes into the 

B-39-containing AF8 cell lines; however, I have not been able to restore the level of B-39 

mRNA to B-nl. In a primate cell line it would be possible to infect with the SV40 virus which 

contains the suppressor tRNA gene (Laski et al., 1982) and this way each cell would receive 

the suppressor tRNA gene. In the rodent cell line that I have used the virus would not 

replicate. Experiments designed to optimize suppressor tRNA expression in a transient system 

will be discussed in Chapter 3.

In order to show that the level of B-39 mRNA in the nucleus is reduced when compared to 

B-nl, I performed Northern blots on nuclear RNA prepared from the stable cell lines. When 

RNA is prepared in this manner, it is difficult to show that the RNA that has been isolated is 

indeed nuclear. It is possible that some RNA could come from small amounts of cytoplasm 

which remain attached to the nuclei when the cells are fractionated. To show that I had isolated 

nuclear RNA, I attempted to demonstrate the existence of unspliced B-mRNA precursors in the
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nuclear fraction. I could not do this either by Northern blot or S1 nuclease analysis. It is 

possible that the precursors are present in such low amounts that they are not detectable by 

these methods. Investigators have been able to detect precursor mRNA in systems where the 

mRNA of interest is a predominant species in the cell (Donaldson et al., 1982; Narayan et al.,

1984), unlike the B mRNA in AF8 cells.

I was able to rule out a potential defect at a number of steps in gene expression where the 

defect in expression of the B-39 mRNA could occur. The two remaining possibilities are those 

described above: the B-39 mRNA is primarily defective in nuclear-cytoplasmic transport or in 

nuclear stability. There is no direct evidence for either of these possibilities, only that the other 

steps in gene expression have been excluded. Direct evidence for a defect in expression of the 

B-39 mRNA could be obtained by studying transport using micronjection of Xenopus laevis 

oocytes with in vitro - generated mRNA. Xenopus oocyte germinal vesicle injection is 

favored over mammalian cell nuclear injection since injection into the nucleus is more easily 

accomplished. A cell-free approach to studying transport of this mRNA is probably not 

appropriate because it would be difficult to differentiate between whether the mRNA was being 

transported or whether it was leaking out of the isolated nuclei. Nuclear stability could be 

examined using the same methods that were used to examine the stability of total mRNA.

Regulation of gene expression by nuclear-cytoplasmic transport Regulation 

at the level of nuclear-cytoplasmic transport or nuclear stability has been found for the 

expression of 2 genes. Four glucocorticoid responsive genes in rat liver (Fulton and Bimie,

1985) and the mouse DHFR gene (Leys et al., 1984) have been found to be regulated at the 

level of nuclear-cytoplasmic transport and nuclear stability, respectfully. The experiments for 

the mouse DHFR gene are more conclusive, though indirect These investigators have shown
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that the 3-fold increase in DHFR mRNA levels following growth stimulation of mouse cells 

results primarily from an increase in nuclear stability. By nuclear run-off analysis they showed 

that the transcription initiation rate of the DHFR gene was the same before and after growth 

stimulation. By pulse-chase experiments they showed that there was no change in the 

cytoplasmic stability of the DHFR mRNA. Since the gene they studied was amplified 500-fold 

by methotrexate selection, mRNA expression could be studied directly by in vivo labelling of 

the cells with [3H]uridine followed by hybridization to DNA immobilized on nitrocellulose 

filters. To investigate nuclear stability, the incorporation of a pulse of [3H]uridine into newly 

made DHFR mRNA's was compared to a pulse of [3H]uridine incorporation into a reference 

mRNA, the 18S ribosomal RNA (rRNA) gene. They found that in resting cells the DHFR 

transcripts were much less stable than either the DHFR transcripts from growing cells or the 

18S rRNA. They were also able to compare nuclear-cytoplasmic transport of the DHFR 

mRNA in resting and growing cells by [3H]uridine pulses of whole cells followed by 

fractionation of nuclear and cytoplasmic mRNA. They found that stable DHFR mRNA is 

transported to the cytoplasm at the same rate in resting and growing cells. Expression of the 

DHFR mRNA is the first clear example of an mRNA whose expression is regulated at the level 

of nuclear stability. This mRNA was ideal for these studies since it is expressed at high levels. 

This made in vivo labelling of the mRNA with [3H]uridine possible. Unfortunately, it would 

not be possible to study expression of the B-globin gene in AF8 cells with these methods 

because much less B-globin mRNA is synthesized.

Very little is known about nuclear-cytoplasmic transport of mRNA in mammalian cells. It 

has not been direcdy shown that this is a regulated step in normal RNA polymerase II gene 

expression. Part of the reason that so little is known about this step in gene expression is that 

there is no adequate assay system by which to study it. Zasloff et al.(1982) have used
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microinjection of Xenopus laevis oocyte germinal vesicles to study transport of a variant 

human tRNA. They have described a tRNA mutation which interferes with 

nuclear-cytoplasmic transport A more recent paper from this group ( de la Pena and Zasloff, 

1987) reports investigations on factors affecting nuclear-cytoplasmic transport of the Herpes 

simplex thymidine kinase (TK) mRNA. They studied the distribution of the TK mRNA 

between the nucleus and cytoplasm after microinjection of the TK gene into the nucleus of 

Xenopus oocytes. A surprising result was obtained when TK promoter sequences (but not 

coding sequences) were injected 1 hour after injection of the TK gene: there was a rapid 

transfer of TK mRNA from the nucleus to the cytoplasm. New RNA synthesis was not 

necessary for this effect. The effect seems to be specific for promoter sequences of the TK 

gene since linker scanning mutants in certain parts of the promoter (most notably the TATA 

box) abolish this effect. The data that they have presented are also consistent with a simple 

mass effect of nucleic acid on nuclear-cytoplasmic transport, a possibility which is not 

addressed. It would strengthen their specificity arguments if microinjection of RNA containing 

TK promoter sequences had no effect on nuclear-cytoplasmic transport or if other similar 

polymerase II promoters had no effect These experiments remain to be done. Recently 

cell-free systems have been developed to study nuclear transport of proteins (Newmeyer et al.,

1986). It was found that nuclei reconstituted from Xenopus extracts import nucleoplasmin in 

an energy-dependent fashion. Perhaps this new system with modifications will prove useful 

for the study of nuclear-cytoplasmic transport of mammalian mRNA's.

Nonsense mutations and nuclear mRNA metabolism. In this study I have found 

that a nonsense mutation, a mutation which affects the cytoplasmic event of translation, also 

affects intranuclear events. This implies that either there is communication between cytoplasm 

and nucleus in gene expresssion or that there is a mechanism which can sense nonsense
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mutations in the nucleus. The communication could be mediated by an as yet unidentified 

small cytoplasmic ribonucleoprotein molecule (scRNP) which signals from the cytoplasm to 

the nucleus when a nonsense mutation is encountered. Or perhaps the communication occurs 

at the level of the nuclear membrane. Since the nuclear membrane is contiguous with the rough 

endoplasmic reticulum, it is possible that the mRNA is translated as it is transported across the 

nuclear membrane. If a nonsense mutation is encountered, the arrest in translation signals an 

as yet unidentified small nuclear ribonucleoprotein (snRNP) to stop transport of that mRNA.

Or perhaps the signal is to an endogenous nuclear RNase which selectively digests the mutant 6 

mRNA. It is also possible that the snRNP binds to the RNA on the nuclear side of the 

membrane and acts as a marker for the endogenous RNase. It will be possible to study some 

of these events when an in vitro system for nuclear-cytoplasmic transport has been developed.

There is another example of an mRNA where the presence of a nonsense mutation may 

affect nuclear mRNA metabolism. It also supports the idea that there may be a nonsense 

mutation-sensing mechanism in the nucleus, and for this reason I will discuss it in detail here. 

Apolipoprotein-B (apo-B) is a major lipoprotein in human serum; it is present in the body in 2 

forms of different molecular weight. Apo-B 100 is synthesized in the liver and is used for 

assembly of VLDL while apo-B48 is synthesized in the intestine for chylomicron formation. 

They are both the product of a single gene. Recent studies (Powell et al., 1987; Chen et al.,

1987) have uncovered an unprecedented tissue-specific mechanism for the synthesis of 

apo-B48. In the intestine, apo-B48 mRNA is synthesized by the post-transcriptional mutation 

of a CAA (Gin) in the coding region of apo-B 100 mRNA to a stop codon, UAA. Eighty-five 

percent of the mRNAs with this stop codon are terminated short of the 14 kb apo-B 100 

mRNA, probably by using one of the cryptic polyadenylation signals. Since polyadenylation 

is a nuclear event (except mitochondria), a mechanism which allows for the alternative cleavage
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and polyadenylation of the nascent stop codon-containing transcript may exist in the nucleus. 

The presence of the new stop codon may be sensed there. A different explanation is that it is 

the presence of the mutation-inducing enzyme on the nascent transcript which causes the 

alternative polyadenylation, and not the presence of the stop codon. The current data cannot be 

used to distinguish between this 2 possibilities.

mRNA stability studies. I have taken a novel approach to elucidating the half-life of 

the B-globin mRNA's. AF8 cells, a ts RNA polymerase IIBHK cell line, were selected as the 

parent cell line for the transfections. At the non-permissive temperature, RNA polymerase II 

activity in these cells declines with a half-life of 10 hours (Rossini et al., 1980). At 30 and 50 

hours after shift-up to the non-permissive temperature, RNA polymerase II activity is about 

12% and 3%, respectively, of baseline activity. At these time points only a small amount of 

transcription occurs. I compared the amount of B-39 mRNA and B-nl mRNA present in the cell 

lines at these time points to the amount present at cells before shift-up to the non-permissive 

temperature. Both the B-39 and B-nl mRNAs were stable for up to 50 hours at the 

non-permissive temperature. This number is in good agreement with previous estimates of the 

B-globin half-life. Lowenhaupt et al. (1978) and Aviv et al. (1976) have estimated that the 

half-life of globin mRNA in uninduced mouse erythroleukemia (MEL) cells is greater than 50 

hours. Globin mRNA half-life in DMSO-induced MEL cells is estimated to be nearly identical 

(Volloch and Housman,1981).

With these studies I was able to estimate mRNA half-life without the use of pharmaceutical 

agents. Actinomycin D is often used to poison polymerase II transcription in order to estimate 

the half-life of mRNA. Actinomycin D has other effects besides its well-characterized effect 

on polymerase II transcription, including direct effects on RNA stability. Stewart and Farber
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(1968) were among the first to show this. They found that actinomycin D hastened the loss of 

recently labelled moieties from the nuclei of liver cells in vivo. It has been found that 

ovalbumin mRNA in chick oviduct (Palmiter and Schimke, 1973) and actin mRNA in mouse 

sarcoma ascites cells (Cereghini et al., 1979) are both stabilized by the addition of actinomycin

D. Dreyfuss et al. (1984) have found that actinomycin D actually alters the physical state of the 

messenger ribonucleoproteins. They have found that the UV exposure*of actinomycin 

D-treated HeLa cells results in crosslinking of a 38K protein to the poly A+ mRNA. The 

extent of crosslinking of the protein to poly A+ RNA parallels the extent of RNA 

transcriptional arrest. This protein is localized primarily in the cytoplasm by immunfluoresence 

studies with monoclonal antiboidies. It was unexpected to find this protein associated with 

RNA in the cytoplasm since it is widely assumed the actinomycin D has only nuclear effect. 

Clearly, this is not true. Since it has been sugggested that RNA instability plays an important 

role in the expression of another B-globin mutant (Maquat et al., 1981), it was crucial to 

confirm the half-life of the B-39 mRNA with a different method.

Determinants of mRNA stability. Determinants of mRNA stability in eukaryotic and 

prokaryotic cells are not well understood. Since mRNAs have different half-lives, it is likely 

that one of the determinants of mRNA stability is primary mRNA sequence. Recently DNA 

sequences in the 3' untranslated region of the gene for granulocyte-macrophage 

colony-stimulating factor (GM-CSF) have been identified which confer instability on mRNA 

(Shaw and Kamen, 1986). When these AU-rich sequences are introduced into the 3' 

untranslated region of the rabbit B-globin gene, rabbit B-globin mRNA becomes highly 

unstable in vivo. These sequences have been found to be common for a number of cytokines, 

lymphokines and proto-oncogenes. Complementary sequences in the mouse B2 reiterated
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sequences may play a role in regulation of expression of these genes (Clemens, 1987). 

Sequences on the 3' end of another mRNA may play a role in determining mRNA stability. 

Simcox et al. (1985) have described a mutation in the major heat shock protein of Drosphila, 

hsp 70, which confers unexpected stability to the mRNA on recovery from heat shock. The 

hsp 40 gene is a 3' deletion mutation of the hsp 70 gene which generates both truncated mRNA 

and protein products. During recovery from heat shock hsp 40 mRNA is present in greater 

amounts than hsp 70 mRNA and the amount of hsp 40 is not affected by the addition of 

actinomycin D. This implies that the stability of hsp 40 mRNA is increased by the 3' deletion. 

Since it is known that hsp 70 mRNA is rapidly degraded during recovery from heat shock, the 

sequences deleted in hsp 40 mRNA may be those sequences which bind destabilizing proteins. 

Sequences in the 5' end may also affect mRNA stability. A sequence has been identified in the 

5' untranslated region of H3 histone mRNA which confers instability on mRNA after block of 

DNA synthesis with hydroxyurea (Morris et al., 1986). Fusion genes between this sequence 

and a minigene of human B-globin render the B-globin gene susceptible to cell-cycle dependent 

degradation. These data are in disagreement with data from another laboratory (Levine et al.,

1987), who find no regulatory region in the 5' end of a regulated histone gene.

Prokaryotes may have similar sequences which affect mRNA stability. Sequences which

stabilize mRNA have been identified in the 3' end of gene D of bacteriophage (j>xl74 (Hayashi 

and Hayashi, 1985). Sequences in the 5' end of the E.coli ompA mRNA (Belasco et al.,

1986) and in the 5' end of E.coli ermc (Bechhofer and Dubnau, 1987) both confer increased 

stability on E coli mRNAs with shorter half lives. Recently, another type of sequence which 

stabilizes the upstream mRNA has been described in E. coli. REP sequences are inverted 

repeats present in many copies in the E. coli genome, often in the intercistronic regions of 

polycistronic operons. It is hypothesized that these sequences form a stem-loop structure
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which acts as a barrier to the 3' to 5' exonuclease which degrades mRNA. In the malEFG 

operon, such a sequence confers differential stability on the malE mRNA (Newbury et al.,

1987). It is more difficult to study RNA metabolism in prokaryotes than in eukaryotes since 

transcription, translation and RNA degradation are intimately coupled and the half-lives of 

mRNAs are generally extremely short The extensive literature on prokaryotic mRNA stability 

will not be reviewed in this dissertation. These papers are reviewed in Higgins and Smith

(1986).

Regulation of cytoplasmic mRNA stability. Cytoplasmic RNA stability has been 

found to be a major control point in gene expression for a number of genes. Strikingly, many 

of these genes are hormone-responsive genes. The RNA stability of vitellogenin,albumin, 

apolipoprotein VLDLII and ovalbumin is regulated by estrogen (Brock and Shapiro, 1983; 

Blume et al.,1987; Wolffe et al.,1985; Kazmaier et al.,1985; Wiskocil et al.,1980). Prolactin 

RNA stability is regulated by thyroid releasing hormone (TRH) (Lavarriere et al.,1985). Of 

importance to scientists using MEL cells as a model for erythrocyte maturation, DMSO 

induction stabilizes both actin and tubulin mRNAs (Krowczynska et al.,1985). The largest 

effect by an inducer on the RNA stability of an expressed gene occurs when estrogen is used to 

stimulate vitellogenin synthesis in Xenopus livers (Brock and Shapiro, 1983; Blume et 

al.,1987). After estrogen stimulation, the cytoplasmic half-life of vitellogenin mRNA increases 

30-fold from 16 hours to 3 weeks. The stability of the vitellogenin mRNA was measured by 

pulse-labelling of the RNA and hybridization to complementary DNA immobilized on 

nitrocellulose filters. They also showed that this effect was a reversible cytoplasmic effect of 

estrogen on cytoplasmic RNA stability, and have suggested that vitellogenin RNA stability is 

mediated directly by the action of estrogen binding protein. RNA stability is just one of the 

ways in which vitellogenin gene expression is regulated upon estrogen induction: estrogen also
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causes a 1000-fold increase in transcription rate of the vitellogenin gene.

A distinctly unique mechanism by which the quantitative level of gene expression is 

regulated by cytoplasmic mRNA stability is seen for both B-tubulin and histone mRNA. For 

B-tubulin, an increase in the free subunit concentration causes a decrease in the level of 

B-tubulin mRNA. This is actually a direct result of an increase in the degradation of the mRNA 

since enucleated cytoplasts also exhibit this phenomenon (Pittenger and Cleveland, 1985;

Caron et al., 1985). The substrates for this autoregulation lie 5' to codon 18 (Gay et al., 1987) 

and the mRNA is required to be polyribosomal (Pachter et al, 1987). The regulation of histone 

gene expression has some similarities. In the normal cell cycle, histone mRNA is transcribed 

and is stable in S phase, and is rapidly degraded when DNA synthesis is inhibited. For 

experimental purposes, DNA synthesis inhibitors can be used to hasten the degradation of 

histone mRNAs. This specific degradation requires 2 structural components: 1) the presence 

of the stem-loop structure at the 3' end of the histone mRNA and 2) the presence of a fully 

translatable, polyribosomal histone mRNA (Graves et al., 1987; Bird et al., 1987). Since it is 

unclear exactly what regulates the destabilization of histone mRNA, it would be interesting to 

test if enucleation followed by the addition of DNA synthesis inhibitors would affect the level 

of histone mRNA. Other aspects of these experiments are discussed in the Polyribosomes 

and mRNA stability section of this chapter and in the Evidence for disrupted 

regulation of mRNA metabolism by nonsense mutations section in the Discussion to 

Chapter 3.

Mechanisms of mRNA degradation. Recent studies in vivo and in vitro have 

suggested that eukaryotic mRNA is degraded in a 3' to 5' fashion (Ross et al., 1986; Ross and 

Kobs, 1986). The stability of human H4 histone mRNA has been studied in both systems.
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Following inhibition of DNA synthesis with pharmaceutical agents, the degradation products 

are analyzed by SI nuclease analysis. In the in vitro assay, SP6 polymerase-generated histone 

H4 mRNAs are mixed with an in vitro translation mixture consisting of polysomes from K562 

cells and pH5 enzymes from liver (liver ribonuclease inhibitor). Albrecht et al. (1984) were 

among the first to document specific nuclease activity in reticulocyte lysates. The degradation 

products are then analyzed at various time points. Most importantly, the differential stability of

several RNAs is preserved in vitro (y globin mRNA is more stable than c-myc mRNA which 

is more stable than histone H4 mRNA). The RNAse is cytoplasmic and is associated with 

polysomes. The major intermediate degradation product both in vivo and in vitro is an mRNA 

with a 3' terminus located at the C or U residue just 3' of the canonical stem-loop in the 3' 

untranslated region. A similar stem-loop structure is thought to act as a barrier to RNA 

degradation in the REP sequences of E. coli (Newbury et al., 1987), as discussed above. 

Prokaryotes and eukaryotes may share some similarities in their mechanisms of mRNA 

degradation.

Studies from our own laboratory are in agreement with these observations. Stolle et al.

(1987) have examined the stability of B-nl and B-39 mRNAs in HeLa whole cell extracts and 

have determined that they have equal, long-lived stability. Furthermore, Stolle and Benz

(1988) have found a factor in HeLa cells which protects B-globin from digestion by exogenous 

RNases. Cell extracts contain both RNases and RNase inhibitors.

Polyribosomes and mRNA stability. It is often argued that the decrease in mRNA 

levels seen with mRNAs that have nonsense mutations occurs because the mRNAs are not 

loaded on polyribosomes and are therefore more susceptible to degradation by cytoplasmic 

nucleases (Maquat et al., 1981; Losson and Lacroute, 1979). These arguments are based on
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observations made for prokaryotic mRNAs. The data presented in this dissertation are not 

consistent with this argument since they suggest that the defect is intranuclear. Data from 

Pachter et al. (1987) are also inconsistent with this argument. Tubulin mRNA levels are 

affected by the tubulin free -subunit concentration; an increase in the free-subunit concentration 

of tubulin decreases the level of tubulin mRNA. The polyribosome profiles presented in this 

paper indicate that tubulin mRNA is normally associated with polyribosomes in the cell but 

tubulin mRNA with a nonsense mutation is not When the free-subunit concentration of 

tubulin is increased by pharmaceutical means, there is no change in the level of nonsense 

mutation-bearing tubulin mRNA. The mutant mRNA is actually stabilized. The mutant mRNA 

was not covered by polyribosomes but was actually less susceptible to degradation than the 

normal mRNA. "Deprotection" by dissociation from polyribosomes does not necessarily cause 

an increase in mRNA degradation. Other aspects of these experiments are discussed in the 

Regulation of cytoplasmic mRNA stability section in this chapter and in the Evidence 

for disrupted regulation of mRNA metabolism by nonsense mutations section in 

Chapter 3.

Translation and mRNA stability. I have hypothesized that translation plays an 

important role in the control of B-globin mRNA metabolism. However, it is not known 

whether the mRNA transcribed from the transfected genes is translated. No in vivo studies in 

our laboratory have addressed this question. Data from other laboratories is contradictory. 

Expression of rabbit and mouse B-globin genes cloned into the late region of SV40 has shown 

that substantial amounts of B-globin protein is synthesized after infection of CV1 cells with the 

recombinant virus (Mulligan et al., 1979; Hamer and Leder, 1979). In both cases anti-B-globin 

antibodies were used to detect the gene product In contrast, expression of the human
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ocl-globin gene in an SV40-ORI vector after transfection into COS cells produced very little 

globin protein (Mellon et al., 1981). The vector used in the experiments described in this 

dissertation is different from both of these vectors. Furthermore, unlike the studies cited 

above, I studied expression of integrated vector DNA. It is not known if these parameters 

affect the efficiency of translation of the B-globin mRNA.

Studies of globin mRNA translation in the neomycin-resistant AF8 cell lines would require

monoclonal antibodies directed against purified a  and B-globin chains. These antibodies were 

developed by Stamatoyannopoulos et al.(1983). They have not been accessible to us for this

work. Another approach to investigate whether the a  and B mRNAs are translated would be to 

see if they are associated with polysomes. Polysome isolation from tissue culture cells is a

standard technique. Since the a  and B mRNAs are present in relatively small amounts, mRNA 

detection after polysome isolation may be a potential problem. A better source of polysomes 

would be human peripheral blood since the globin mRNAs are very abundant in red blood 

cells. The B-39 gene was cloned from the genomic DNA of a patient heterozygous for Hb 

Lepore and B-39. Blood could be drawn from this patient, the red blood cell polysomes 

isolated (Nathan et al., 1971), and then the fractions assayed for the presence of the B-39 

mRNA. Immunoprecipitation of isotopically-labelled AF8 cell protein extracts with specific

anti-B and anti-a globin antibodies may be the best way to assess whether the globin mRNAs 

are being translated.

If translation and mRNA decay are coupled, it is possible that mRNA levels could be 

reduced by the addition of translation inhibitors. The effect of translation inhibitors was tested
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on one B-nl cell line. No change in the level of steady-state mRNA was detected following the 

addition of either cycloheximide or NaF. However, the half-life of the B-globin mRNA is 

extremely long (>50 hours), and if translation inhibitors reduce transcription of the B-globin 

mRNA, no effect in the steady-state level of mRNA would be detected after only a 3 hour 

incubation. It would be better to assay for transcription initiation and mRNA processing after 

addition of the translation inhibitors. It is not clear from the experiments that I have done 

whether translation, translatability, or both affect accumulation of B-globin mRNA.

There is evidence from other mammalian systems that the addition of translation inhibitors 

affects mRNA metabolism. The addition of emetine and cycloheximide, both peptide 

translocation inhibitors, stimulate the accumulation of B-interferon mRNA by increasing the 

rate of transcription of the interferon gene in CHO cells (Ringold et al., 1984). Puromycin, a

peptide elongation inhibitor, also has this effect. They found that both B and y actin

transcription initiation are stimulated as well whereas a  and B tubulin are not Another 

investigator (Eggerding, 1985) has found that mRNA transcribed from the early genes of 

adenovirus following infection of HeLa cells is stimulated to accumulate after addition of 

cycloheximide and anisomycin (a peptide elongation inhibitor). The accumulation is primarily 

due to an increased rate of transcription initiation. The steady-state level of c-myc mRNA in 

chicken embryo fibroblasts is also increased by the addition of cycloheximide (Linial et al., 

1985). Translation inhibitors disrupt the regulated mRNA degradation of both B-tubulin 

(Pachter et al., 1987) and histone mRNAs (Graves et al., 1987). It is likely that translation 

inhibitors have different effects on different genes.

In contrast to the data collected in mammalian systems, the data from prokaryotic systems
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suggests that translation inhibitors increase degradation of newly synthesized mRNA (Varmus 

et al., 1971). The addition of chloramphenicol to log phase E. coli reduces the accumulation 

of lac mRNA. Although the half-life of lac mRNA is actually increased, there is also increased 

degradation of newly synthesized lac mRNA. The suA mutation, a polarity suppressor 

mutation, was found to only partially relieve the effect of chloramphenicol. Puromycin also 

reduces accumulation of lac mRNA, although in this case, the half-life of the mRNA is 

affected. Chloramphenicol was also found to affect the accumulation of a number of early 

mRNA's during infection by bacteriophage T4 (Salser et al., 1970). Schneider et al. (1978) 

confirmed the effect of chloramphenicol on lac mRNA metabolism. They then studied lac 

mRNA metabolism in the presence of kasugamycin, an inhibitor of peptide initiation. They 

found that the half-life of lac mRNA was greatly reduced in the presence of kasugamycin.

From this they concluded that association with ribosomes is important for protection against 

mRNA degradation. This is based on the result that an inhibitor of peptide translation initiation 

decreases lac mRNA half-life. However, as noted above, some translation inhibitors which 

block steps in translation other than initiation also decrease lac mRNA half-life. 

Chloramphenicol, an inhibitor of peptide translocation, actually increases lac mRNA half-life.

It is unclear whether the phenomenon studied in these experiments is related to protection of lac 

mRNA by ribosomes.
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Chapter 3

The effect of nonsense and missense mutations on human ft-globin

mRNA metabolism

Introduction

It is clear from the experiments presented in Chapter 2 and those of others (Takeshita et al., 

1984; Humphries et al., 1984) that the B-39 mutation is associated with a decrease in 

steady-state mRNA levels, probably due to a defect in intranuclear metabolism. To see if 

nonsense mutations at different locations and of different types produce the same phenotype, I 

undertook a mutational analysis of the human B- globin gene. In making these mutations I 

have asked 3 questions: 1) if nonsense mutations at other positions in the gene would cause a 

decrease in the steady-state level of their mRNA, 2) if an ochre (UAA) mutation at B-39 would 

have the same phenotype as the amber (UAG) mutation at this codon and 3) if missense 

mutations at B-39 would have an effect on mRNA metabolism. In this way I could study the 

effect of several nonsense and missense mutations in the human B-globin gene on globin 

mRNA metabolism after expression in a heterologous system.

A series of logically related mutations were constructed by site-specific 

oligonucleotide-directed mutagenesis (see Fig.3.1). Five nonsense mutations and 2 missense 

mutant human B-globin genes were analyzed. In addition to the B-39,1 studied amber (UAG) 

mutations at B-17 and B-82, an opal (UGA) mutation at B-37 and an ochre (UAA) mutation at 

B-39. These mutations were made using the B-nl gene as a template. I also studied two 

missense mutations at position 39, GAG and AAG, the codons for glutamic and lysine 

residues, respectively. These mutations "correct" the nonsense mutation at amino acid position 

39 to translatable codons and were constructed from a B-39 DNA template. The B-17 and B-37
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mutations have been described in patients with B-thalassemia and the two missense mutations 

have been described as normal variants. The results indicate that in the human B globin gene 

the phenomenon of decreased mRNA accumulation is a general property of nonsense mutations 

and is independent of the type of nonsense mutation and that missense mutations have no effect 

on mRNA metabolism.
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Materials and Methods

Cell lines. Cos-7 (Gluzman 1981) cells at low passage (<10) were obtained from the 

American Type Culture Collection (ATCC), Camden, NJ. Cells were maintained in DMEM

supplemented with 10% fetal calf serum and 50 U/ml of penicillin, 50 fig/ml of streptomycin.

Bacterial strains. The genotype of each of the bacterial strains discussed in this chapter 

can be found in Table 3.1. HB101 was used for routine growth of all plasmids. RZ1032 and 

JM101 were used for site-specific mutagenesis.

Source of oligonucleotides. All oligonucleotides were synthesized on Applied 

Biosystems oligonucleotide synthesizers (Foster City, CA). Sources include: Dept, of Human 

Genetics, Yale University, courtesy of Dan DiMaio and Bill Summers; Integrated Genetics, 

Framingham, Mass., courtesy of Graham Mock; section of Immunology, Yale University, 

courtesy of Peter Blier and Al Bothwell.

Selection of oligonucleotides. Oligonucleotides were designed to create the 

following nonsense mutations: B-17,B-37, B-82 and B-39 (UAA) and these 2 missense 

mutations: B-39 (GAG) and B-39 (AAG). The exact location and type of each mutation is 

shown in Fig.3.1. The B-17 and B-82 oligonucleotides also contain a silent substitution within 

6 bases of the nonsense mutations. These 2 mutations were screened for by the presence of a 

new restriction site.

The sequences are as follows:
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B-17

B-nl mRNA strand sequence 5-TGGGGCAAGGTGAACGTGG-3'

oligo 3.1 3'-ACCCCGATCCAATTGCACCG-5’

B-82

B-nl mRNA strand sequence 5'-CACCCTCAAGGGCACCTTTG-3’

oligo 3.2 3’-GTTGGAGATCCCATGGAAAC-5'

Amino acid substitutions at position 39

B-nl mRNA strand sequence 5'-TACCCTTGGACCCAGAGGTTCT-3'

oligo 3.3 3 ATGGGAACCTGGT/CT CT CC A AG A A-5'

Stop codons at position 39

B-nl mRNA strand sequence 5’-CCTTGGACCCAGAAGTTCTT-3'

oligo 3.4 S'GGAACCTGGATTTCCAAGAA-S'

B-37

B-nl mRNA strand sequence 5'GTCTACCCTTGGACCCAGAGGT-3'

oligo 3.6 S’-CAGATGGGAACTTGGGTCTCCA-S'

Sequencing oligo for mutations 5' to amino acid position 51
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oligo 3.5 3'-CAATACCCGTTGGGATTCCA-5'

Sequencing oligo for IVS 1

oligo 3.6 3'-CCTCTGTCTCTTCTGAGAAC-5'

Sequencing oligo for 5' untranslated region

oligo 3.7 3'-CTCGGTGTGGGATCCCAACC-5'

Purification of oligonucleotides. The oligonucleotides are supplied in a crude, 

partially deprotected form cleaved form support. The vial is filled with ammonium hydroxide, 

tightly capped, and then incubated at 55°C overnight. The vial is cooled slowly to room 

temperature and opened in a fume hood. The oligonucleotides are each aliquoted into 3 

silanized Eppendorf tubes and dried in a Speed-Vac Concentrator. The pellets are washed 

twice in 0.5 ml of water and dried. The pellets are then dissolved in water. The total yield

varied from 300-1200 pg/synthesis reaction.

Oligonucleotides are further purified by electrophoresis on 20% polyacrylamide 

Tris-borate-urea gels. The oligonucleotides are denatured and loaded in 80% formamide 

without tracking dye. The full-length oligonucleotide is located by UV shadowing with short 

wave ultraviolet light over a thinlayer chromotography plate. The gel fragment is removed with 

a razor blade, minced, and eluted in 0.2 M NaCl, shaking at 37°C overnight. The supernatant

is precipitated with ethanol, spun, and brought up in 200 pi.

Preparation of M13 template. Either the 1.8 kb BamHl fragment of the normal
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human B globin gene or the B-39 gene was cloned into the BamHl site of M13mp9. Clones 

that produced single-stranded (ss) DNA that was the same sequence as the globin mRNA 

strand were chosen for mutagenesis. Template was prepared by standard procedures 

(Messing, 1983).

Site-specific mutagenesis. Site-specific mutagenesis was performed according to the 

method of Zoller and Smith (1983) using the strains developed by Kunkel et al.(1987). Fig.

3.2 outlines the procedure.

The M13 template to be mutagenized is grown through 2 cycles of growth in the dut m g  

host, RZ1032. The bacterial overnight is diluted 1:100 in 50 ml of Luria broth supplemented

with 20 pg/ml thymidine, 100 [ig/ml deoxyadenosine and is grown until the cells reach a 

density of 4 X 108 cells/ml (O.D.gQQ=0.3). The cells are spun in an RC-2B centrifuge for 10 

minutes, washed in unsupplemented Luria broth, and brought up in 50 ml of pre-warmed Luria

broth supplemented wiht 0.25 pg/ml uridine. The bacteria are grown for 5 minutes and then 

infected with 0.5 ml of M13 phage stock (approximately 10n -1012 phage). The infected 

bacteria are grown overnight, and this phage stock is used to re-infect RZ1032. Template is 

isolated in the usual manner for M13 phages.

The oligonucleotide to be used for mutagenesis is kinased in the following manner. One

pg of oligonucleotide is mixed with 2 pi with 10X kinase buffer, 2 pi of 10 mM ATP, 40

pcuries of 32P-y-ATP, q.s. to 20 pi. Add 2-4 units of T4 polynucleotide kinase. The reaction 

is incubated at 37°C for 60 minutes, then at 65°C for 10 minutes. The reaction is precipitated
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with ethanol and brought up in 75 |il of water.

Solutions used for the mutagenesis include:

A: 0.2 M Tris-Cl pH 7.5

0.1 MMgCl2

0.5 M NaCl 

lOmMDTT

B: 0.2 M Tris-Cl pH 7.5 

0.1 M MgCl2 

0.1MDTT

C: 1 pi solution B

lpl of 10 mM dNTP solution 

1 mM ATP

3 units of DNA polymerase (Klenow)

1 pi T4 DNA ligase (400 units/pl) 

q.s. to 10 pi

One pg of M13 ss DNA is mixed with 8 pi of oligonucleotide and 1 pi of solution A and 

incubated at 55-58°C for 10 minutes. The annealed DNAs are kept at room temperature for 10

minutes. Ten pi of solution C is added to the annealed mixtures. Two pi is removed for the
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gel and immediately frozen. The reaction is incubated at room temperature for 5 minutes and

then placed at 15°C overnight. Two |il are removed for the gel. The samples are run on an

0.8% agarose gel with 2 pg/ml ethidium bromide. The ss form of the M13 DNA should be 

converted to the covalently closed ds form. Dilutions of the reaction mixtures are transformed 

into JM101. Plaques are picked with sterile Pasteur pipettes into 0.5 ml of Luria broth. 

Single-stranded or double-stranded M13 is then prepared either for DNA sequence analysis or 

restriction enzyme analysis, respectively.

Mutagenesis using oligo 3.3 was performed using the B-39 gene as the template. All the 

other mutagenesis reactions were performed using the B-nl gene as the template.

Analysis of mutations. The presence of a mutation in the B-globin sequence was 

confirmed either by the presence of a new restriction site in miniprep M13 replicative form 

(RF) DNA or by direct dideoxy sequencing of the ss DNA template (Sanger et al., 1977). 

Minipreps of M13 RF DNA were prepared by alkaline lysis (Maniatis et al., 1982) of JM101 

that had been inoculated with 1 M13 plaque. The presence of the B-17 mutation was confirmed 

by the presence of a new Hindi site; the B-82 mutation was confirmed by the presence of a 

new Kpn 1 site. Clones which had the new restriction site were sequenced by the dideoxy 

method. The B-82 mutation was sequenced using the 17-base M13 primer from BRL. The 

B-17 mutation was sequenced after subcloning of a Haelll fragment using the 17-base M13 

primer form BRL. The presence of the B-37, B-39 nonsense mutations and the amino acid 

substitutions at position 39 were confirmed by direct dideoxy sequencing of the ss M13 

template using oligo 3.5 as the primer.
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The B-17 mutation was sequenced in the following manner. The gel-purified 1.8 kb 

BamHl fragment from B-17 RF was digested with Haein. The total digest was ligated into 

Smal cut M13mp8 and transformed into JM101. Plaques were gridded. Filters were lifted 

(Benton and Davis, 1977) and then hybridized to the kinased B-17 oligo under stringent 

conditions (60°C) in the presence of tetramethylammonium chloride. Positive clones were 

sequenced using the commercial 17-base primer from BRL.

The B-39 gene was sequenced from -250 through the first exon, first intron and second 

exon to the BamHl site using 5 primers. The primers used were oligos 3.1,3.2,3.6,3.7 and 

the 17-base primer from BRL.

RF preparation. RF was prepared in the following manner. Four hundred ml of Luria 

broth in a 21 flask was seeded with 4 ml of JM101 overnight. The bacteria were grown for 2 

h and then inoculated with 0.2 ml of an M13 phage stock. The culture was then grown for 1-2

h. At this time chloramphenicol was added to 100 (ig/ml and the culture was then grown for 3 

h before harvesting. RF was harvested from the bacteria by the alkaline lysis procedure for 

plasmid preparation (Maniatis et al., 1982).

Subcloning. The 1.8 kb BamHl was prepared from the RF M13 DNA by electroelution 

(Maniatis et al., 1982). The eluate was passed over an Elu-tip column, according to the 

manufacturers directions (Schleicher and Schuell, New Hampshire).

The vector used in these experiments was prepared by K. Takeshita (Takeshita el al., 

1984). The 5 kb Bglll fragment of the human B-39 gene was cloned into the BamHl site of 

PTL9, an SV40 vector with an S V40 origin of replication, the LV40 enhancer region and the
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ampicillin resistance gene of pBR322. This version of the vector contains the pBR322 "poison 

sequences" of Lusky and Botchan, 1981. This vector was cut with BamHl, and the larger 

vector-containing fragment was gel-purified, re-ligated and transformed into HB101. In this 

way a PTL9 vector containing B-globin sequences minus the 1.8 kb BamHl fragment was 

prepared.

The 1.8 kb BamHl fragments from each of the mutants was ligated to BamHl-cut vector 

DNA by standard procedures (Maniatis et al., 1982). Colonies were screened by colony 

hybridizaton (Grunstein and Hogness, 1975) with a nick-translated gel-purified 1.8 kb BamHl 

fragments. Plasmid minipreps of positive colonies were digested with Ncol to check for the 

correct orientation. The presence of the 6-17 and B-82 mutations was confirmed in the plasmid 

by digestion with HincH and Kpnl, respectively. The presence of the B-39 (UAA) mutation 

was confirmed by dideoxy ds sequencing of the plasmid using oligo 3.5.

Transfections. Plasmid DNA used in transfections was banded twice on cesium 

chloride. Plasmids used for transient expression studies were purified by banding in CsCl

twice. Thirty jig of each of the B-globin plasmids and 15 (ig of an a-globin plasmid

(pSVOal, Mellon et al.,1981) were co-transfected into a T-150 flask of sub-confluent Cos-7 

cells by the calcium phosphate method (Graham and van der Eb, 1973). After 6 h, the cells 

were shocked for 1 minute with 20% glycerol, washed and then fresh medium was added. An 

outline of this procedure can be seen in Fig.3.3.Transfection of the B-nl and B-39 genes was 

included for each experiment. When suppression of the B-39 amber mutation was attempted,

30 jig of either pSVtT (wt) and pSVtT (Su) were co-transfected (Laski et al.,1982).
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RNA isolation. Total mRNA was isolated by the method of Chirgwin et al.(1979), 

except that guanidine isothiocyanate was used at all steps. The RNA was stored in 70% 

ethanol at -20°C.

SI nuclease analysis. SI nuclease analysis was performed according to Meatherall et
«

al., with these specifications. Two plasmids were used: spBA and spaA. One hundred |ig of

spBA and spotA were cut with BamHl and HindHI, respectively. The total digests were 

phosphatased with calf intestinal phosphatase. The phosphatase was inactivated by heating to 

65°C and by phenol extraction. The plasmids were precipitated with ethanol, and then stored

frozen in aqueous solution. Two pg of each was kinased with T4 polynucleotide kinase and

150 pCi y-ATP (5000 Ci/mmole, Amersham) in the presence of magnesium. To purify the

kinased fragments from unincorporated y-ATP, the DNA was ethanol precipitated, dissolved 

in water, and spun through a G-50 medium tuberculin syringe spun column. The yield was

approximately 10^-10^ cpm/pl, 100 pi total volume. For each SI reaction, 1X106 cpm were 

used.

Hybridization of the kinased probe and RNA was performed as follows. Fifty pg of RNA 

was pelleted and 1X106 cpm of kinased probe was added to the pellet and dried in a Speed-Vac

Concentrator. Thirty pi of hybridization mix (40 mM Pipes, 1 mM EDTA, 0.4 M NaCl, 80% 

formamide) was added and the sample placed in a water bath at 95°C. The temperature on the 

water bath was then set at 55°C, and the samples were left overnight. Two hundred units of S1
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nuclease were used/reaction in SI nuclease buffer (50 mM NaOAc, pH 4.5,0.4 M NaCl, 4.5

mM ZnS04, 20 (ig/ml salmon sperm DNA). The a-globin probe samples were incubated at

room temperature for 60 minutes, the B-globin probe samples were incubated at 42° C for 30 

minutes. The reactions were precipitated with ethanol and washed with 70% ethanol. The 

pellets were dried and dissolved in 80% formamide with xylene cyanol and bromophenol blue 

tracking dyes.

The samples were heated at 90°C for 2 minutes and then loaded onto a 5% polyacrylamide 

Tris-borate-urea gel. The bromophenol blue dye was run to the bottom. The gel was exposed 

overnight with a Dupont Kronex intensifying screen.

Densitometric tracing. The autoradiographs of the a -  and B-globin protected 

fragments were traced vertically with a Beckman DU-8 Spectophotometer.

Statistical analysis. Using the data from densitometric tracing, the amount of each of 

the B-globin mRNAs was normalized to the amount of B-nl mRNA by dividing by the amount 

of mutant B mRNA. This means that the amount of B-nl mRNA is set at 1.0. Expression of

the a  globin genes was treated in a similar manner. For each lane in each experiment, the B to

a  ratio was calculated. The B to a  ratio for three experiments was averaged and the standard 

error of the mean was calculated.
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Results

Purification of oligonucleotides. Fig.3.3 shows an autoradiograph of 2 

32p-iabelled unpurified oligonucleotides used to introduce the B-17 (oligo 3.1) and B-82 (oligo 

3.2) mutations. The n-1 products are clearly visible. After purification, only a single band is 

visible.

Analysis of mutants. The mutation frequency varied from 25-85%. When mixed 

oligonucleotides were used, some mutations were detected at greater frequency than others.

For example, with oligo 3.4, only the B-39 (UAA) mutation was found, and not the B-39 

(UGA) mutation, although DNA from 80 plaques was sequenced.

In Fig.3.4, there is a representative agarose gel from an analysis of potential B-17 

mutations. RF was prepared and digested with HincII. A mutation is indicated by the 

presence of a new Hindi restriction site. The mutation frequency here was 25%. Fig.3.5 

shows a similar analysis of potential B-82 mutations.

Figs.3.6-3.8 depict the dideoxy sequence analysis used to screen for the presence of the 

mutations. Fig. 3.6 shows the results of screening for missense mutations at B-39. In this 

case, the mutation occurs where there is the absence of an A. The frequency of mutation is 

about 60%. Fig.3.7 shows the results of screening for the UAA and UGA termination codons 

at B-39. The mutation frequency is about 30%. Fig.3.8 shows the results of screening for the 

B-37 mutation. The mutation frequency is about 85%.

DNA sequence analysis. In Figs.3.9-3.11 are shown the DNA sequences of the
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regions in the human B globin gene that were mutated. In Fig.3.9 is shown the sequence of the 

B-82 and B-17 mutations. In Fig.3.10 is shown the sequence of the 2 missense mutations. In 

Fig.3.11 is shown the sequence of the B-39 (UAA) mutation and in Fig.3.12 the sequence of 

the B-37 mutation.

DNA sequencing of the intact B-39 gene confirmed previous results that the only mutation 

in that gene is the B-39 mutation (Takeshita et al., 1984).

Transfections. Fig.3.1 shows the 7 mutations that were tested in the COS transient 

expression system. As indicated, all mutations were derived from the B-nl template except for 

the 2 missense mutations at codon 39, which were derived from the B-39 (UAG) template.

The mutations are located throughout the first two exons of the human B globin gene. The type 

of mutation that occurs at each location is also indicated.

Fig.3.13 is an example of the results of an analysis of the expression of each of the 

B-globin genes. The relative expression of the B-mRNA's was determined by SI nuclease 

analysis of total RNA from transfected COS cells. This figure indicates that the B-nl, B-39 

(GAG) and B-39 (AAG) genes all express approximately the same level of mRNA. In 

contrast, each gene which bears a nonsense mutation expresses the B mRNA in reduced

amounts. The a  globin gene was co-transfected to monitor plate-to-plate changes in

transfection efficiency. The a  globin mRNA levels are relatively constant in this experiment.

The double band seen in the a  globin SI nuclease digestion is an SI nuclease artifact, probably 

due to breathing at the A-T rich end of the DNA-DNA hybrid. To quantify these results, the 

autoradiographs from 3 separate experiments were traced on a Beckman spectophotometer.
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The results are shown in Fig.3.14. The average B to a  ratio plus-or-minus the standard error 

of the mean is indicated. In each case where there is a nonsense mutation, the level of B 

mRNA is reduced when compared to the level of B-nl mRNA. Missense mutations have no 

effect on mRNA levels. Correcting the amber nonsense mutation at codon 39 to missense 

mutations brings the level of mRNA that accumulates back to normal. There is some variability 

in the levels of expression between mRNA’s within each group. For example, the average 

amount of B-39 (UAA) mRNA that is produced is greater than the average amount of B-39 

(UAG) mRNA that is produced. However, since there is much overlap in the error bars 

between these two it is difficult to assess whether they are indeed different For the nonsense 

mutations the variability is probably not related to the type of codon or to its relative position in 

the transcript.
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BW313

CJ236

HB101

JM101

RZ1032

Table 3.1

E. coli strains

HfrK116 PO/45 [lysA (61-61)], dutl, 
ungl, tb.il, relAl

dutl, ungl, thil, re/A7/pCJ105 
(Cm1)

F-, hsdS 20 (r-g, m-g^ recA13, ara-14,proA2,1 

acYl, galK2, rpsL20 (Smr), xyl-5, mtl-l,

supE44, X-.

Alacpro, supE, thi, F'traD36, proAB, 

lacIqZAMIS

as BW313, but Zbd-279::TnlO, 
supE44
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Fig.3.1. Origin, location and type of mutations in the human 6 globin 

gene. A map of the mutations analyzed is shown. Nonsense mutations at B-17, B-37 and 

B-39 (UAA) and B-82 were constructed from the B-nl template. The B-nl codon at each 

position is shown and the nonsense mutations are enclosed in boxes. The missense mutations, 

which are circled, were constructed from the B-39 amber (UAG) mutant be site-directed 

mutagenesis. IVS, intervening sequence. The hatched bars indicate the 5' and 3' untranslated 

sequences and the closed bars indicate the exons.
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B-17
AAG->- | UAG I

B-37
UGG~»*[~UGA~1

B-82
AAG—^ l UAG I

5*

GAG)

CAG
■ U A A  I v  ' '

B-39

IVS 2
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Fig.3.2 Outline of the procedure for site-specific mutagenesis. M13 phage 

was grown in a repair-deficient E.coli strain which allows uracil to be incorporated into the 

template DNA. The synthetic oligonucleotide is annealed to the template DNA and then 

extended in the presence of deoxynucleotides, T4 DNA ligase and DNA polymerase (Klenow). 

The reaction mixture is then transformed into JM101, a non-repair deficient host, and the 

mutants identified.
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Fig.3.3 Purification of oligonucleotides. Shown are 2 unpurified ^ P - l a b e l l e d  

oligonucleotides, the B-17 (oligo 3.1) and the B-82 (oligo 3.2). The top band is the full-length 

oligonucleotide; the n-1 products are clearly visible. After purification, only 6a single band is 

visible.
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Fig.3.4 Screen for fi-17 mutations by restriction endonuclease analysis.

Six minipreps of M13 RF were analyzed for the prsence of a new Hinc II site. The new band,

indicated by the arrow, is present in minipreps 1,3 and 4.

«
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Fig.3.5 Screen for B-82 mutations by restriction endonuclease analysis.

Four minipreps of M l3 RF were analyzed for the presence of a new Kpn site by Cla-Kpn 

double digests. The new band, indicated by the arrow, is present in lanes 1,2 and3.
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Fig.3.6 Screen for B-39 missense mutations by dideoxy DNA sequencing.

Shown are A tracks; the mutation occurs where there is the absence of an A. Mutations occur

in lanes 1,5,6,7,8,9,10 andl2.
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Fig.3.7 Screen for B-39 nonsense mutations by dideoxy DNA sequencing.

Shown are C and T tracks; the mutation occurs where a T is substituted for a C. Mutations

occur in lanes 3 and 6.

/
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Fig. 3.8 Screen for 0-37 mutations by dideoxy DNA sequencing. Shown

are T tracks; the mutation occurs where there is a doublet of Ts. Mutations occur in lanes

1,2,3,5,6,7,8,9,11 and 12.
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Fig.3.9 DNA sequence of the fl-82 and B-17 mutations. Shown is the DNA

sequence of the mutated region for each of these mutations. The mutated bases are indicated.
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Fig.3.10 DNA sequence of the B-39 missense mutations (AAG and GAG).

Shown is the DNA sequence of the mutated region for each of these mutations. The mutated 

bases are indicated.

«
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Fig.3.11 DNA sequence of the fi-39 (UAA) mutation. Shown is the DNA

sequence of the mutated region; the mutated bases are indicated.
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Fig.3.12 DNA sequence of the fi-37 (UGA) mutation. Shown is the DNA

sequence of the mutated region; the mutated base is indicated.
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Fig.3.13 Relative expression of nonsense and missense mutant B-globin 

mRNA. The upper gel depicts an autoradiograph of the SI nuclease analysis of the B-nl, 

nonsense and missense mutants, as indicated. In all cases the expected protected B-globin 

fragment of 209 base pairs was generated. The lower gel depicts an autoradiograph of the S1

nuclease analysis of the a-globin mRNA. The a-globin gene was co-transfected with each of 

the B-globin constructs to control for transfection efficiency.
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Fig.3.14 Quantitation of the relative expression of nonsense and missense

mutant B-globin mRNA. A graph of the relative expression of the nonsense and missense

mutant B-globin mRNAs is shown. Autoradiographs of the SI nuclease analysis of the

B-globin and a-globin mRNAs were traced by densitometry. The B-to-a ratio (B/a) was 

calculated for each construct and then, within each experiment, normalized to the amount of 

normal B-globin mRNA. The amount of wild-type B-globin mRNA is designated as 1.0. The 

graph indicated the mean plus-or-minus the standard error of the mean for three experiments.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



101

1. 2 -

o
2
CO

0.8 -sz
Q .
roo
ro
ron
<D
>
roo>
0C

0.2 -

0.0
8-nl 8-39 UAG 8-39 UAA 8-39 GAG 8-39 AAG 8-17 UAG 8-37 UGA 8-82 UAG

Input beta globln gene

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



102

Discussion

Summary. I have studied the effect of nonsense mutations in the human B globin gene on 

mRNA metabolism. I constructed amber (UAG) mutations at codons 17 and 82, an opal 

(UGA) mutation at codon 37 and an ochre (UAA) mutation at codon 39. In addition I have 

corrected the UAG at the B-39 gene to two missense mutations AAG and GAG. The mutations 

atB-17, B-37, andB-39(UAG) have been described in patients with B° thalassemia. This 

series of mutants allowed me to ask 1) if nonsense mutations at other positions in the gene 

would express mRNA in reduced amounts, 2) if the ochre (UAA) mutation at B-39 would have 

the same phenotype as the amber (UAG) mutation at this codon, and 3) if the missense 

mutations at B-39 would have an effect. Assays of steady-state mRNA levels were performed 

by SI nuclease analysis of mRNA from Cos-7 cells transfected with the various mutants. I 

have found that the B globin mRNA's transcribed from genes with nonsense mutations 

accumulate to reduced levels while the genes "corrected" with missense mutations at codon 39 

make normal levels of B globin mRNA. This suggests that in the region of the gene we have 

studied the phenomenon of reduced mRNA accumulation is a general property of nonsense 

mutations.

Our data suggest strongly that nonsense codon mutations in the human B globin mRNA 

give rise to a defect in B globin mRNA accumulation. The defect seems to be independent of 

type (amber vs. ochre vs. opal) and the location of the nonsense mutation. The absolute level 

does not correlate with the position of the nonsense mutation in the gene. It is interesting that 2 

different nonsense mutations, amber (UAG) and ochre (UAA) at amino acid postion 39, give 

rise to similarly reduced levels of B globin mRNA.
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Nonsense mutations and globin mRNA metabolism. Several lines of evidence 

support the notion that reduced B globin mRNA accumulation is a result of the presence of the 

nonsense mutation in the B globin mRNA. The reduction in steady-state levels of mRNA is 

seen with all 5 of the nonsense mutations but not with either of the missense mutations, even 

when the missense mutation is inserted at the same nucleotide. This implies that mRNA 

accumulation is not affected merely by the occurence of a mutation at a particular location; 

rather the occurence of a translation termination mutation is crucial to the reduced mRNA 

levels. Since the missense mutant genes were constructed using the B-39 (UAG) as a template, 

this experiment confirms that decreased mRNA accumulation is due to the presence of the 

nonsense mutation and not to any other mutation occurring in that gene, or any aberrant 

features of that construct. Direct DNA sequence analysis has demonstrated that the amber 

(UAG) mutation is the only mutation occurring in the B-39 gene.

Previous studies have shown that the non-translatable B globin mRNA transcribed from 

this vector initiates, splices and terminates correctly both in vivo and in vitro (Humphries et al., 

1984 or see Chapter 2) These experiments were performed by SI nuclease analysis either of 

mRNA isolated from the peripheral blood of patients with B thalassemia or of mRNA isolated 

from stable cell lines expressing the B-39 mRNA.

There is a paucity of studies of nonsense mutations in mammalian genes. For B globin, 

only a handful of the nonsense mutations have been described. Low levels of accumulation of 

nonsense mutant B globin mRNA has been reported for both the B-17 (Chang and Kan, 1979), 

B-39 (UAG) mutants (Moschonas et al., 1981; Orkin and Goff, 1981; Trecartin et al., 1981; 

Gorski et al., 1982; Benz et al., 1978) and the B-43 (Atweh et al., 1988) mutants in mRNA 

isolated from the peripheral blood of patients with B° thalassemia. mRNA accumulation in
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vivo for the 6-37 mutant has not been investigated (Kazazian et al., 1984). In vivo the level of 

6-17 and 6-39 mRNAs that accumulates is reported to be 15% and 5% of normal, respectively. 

The amount of 6-43 in patients peripheral blood is less then 3% of normal. The in vitro data 

mimic the in vivo patient data to the extent that, for all mutants tested, reduced levels of 

nonsense mutant mRNA are observed. However, the exact percentage of 8-nl mRNA that 

accumulates is not identical in vitro. The experiments presented here indicate that the 8-17 

mRNA accumulates to about 30% of normal (15% in vivo) and the 6-39 (UAG) to about 20% 

of normal (5% in vivo). Atweh et al. (1988) have studied that expression of the 8-43 in vitro 

and have found that the mRNA is present in reduced amounts, about 35% of normal. The 8-82 

mutant accumulates to about 50% of normal in vitro.

There are no in vivo data on mRNA levels for the missense mutations, although both 

mutations have been described in vivo (Kendall et al., 1977; Brimhall et al., 1975). Neither 

mutation is associated with thalassemia. The 8-39 (AAG) mutation has been identified in a 

voluntary screening program as hemoglobin Alabama and is not associated with any 

hematologic abnormality. The B-39(GAG) mutation has been identified as hemoglobin Vaasa 

in a Finnish family. This 6 chain is mildly unstable and is associated with a very mild 

hemolytic anemia in the heterozygote.

A nonsense mutation has also been described in the third exon of the a-globin gene,

a -1 16, UAG (Liebhaber et al., 1987). The total number of amino acids in a  globin of normal

length is 141 amino acid residue. The a-116 mRNA accumulates in normal amounts. This is 

not unexpected since a 8 globin mRNA with a presumed nonsense mutation in the third exon 

(Hb McKees Rocks; Winslow et al., 1976) also accumulates to normal levels.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



105

Moschonas et al.(1981) were among the first to test the expression of the B-39 gene in a 

transient expression system. They compared the expression in HeLa cells of the Bgin 

fragments from the human B globin gene and from the B-39 gene cloned into a pBR328-SV40 

vector. They saw no difference in expression of the two genes, in contrast to my results and to 

those of Takeshita et al.(1984) and Humphries et al.(1984). The reason for this is not known. 

It is not likely that this, is simply the result of the use of different expression vectors since

Atweh et al. (1988) have successfully used yet a different vector (rcSVplac) to compare B-43 

mRNA levels to B-nl in a HeLa transfection system.

It has been hypothesized that the primary defect in expression of another B°-thalassemic 

mRNA is its instability (Maquat, L.E. et al., 1981). A single base pair deletion has been 

described at codon 44 which produces an in-phase opal (UGA) translation termination codon at 

amino acid position 60 (Kinniburgh, A.J. et al., 1982). mRNA metabolism studies were 

performed on nucleated bone marrow cells from a patient with homozygous B°-thalassemia. It 

was determined that in a 30 minute incubation with actinomycin D, at least 50% of the 

normal-sized mutant B mRNA was degraded. Less than 10% of the B-nl mRNA was degraded 

in this time period. From this they concluded that the mutant B mRNA was unstable. Since 

nuclear and cytoplasmic mRNA fractionation studies were not done, it is possible that they 

were observing mRNA instability in the nucleus. The data from our laboratory and theirs may 

be in agreement

Polarity. Study of the effect of nonsense mutations on mRNA metabolism in 

prokaryotes has led to the description of a phenomenon known as polarity (Morse et al., 1969; 

Adhya and Gottesman, 1978). Polarity refers to the effect that a nonsense mutation has on
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mRNA stability. By pulse-chase experiments it has been shown somewhat indirectly that the 

more 5' the nonsense mutation, the more unstable is the mRNA. Although the mechanism of 

polarity is not completely understood, the simultaneous occurence of both transcription and 

translation in the prokaryotic cell is thought to be a necessary requirement.

A polar effect of nonsense mutations on mRNA metabolism has been described for 3 

mRNAs in yeast. URA1, URA3, and CYC1 mRNAs with nonsense mutations acumulate in 

reduced amounts. Amber mutations in the 5’ end of the yeast JJRA3 gene have a greater effect 

on mRNA stability than mutations at the 3' end (Losson and Lacroute, 1979). This is also true 

for ochre mutations in the yeast URA1 gene (Pelsy and Lacroute, 1984). Nonsense mutations 

in the CYC1 mRNA have a polar effect on mRNA metabolism, even when one of the 

mutations is an ochre and one is an amber (Zitomer et al. 1979). In each of these cases they 

related their observations to mRNA stability but did their experiments in such a way that they 

would not detect a defect at the level of intranuclear metabolism.

A series of nonsense mutations in mouse p-mRNAs has been studied by Baumann et al.

(1985). They found reduced mRNA levels for 17 p-mRNAs with either point or frameshift 

mutations. In general, nonsense mutations near the 5' end of the mRNA have a greater effect 

on the level of mRNA than mutations more 3. There was no direct linear correlation between 

position in the gene and mRNA level, however. In addition, there were apparent exceptions. 

DNA from only 5 of the mutant genes has been sequenced and their nonsense mutations 

confirmed. There is no DNA sequence analysis for the remaining 12 mutant genes; the 

presence of nonsense mutations was inferred because truncated peptides are produced. Final 

interpretation of these data requires DNA sequence confirmation for all 17 mutations.
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For the B globin mRNAs it has been difficult to asses whether nonsense mutations have a 

polar effect on mRNA metabolism. Indeed from the in vivo data, it has been hypothesized that 

there is a reverse polarity, since the amount of B-17 mRNA is greater than the amount of B-39 

mRNA (see Nonsense mutations and globin mRNA metabolism in this chapter.)

From our in vitro data, it cannot be said whether there is a polar effect of nonsense mutations 

on human B globin mRNA metabolism in transfected tissue culture cells. The number of 

samples are too few to include or exclude this hypothesis.

In order to evaluate whether or not there is polarity of nonsense mutations in human B 

globin mRNA metabolism, it may be crucial to study expression of a nonsense mtuation in the 

third exon. All of the mutations studied thusfar have been in the first 2 exons. These 

mutations may not be distributed far enough apart in the mRNA to see polarity if it exists. A B 

globin gene with an ochre (UAA) mutations at amino acid position 121 has been cloned from a 

patient with B-thalassemia (Kazazian et al., 1986). The presence of this mutations in the DNA 

also disrupts the EcoRl site. There are no in vivo studies on the expression of the B-121 

mRNA. Since the mutation is in the third exon, subcloning the relevant portion of the gene 

into the expression vector is difficult. A good subcloning strategy is as follows. The 2.5 kb 

SnaBl-Xba piece of the B-121 is ligated in a 3-way ligation to the appropriate vector 

sequences. In this way a B globin gene identical to the other genes except for the B-121 

mutation can be studied in a heterologous transfection system.

Mechanism. We have found, then, that mutations in the human B globin gene which 

prematurely terminate translation also affect mRNA metabolism. One possible explanation is 

that since the mRNA is not completely translated, it is not protected by ribosomes and is
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therefore susceptible to endogenous RNase digestion. Previously published reports from our 

lab (Takeshita et al., 1984) and from others (Humphries et al., 1984) have demonstrated that, 

at least for the B-39 (UAG) mutant, the decrease in mRNA accumulation is not a result of 

cytoplasmic instability. These results have been confirmed in stable cell lines which contain 

either the B-39 (UAG) or normal B globin genes (see Chapter 2). The defect in metabolism of 

nonsense mutant mRNAs therefore probably resides in the nucleus. One potential mechanism 

is that there is feedback from translation on intranuclear events and that the presence of a 

premature termination codon during translation in the cytoplasm serves as a signal to inhibit 

transport of the specific mRNA out of the nucleus. It is also possible that the presence of the 

premature termination codon can be sensed within the nucleus itself. These possibilities are 

discussed more extensively in Chapter 2.

Nonsense mutations in other eukaryotic mRNAs. One of the first nonsense 

mutations to be described in a non-fungus eukaryote was in the heavy chain of myosin of the 

nematode, Caenorhabditis elegans (Epstein et al., 1974). The mutation was induced by ethyl 

methanesulphonate and creates semi-paralyzed nematodes. The presence of the mutation was 

inferred by the appearance of a shortened myosin heavy chain in Laemmli gels of protein 

extracts, about 3% shorter than the total length of the normal protein. Concurrently, Cowan et 

al. (1974) described a non-secreting mouse myeloma cell line which synthesized a heavy chain 

shorter than the normal heavy chain by 700 daltons. Techniques such as DNA sequencing or in 

vitro suppression were not available at that time to confirm the presence of the mutations. 

mRNA studies have not been done.

Summers et al. (1975) described several nonsense mutations in the thymidine kinase (TK) 

gene of the Herpes simplex virus. This protein is ideal for such studies since TK activity can
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be selected for and selected against by pharmacological manipulations. A rapid assay is also 

available for TK activity (Cremer et al.,1978). They identified amber (UAG) and opal (UGA) 

mutations which gave rise to TK proteins of lower molecular weight (Cremer et al.,1979). 

These mutations were suppressible by the appropriate yeast suppressor tRNA's in in vitro 

translation reactions. In vivo suppression of the amber (UAG) mutation was achieved by the 

co-infection of an SV40 viral vector bearing an amber suppressor tRNA (Summers et 

al.,1983).

Several nonsense mutations have been described in other viral genes. Gesteland et al. 

(1977) described amber and ochre mutants of the ND1 protein of an adeno-SV40 virus hybrid. 

An amber mutation was created near the 3' end of the T-antigen gene of SV40 (Rawlins and 

Muzyczka,1980; Rawlins et al.,1983). T-antigen bearing this mutation loses its ability to 

autoregulate its synthesis. Six nonsense mutations have been described in the NS1 gene of 

influenza A virus (Parvin et al.,1983). Truncated peptides were detectable following 

expression of these mutant genes. A nonsense mutation has been created in the open reading 

frame E2 of bovine papillomavirus which reduces the transformation efficiency of viral DNA in 

mouse C127 cells (DiMaio,1986). It is not known whether the truncated peptide is synthesized 

(DiMaio, personal communication).

Two naturally occurring nonsense mutations have recently been described in Drosophila 

melanogaster (Karlik et al.,1984; Martin et al.1985). Opal (UGA) mutations have been 

described in the alcohol dehydrogenase gene and the actin genes. Truncated peptides were 

detectable in both cases.

A candidate truncated peptide has been found in reticulocytes from a patient with the B-121
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mutation; it makes up between 0.05% and 0.1% of the total globin protein (Adams et al.,

1986). Other than the B-121, no truncated peptides have been found in reticulocytes from 

patients with nonsense mutations in their B globin genes (Bunn and Forget, 1986). Whether 

peptides are synthesized and degraded rapidly is not known.

In most of the investigations involving the expression of genes with nonsense mutations 

that I have described, the truncated peptide was detectable. The truncated peptide in these cases 

appears to be made in amounts equivalent to the full-length protein. Although mRNA studies 

were not performed, it is possible that in these cases the amount of mutant mRNA which 

accumulates is similar to the amount of normal mRNA which accumulates. Another possibility 

is that less mutant mRNA accumulates but it is translated more efficiently.

Nonsense mutations in other human mRNAs. Naturally occurring nonsense 

mutations have been found in several other human genes. Nonsense mutations have been 

described for LDL receptor genes in patients with hyperlipidemia (Lehrman et al., 1985; 

Lehrman et al., 1987). In vivo mRNA studies on one of these genes has not demonstrated 

reduced levels of LDL receptor mRNA (Lehrman et al., 1987). A nonsense mutation has also 

been described in the human protein C gene (Romeo et al.,1987). The presence of this

mutation causes hereditary thrombophilia, ctj-antitrypsin deficency can be caused by a

ffameshift mutation that creates an in frame stop codon (Nukiwa et al. 1987). mRNA and 

detailed protein studies have not been done. It is possible that the effect that we have observed 

occurs only with mRNAs that accumulate as a major species in the cell. Further studies remain 

to determine if our observations for nonsense mutations in the human B globin mRNA are a 

general property of nonsense mutations in eukaryotic genes.
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Daar and Maquat (1988) have described nonsense mutations in the human gene for 

triosephosphate isomerase which decrease the level of. steady-state mRNA. The actual 

mechanism for this remains to be elucidated.

Evidence for disrupted regulation of mRNA metabolism by nonsense 

mutations. It is clear that the introduction of a nonsense mutation into a 6 globin mRNA 

decreases the steady-state level of the mRNA. As discussed in Chapter 2, this is probably due 

to either a primary defect in nuclear-cytoplasmic transport or a primary defect in intranuclear 

stability. In either case, the fate of the mRNA is to be degraded. There are two examples, 

however, where normal mRNA metabolism is disrupted by the presence of a nonsense 

mutation and the end result is not degradation of the mRNA. In both cases the mRNA is 

actually stabilized by the presence of a nonsense mutation. Tubulin mRNA is degraded in the 

cytoplasm in response to an increase in the free-subunit concentration of the tubulin protein 

(Pittenger and Cleveland, 1985; Caron et al., 1985). The introduction of a nonsense mutation 

at amino acid 26 (tubulin is 444 amino acids long) blocks this autoregulation (Pachter et al.,

1987); the mRNA is not degraded in response to a rise in the free -subunit concentration of 

tubulin. This nonsense mutation-containing mRNA is not found on polyribosomes and the 

authors use this to argue that a polyribosomal location of the mRNA is necessary for tubulin 

autoregulation. Nonsense mutations have a similar effect on the metabolism of histone mRNA. 

Histone mRNAs with nonsense mutations are not degraded in a cell-cycle specific manner 

(Graves et al., 1987). These studies suggest that nonsense mutations in eukaryotic mRNAs 

have no single effect on mRNA metabolism. In some cases, disruption of regulation of normal 

mRNA metabolism occurs. Metabolism of these 2 mRNAs is also discussed in the section on 

Polyribosomes and mRNA stability and the section on Regulation of cytoplasmic
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mRNA stability in Chapter 2.

mRNA secondary structure. It is clear from my work that I am not studying an effect 

of mRNA secondary structure since nonsense mutations but not missense mutations at the 

same position have an effect on mRNA metabolism. Yet it remains an interesting possibility 

that secondary structure of eukaryotic mRNAs influences mRNA metabolism Very little is 

known about mRNA secondary structure and regulation of mRNA metabolism. Perhaps the 

most convincing example is the requirement for the stem-loop structure at the 3' end of histone 

mRNA for correct 3' end processing (Birchmeier et al., 1983) and cell cycle regulated 

synthesis (Graves et al., 1987). In fact, this is one of the only portions of an mRNA molecule 

for which there is a definite secondary structure. Although two groups have have elucidated 

RNase SI and T1 sensidve regions of rabbit and mouse B globin mRNA it is not known ( and 

seems unlikely) that there is a functional correlation for these regions (Pavlakis et al., 1980; 

Albrecht et al.,1984). Furthermore, no mutant mRNAs were analyzed in this system.

More information could be gleaned from a thorough study of missense mutations in the 

human B globin gene. Fortunately, nature has done this for us. There are over 200 known 

naturally occurring amino acid substitutions in the human B globin gene (Bunn and Forget, 

1986). These are known as hemoglobin variants since only 50% of the amino acid 

substitutions are associated with a clinical abnormality. Amino acid substitutions have been 

detected at 126 out of the 146 residues. Among these variants, only a handful are associated 

with B-thalassemia and most of these produce unstable B chains. There are only 2 variants 

from which we may learn about the effect of mRNA secondary structure on mRNA

metabolism. These are Hb Vicksburg (B75—>0) and Hb North Shore (B134 Val—>Glu). The 

former is known to be associated with reduced mRNA levels (Adams et al., 1981). However,
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the gene has not been cloned and it remains to be determined whether there is another mutation 

in cis to this mutation that causes the phenotype. Hb North Shore mRNA levels have not been 

studied but this mutation is associated with a decrease in 8 chain production (Smith et al.,

1983). This gene remains to be cloned and its expression thoroughly studied. Hb E (826 Glu

-> Lys) was also once thought to be similar to Hb Vicksburg and Hb North Shore in this 

respect, but it has since been shown that this mutation causes a defect in mRNA splicing (Orkin 

et al., 1982). There may not be much of an effect of mRNA secondary structure on mRNA 

metabolism for 8 globin since only 2 out of 232 known 8 chain variants are candidates for this 

phenomenon. However, since 65% of the possible variants remain to be described it may be 

that one of them causes a change in mRNA metabolism. It is likely that a significant mutation 

would be detected since it would be associated with hemtologic abnormalities.

Nonsense suppression. Takeshita et al. (1984) performed a crucial experiment in 

order to test the hypothesis that translatability influences mRNA levels. They co-transfected 

normal and suppressor tyrosyl tRNA genes from Xenopus with the B-nl and 8-39 genes. The 

tRNA genes were cloned into the late region of an SV40 virus/pBR322 construct (Laski et al., 

1982) and therefore could replicate in COS cells. In the presence of the suppressor gene but 

not the normal tRNA gene, the 8-39 mRNA levels were restored to normal. The suppressor 

gene had no effect on the level of B-nl mRNA produced. When the 8-39 mRNA was able to be 

translated to its full-length by the addition of a nonsense suppressor, the 8-39 mRNA levels 

were restored to normal. This suggests an unexpected communication between events in the 

cytoplasm such as translation and intranuclear metabolism. The potential existence of this 

communication is supported by the experiments described in this dissertation.

The work by Takeshita et al. (1984) has raised some interesting questions. For example,
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at what level is B-39 mRNA metabolism affected by suppression of the nonsense mutation?

My experiments as well as those of Takeshita et al. (1984) suggest that suppression of the 

nonsense mutation in the cytoplasm affects intranuclear events. Post-suppression experiments 

designed to look at transcription initiation rate (nuclear run-offs), nuclear mRNA steady-state 

levels and nuclear mRNA stability would attempt to address some of the possibilities. 

Furthermore, it is also necessary to show that the nonsense mutation in the B globin mRNA is 

actually being suppressed and that the full-length protein is being synthesized. This requires 

the use of anti-B globin antibodies which are not readily available to us.

Because nonsense mutation suppression could be used as a way to dissect the mechanism 

of the effect of nonsense mutations on mRNA metabolism, I decided to repeat and extend the 

experiments of Takeshita et al. (1984). However, after repeated attempts, I was never able to 

see an effect on B-39 mRNA levels by co-transfection of the suppressor tRNA gene with the 

B-39 gene. The exact reason for this is unknown. The possible pitfalls of this experiment 

include 1) low transfection efficiency of either the B-nl or B-39 genes, 2) over or under 

replication of the suppressor tRNA plasmid, 3) over or under expression of the suppressor 

tRNA, 4) lack of functional suppression or 5) incomplete aminoacylation of the suppressor 

tRNA. It is difficult to assay transfection efficiency directly since the standard method of 

expression of one of the transfected genes actually assays other parameters as well. However, 

a rough approximation for transfection efficiency can be obtained by examining the level of 

B-nl mRNA expression. Plasmid replication can be checked by Southern blotting of Hirt 

lysates with a suppressor gene-specific oligonucleotide probe. For T antigen, replication and 

expression are antagonistic (Lebkowski et al., 1985) and this may occur for the suppressor 

tRNA as well. Expression of the tRNA gene can be assayed easily by Northern blot analysis 

using a suppressor-specific oligonucletide probe (Ho et al., 1986). Lacking B-globin
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antibodies, functional suppression of an amber nonsense could be assayed by co-transfection 

of a reporter gene such as thymidine kinase (Summers et al., 1983) or chloramphenicol 

acetyltransferase (Capone et al., 1986). The extent of aminoacylation of the suppressor tRNA 

can be assayed by separation of the acylated and deacylated tRNAs on acid-polyacrylamide gels 

followed by Northern blot analysis (Ho et al., 1986). A low efficiency of charging has 

occurred for a suppressor tRNA stably expresed in CHO cells which renders it nonfunctional 

(Ho et al., 1986). In these ways the problems with the system can be addressed.

In the successful nonsense suppression experiments that have been published, the 

suppressor tRNA was expressed following introduction of the DNA by infection, not 

transfection. Infection may be a more efficient way to achieve adequate nonsense suppression 

than transfection. The late defective SV40 virus bears the cloned suppressor gene and is 

propagated by co-infection with an early-defective SV40 virus. At the appropriate multiplicity 

of infection, almost all of the cells receive the suppressor gene. Unfortunately, in both the 

transient expression system assays in COS cells discussed in this chapter and in the stable 

expression system in AF8, infection cannot be used to express the suppressor tRNA gene. 

COS cells already express T antigen and AF8 cells are rodent cells nonpermissive for T 

antigen. One B globin with a nonsense mutation, the B-43, has been successfully expressed in 

HeLa cells (Atweh et al., 1988). One possible alternative is to express the B-39 in HeLa cells 

either in a stable or transient state, and then to infect with the suppressor tRNA-bearing virus. 

Another approach is to study the expression of the B-nl and B-39 genes by establishment of a 

cell line with these genes and an inducible suppressor of nonsense mutations. Such a cell line 

has been established by Sedivy et al. (1987). They transfected a temperature-sensitive T 

antigen, a suppressor tRNA gene linked to the SV40 origin of replication, and the neomycin 

resistance gene into monkey kidney cells and selected for neomycin resistant colonies. At the
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permissive temperature (33°C) T antigen is synthesized and rapid amplification of the 

suppressor tRNA occurs. At the nonpermissive temperature, T antigen is not synthesized and 

the cells grow normally. Propagation of the cells at the nonpermissive temperature avoids the 

potential lethality of a generalized suppression of amber nonsense mutations.
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Chapter 4

Summary

One of the most common mutations that causes B° thalassemia in the Mediterranean 

population is an amber (UAG) nonsense mutation at codon 39, the B-39 mutation. Previous 

work has demonstrated that mRNAs bearing this mutation are present in decreased amounts in 

vivo in patients' peripheral blood and in heterologous transient transfection assays. This is 

surprising since this mutation would predict impaired function, rather than accumulation, of the B 

globin mRNA. I have investigated the mechanism of decreased mRNA accumulation in two 

ways.

The aim of the first set of experiments was to investigate the mechanism which reduces 

accumulation of the human B-39 mRNA when compared to B-nl in mammalian cells. It had been 

suggested from studies in transient expression systems that the defect in expression of the B-39 

mRNA was likely to be intranuclear (Takeshita et al, 1984, Humphries et al., 1984). The results 

presented here have confirmed and extended their work. In order to have a constant source of 

mRNA, AF8 cell lines which constitutively express either the B-39 mRNA or the B-nl mRNA 

were constructed. The phenomenon of decreased B-39 mRNA accumulation when compared to 

B-nl was reproduced in these stable cell lines for total, cytoplasmic and nuclear B mRNA. I have 

applied the techniques of molecular biology to study these well-characterized cell lines in order to 

focus on the point in the pathway for gene expression at which the defect in expression occurs.

I investigated whether there was a defect in 1) the transcription initiation rate, 2) the accuracy of 

transcription initiation and mRNA splicing, 3) polyadenylation or 4) the mRNA half-life. I 

found that 1) transcription initiation frequencies of the B-39 and the B-nl mRNA's are 

approximately equal, 2) B-39 and B-nl mRNA’s are correctly initiated, 3) B-39 and B-nl mRNA's
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are correctly spliced, 4) B-39 and B-nl mRNA's are polyadenylated, 4) B-39 and B-nl mRNA's 

are stable for up to 50 hours after shift-up to the non-permissive temperature in AF8 cells, and 5) 

B-39 and B-nl mRNA's are stable for at least 3 hours in actinomycin D. I have investigated and 

eliminated a number of possible explanations for the defect in expression of the B-39 mRNA. 

However, I was not able to investigate 2 remaining control points for gene expression: 

intranuclear mRNA stability and nuclear-cytoplasmic mRNA transport. Based on the data that I 

have generated, the hypothesis that I favor to explain the reduced accumulation of the B-39 

mRNA is as follows. Either there is a primary defect in nuclear-cytoplasmic transport of the B-39 

mRNA with a secondary defect in intranuclear stability or there is a primary defect in intranuclear 

stability of the B-39 mRNA.

In my second approach I investigated whether the phenomenon of decreased mRNA 

accumulation of B-39 mRNAs would be seen with other nonsense mutations within the B globin 

gene. I have studied the effect of several nonsense and missense mutations in the human B globin 

gene on mRNA metabolism. I constructed amber (UAG) mutations at codons 17 and 82, an 

opal (UGA) mutation at codon 37 and an ochre (UAA) mutation at codon 39. In addition I have 

corrected the UAG at the B-39 gene to two missense mutations AAG and GAG. The mutations at 

B-17, B-37, and B-39(UAG) have been described in patients with B° thalassemia. This series of 

mutants allowed me to ask 1) if nonsense mutations at other positions in the gene would express 

mRNA in reduced amounts, 2) if the ochre (UAA) mutation at B-39 would have the same 

phenotype as the amber (UAG) mutation at this codon, and 3) if the missense mutations at B-39 

would have an effect. Assays of steady-state mRNA levels were performed by SI nuclease 

analysis of mRNA from Cos-7 cells transfected with the various mutants. I have found that the 

B globin mRNA's transcribed from genes with nonsense mutations accumulate to reduced levels 

while the genes "corrected" with missense mutations at codon 39 make normal levels of B globin
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mRNA accumulation is a general property of nonsense mutations.
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