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Falls in people with parkinsonism are likely related to both motor and cognitive impairments. In addition to id-
iopathic Parkinson's disease (PD), some older adults have lower body parkinsonism (a frontal gait disorder),
characterized by impaired lower extremity balance and gait as well as cognition, but without tremor or rigidity.
Neuroimaging during virtual gait suggests that interhemispheric, prefrontal cortex communication may be in-
volved in locomotion, but contributions of neuroanatomy connecting these regions to objective measures of
gait in people with parkinsonism remains unknown. Our objectives were to compare the integrity of fiber tracts
connecting prefrontal and sensorimotor cortical regions via the corpus callosum in peoplewith two types of par-
kinsonism and an age-matched control group and to relate integrity of these callosal fibers with clinical and ob-
jectivemeasures of mobility and cognition.We recruited 10 patients with frontal gait disorders, 10 patients with
idiopathic PD and 10 age-matched healthy control participants. Participants underwent cognitive and mobility
testing aswell as diffusionweightedmagnetic resonance imaging to quantifywhitemattermicrostructural integ-
rity of interhemispheric fiber tracts. People with frontal gait disorders displayed poorer cognitive performance
and a slower, wider-based gait compared to subjects with PD and age-matched control subjects. Despite a wide-
spread network of reducedwhitematter integrity in peoplewith frontal gait disorders, gait and cognitive deficits
were solely related to interhemispheric circuitry employing the genu of the corpus callosum. Current results
highlight the importance of prefrontal interhemispheric communication for lower extremity control in neurolog-
ical patients with cognitive dysfunction.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Parkinsonian gait disorders greatly increase the risk of cognitive de-
cline, institutionalization and death in the elderly (Verghese et al., 2006;
Srikanth et al., 2009). Falls in people with parkinsonism are likely re-
lated to both their balance and gait impairments as well as their cogni-
tive impairments; however, the relationships between mobility
disability and abnormal prefrontal lobe function are unclear (Segev-
Jacubovski et al., 2011). In addition to idiopathic Parkinson's disease
(PD), a large number of older adults with gait unsteadiness have ‘higher
level gait disorders’, often termed frontal gait disorders (FGD) (Masdeu
et al., 1989; Verghese et al., 2002; Verghese et al., 2006). FGD is some-
times referred to as vascular or lower body parkinsonism because it
clinically resembles some motor aspects of PD, namely short, shuffling
steps, postural instability, difficulty with gait initiation, and freezing of
gait (Giladi et al., 2007). However, unlike thewell-characterized balance

and gait deficits in PD, objective measures of mobility and brain/motor
behavior relationships in people with FGD are currently limited. While
only anecdotal to date, stride width appears to provide a clear,
distinguishing gait characteristic between PD (narrow) and FGD
(wide). In addition, people with FGD may show less improvement
with levodopa, less tremor or rigidity, and more severe cognitive im-
pairments, compared to patients with PD (FitzGerald and Jankovic,
1989; Yamanouchi and Nagura, 1997).

Reducedwhitemattermicrostructural integritywithin a diffuse sub-
cortical network including the genu and anterior limbs of the internal
capsule are the principal neuropathological changes seen in FGD
(Yamanouchi and Nagura, 1997; Demirkiran et al., 2001; Zijlmans
et al., 2004). Unlike fibers in the body of the corpus callosum
interhemispherically connecting the sensorimotor cortices, the func-
tionality of interhemispheric communication via the genu remains
poorly understood. Recent gerontological research reveals that white
matter abnormalities in the genu detected byMRI are most strongly as-
sociated with slower gait speed (Bolandzadeh et al., 2014), suggesting
that disruption of interhemispheric, prefrontal cortex communication
has a substantial impact on locomotive performance. Further, Wang
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et al. (2012) found that reduced fiber tract integrity through the genu of
the corpus callosum and the anterior limbs of the internal capsule were
associated with poorer clinical measures of postural instability and
slowed gait in this population. While interesting, previous work has
yet to compare such neuroimaging measures between people with
FGD and those with idiopathic PD.

Poorer white matter integrity within frontal and prefrontal cortices
has also been described in peoplewith PD (Gattellaro et al., 2009), how-
ever the relationship between interhemispheric fiber tracts connecting
these regions with balance, gait and cognitive impairment in PD has yet
to be studied. The aims of this project were to compare the integrity of
fiber tracts connecting prefrontal and sensorimotor cortical regions via
the corpus callosum in people with FGD and PD. Further, we aimed to
evaluate the relationship between integrity of these callosal fibers
with clinical and objective measures of mobility (stride width and gait
speed) and cognition in people with parkinsonism. Since both idio-
pathic PD and FGD are characterized by relatively similar mobility defi-
cits, we hypothesized that both groups would show similar deficits in
interhemispheric sensorimotor circuitry compared to age-matched
healthy controls (HC). Conversely, due to the enhanced cognitive de-
cline experience by those with FGD, we hypothesized that microstruc-
tural integrity of fibers in the anterior regions of the callosum (genu)
in people with FGD would be: 1) poorer than their PD and HC counter-
parts and 2) positively related with their mobility performance.

2. Materials and methods

2.1. Subjects

This cross-sectional study recruited 10 patients with FGD, 10 pa-
tients with a clinical diagnosis of idiopathic PD from the Parkinson's
Center of Oregon at Oregon Health & Science University, Portland, Ore-
gon and 10 age-matched healthy control (HC) participants. All patients
or their next of kin gave informed, written consent to a protocol ap-
proved by the Institutional Review Board of Oregon Health and Science
University. People with FGD all complained of gait and balance difficul-
ties as the initial symptom of their movement disorder. Clinical features
necessary for inclusion were a slow, shuffling, wide-based gait and a
predominance of bradykinesia in the lower extremities only. Freezing
of gait and a history of vascular risk factors were optional, supportive
features for inclusion. A senior clinician with expertise in gait disorders
(J.G.N.) reviewed patient videos and medical records to confirm appro-
priateness of inclusion in the FGD group. We elected to use clinical gait
characteristics, rather than radiographic white matter lesion burden, as
criteria for inclusion, however all subjects had brain imaging to exclude
large strokes, masses, cerebellar and brainstem atrophy or ventricular
dilation not related to cortical atrophy (Vizcarra et al., 2015). We ex-
cluded subjectswith a diagnosis of progressive supranuclear palsy, mul-
tiple system atrophy, corticobasal syndrome, Lewy Body dementia,
cerebellar ataxia, and normal pressure hydrocephalus post-shunting.
Individuals with large, space-occupying lesions on previous imaging
or significant pyramidal weakness on exam were also excluded. Other
exclusionary criteria were as follows: severe tremor, peripheral neurop-
athy with proprioceptive deficits, severe peripheral vascular disease,
uncorrected vision or vestibular problems, joint disease significantly
limiting gait, and inability to tolerate an MRI due to claustrophobia or
othermedical contraindications. For all people with FGD and PD, a clini-
cian with expertise in movement disorders performed the MDS-UPDRS
III, and we also extracted scores for the sub-components (items #29–
33) that comprise postural instability and gait disorder (PIGD)
measures.

Cognitive, mobility and neuroimaging collection were performed
over the course of two days, separated by less than oneweek. All partic-
ipants refrained from taking anymorning antiparkinsonianmedications
and thus were tested in the OFF state following at least 12 h of with-
drawal from dopaminergic medication.

2.2. Cognitive assessments

Cognitive functioningwas assessed using theMontreal Cognitive As-
sessment (MoCA; Nasreddine et al., 2005) and the SCales for Outcomes
in PArkinson's disease-COGnition (SCOPA-COG). Both paper-and-pencil
tests were administered and scored by trained researchers. TheMoCA is
a cognitive screening tool for mild cognitive impairments. Five domains
were examined, including attention, verbal learning andmemory, exec-
utive functions/language, and orientation. A maximum score of 30 can
be obtained, higher scores indicating better performance. The SCOPA-
COG consists of 10 items that tap into four cognitive domains that
have been associated with Parkinson's disease: memory, attention, ex-
ecutive function and visuospatial function (Marinus et al., 2003;
Verbaan et al., 2007). Higher scores indicate better cognitive perfor-
mance, with 43 as the maximum score. Both the MoCA and SCOPA-
COG have been validated in Parkinson's disease (Marinus et al., 2003;
Verbaan et al., 2007; Gill et al., 2008) and produced equally high sensi-
tivity and specificity to detect dementia and mild cognitive impairment
(Dalrymple-Alford et al., 2010).

2.3. Mobility assessments

Participants walked three times over an 8-meter long instrumented
walkway with an active area of 6 meter × 0.6 meter sampling at a fre-
quency of 60 Hz (GAITRite®, CIR System, Havertown, USA). Participants
alsowore inertial sensors on their shoes and the lumbar spineusingVel-
cro straps, sampling at a frequency of 128HzOpals (APDM Inc. Portland,
OR USA). Step width was determined using the instrumented walkway
whereas gait speed (average stride velocity) was derived from the iner-
tial sensor data using Mobility Lab Software (APDM Inc.; Mancini et al.,
2011).Measures ofmobility and cognitive performancewere compared
between groups via independent sample t-tests, with UPDRS-III in-
cluded as a covariate.

2.4. Image acquisition

Participants were scanned on a 3.0T Siemens Magnetom Tim Trio
scanner with a 12-channel head coil at Oregon Health and Science
University's Advanced Imaging Research Center. One high-resolution
T1-weighted MP-RAGE sequence (orientation = sagittal, echo time =
3.58 ms, repetition time = 2300 ms, 256 × 256 matrix, resolution:
1.0 × 1.0 × 1.1 mm, total scan time = 9 min 14 s) was acquired. High
angular resolution diffusion images (HARDI) were also collected using
a 72-gradient direction, whole-brain echo-planar imaging sequence
(TR = 7100 ms, TE = 112 ms, field of view = 230 × 230 mm2, b
value = 3000 s/mm2, isotropic voxel dimensions = 2.5 mm3) and ten
images in which the b value was equal to zero. A static magnetic field
map was also acquired using the same parameters as the diffusion
weighted sequence.

2.5. Diffusion tensor imaging analysis

Diffusion data were processed using the tools implemented in FSL
(Version 5.0; www.fmrib.ox.ac.uk/fslwww.fmrib.ox.ac.uk/fsl). Diffusion
date were first corrected for eddy current distortions and motion
artifacts, then averaged to improve signal-to-noise ratio (Eickhoff
et al., 2010) and subsequently skull-stripped (using FSL's brain extrac-
tion tool). Non-diffusion weighted images (B0) were also utilized for
field map correction to reduce geometric distortions. For each individ-
ual, the fractional anisotropy images were normalized into Montreal
Neurological Institute (MNI) space by using a linear (affine) registration
and Fourier interpolation through the FMRIB linear image registration
tool.
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2.6. Tract based spatial statistics

We performed whole-brain, voxelwise analysis of fractional anisot-
ropy (FA) using tract-based spatial statistics within the FSL environ-
ment. Tract-based spatial statistics (TBSS) is a relatively new method
where analysis is restricted to thosewhite matter voxels that constitute
the skeleton (core) of the brain's connectional architecture and this
skeleton can be matched more accurately (compared with whole-
brain normalization) across subjects (Smith et al., 2006). The FA images
were used as input for TBSS by registering all subjects' FA images to a
common space (FMRIB_58 FA MNI template) via a nonlinear transform
and then an affine transform toMNI152 space. The two transformations
were combined before being applied, to avoid having to resample im-
ages twice. The above results in a standard-space version of each
subject's FA image, from which average group FA maps were created
and skeletonized, thresholding the skeleton at FA N 0.25. The resulting
alignment-invariant representation of the central trajectory of white
matter pathwayswasused for voxelwise statistical analysis (randomize,
10,000 permutations). The contrasts FGD b PD and FGD N PD were ex-
amined using threshold-free cluster enhancement (TFCE) (Smith and
Nichols, 2009), with correction for multiple comparisons at α b 0.05.

2.7. Interhemispheric callosal tractography

We performed probabilistic fiber tractography to assess quantity
and quality of interhemispheric structural connectivity for the genu
and body of the corpus callosum. Due to limited knowledge regarding
the specific cortical areas connected via the genu we used a broad,
well-defined geometric segmentation (Witelson, 1989; Hofer and
Frahm, 2006; Fling et al., 2011b) and combined the genu and rostrum
into one ROI using the Johns Hopkins University white matter labels,
provided by FSL. We utilized a multiple ROI approach to more specifi-
cally identify fiber tracts connecting the well-studied primary and sec-
ondary sensorimotor areas. The Human Motor Area Template (Mayka
et al., 2006), transformed from its original Talairach space, was co-
registered to each individual's MNI-normalized FA image and subse-
quently used as a mask for cortical regions (Fling et al., 2013a). The
HMAT is the result of a meta-analysis examining cortical activity
assessed by functionalMRI; strict inclusion criteriawere used to identify
six sensorimotor regions: dorsal and ventral premotor cortices (PMd
and PMv, respectively), supplementary and pre-supplementary motor
areas (SMA and preSMA, respectively), primary motor (M1) and the
primary somatosensory (S1) cortices. In addition, for each interhemi-
spheric sensorimotor fiber tract we utilized a ‘waypoint’ ROI within
the corresponding region of the body of the corpus callosum as identi-
fied by our previous work (Fig. 1A; Fling et al., 2013a).

Interhemispheric fiber tracts passing through the genu of the
callosum were identified with probabilistic fiber tracking (using FDT
1.0; see Behrens et al., 2003) initiated from every voxel within the
binarized callosal seed ROI in each participant's native diffusion space
(Fig. 1A). For all interhemispheric sensorimotor tracts, probabilistic
fiber tracking was initiated from every voxel within the binarized corti-
cal seed HMAT ROI in each participant's native diffusion space, was re-
quired to pass through the corresponding callosal ROI waypoint, and
terminated in the contralateral hemisphere's homologous regions ROI.
Due to the difficulty in delineating differences between the interhemi-
spheric connections between the ventral and dorsal premotor cortices
(Fling et al., 2013a), we choose to omit these ROIs from the current anal-
ysis. Thus we identified five interhemispheric fiber tracts, those
connecting the: 1) prefrontal cortices (genu), 2) preSMA, 3) SMA,
4) M1, and 5) S1, respectively.

The principal diffusion direction was estimated for each voxel as a
probability density function, using Bayes' rules in order to account for
noise and uncertainty in the measured data. As described elsewhere
(Behrens et al., 2003), the implicit modeling of noise in a probabilistic
model enables a fiber tracking procedurewithout externally added con-
straints such as fractional anisotropy threshold or fiber angle. Thus,
fiber-tracking in or near cortical areas becomes more sensitive. The
use of a 2-fibermodel (Behrens et al., 2007) also improves themodeling
of crossing fibers. For all tractography, streamline samples (25,000)
were sent out from each voxel, with a step length of 0.5 mm and a cur-
vature threshold of 0.2. For group analyses, the probabilistic connectiv-
ity distribution maps from individual participants were thresholded at
50% (thus selecting all connections where N12,500 of 25,000 samples
passed; a very conservative level in comparison to previous work
using a threshold of 5% (Gschwind et al., 2012; Fling et al., 2013b)).
Tracts were then binarized and affine-transferred with tri-linear inter-
polation into MNI space and summed across participants to obtain the
connectivity probability maps of the group. Tract volume, mean diffu-
sivity (MD) and fractional anisotropy (FA) were calculated for all tracts
identified within the five interhemispheric pathways of interest, and
diffusion derivedmetrics were compared via a repeatedmeasures anal-
ysis of variance (RMANOVA: 3 groups × 5 tracts). Larger FA and lower
MD values are indicative of greater directional diffusivity, which is typ-
ically interpreted as better white matter microstructure, e.g. denser ax-
onal packing and higher levels of myelination (Behrens et al., 2003;
Behrens et al., 2007). Significant main effects were further assessed
via post-hoc comparisons. Due to the small cohort, linear regression
analyses were solely performed between FA (not MD or tract volume)
of the five fiber tracts and performance on clinical (UPDRS-III, PIGD),
cognitive (MOCA, SCOPA-COG) and mobility (stride width, gait veloc-
ity) assessments and were Bonferroni-corrected for multiple compari-
sons. In addition, we complement these findings with a whole-brain

Fig. 1.A)Callosal ROIs used to identify specific interhemisphericfiber tracts from one representative participantwith FGDdisplayed on amid-sagittal slice of theMNI_152_1mm template.
B) Binarized interhemispheric tracts for each group traversing the genu.
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TBSS approach that lends support to the specificity of the results of our a
priori ROI-based analyses.

3. Results

3.1. Clinical characteristics, cognitive and motor performance

People with FGD had lower overall scores on theMDS-UPRDS-III, al-
though average composite scores were not significantly different
(Table 1). Despite less overall motor impairment, people with FGD
had slightly worse scores on measures of postural instability and gait
(PIGD – items #29–33) and higher Hoehn & Yahr scores (due to poor
postural stability). People with FGD also performed poorer on the
MOCA (P = 0.002) and SCOPA-COG compared to HC (P = 0.006) and
were also significantly worse on the SCOPA-COG (P=0.038) compared
to people with PD, with deficits noted in attention and executive func-
tion. People with FGD also had significantly wider stride width and
slower gait speed thanHCand thosewith PD (P b 0.01 for both gaitmea-
sures). Finally, individuals with PD had significantly reduced gait veloc-
ity compared to HC (P = 0.001).

3.2. Diffusion imaging results

People with FGD had widespread reduced white matter microstruc-
tural integrity observed throughout the TBSS skeleton compared to
those with PD, demonstrating more pronounced effects in anterior
brain regions (Fig. 2). No areas were found to be significantly greater
when performing the FGD N PD contrast - i.e. there were no regions in
the brain where white matter integrity was worse for the PD cohort
compared to the FGD cohort at the group level.

3.3. Callosal tractography

See Table 2 for measures of fiber tract microstructural integrity. In
brief, a significant main effect of group (F2,24 = 4.8, P = 0.18) and
tract (F4,96 = 8.6, P b 0.001) was evident for FA as well as a
group × tract interaction (F8,96 = 5.2, P b 0.01). Post-hoc tests showed
that for callosal tracts connecting homologous interhemispheric re-
gions, people with FGD had reduced fiber tract quality (i.e. lower FA)
within the genu (P b 0.001), M1 (P = 0.04) and S1 (P = 0.001) com-
pared to HC. Compared to thosewith PD, peoplewith FGD solely had re-
duced integrity of fiber tracts traversing the genu (P = 0.04). Finally,
those with idiopathic PD had significantly reduced FA of interhemi-
spheric S1 fiber tracts (P = 0.006) compared to HC. For measures of
mean diffusivity (MD) we report a significant main effect of group
(F2,25 = 38.2, P b 0.001) and tract (F4,100 = 32.1, P b 0.001) as well as
a significant group × tract interaction (F8,100 = 21.6, P b 0.001). Post
hoc analysis revealed that MD of fiber tracts through the genu was sig-
nificantly reduced in those with FGD compared to both HC (P=0.019)
and people with PD (P = 0.027). Further, MD of all interhemispheric

sensorimotor fiber tracts of the callosum was significantly higher for
people with either FGD or PD compared to HC (Table 2). Further,
those with FGD had higher MD of tracts through the genu and PreSMA
compared to people with PD. No other group differences were noted
in FA orMD of sensorimotor callosal fiber tracts of thosewith FGD com-
pared to people with PD (P N 0.5 for all comparisons).

In addition to the observed differences in fiber tract “quality”, sub-
stantial differences in fiber tract volume (quantity) were also found
(Figs. 1B, 3A). A significant main effect of group (F2,21 = 6.99; P =
0.005), tract (F4,84 = 157.9; P b 0.001), and a group × tract interaction
(F8,84= 6.82; P b 0.001) were found for tract volume. Group differences
were most pronounced in anterior regions of the callosum; post hoc
tests showed those with FGD had significantly lower tract volume
within the genu compared to both HC (P = 0.002) and those with PD
(P = 0.001). No differences in white matter volume were noted for
the remaining interhemispheric sensorimotor fiber tracts in people
with FGD, and no difference between HC and people with PD were
found.

3.4. Associations between interhemispheric fiber tracts and clinical, cogni-
tive, and mobility measures

Results from all regression analyses can be viewed in Table 3. Consis-
tent with our hypothesis, better integrity of fibers passing through the
genu was significantly related to better clinical (PIGD: r = −0.69;
P = 0.013), cognitive (SCOPA-COG: r = 0.62; P = 0.027), and mobility
performance (reduced stride width: r =−0.67; P= 0.017) within the
FGD group. Contrary to our hypothesis, whilewe observed a positive re-
lationship between genu fiber tract integrity and cognitive performance
within people with PD and HC, none of these associations were statisti-
cally significant (Table 3). In peoplewith PD, better tractmicrostructure
of fibers connecting M1 and S1 was associated with faster gait velocity
(M1: r= 0.59, P=0.049; S1: r= 0.60. P=0.043), but did notmaintain
significance when adjusting for multiple comparisons. Thus, no signifi-
cant relationships were observed between microstructural integrity of
the sensorimotor fiber tracts and performance on any of the clinical,
cognitive, or mobility measures.

We supplemented our hypothesis-driven approach with an analo-
gous, whole-brain TBSS skeleton regression analyses to search for con-
verging evidence regarding the principal distinguishing gait
characteristic between these populations, stride width. Stride width
was first demeaned across the entire sample and then regressed against
FA using randomize within the FSL environment (10,000 permuta-
tions). The results of this analysis (Fig. 3B) show a strong relationship
between lower FA of the genu and wider stride width only in people
with FGD (significant voxels survived correction for multiple compari-
sons using TFCE, α b 0.05). This result provides a strong accordance
with the correlation reported from our a priori ROI analysis, with signif-
icant voxels clearly overlappingwith the tractography-derived network
through the genu of the callosum.

4. Discussion

Despite better overall motor performance, as assessed by clinical
Parkinson's scales, peoplewith FGDhad slower gait velocities and larger
stride widths, likely to maintain postural stability during locomotion,
compared to thosewith idiopathic PD.When investigating our principal
hypothesis comparing the integrity of callosal fiber tracts connecting
prefrontal and sensorimotor cortical regions, we found that people
with FGD had reduced quality and quantity of callosal tracts traversing
the genu compared to age-matched controls and people with PD.
While both Parkinsonian groups had reduced fiber tract quality and
quantity of sensorimotor fiber tracts compared to their healthy cohort,
it is interesting to note that people with FGD did not show reduced mi-
crostructural integrity of fiber tracts connecting primary and secondary
sensorimotor cortices compared to those with PD. In addition, gait and

Table 1
Demographic and disease characteristics alongwith cognitive performance and measures
of mobility. All assessments were performed in the OFF state. Values are mean (±SD).
Main group effects are highlighted in bold.

HC
N = 10

PD
N = 10

FGD
N = 10

P-value

Age 75 (62–84) 70.1 (63–84) 74.6 (67–84) 0.23
M/F 4/6 8/2 7/3 –
MDS-UPDRS III N/A 46.6 (18.26) 33.1 (16.8) 0.13
PIGD N/A 7.6 (5.6) 9.2 (3.5) 0.46
Hoehn & Yahr N/A 2.8 (0.83) 3.4 (1.01) 0.15
MoCA 26.6 (2.07) 24.6 (4.3) 21.1 (4.11) b0.01
SCOPA-COG total 31.2 (2.82) 26.4 (5.97) 19.3 (7.73) b0.01
Stride width (cm) 11.2 (2.42) 11.2 (2.27) 18.9 (4.19) b0.001
Gait velocity (m/s) 1.2 (0.11) 0.93 (0.20) 0.59 (0.29) b0.01
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cognitive deficits in people with FGD, but not PD, were related to cir-
cuitry employing the genu. This result was further strengthened by
whole-brain voxelwise linear regression demonstrating a strong associ-
ation between genumicrostructure and stride width in thosewith FGD.
These findings support the notion that frontal lobe cognitive processes
coordinated across the brain's hemispheres play a more important
role in the balance and gait impairments of people with FGD, than in
people with PD.

As hypothesized, one of the defining characteristics of FGD is a slow,
wide-based, shuffling gait (FitzGerald and Jankovic, 1989). In the cur-
rent study, despite better overall motor performance, assessed by the
UPDRS-III, people with FGD had several mobility deficits including
higher PIGD scores, slower gait velocities and larger stride widths com-
pared to people with PD. This echoes recent clinical comparisons of idi-
opathic PD to those with vascular parkinsonism (Wang et al., 2012).
While the UPDRS is the classical scale to assess clinical severity in PD,
the test containsmany components related to tremor, rigidity andman-
ual upper extremity bradykinesia, symptoms not traditionally associ-
ated with FGD (FitzGerald and Jankovic, 1989; Yamanouchi and
Nagura, 1997). Conversely, sub-scores specific to postural stability and
gait (the PIGD postural alignment, sit to stand, gait and pull test of bal-
ance responses) were noticeably worse in people with FGD.

Interhemispheric transfer via the corpus callosum plays a key role in
the production of coherently integrated behavior and undergoes signif-
icant degeneration with age both in terms of white matter quantity and
quality (Sullivan et al., 2010; Fling et al., 2011b). Even with healthy
aging, older adults rely more on bilateral activation of the frontal and
prefrontal cortices during motor performance, reflecting the impor-
tance of commissural fibers with advancing age (Seidler et al., 2010).
This increased reliance on bilateral frontal cortex has been attributed
to a reduction in callosal fiber tract integrity, resulting in unintentional
overflow (i.e. “miscommunication”) between the brain's hemispheres
(Fling et al., 2011a). In the current study we found that people with
FGD had reduced quality and quantity of fiber tracts traversing the

genu. Genu tract integrity was positively correlated with cognitive per-
formance assessed with the SCOPA-COG for those with FGD. And, al-
though not significant, both HC and PD groups had strong positive
correlations between genu integrity and scores on the MoCA and
SCOPA-COG assessments (Table 3). As hypothesized, FA of genu fiber
tracts was also correlated with mobility performance in people with
FGD. The common relationship of genu fiber integrity with both gait
and cognitive function suggests that some gait disorders are related to
higher level (i.e. cognitive), rather than sensorimotor, control of gait.
For example, the frontal cortex may be critical for coupling control of
postural weight shifting with the locomotor pattern, consistent with
the wide base and difficulty coordinating postural adjustments with
gait initiation seen in those with FGD.

The genu contains fibers connecting the bilateral prefrontal cortices
(Chao et al., 2009) that receive information from virtually all sensory
systems and have preferential connections with motor processing
structures. As such, the genu has been proposed to play a central role
in the cognitive control of motor performance (Miller and Cohen,
2001). de Laat et al. (2011) were among the first to demonstrate that
the loss of fibers interconnecting the bilateral prefrontal cortices in-
volved in the cognitive control of motor performance were involved in
gait disturbances in people with small vessel disease (i.e. FGD). Specifi-
cally, the authors reported that shorter stride length was related to mi-
crostructural integrity of the genu in a large cohort of patients with
small vessel disease (N=429). Similar to the current study, they report
that this relationship was independent of the integrity of other callosal
segments (de Laat et al., 2011). Additionally, a recent study found a
strong correlation between FA of fibers interhemispherically linking
the prefrontal cortex (genu) and along the cortico-striatal pathway (an-
terior limb of the internal capsule) with the clinical severity of gait, bal-
ance, and falls in peoplewith vascular parkinsonism (Wang et al., 2012).
Reinforcing the work of Wang et al. (2012), we report strong associa-
tions between the PIGD metric derived from the MDS-UPDRS III and
tract integrity of fibers within the genu for people with FGD. Although

Fig. 2. TBSS whole-brain group differences (PD N FGD) in fractional anisotropy. No areas were significantly greater in the FGD group.

Table 2
Group comparisons of callosal fiber tract integrity. Significantly lower fiber tract integrity compared to HC is highlighted in bold. Data are presented as mean (±SD).

Fractional anisotropy (FA) Mean diffusivity (10−3 mm2/s)

HC PD FGD HC PD FGD

Genu 0.42 (0.03) 0.41 (0.05) 0.35⁎⁎⁎ (0.04) 0.667 (0.05) 0.694 (0.03) 0.770⁎ (0.09)
PreSMA 0.41 (0.07) 0.36 (0.08) 0.33 (0.07) 0.63 (0.05) 0.843⁎⁎⁎ (0.12) 0.921⁎⁎⁎ (0.15)
SMA 0.45 (0.08) 0.41 (0.09) 0.40 (0.14) 0.614 (0.05) 0.804⁎⁎⁎ (0.14) 0.826⁎⁎⁎ (0.13)
M1 0.49 (0.05) 0.43 (0.08) 0.41⁎ (0.07) 0.605 (0.05) 0.795⁎⁎⁎ (0.12) 0.822⁎⁎⁎ (0.16)
S1 0.47 (0.05) 0.36⁎⁎ (0.08) 0.35⁎⁎⁎ (0.08) 0.607 (0.04) 0.90⁎⁎⁎ (0.14) 0.930⁎⁎⁎ (0.13)

⁎ P b 0.05.
⁎⁎ P b 0.01.
⁎⁎⁎ P b 0.001.
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not significant, a similar relationship was evident in people with PD as
well. Further, reduced quality of fibers connecting the prefrontal corti-
ces was strongly related to a wider stride width in those with FGD, po-
tentially in an effort to increase stability. Perhaps surprisingly, no
relationships were observed between measures of mobility and integ-
rity of callosal fiber tracts connecting sensorimotor cortical regions.

In agreement with the typically described anterior gradient of white
matter decline in FGD (Yamanouchi and Nagura, 1997; Demirkiran
et al., 2001; Zijlmans et al., 2004), no significant group differences
were observed in the more posterior sensorimotor callosal fiber tracts
comprising the body of the callosum (assessed by FA). In people with
PD and their healthy counterparts, there were positive associations
(though not significant) between FA values of fiber tracts connecting
the bilateral M1 and S1 cortical regions and gait velocity. This finding
compliments a recent positron emission tomography study using
[18F]-fluoro-deoxy-glucose ([18F]-FDG) that demonstrates strong corti-
cal activity in medial leg sensorimotor representations in the pre- and
post-central gyri that is communicated interhemispherically via these
callosal pathways (la Fougère et al., 2010). In addition to primary senso-
rimotor cortical regions, supraspinal locomotor circuitry has principally
been described as signals originating in the SMAs that are transmitted
through the basal ganglia via disinhibition of the subthalamic and mes-
encephalic locomotor region where they converge with cerebellar sig-
nals from the cerebellar locomotor region (Jahn et al., 2008). A limited
number of case studies demonstrate that agenesis of callosal white

matter tracts connecting the bilateral SMAs, or lesions within the SMA
itself, can result in gait apraxia or freezing of gait issues (Della Sala
et al., 2002; Nadeau, 2007). This suggests that at least some interhemi-
spheric communication between the right and left SMA - the higher
order, motor planning region of the motor system, is required for effec-
tive locomotion. However, based on the current results, communication
between the two SMAs does not appear to constitute principal neural
circuitry underlying gait speed or postural stability during gait (stance
width).

Notable limitations of the current manuscript include the size of the
Parkinsonism cohort. Additional work is necessary to strengthen the
translation and generalizability of the current findings, in accord with
the work of Wang and colleagues (Wang et al., 2012). Further, the cur-
rent diffusion imaging approach to assess the relationship between
white matter fiber tracts and mobility in people with FGD and PD prin-
cipally employed an a priori tract-based analysis and not a whitematter
hyperintensity burden analysis. Within people with FGD, white matter
lesions and lacunar infarcts are widely accepted signs of cerebral small
vessel disease; however, white matter hyperintensity burden resulting
from these lesions has previously been shown not to correlate with
PIGD scores in people with PD (Herman et al., 2013). Further, in a very
large cohort of patients with small vessel disease, the majority of
white matter integrity related to gait disturbances were localized to re-
gions where the white matter lesion probability was low, or even ab-
sent, highlighting the importance of microstructural integrity of fibers

Fig. 3. A) Those with FGD had significantly lower tract volume compared to their HC (**P b 0.01) and PD counterparts (***P b 0.001). B)Whole-brain, TBSS regression analysis identifying
whitematter associatedwith stridewidth inparticipantswith FGD. P b 0.05, TFCE-corrected (X,Y,Z=0,19,3). Significant correlation between genufiber tractmicrostructural integrity (FA)
and stride width in people with FGD (r = −0.67; P = 0.017), but not people with PD (r = −0.24), nor for HC (r = −0.05).

Table 3
Associations between callosal tract microstructural integrity (FA) and clinical, cognitive and mobility measures. Significant associations are highlighted in bold.

Fiber tracts MDS – UPDRS III PIGD MoCA SCOPA-COG Stride width Gait velocity

HC PD FGD HC PD FGD HC PD FGD HC PD FGD HC PD FGD HC PD FGD

Genu N/A −0.38 −0.12 N/A −0.49 −0.69⁎ 0.58 0.36 0.11 0.58 0.37 0.62⁎ −0.05 −0.24 −0.67⁎ 0.07 0.33 0.49
PreSMA N/A 0.16 −0.02 N/A −0.26 −0.60 0.13 0.30 0.06 −0.19 0.42 0.32 −0.15 −0.51 −0.51 −0.19 0.28 0.49
SMA N/A 0.23 −0.50 N/A −0.17 −0.36 0.36 0.17 −0.11 0.37 0.29 0.46 −0.35 −0.39 −0.13 0.15 0.28 0.05
M1 N/A −0.12 −0.15 N/A −0.40 −0.51 −0.13 0.30 −0.03 −0.18 0.48 0.47 −0.27 0.02 −0.32 0.32 0.59 0.37
S1 N/A −0.35 0.01 N/A −0.39 −0.55 −0.35 0.20 −0.13 −0.19 0.40 0.51 −0.05 0.37 −0.36 0.45 0.60 0.35

⁎ P b 0.05.
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in normal-appearing white matter in gait disorders (de Laat et al.,
2011).

5. Conclusions

Recent research has demonstrated the important relationships be-
tween balance/gait/falls and cognitive function (Jacobs and Horak,
2007; Yogev-Seligmann et al., 2008). The limited success of rehabilita-
tion treatment for mobility problems in parkinsonism may be partly
due to the fact that current treatment rarely addresses issues with
(pre)frontal cortical control of balance and gait. Executive functions af-
fected by parkinsonism include task-planning, conflict-resolution (inhi-
bition), set-switching, sensory integration, and flexibility of attention
(Chong et al., 2000; Frank et al., 2007). These cognitive components
are required for safe navigation and functional mobility in complex, ev-
eryday environments (Yogev-Seligmann et al., 2008). Taken together
with the current work, this growing line of study supports the notion
that gait and cognition are connected, perhaps because gait relies
upon specific cortical-subcortical networks critical for executive control
of balance and gait (mobility). Thus, interventions targeted at increasing
cognitive performance (cf. Anguera and Gazzeley, 2015) may have sub-
stantial ancillary mobility benefits for the ever-growing aging popula-
tion with FGD.

Funding

This work was supported by the National Institutes of Health
(2R01AG006457, FBH; KL2TR000152, BWF), the Collins Medical Trust
(BWF) and the Medical Research Foundation of Oregon (MD).

Conflict of interest statement

The Oregon Health & Science University and Dr. Horak have a signif-
icantfinancial interest in APDM, a company thatmay have a commercial
interest in the results of this research and technology. This potential in-
stitutional and individual conflict has been reviewed and managed by
OHSU.

Acknowledgements

We thank the volunteers for participating in this study and the
Parkinson's Center of Oregon for referring patients. We are grateful to
Patricia Carlson-Kuhta for administrative oversight and Michael Flem-
ing, Heather Schlueter and Natassja Pal for assistance in data collection
and analysis.

References

Anguera, J.A., Gazzeley, A., 2015. Video games, cognitive exercises, and the enhancement
of cognitive abilities. Curr. Opin. Behav. Sci. 4, 160–165.

Behrens, T.E., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S.,
Matthews, P.M., Brady, J.M., Smith, S.M., 2003. Characterization and propagation of
uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088.

Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., Woolrich, M.W., 2007. Probabilistic
diffusion tractography with multiple fibre orientations: what can we gain?
NeuroImage 34, 144–155.

Bolandzadeh, N., Liu-Ambrose, T., Aizenstein, H., Harris, T., Launer, L., Yaffe, K.,
Kritchevsky, S.B., Newman, A., Rosano, C., 2014. Pathways linking regional
hyperintensities in the brain and slower gait. NeuroImage 99, 7–13.

Chao, T.C., Chou, M.C., Yang, P., Chung, H.W., Wu, M.T., 2009. Effects of interpolation
methods in spatial normalization of diffusion tensor imaging data on group compar-
ison of fractional anisotropy. Magn. Reson. Imaging 27, 681–690.

Chong, R.K., Horak, F.B., Woollacott, M.H., 2000. Parkinson's disease impairs the ability to
change set quickly. J. Neurol. Sci. 175, 57–70.

Dalrymple-Alford, J.C., MacAskill, M.R., Nakas, C.T., Livingston, L., Graham, C., Crucian, G.P.,
Melzer, T.R., Kirwan, J., Keenan, R., Wells, S., Porter, R.J., Watts, R., Anderson, T.J., 2010.
TheMoCA:well-suited screen for cognitive impairment in Parkinson disease. Neurol-
ogy 75, 1717–1725.

de Laat, K.F., Tuladhar, A.M., van Norden, A.G., Norris, D.G., Zwiers, M.P., de Leeuw, F.E.,
2011. Loss of white matter integrity is associated with gait disorders in cerebral
small vessel disease. Brain 134, 73–83.

Della Sala, S., Francescani, A., Spinnler, H., 2002. Gait apraxia after bilateral supplementary
motor area lesion. J. Neurol. Neurosurg. Psychiatry 72, 77–85.

Demirkiran,M., Bozdemir, H., Sarica, Y., 2001. Vascular parkinsonism: a distinct, heteroge-
neous clinical entity. Acta Neurol. Scand. 104, 63–67.

Eickhoff, S.B., Jbabdi, S., Caspers, S., Laird, A.R., Fox, P.T., Zilles, K., Behrens, T.E., 2010. An-
atomical and functional connectivity of cytoarchitectonic areas within the human pa-
rietal operculum. J. Neurosci. 30, 6409–6421.

FitzGerald, P.M., Jankovic, J., 1989. Lower body parkinsonism: evidence for vascular etiol-
ogy. Mov. Disord. 4, 249–260.

Fling, B.W., Peltier, S.J., Bo, J., Welsh, R.C., Seidler, R.D., 2011a. Age differences in inter-
hemispheric interactions: callosal structure, physiological function, and behavior.
Front. Neurosci. 5, 38.

Fling, B.W., Chapekis, M., Reuter-Lorenz, P.A., Anguera, J., Bo, J., Langan, J., Welsh, R.C.,
Seidler, R.D., 2011b. Age differences in callosal contributions to cognitive processes.
Neuropsychologia 49, 2564–2569.

Fling, B.W., Benson, B.L., Seidler, R.D., 2013a. Transcallosal sensorimotor fiber tract
structure-function relationships. Hum. Brain Mapp. 34, 384–395.

Fling, B.W., Cohen, R.G., Mancini, M., Nutt, J.G., Fair, D.A., Horak, F.B., 2013b. Asymmetric
pedunculopontine network connectivity in parkinsonian patients with freezing of
gait. Brain 136, 2405–2418.

Frank, M.J., Samanta, J., Moustafa, A.A., Sherman, S.J., 2007. Hold your horses: impulsivity,
deep brain stimulation, and medication in parkinsonism. Science 318, 1309–1312.

Gattellaro, G., Minati, L., Grisoli, M., Mariani, C., Carella, F., Osio, M., Ciceri, E., Albanese, A.,
Bruzzone, M.G., 2009. White matter involvement in idiopathic Parkinson disease: a
diffusion tensor imaging study. AJNR Am. J. Neuroradiol. 30, 1222–1226.

Giladi, N., Huber-Mahlin, V., Herman, T., Hausdorff, J.M., 2007. Freezing of gait in older
adults with high level gait disorders: association with impaired executive function.
J. Neural Transm. 114, 1349–1353.

Gill, D.J., Freshman, A., Blender, J.A., Ravina, B., 2008. The Montreal cognitive assessment
as a screening tool for cognitive impairment in Parkinson's disease. Mov. Disord.
23, 1043–1046.

Gschwind, M., Pourtois, G., Schwartz, S., Van De Ville, D., Vuilleumier, P., 2012. White-
matter connectivity between face-responsive regions in the human brain. Cereb. Cor-
tex 22, 1564–1576.

Herman, T., Rosenberg-Katz, K., Jacob, Y., Auriel, E., Gurevich, T., Giladi, N., Hausdorff, J.M.,
2013. White matter hyperintensities in Parkinson's disease: do they explain the dis-
parity between the postural instability gait difficulty and tremor dominant subtypes?
PLoS One 8, e55193.

Hofer, S., Frahm, J., 2006. Topography of the human corpus callosum revisited–
comprehensive fiber tractography using diffusion tensor magnetic resonance imag-
ing. NeuroImage 32, 989–994.

Jacobs, J.V., Horak, F.B., 2007. Cortical control of postural responses. J. Neural Transm. 114,
1339–1348.

Jahn, K., Deutschländer, A., Stephan, T., Kalla, R., Hüfner, K., Wagner, J., Strupp, M., Brandt,
T., 2008. Supraspinal locomotor control in quadrupeds and humans. Prog. Brain Res.
171, 353–362.

la Fougère, C., Zwergal, A., Rominger, A., Förster, S., Fesl, G., Dieterich, M., Brandt, T.,
Strupp, M., Bartenstein, P., Jahn, K., 2010. Real versus imagined locomotion: a [18F]-
FDG PET-fMRI comparison. NeuroImage 50, 1589–1598.

Mancini, M., King, L., Salarian, A., Holmstrom, L., McNames, J., Horak, F.B., 2011. Mobility
lab to assess balance and gait with synchronized body-worn sensors. J. Bioeng.
Biomed. Sci. Suppl. 1, 007.

Marinus, J., Visser, M., Verwey, N.A., Verhey, F.R., Middelkoop, H.A., Stiggelbout, A.M., van
Hilten, J.J., 2003. Assessment of cognition in Parkinson's disease. Neurology 61,
1222–1228.

Masdeu, J.C., Wolfson, L., Lantos, G., Tobin, J.N., Grober, E., Whipple, R., Amerman, P., 1989.
Brain white-matter changes in the elderly prone to falling. Arch. Neurol. 46,
1292–1296.

Mayka, M.A., Corcos, D.M., Leurgans, S.E., Vaillancourt, D.E., 2006. Three-dimensional loca-
tions and boundaries of motor and premotor cortices as defined by functional brain
imaging: a meta-analysis. NeuroImage 31, 1453–1474.

Miller, E.K., Cohen, J.D., 2001. An integrative theory of prefrontal cortex function. Annu.
Rev. Neurosci. 24, 167–202.

Nadeau, S.E., 2007. Gait apraxia: further clues to localization. Eur. Neurol. 58, 142–145.
Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I.,

Cummings, J.L., Chertkow, H., 2005. The Montreal Cognitive Assessment, MoCA:
a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53,
695–699.

Segev-Jacubovski, O., Herman, T., Yogev-Seligmann, G., Mirelman, A., Giladi, N., Hausdorff,
J.M., 2011. The interplay between gait, falls and cognition: can cognitive therapy re-
duce fall risk? Expert. Rev. Neurother. 11, 1057–1075.

Seidler, R.D., Bernard, J.A., Burutolu, T.B., Fling, B.W., Gordon, M.T., Gwin, J.T., Kwak, Y.,
Lipps, D.B., 2010. Motor control and aging: links to age-related brain structural, func-
tional, and biochemical effects. Neurosci. Biobehav. Rev. 34, 721–733.

Smith, S.M., Nichols, T.E., 2009. Threshold-free cluster enhancement: addressing prob-
lems of smoothing, threshold dependence and localisation in cluster inference.
NeuroImage 44, 83–98.

Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E.,
Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E., 2006. Tract-
based spatial statistics: voxelwise analysis of multi-subject diffusion data.
NeuroImage 31, 1487–1505.

Srikanth, V., Beare, R., Blizzard, L., Phan, T., Stapleton, J., Chen, J., Callisaya, M., Martin, K.,
Reutens, D., 2009. Cerebral white matter lesions, gait, and the risk of incident falls:
a prospective population-based study. Stroke 40, 175–180.

421B.W. Fling et al. / NeuroImage: Clinical 11 (2016) 415–422

http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0005
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0005
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0010
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0010
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0015
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0015
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0015
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0020
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0020
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0025
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0025
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0025
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0030
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0030
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0035
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0035
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0040
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0040
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0045
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0045
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0050
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0050
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0055
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0055
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0055
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0060
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0060
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0065
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0065
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0065
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0070
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0070
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0075
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0075
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0080
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0080
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0080
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0085
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0085
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0090
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0090
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0095
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0095
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0095
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0100
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0100
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0100
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0105
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0105
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0105
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0110
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0110
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0110
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0115
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0115
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0115
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0120
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0120
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0125
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0125
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0130
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0130
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0135
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0135
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0135
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0140
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0140
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0145
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0145
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0150
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0150
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0150
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0155
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0155
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0160
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0165
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0165
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0165
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0170
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0170
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0175
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0175
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0180
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0180
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0180
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0185
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0185
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0185
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0190
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0190


Sullivan, E.V., Rohlfing, T., Pfefferbaum, A., 2010. Longitudinal study of callosal microstruc-
ture in the normal adult aging brain using quantitative DTI fiber tracking. Dev.
Neuropsychol. 35, 233–256.

Verbaan, D., Marinus, J., Visser, M., van Rooden, S.M., Stiggelbout, A.M., Middelkoop, H.A.,
van Hilten, J.J., 2007. Cognitive impairment in Parkinson's disease. J. Neurol.
Neurosurg. Psychiatry 78, 1182–1187.

Verghese, J., Lipton, R.B., Hall, C.B., Kuslansky, G., Katz, M.J., Buschke, H., 2002. Abnormality
of gait as a predictor of non-Alzheimer's dementia. N. Engl. J. Med. 347, 1761–1768.

Verghese, J., LeValley, A., Hall, C.B., Katz, M.J., Ambrose, A.F., Lipton, R.B., 2006. Epidemiol-
ogy of gait disorders in community-residing older adults. J. Am. Geriatr. Soc. 54,
255–261.

Vizcarra, J.A., Lang, A.E., Sethi, K.D., Espay, A.J., 2015. Vascular Parkinsonism:
deconstructing a syndrome. Mov. Disord. 30, 886–894.

Wang, H.C., Hsu, J.L., Leemans, A., 2012. Diffusion tensor imaging of vascular parkinson-
ism: structural changes in cerebral white matter and the association with clinical se-
verity. Arch. Neurol. 69, 1340–1348.

Witelson, S.F., 1989. Hand and sex differences in the isthmus and genu of the human cor-
pus callosum. A postmortem morphological study. Brain 112 (Pt 3), 799–835.

Yamanouchi, H., Nagura, H., 1997. Neurological signs and frontal white matter lesions in
vascular parkinsonism. A clinicopathologic study. Stroke 28, 965–969.

Yogev-Seligmann, G., Hausdorff, J.M., Giladi, N., 2008. The role of executive function and
attention in gait. Mov. Disord. 23, 329–342 quiz 472.

Zijlmans, J.C., Daniel, S.E., Hughes, A.J., Révész, T., Lees, A.J., 2004. Clinicopathological in-
vestigation of vascular parkinsonism, including clinical criteria for diagnosis. Mov.
Disord. 19, 630–640.

422 B.W. Fling et al. / NeuroImage: Clinical 11 (2016) 415–422

http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0195
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0195
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0195
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0200
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0200
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0205
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0205
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0210
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0210
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0210
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0215
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0215
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0220
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0220
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0220
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0225
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0225
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0230
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0230
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0235
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0235
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0240
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0240
http://refhub.elsevier.com/S2213-1582(16)30047-X/rf0240

	University of Nebraska at Omaha
	DigitalCommons@UNO
	3-8-2016

	Associations between mobility, cognition and callosal integrity in people with parkinsonism
	Brett W. Fling
	Marian L. Dale
	Carolin Curtze
	Katrijn Smulders
	John G. Nutt
	See next page for additional authors
	Recommended Citation
	Authors


	Associations between mobility, cognition and callosal integrity in people with parkinsonism
	1. Introduction
	2. Materials and methods
	2.1. Subjects
	2.2. Cognitive assessments
	2.3. Mobility assessments
	2.4. Image acquisition
	2.5. Diffusion tensor imaging analysis
	2.6. Tract based spatial statistics
	2.7. Interhemispheric callosal tractography

	3. Results
	3.1. Clinical characteristics, cognitive and motor performance
	3.2. Diffusion imaging results
	3.3. Callosal tractography
	3.4. Associations between interhemispheric fiber tracts and clinical, cognitive, and mobility measures

	4. Discussion
	5. Conclusions
	Funding
	Conflict of interest statement
	Acknowledgements
	References


