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PATHOGENESIS OF INTRACRANIAL ANEURYSMS 
BRIAN V. NAHED  AND  MURAT GUNEL 
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Introduction: 

Intracranial aneurysms (IA) are a common neurological problem, the rupture of which 

frequently constitutes a catastrophic neurological event. While the pathogenesis is largely 

unknown, it is believed that both genetic and environmental factors work in concert to 

some degree within patients. Our goal was to take a comprehensive approach to 

understanding the pathogenesis of IA by identifying factors leading to the formation, 

growth and rupture of IA.  

 
Methods: 

Since 1994, we have recruited patients and families with IA into the Yale Brain 

Aneurysm Database.  Information regarding aneurysm characteristics (size, location, 

number), patient characteristics (age, medical, and social history), and family history 

were recorded. We analyzed this database for environmental factors associated with 

aneurysmal rupture. Within the same database, we identified and analyzed kindreds with 

a high IA incidence and penetrance using genome-wide linkage analysis. Collaborations 

with other centers provided additional kindreds to analyze and confirm our results. 

 
Results: 

Analysis of our database revealed hypertensive patients with IA ≤ 7mm were 2.6 times 

more likely to rupture (p = .01, 95% CI: 1.21, 5.53) than normotensive patients. Posterior 

circulation aneurysms were 3.5 times more likely to rupture than anterior circulation 

aneurysms (p = .048, 95% CI: 0.95, 19.4). Further, genome-wide linkage analysis 

revealed significant linkage to a single locus, with a lod score of 4.2 at 1p34-36. 

 
Conclusions: 

We identified hypertension, young age, and posterior circulation as significant risk 

factors for rupture among patients with small aneurysms (≤ 7mm). Additionally, we are 

the first to map the gene responsible for IA to chromosome 1p34-26. 

 



 

 

 

TABLE OF CONTENTS 
 

I. Introduction 

a. Clinical Overview   ………………..….……………………….     1  

 

b. Intracranial Aneurysms    ...……………………………………   2 

 

c. Environment   

1. Aneurysm Size   ...………………………………    3 

2. Other Risk Factors   ...………………………....   4 

 

d. Genetics 

1. Familial Aneurysms   ………………………….   5 

2. Candidate Genes     ..…………………………..  7 

3. Genome-Wide Linkage Analysis   ……………   12 

4. Genetics of Complex Disease      ………………  13 

 

II. Specific Aims     …………………………………………………..   13 

 

III. Methods       ………………………………………………………   15 

 

IV. Results         ……………………………………………………….   28 

 

V. Discussion     ………………………………………………………   40 

 

VI. Conclusion    ………………………………………………………  47 

 

VII. Appendix      ………………………………………………………    48 

 

VIII. References    ………………………………………………………   49 

 



1 
 

 

CLINICAL OVERVIEW 

Aneurysmal subarachnoid hemorrhage (SAH) is a serious neurosurgical 

emergency with poor prognosis; approximately 12% of patients die before reaching 

medical attention (1), and 40% die in hospital care (2-4).  Survivors of SAH frequently 

leave the hospital severely disabled requiring a lifetime of care (5, 6). 

Although the majority of intracranial aneurysms (IA) do not rupture, those that do 

account for around 85% of SAH (7).  The incidence of SAH is 6 in 100,000 per year with 

approximately 28,000 ruptures per year. Those individuals who survive the initial bleed 

experience a 40% mortality rate during the first month; 25% of those who live past the 

first month recover completely (8).  

SAH accounts for 3% of all strokes (8), 5% of stroke deaths, and more than one-

quarter of potential life years are lost through stroke (9). Although the 20th century has 

seen great advances in diagnosis, treatment, and prevention of complications of SAH, the 

overall outcome has only modestly improved (10) leaving formidable challenges ahead 

for physicians caring for these patients. 

Given the devastating sequelae of SAH, surgical or endovascular intervention 

prior to rupture is considered to be of paramount importance. Guidelines have been 

established to assist in the decision between treatment and careful monitoring, with the 

goal of prophylactically treating those aneurysms that are likely to rupture. Attempts to 

identify risk factors and the pathophysiology leading to aneurysm formation and rupture 

have been unsuccessful. 

By studying populations in which the etiology of IA is relatively homogeneous 

one can begin to resolve these complexities and reveal the basic mechanisms of 

pathogenesis. 
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INTRACRANIAL ANEURYSMS 

Intracranial aneurysms (IA) are characterized by abnormal localized dilatations 

representing cerebral arterial wall compromise. The origin of the word aneurysm stems 

from the Latin word aneurysma, which means dilatation. IA affect 5 – 10 % of the 

general population (11) and represent a major public health problem. It is estimated that 

2.3% of the population have undetected aneurysms (12), the majority of which will not 

rupture. When they rupture, the morbidity and mortality is devastating with 

approximately half resulting in immediate death.  

Currently there are no reliable screening methods to identify at-risk individuals. 

Therefore, clinicians resort to imaging at-risk individuals (loosely defined as having a 

parent or sibling with IA) using magnetic resonance angiography (MRA) or 

computerized tomography angiography (CTA). Moreover, there are no widely accepted 

guidelines defining high-risk individuals.  

For many years, the decision to operate on an unruptured aneurysm was based 

solely on the size of the aneurysm determined by imaging studies.  One large multi-center 

trial suggested that IA ≥ 10 mm had a risk of rupture of 1% per year (13) with smaller 

aneurysms having a much smaller risk of rupture. However, this initial data conflicted 

with clinical experience in which a significant number of patients present with SAH due 

to aneurysms less than 10 mm in size.  Furthermore, the data contradicted a previously 

published series in which aneurysms <10 mm were at risk of rupture (14). 

Progress in understanding the pathogenesis of IA has been hampered by its multi-

factorial nature. Neither the conditions that lead to aneurysm formation nor rupture are 

well understood. Instead, clinicians are left to speculate on the importance of risk factors 

such as hypertension, smoking, alcohol, low body mass index, drug use and family 
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history when deciding the degree of intervention. Given the large number of familial 

cases and increased incidence with other genetic diseases such as adult polycystic kidney 

disease (ADPKD), the genetic basis of aneurysms has been alluded to but a gene has yet 

to be identified.  

Recent studies suggest that both environmental and genetic factors contribute to 

the pathogenesis of IA. The degree to which each contributes to an individual’s aneurysm 

is likely patient specific. We aim to identify both the genetic mutations and 

environmental factors that work independently and synergistically to form IA. 

 

ENVIRONMENT 

 The literature is rich with association studies linking risk factors with the 

formation and rupture of aneurysms. Guidelines have been established to identify which 

aneurysms should be treated and which need to be watched. Until now, these guidelines 

have been largely based around aneurysm size and location.  

 

Aneurysm Size 

The notion that aneurysm size correlates with rupture risk is as old as aneurysm 

surgery itself. Blood vessel walls are exposed to a combination of hydrostatic pressure 

and shearing stress. It is thought that aneurysm wall stress and eventual rupture is directly 

correlated with aneurysm size. Prior to the 1990s, aneurysms greater than 10 mm were 

considered at high risk for rupture and treated surgically. However, contrary to the 

guidelines, aneurysms < 10 mm did rupture and led to SAH in significant numbers, 

prompting a reevaluation of the guidelines. 
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Recent studies, including the prospective arm of the International Study of 

Unruptured Intracranial Aneurysms (ISUIA), suggest aneurysms < 10 mm in size have 

higher than previously predicted rates of rupture (15).  These studies led to the 

adjustment of clinical guidelines that treatment with either microsurgical or endovascular 

techniques should be considered with aneurysms > 7mm in size (15).  Despite this 

recommendation a significant number of patients present with SAH due to aneurysms ≤ 7 

mm in daily clinical practice.  In addition, several studies have shown the decision to 

treat unruptured aneurysms should not be based on aneurysm size alone (16-20).  

However, the results of these studies are not yet incorporated into the treatment 

guidelines. 

 

Other Risk Factors 

Many studies have attempted to identify risk factors, other than size, that predict 

the formation, growth, and rupture of IA. Factors such as hypertension, atherosclerosis, 

diabetes, and vascular anatomical differences have been implicated in pathogenesis (4, 

21). In addition, social factors such as smoking and diet have also been suggested to play 

a role in the disease (4, 22). Although family history and the above-mentioned modifiable 

risk factors have been suggested to increase the risk of rupture, there is insufficient data 

to support a definitive clinical recommendation for surgical treatment of small 

aneurysms. (23-33)  

A review by Teunissen et al. revealed only hypertension, cigarette smoking, and 

alcohol consumption (greater than 150 g / week) were significant risk factors (34). These 

results were confirmed in a review of five trials (North America, Canada, and Europe) 

which demonstrated cigarette smoking to be a major risk factor (28). 
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While there is evidence for environmental factors contributing to the pathogenesis 

of IAs, they fail to explain the complete picture, especially in young adults. Thus, genetic 

factors, particularly in the younger population, have been suggested to play a crucial role 

in the pathogenesis of aneurysm formation. 

 

GENETICS 

It is now well accepted that genetic risk factors, in addition to environmental risk 

factors, contribute to the formation and / or rupture of cerebral aneurysms. In this section, 

we highlight familial intracranial aneurysms and previous linkage analysis studies. 

 

Familial Aneurysms 

The notion that aneurysms cluster in families was first noticed in identical twins 

during the 1960s. Ullrich and Sugar reported 4 families, each with at least 2 members 

with cerebral aneurysms (35).  This was followed by several case reports of multiple 

familial IA (36-41). 

In 1980, Fox and Ko reported the largest family reported to date of thirteen 

siblings, 6 had proven IA and 5 had normal findings on cerebral angiogram; 2 refused 

angiogram (42). Subsequently, one of the two who refused workup suffered a SAH and 

was found to have 2 aneurysms by angiogram. Interestingly, there was no disease in their 

parents and relatives. Since then, we have ascertained and recruited this family in our 

study (IA 20, figure 3) and found that there are newly affected members in subsequent 

generations. 

In 1993, Ronkainen et al reported a 10% incidence of familial IAs in family 

members of 1,130 patients with proven aneurysmal SAH from east Finland (26).  
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Similarly, Kojima et al. reported a 10% prevalence of IAs in families with positive 

history (43).  Two studies, a prospective and retrospective study, found a three to five 

fold increase in incidence for first degree relatives in comparison to the general 

population (44). 

A study spanning from 1970 to 1989 evaluated the families of patients with 

aneurysmal SAH reporting that 15 of 76 patients (20%) had a first- or second-degree 

relative with aneurysmal SAH (45).  The number of observed first-degree relatives with 

aneurysmal SAH was 11, compared to an expected number of 2.66, giving a relative risk 

of 4.14.  

Nakagawa et al. found a significantly higher incidence of asymptomatic cerebral 

aneurysms among Japanese patients with family history of SAH within the second degree 

of consanguinity versus healthy volunteers (13.9% versus 6%) (46). When combined 

with other risk factors such as hypertension and habitual smoking, these patients were 

found to have the highest incidence. 

Several studies have reported that familial IA behave differently than sporadic IA.  

Familial cases are detected at an earlier age and ruptured at a smaller size when compared 

to sporadic cases (47-51). In fact, 70% of familial IA rupture by the age of 50 versus 43% 

of non-familial aneurysms (47).  Additionally, a study by Leblanc et al. found higher than 

expected concordance of the age at rupture in a prospective study of 30 individuals in 13 

families with multiple affected individuals (52). In the Saguenay-Lac Saint Jean region of 

the Province of Quebec, Canada, Mathieu et al. found that siblings of patients with 

ruptured IA had a greater risk of ruptured IA than the general population (53).  

IA transmission from generation to generation has been difficult to determine. A 

review of the literature covering 238 affected families, by Schievink et al., did not find 
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one pattern of inheritance nor Mendelian model that uniformly applied (44). The most 

commonly affected relatives were siblings.  Twenty-two percent of siblings of male 

probands had an IA compared with 9% of sibs of female probands. Interestingly, 

angiographic screening in 12 families detected IAs in 29% of 51 asymptomatic relatives. 

Although genetic heterogeneity might be present, screening of asymptomatic relatives 

could provide information as to the mode of inheritance. There is significant debate over 

the mode of transmission (two-hit phenomenon, haploinsufficiency, or defective protein 

(dominant negative)). 

 

Candidate Genes 

While several candidate genes have been implicated in the pathogenesis of 

aneurysms, none have led to any significant findings.  These genes range from those 

associated with vascular wall formation to those that are mutated in connective tissue 

disorders. By studying known genetic diseases with high concordance of IA, researchers 

have identified proteins associated with the genetic disease as potentially related to the 

pathogenesis of aneurysms. Diseases such as Adult Polycystic Kidney Disease (MIM 

#173900) (54), Marfan syndrome (MIM #154700) (55), Glucocorticoid Remediable 

Aldosteronism (MIM #103900) (56), and Ehlers-Danlos syndrome type IV (MIM 

#130050) (57), appear to increase the risk of IA formation. This phenomenon prompted 

researchers to study the gene and gene products responsible for the disease with the hopes 

of explaining the increased IA formation. 

Recent advances in genetic disorders and vascular abnormalities have revealed 

several alterations in gene and gene products involved in the remodeling of the 

extracellular matrix (ECM). The dynamic nature of the ECM has been theorized to go 
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awry leading to a weakening of the vasculature ultimately resulting in an aneurysm. 

Supporting this notion, the content and structure of collagen and elastin, the predominant 

elements in aneurysmal walls, is significantly altered. The below mentioned ECM-related 

proteins have been identified in genetic disorders and could be related to IA formation. 

 

Elastin 

In 2001, a genome-wide linkage study of 104 Japanese affected sib-pairs 

identified an area near the elastin gene (ELN) as the best evidence of linkage (58). 

Linkage was found at a total of three sites: 5q22-q31 (maximum lod score (MLS), 2.24), 

7q11 (MLS, 3.22), and 14q22 (MLS, 2.31). None of the fourteen SNPs identified within 

ELN were associated with aneurysms. However, the haplotype between intron-20 / 

intron-23 polymorphism of ELN was strongly associated with intracranial aneurysms [P 

= 3.81 x 10(-6)]. Further, patients who were homozygous for the mutation were at highest 

risk (P = 0.002), with an odds ratio of 4.39. These findings strongly support the body of 

literature implicating the ELN locus in aneurysm genesis, more specifically the locus on 

chromosome 7q11.2.  However, no frank mutation was identified. 

 

Elastase / α1-Antitrypsin  

Elastase is a proteolytic enzyme that degrades elastin, collagen, and other proteins 

within the ECM (59-61). Secreted by polymorphonuclear leukocytes, it is inactivated 

once it binds to α1-antitrypsin forming a serum complex with protease (62, 63). The 

balance between active and inactive elastase has been implicated in aneurysmal 

formation. Tartara et al have suggested that α1-antitrypsin activity is decreased in the 

walls of intracranial aneurysms. (64) Accordingly, elevated levels of elastase are found at 
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the site of intracranial aneurysms. (65) Although controversial, these complimentary 

studies suggest that α1-antitrypsin levels are decreased at the site of aneurysms leading to 

increases in elastase levels. However, two studies contradict these findings demonstrating 

elevated elastase levels in healthy individuals without aneurysms. (66, 67) Debate over 

the importance of this ratio will require further work delineating aneurysmal causes from 

those of normal physiology.  

 

Collagen (I and III) 

Studies have uniformly demonstrated a decrease and alteration in the collagen 

within aneurysmal walls. In particular, a deficiency in type III collagen occurs within 

aneurysm walls. (68-73). Studies have proposed a defect in type III collagen (COL3A1) 

(57, 72). EDS type IV is a connective tissue disorder caused by mutations in the COL3A1 

gene on chromosome 2q31. EDS type IV is characterized by vascular abnormalities 

consisting of increased ruptures, thin transparent skin, and ligament weakness. 

Ostergaard and Oxlund demonstrated 6 of the 14 patients who died from ruptured 

intracranial aneurysms had type III collagen deficiency in the middle cerebral and 

brachial artery postmortem. (71) However, others have suggested that mutations in the 

COL3A1 gene are not a common cause of intracranial aneurysms nor are cervical artery 

dissections. (74) Although collagen constitutes the majority of the ECM, its role in 

aneurysm formation, and it’s ratio to collagen III, remains unclear.  

 

Endoglin 

Endoglin, a component of the transforming growth factor-beta receptor complex 

is highly expressed on endothelial cell surfaces. One study demonstrated an association 
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between intracranial aneurysms and a 6-base insertion polymorphism in intron 7 of the 

endoglin gene in a Japanese population. (75) This region codes for a component of the 

transforming growth factor-ß receptor complex and is also mutated in Hereditary 

Hemorrhagic Telengiectasia 1 (HHT1).  However, two other studies, one on a Caucasian 

population (63) and another on a separate Japanese population (58) failed to replicate this 

result. 

The discrepancy in results from the above-mentioned studies suggests that 

polymorphism sequences are likely influenced by genetic and environmental factors 

which differ according to ethnicity. To prove this point, ethnic related differences are 

reported for polymorphisms and are considered within the norm. While the Krex and 

Onda studies refute the findings of Takenaka’s study, it is possible that endoglin encodes 

multiple proteins, one of which could lead to aneurysm formation. The polymorphisms 

expressed in endoglin represent one of the many reasons genetic testing is complex. 

 

Polycystin 

Autosomal dominant polycystic disease (ADPKD) is characterized by renal cysts, 

renal failure and vascular pathology. Disease results in a mutation in one of two genes, 

PKD 1 and 2, which encode polycystin 1 and 2, respectively. Polycystin participates in 

protein-protein (multiprotein membrane-spanning complex) and protein-carbohydrate 

interactions in the extracellular matrix. As early as 1971, Jankowicz et al. reported an 

increase in incidence of berry aneurysms in patients with ADPKD. While mutations in 

both genes have been linked to intracranial aneurysms, work on PKD 1 has revealed a 

specific mutation in chromosome 16p13.3 exon 15 of PKD 1 in two patients. (76). 

Further, the position (not the type of PKD 1 mutation) influences a patient’s likelihood of 



11 
 

 

developing an aneurysm. Rosetti et al. demonstrated that mutations in the 5’ half of the 

gene was associated with poorer prognosis (77). The prevalence of asymptomatic 

intracranial aneurysms in patients with ADPKD is five times that of the general 

population (54, 78). The average age of aneurysmal rupture is 41, a decade earlier than 

sporadic cases (78-80). One could speculate that the PKD 1 gene either encodes multiple 

proteins or that a mutation in the 5’ end produce a dominant negative. The relationship 

with PKD1 and intracranial aneurysms is rather complex and possibly due to one of the 

multiple proteins encoded by the PKD1 gene. 

 

Fibrillin 

Marfan syndrome, an autosomal dominant disorder of the connective tissue, 

affects the cardiovascular, skeletal and ocular system. It is characterized by 

arachnodactyly, unusual height, pectus abnormalities, enlargement of the aorta and 

possibly aortic aneurysms. The disease is due to a mutation in the gene encoding fibrillin 

(FBN1) located on chromosome 15q21.1. There is debate over the association between 

FBN1 mutation and intracranial aneurysms. A recent study of 25 autopsy cases with 

Marfan syndrome revealed no statistical difference in the prevalence of intracranial 

aneurysm in patients with and without Marfan syndrome. 

There has been no association between FBN 1 mutations and IA, however that is 

not the case for thoracic aortic aneurysms (TAA). Two influential studies have linked 

chromosomes 5q13-q14 and 11q23.2-q24 with aortic and thoracic aneurysms (81, 82). 

The pathogenesis of aortic and thoracic aneurysms is likely similar to that of intracranial 

aneurysms and identification of the gene and gene products of one may divulge a wealth 

of knowledge about the other. Currently, our laboratory is involved in a project studying 
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families with both intracranial and thoracic aortic aneurysms in an effort to identify 

common gene mutations. 

 

Genome-Wide Linkage Analysis 

The discrepancy in results from the above-mentioned studies reveals the 

limitations of candidate gene analyses.  While approaches driven by hypotheses regarding 

disease mechanisms are intuitively attractive, experience has shown repeatedly that 

positional cloning is the most productive method for isolating causative genes when the 

pathophysiology and molecular biology of a disorder is not well elaborated.  For 

example, in other complex disorders such as hypertension, positional cloning approaches 

by our laboratory revealed 19 genes that contribute to human blood pressure homeostasis, 

some defining novel physiological pathways that would have been extremely difficult to 

predict prior to our studies being completed (83).  Importantly, the results of these types 

of analyses serve as the basis for a wide array of hypothesis driven investigations that can 

elaborate the mechanisms by which a particular gene or genes, once identified, contribute 

to a disorder of interest. 

 To date, a number of studies have used linkage approaches to attempt to 

identify loci contributing to IA risk (57, 58, 72, 74, 75, 84-86).  Sib-pair studies in the 

Japanese and Finnish populations and a recent report of a consanguineous Dutch family 

have identified additional candidate intervals (58, 85, 87).  However, only two intervals 

have significant genome-wide linkage and have not been disproven; 19q13.3 in the 

Finnish population (88) and 2p13 in the Dutch family (87).   
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Genetics of Complex Disease 

 Although many diseases have genetic components, relatively few segregate in 

Mendelian fashion with an identifiable single gene. A number of explanations may 

account for this observation. First, the disease may be attributable to inheritance of a 

single gene of incomplete penetrance, in which case only a fraction of recipients of the 

mutant gene may develop the disease.  Second, the disease may be caused by the 

combined effects of multiple factors in individual subjects- these factors may be a 

combination of genetic and environmental exposures, obscuring the effects of inheritance 

of each susceptibility gene.  Until recently, it seemed that the identification of genes for 

these multi-factorial traits was an insurmountable barrier.  However, the ongoing 

revolution in genetic analysis now permits us to identify genes for complex disorders 

such as IA in which there is a likely genetic component in some patients. 

Importantly, the advent of imaging studies have revealed that IA is much more 

common in the general population than had been previously recognized, with estimates of 

the population prevalence ranging up to 10% (11).  With a high prevalence such as this, it 

becomes increasingly likely that, as a general rule, this trait will prove to be of multi-

factorial determination rather than due to inherited variation in a single gene.  The upside 

to this observation, however, is that it is highly likely that one will be able to identify a 

sizable cohort of multiplex families relatively rapidly by ascertaining multiplex families 

through affected index cases.  Moreover, the availability of large pedigrees still provides 

the opportunity to identify the unusual circumstance in which IA is transmitted as a 

consequence of a mutation in a single with major effect. Consistent with these 

observations, since 1994 we have collected nearly 142 families including both large and 

small families in order to give us the power to positionally map the IA gene(s).  
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Large kindreds with high incidence and prevalence of IA are likely due to a single 

gene responsible for the large effect.  Therefore, genome-wide linkage analysis of these 

kindreds will allow one to find the chromosomal position of the disease gene by using 

genetic markers. Confining analysis to a single or a few large families minimizes the 

chance of obscuring linkage due to genetic heterogeneity in which the disease is caused 

by mutation in different genes in different families. The disadvantage is that it is unclear 

whether genes identified in such families will prove to play a role in the general 

population or whether they will be of significance only in rare families.  Further 

complicating things, the ability to collect large extended kindreds may prove to be 

exceptionally difficult due to the lethality of the trait, such that samples from known 

affected subjects are unavailable.  Such analysis is confounded by the uncertain genotype 

of unaffected subjects.  

We plan to use the large extended families we have already collected to identify a 

single gene of major effect using parametric linkage analysis.  Once a locus is identified, 

we propose to confirm the loci by analyzing additional families.   

 

SPECIFIC AIMS 

 The goal of my thesis was to identify the genetic and environmental causes of IA. 

The primary project was to discover the genetic causes of intracranial aneurysms by 

studying the largest-yet-reported kindred with IA. The other large IA families in our 

database were used to help confirm and develop a more thorough understanding of the 

molecular genetics of IA.   

The second stage of the project was to define the environmental risk factors 

related to IA formation. We conducted a retrospective case-control study, to identify the 
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risk factors associated with the rupture of aneurysms ≤ 7 mm in size in a consecutive 

series of patients. We hope to identify patient-specific risk factors that should be 

considered along with IA size in determining rupture risk and treatment decisions. 

 

MATERIAL AND METHODS 

Patient Recruitment 

 Through collaborations with vascular neurosurgeons at a number of domestic and 

international centers, we have established the Yale Brain Aneurysm Database (table 1). 

Study investigators from Yale and / or physicians caring for the patient discussed 

participation in the study with the index patient.  Similarly, relatives were contacted and 

recruited to the study either by the Yale group or the physician of the index case (after 

appropriate HIC / HIPAA consent has been obtained). 

 Both patients with sporadic (< 2 affected members within kindred) and familial 

disease (> 2 affected members within kindred) were enrolled in this database. Since 1994, 

we have screened over 3000 patients with IA and identified 142 multiplex families with a 

total of 345 affected patients.  Twenty-one of these families have more than 4 affected 

members and 4 of them have more than 7 affected members. These families are large 

enough to support linkage independently.  A representation of a number of the large 

families is shown in Figure 1.  While some families fit an autosomal pattern, analysis of 

IA pedigrees show that inheritance of IA is complex. We believe these patients and 

families constitute one of the largest IA databases in the world. 
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Table 1:  List of Collaborators and their respective institutions 
 
 

Medical Center Collaborator 
Beth Israel Medical Center Alejandro Bernstein M.D. 
Columbia University Sander Connolly M.D. 
Harvard - Brigham and Women's Hospital Robert Friedlander M.D. 
Harvard - Brigham and Women's Hospital Dong Kim M.D. 
Harvard – Massachusetts General Hospital Christopher Ogilvy M.D. 
Memorial University,  Newfoundland Canada Falah Maroun M.D. 
Northwestern University Hunt Batjer M.D. 
Northwestern University Issam Awad M.D. 
St. Louis University Saleem Abdulrauf M.D. 
Stanford University Gary Steinberg M.D. 
Istanbul University, Turkey  Necemettin Pamir M.D. 
Istanbul University, Turkey Mehmet Kaynar M.D. 
University of Pittsburgh Daniel Wecht M.D. 
Yale University Arun Amar M.D. 

 

Patient Questionnaire 

 The first approach to identification of multiplex families was via questionnaire 

administered to IA patients (see appendix). This approach was simple, rapid, and selected 

for more severely affected subjects by virtue of the severity of disease presenting to 

medical attention.  This questionnaire includes questions regarding the patient’s current 

health, past medical and surgical history, medications, allergies, and family history of IA, 

stroke, and cerebral hemorrhage. In addition, participants were specifically asked about 

histories of known causes of aneurysm or cerebral hemorrhage, i.e., diagnoses such as 

Ehlers-Danlos, Polycystic Kidney Disease, and GRA.  Data regarding the patient’s 

history was obtained either directly from the patient or through participating physicians.     

 The questionnaire was completed either with supervision from study personnel or 

by direct mailing to study participants for completion at home. Follow-up phone calls 

helped ensure complete data capture.  Previous protocols reveal a greater than 90% 

response rate, and our protocol had similar response rates. Patients were often aware of 

relatives with diagnoses or treatment for aneurysm or who have suffered a SAH.  
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Relatives identified with history of aneurysm or SAH were directly contacted by study 

personnel to obtain medical records to either confirm or exclude the diagnosis.  

 Once relatives are identified, we expanded the pedigree to include all distant 

relatives in order to identify the total number of living affected members and determine 

at-risk siblings and children.  Individuals with unknown phenotype were imaged using 

MRA or CTA.  Finding a family with high prevalence of disease increased the likelihood 

that a single gene accounts for most or all of the risk of aneurysm development. 

 

Phenotype Assignment 

  Phenotype was ascertained through MRI/A, CTA or cerebral angiography. 

Families with at least one additional affected individual (total of two affected) were 

selected for study.  Medical records of relatives helped determine affection status. Those 

with unknown phenotype were screened by using non-invasive tests such as MRA or 

CTA (which was indicated clinically).  In cases where the diagnostic imaging studies 

were performed at outside institutions, we obtained official radiological reports of 

diagnostic studies. Relatives were classified as affected if presence of IA during these 

imaging techniques.  Unaffected relatives <30 years old were classified as phenotype 

unknown.  All phenotypes were assigned prospectively by Dr. Gunel.  

 Screening of family members with more than 2 affected is indicated clinically 

(89-93) and has been funded by insurance companies.  Despite the consensus within the 

neurosurgical community regarding scanning of these at-risk individuals, funding of the 

imaging tests is often a potential problem with the insurance companies.  In a number of 

occasions when we encountered this problem, one-to-one discussion with the insurance 

companies was necessary in order to gain approval to scan the at-risk individuals.   
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Figure 1: 

Representation of several of the large kindreds with intracranial aneurysms in the Yale Brain Aneurysm 

Database. Affected and unaffected individuals are shown as blackened and nonblackened symbols, 

respectively. Obligate carriers are shown as partially blackened symbols.  
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Record Review  

In order to identify eligible patients with SAH, we initially conducted a 

retrospective chart review on 336 patients presenting with any type of intracranial bleed 

from January 2001 to 2004 to the Yale Brain Aneurysm and AVM Center.  Of the 336 

charts reviewed, 100 eligible patients with SAH due to IA ≤ 7mm were identified. 

Subjects with SAH due to aneurysms > 7mm (n = 52) were excluded from the study, as 

were SAH without documented IA on angiogram (n = 26), intracerebral hemorrhage (n = 

97), subdural hemorrhage (n = 40), or bleeding due to trauma (n = 21).  This was the only 

SAH for any of the patients in the ruptured group.  Furthermore, no pre-hemorrhage data 

was available for many of the ruptured patients and this was excluded from the data 

series.  Control subjects were referred due to a variety of reasons ranging from trauma, 

family history, or workup for headaches.  Patients with unruptured aneurysms, but a prior 

history of subarachnoid hemorrhage were excluded from the control group. 

Aneurysm size was obtained from conventional angiography or 3D computerized 

angiography (CTA).  Clinical data, past medical history, and other data were obtained 

from clinic, hospital charts, and radiological reports.  We contacted patients directly in 

the event of incomplete medical record data. In two cases of deceased patients, we 

obtained information from the patient’s next of kin and confirmed these results with the 

patient’s primary care physician.  All aneurysms were berry aneurysms of the circle of 

Willis vessels.  Dissecting aneurysms were excluded from the analysis. 

 

Clinical Definitions 

Patients were coded with hypertension or hypercholesterolemia if either diagnosis 

was present in the clinical chart prior to admission or clinic visit. Hypertension and/or 
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hypercholesterolemia were identified by the patients’ primary care physicians prior to 

hospital admission or presentation to clinic.  Information regarding smoking, alcohol and 

cocaine use, and family history (intracranial aneurysms hypertension, and abdominal 

aortic aneurysms) was obtained from charts. Age at presentation was defined as the 

patient’s age upon admission, clinic visit, or diagnosis of unruptured aneurysm. 

Aneurysm location was classified as anterior circulation (anterior cerebral, 

anterior communicating, internal carotid, middle cerebral, ophthalmic, para-ophthalmic, 

and posterior communicating artery) or posterior circulation (basilar, posterior inferior 

cerebellar, and posterior / superior cerebellar artery) according to anatomical convention. 

 

Statistical Methods 

Using the Fisher exact test for categorical variables and Spearman’s correlation 

coefficient for ordinal variables, we performed univariate comparisons between putative 

predictor variables and the outcome of aneurysmal rupture.  Age was analyzed as an 

ordinal and dichotomous variable comparing patients younger than 50 years of age to 

those older than 50.  A two-tailed p value < 0.05 was chosen as the threshold for 

statistical significance.  All variables with a p value of 0.2 or lower were entered into a 

multivariable logistic regression model.  Adjusted odds ratios were reported based on the 

results of logistic regression analysis.  Model fit was assessed by standard methods, 

including residual diagnostics and Hosmer-Lemeshow goodness-of-fit testing.  Model 

performance was assessed by the Nagelkerke R2 estimate and computed prediction errors. 

All statistical analyses were done using SPSS 12.0 (SPSS, Inc, Chicago, IL). 

 

 



21 
 

 

Meta-Analysis 

Under the guidance and expertise of Dr. Tom Morgan, we sought to aggregate all 

previously published data to improve the precision of our estimates in defining the impact 

of risk factors leading to rupture of IA ≤ 7 mm. To accomplish this, we used methods 

previously described for meta-analysis of case-control data  (94) We performed a 

comprehensive literature review by searching PubMed and Medline using various 

combinations of the following keywords: "subarachnoid hemorrhage", "intracranial 

aneurysms", "unruptured", "ruptured", and "risk factors".  In addition, we manually 

searched the bibliographies of existing reports to identify citations not included in 

Medline.  Using previously established guidelines we systematically reviewed these 

articles (95) Our inclusion criteria were: prospective or retrospective study; must contain 

comparison of ruptured vs. unruptured ICA; risk factor data must be reported by 

subcategory of aneurysm size (up to 10 mm accepted as cut-off for subgroup analysis); 

and populations must be comparable in terms of age and co-morbidity.   

 

Preparation of Human Genomic DNA  

 A 20 ml sample of venous blood was collected in acid citrate-dextrose tubes from 

each adult subject and shipped to Yale at room temperature via overnight courier.  For 

pediatric subjects, no more than 10 ml/30 kg of body weight was collected.  DNA was 

prepared by isolation of nuclei followed by proteinase K - SDS lysis and subsequent 

phenol and chloroform extractions, after which the DNA was precipitated with ethanol 

and resuspended in 10 mM Tris, pH 8.0, 0.1 mM EDTA.  For samples that had been 

previously frozen, the yield of intact nuclei was very low, and we consequently modified 

the method to perform direct lysis of whole blood using high concentrations of proteinase 
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K, following which the protocol followed as above.  This approach was inexpensive and 

had a long standing history of producing good yields.  We have used this protocol for 

over 10 years and have had no problems with PCR amplification, restriction 

endonuclease digestion, cloning, or long-term stability of samples.   

 DNA isolation was performed in a dedicated room to prevent potential 

contamination of the laboratory environment with genomic DNA.  Yield averages 

approximately 1 mg DNA, and was less than 200 ug in only 2% of samples.  Because we 

use 50 ng DNA per PCR reaction, we could genotype 400 markers with only 20 ug DNA, 

leaving large quantities of each sample for subsequent analysis as needed.  The optical 

density at A260 and A280 is read to determine the concentration of each sample, and is 

>1.8 in 98% of samples prepared from fresh blood and 85% of samples prepared from 

frozen specimens.  Primary isolates were stored in eppendorf tubes at –70oC.  Access to 

these samples was restricted to the DNA database manager.  When samples were used, a 

master stock of samples were aliquoted at a concentration of 100 ug/ml in 96-well plates 

and working stock dilutions were prepared from this master stock, and these stocks were 

maintained by individual investigators. 

 

SNP Genotyping   

GeneChip genotyping was performed by and in collaboration with the Keck 

Affymetrix GeneChip Center under the expertise of Shrikant Mane Ph.D. We used a two-

stage design in linkage analysis (96).   We first genotyped all available affected 

individuals (n=6) using an early access version of the Affymetrix 10K GeneChips 

containing 10,044 SNP markers (Affymetrix: Santa Clara, CA) .  The median intermarker 

distance with this approach was 105 kb, and the mean heterozygosity of markers was 
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0.39. The SNPs genotyped on these chips provide an estimated information content 

equivalent to a microsatellite screen density of one marker per 1 - 2.5 cM (97). SNP 

genotypes are obtained by following the Affymetrix protocol for the GeneChip Mapping 

10K Xba Array. Briefly, 250 ng of genomic DNA was digested per sample with the 

restriction endonuclease XbaI for 2.5 h. Digested DNA was mixed with Xba adapters and 

ligated using T4 DNA ligase for 2.5 h.  Ligated DNA was added to four separate PCRs, 

cycled, pooled, and purified to remove unincorporated ddNTPs.  The purified PCR 

products are then fragmented and labeled with biotin-ddATP.  Biotin-labeled DNA 

fragments are hybridized to the mapping 10K array 130 chips for 18 h in a standard 

Affymetrix 640 hybridization oven. After hybridization, arrays were washed, stained, and 

scanned using an Affymetrix Fluidics Station F400 with images obtained by use of the 

Affymetrix GeneArray scanner 2500. Affymetrix MicroArray Suite 5.0 software was 

used to obtain raw microarray feature intensities (raw allele scores (98)). Using 

Affymetrix Genotyping Tools software package we derived the SNP genotypes. 

 

Genechip Data Analysis 

 Using the Genome Analysis Programs provided by Affymetrix, we analyzed 

Genechip data.  We created a UNIX based program (Chunky) that parses the data sheet 

into individual files per chromosome in linkage format by generating a data sheet with 

the following information: chromosome number, SNP markers, Decode Map Distances, 

Genotype Calls, and Allele Frequencies (provided by NetAffymetrix).  

We used multipoint linkage analysis assuming autosomal dominant inheritance 

and assign either a 70, 90, or 99% penetrance. Analysis will be done using the Allegro 

program (DeCode Genetics, Iceland). Allele frequencies for the GeneChips SNPs will be 
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obtained from Affymetrix (http://www.laboratorytalk.com/news/aff/aff101.html). 

However, since a number of our pedigrees had a mixture of different ethnic groups, the 

allele frequencies provided by Affymetrix which was based on 54 individuals, may not 

have been suitable for the study population. Therefore, we also examined the robustness 

of linkage analysis using alternative approaches to specifying allele frequencies. 

The 10K Genechips provided enough power to identify broad structures in the 

sample using statistical methods (e.g. the STRUCTURE program developed by Dr. 

Pritchard and colleagues).  In this analysis, unrelated individuals from each family were 

used to infer population structure.  This allowed us to group families into more 

homogeneous groups.  Then based on the inferred groups, we considered three 

approaches for allele frequency specification.  First, for groups with a large number of 

families, we collected data to infer allele frequencies based on unrelated individuals in 

these families.  Second, as these large groups likely corresponded to populations with 

known allele frequencies, e.g. European Americans, and allele frequencies from such 

populations may be available in the public domain (e.g. Affymetrix and the international 

HapMap project), we used population data to investigate the robustness of linkage 

analysis results.  These different approaches ensured that our report of linkage had 

enough confidence that they were not due to allele frequency misspecifications. The map 

order and distances between SNP markers are based on the latest build of the UCSC 

Genome Browser (May 2004, genome.ucsc.edu). 

We confirmed the results of the Allegro program by using GENEHUNTER.  

Since GENEHUNTER can only handle 50 markers at most, we created a Unix based perl 

script that finds 50 markers within the maximum lod score interval. This program also 
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generates pedigree and data file to be fed into the GENEHUNTER program.  Previous 

runs have shown consistent results between Allegro and GENEHUNTER programs. 

Establishment of proper threshold for statistical significance is crucial for linkage 

association studies.  In general, LOD scores of 3.3 are accepted as significant for 

parametric linkage studies, while for non-parametric tests threshold values p = 2-5×10-5 

or LOD >3.7 are necessary to declare significance (99, 100). Loci were also examined 

under models of locus heterogeneity, using 3.3 as threshold for significance (101).  For 

Mendelian traits segregating in many independent families, if linkage under models of 

locus homogeneity were not apparent after exhausting potentially linked intervals, we 

then performed analysis allowing for locus heterogeneity (101).  If a locus was identified, 

multilocus analysis was performed to search for additional loci that explained disease in 

remaining kindreds (102, 103).  We used the suggested threshold point-wise p-value of 

0.01 which corresponded approximately to a LOD score of 1.5 (99). These guidelines are 

generally accepted for genome-wide significance levels for linkage studies. (99, 100). 

 

Confirmation of Linkage Using Microsatellite Short Tandem Repeat (STR) Markers:   

The above-mentioned approach provides suggestive genomic regions with lod 

scores close to the theoretical maximum lod score. Microsatellite short tandem repeat 

(STR) markers were identified within these regions using the physical map data from the 

UCSC Genome Browser (May 2004, genome.ucsc.edu). These were genotyped for 

further mapping using all available members of a particular family, affected and 

unaffected.  This strategy has been often referred as a two-stage design in linkage 

analysis (104). The theoretical properties of this strategy have been explored by 

researchers and some software provided guidance on the application of this strategy (e.g. 
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DESPAIR in SAGE).  We followed these established principles in the selection of 

promising regions to follow up using microsatellite markers. All genotyping for 

microsatellite analysis were performed by polymerase chain reaction, with detection of 

fluorescent products on an ABI 3700 sequencer from Applied Biosystems equipped with 

Genescan and Genotyper software (ABI, Norwalk, CT).   

PCR reactions were performed in 96-well plates using MJ Research DNA Engine 

Tetrad thermal cyclers, using 50 ng DNA as template in a 10 uL reaction (MJ Research: 

Waltham, MA).  The reaction mixture contains 1 uL 10X buffer, 1.25 nmole of each 

dNTP, 50 pmole of each primer.  PCR conditions involve denaturing for 30 sec at 95oC, 

annealing at specified temperature for 30 sec, elongation for 45 sec at 72oC, for 35 cycles.  

 

Electrophoresis 

 Genotyping and electrophoresis were performed in collaboration with the Keck 

Laboratory at Yale.  Keck DNA Sequencing Resource provided high volume DNA 96- or 

384-well plate genotyping under its DNA Sequencing Resource.  During 2002, the DNA 

Sequencing Resource completed 164,910 services for 286 Yale and 102 non-Yale 

investigators at 52 different institutions.  Detailed information regarding this service is 

available at: http://info.med.yale.edu/wmkeck/dnaseq.  Sequence turnaround time is 

typically two to three days for all services offered.   

Advantages of the ABI 3700 include automated sample loading, shortened run 

times, and elimination of gel pouring and lane tracking.  One uL of pooled sample were 

mixed with 2.0 uL formamide, 1 uL ROX labeled size standard and 1 uL of loading 

buffer and denatured for 3 minutes.  In brief, 96–well plates containing these denatured 
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PCR mixtures were loaded on the sequencer which automatically transfers and injects 

individual samples into 96 glass capillaries filled with a stationary polymer.  

After electrophoresis through the capillary tubes, the samples were ejected into a 

transparent cuvette, which were scanned by a laser beam that detects fluorescence.  The 

ABI 3700 capillary sequencer cannot distinguish between TET and 6-FAM labeled PCR 

products.  To avert this problem, a novel dye, NED, has been developed by Perkin-Elmer 

to replace TET in ABI 3700 runs.  We converted the TET labeled primers (N=139) used 

for the ABI 377 to the NED label.  In addition, ROX-labeled size standards were used 

instead of TAMRA labels. Genotypes are obtained with the ABI 3700 (Perkin Elmer, 

CA) DNA sequencers using the compatible Genescan and Genotyper software programs.   

Once the data was read, it was processed and stored as a sample file in the 

instrument database and displayed as an electropherogram.  The sample files were 

imported into the Genescan analysis software (Version 3.5 NT) and run on a PC 

compatible computer with the Windows NT operating system.  Sample sizes were 

calibrated using the Genescan 500 ROX standard.  After analysis with the size standard, 

the samples files were imported into the Genotyper software (Version 3.5) for 

determination of genotypes.  Allele sizes were determined by an investigator blinded to 

patient characteristics.  The allele size data were exported into a data sheet and converted 

to allele numbers and associated with patient identification numbers and phenotypic 

status for analysis of linkage.   

 

Data Management and Storage 

All GeneChip data was stored in Sun Sparc workstations and all microsatellite 

STR genotyping data was stored in the Cyrillic program.  These files were backed up on 
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CD-ROM and UNIX-based linkage input and output were backed up on high capacity 

tape drives.  ABI files containing sequence runs which were typically 25-28 MB in size 

were achieved by backup to CD-ROM discs that were stored in the laboratory. 

 

RESULTS 

Hypertension  

SAH secondary to IA ≤ 7 mm occurred in 76.5% of patients with pre-existing 

hypertension, whereas only 55.9% of people with normal blood pressure experienced IA 

rupture. In the univariate analysis, hypertension was a significant risk factor for IA ≤ 7 

mm rupture with odds for rupture of 2.58 (p value = 0.01). 

  

Aneurysm Location  

Although the majority of aneurysms were in the anterior circulation, rupture rates 

differed greatly according to aneurysm location. Within the unruptured group, carotid 

(n=15), MCA (n = 13) and ACoA (n = 8) IAs were the most common. Among the SAH 

group, ACoA (n = 26), PCoA (n = 26), and MCA (n = 19) were the most common 

locations of IAs. Eighteen of the 21 (85.7%) aneurysms located in the posterior 

circulation ruptured, whereas 82 of the 130 (63.1%) anterior circulation IAs ruptured.  

Posterior circulation conferred increased risk for IA rupture, OR = 3.51 (p < 0.05). 

 

Age of Presentation 

The median age of patients in our sample was 52. We chose to dichotomize at 50 

years old as this is a clinically useful cutoff point where surgical morbidity and mortality 

increases (morbidity 5.6% at 1 year for patients < 50 years old). (15) There was no 
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significant correlation between age and rupture in the univariate analysis (Spearman’s rho 

= -0.11; p = 0.17). However, the adjusted multivariate analysis showed a risk increase of 

2.6% (p = 0.07) with each one-year decrease in age. 

 

Table 2:  Clinical variables and risk of cerebral aneurysmal rupture 
 

Variable Value 

Proportion 
with IA 

rupture (%) 
 

Unadjusted OR 
(95% CI) 

Fisher exact 
p value 

Age < 50 years 49/69 (71.0) 1.49 (0.71, 3.13) 0.30 
 ≥ 50 years 51/82 (62.2)  

 
 

Sex Female  81/123 (65.9) 0.91 (0.35, 2.37) 1.00 
 Male  19/28 (67.9)  

 
 

IA size 5-7 mm  50/73 (68.5) 1.22 (0.59, 2.53)  0.61 
 1-4 mm 50/78 (64.1)  

 
 

IA number 2+ 23/37 (62.2) 0.79 (0.34, 1.83) 0.55 
 1 77/114 (67.5)  

 
 

IA location Posterior  18/21 (85.7) 3.51 (0.95, 19.4) 0.05 
 Anterior 82/130 (63.1)  

 
 

Hypertension* Yes 62/81 (76.5) 2.58 (1.21, 5.53) 0.01 
 No 38/68 (55.9)  

 
 

Hypercholesterolemia* Yes 27/40 (67.5) 0.74 (0.30, 1.86) 0.52 
 No 56/76 (73.7)  

 
 

Smoking* Yes 59/83 (71.1) 1.26 (0.56, 2.83) 0.57 
 No 35/53 (66.0)  

 
 

Cocaine use* Yes 5/7 (71.4) 1.08 (0.16,12.3) 1.00 
 No 44/63 (69.8)  

 
 

Family history IA* No  77/111 (69.4) 1.51 (0.60, 3.75) 0.38 
 Yes 18/30 (60.0)  

 
 

Family history HTN* Yes 23/31 (74.2) 1.52 (0.58, 4.10) 0.40 
 No 72/110 (65.5)  

 
 

Family history AAA* Yes 3/3 (100) Undefined 0.55 
 No 92/138 (66.7)   

      * Differences in denominators reflect incomplete or missing data in some chart reviews.  
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Aneurysm Size 

Of the 336 patients with intracranial hemorrhage in this study, 152 had SAH due 

to an aneurysm; 100 (65.7 %) of these were found to have an aneurysm < 7 mm in size.  

As shown in Table 2, aneurysm size ranged from 1 to 7 mm. The median size in the 

rupture group was 5 mm; 74 patients had aneurysms of 5 mm and greater, while 78 

patients had aneurysms between 1 and 5 mm. Size was not an independent risk factor for 

IA rupture under 7 mm (unadjusted OR = 1.22; p value = 0.61).  The correlation between 

aneurysm size and rupture was not statistically significant (Spearman’s rho = 0.10; p = 

0.22).  Figure 2 presents the respective distributions of ruptured and unruptured 

aneurysms by size in millimeters, showing no impact of size on risk of rupture.    

 
Figure 2: 

Frequency of subarachnoid hemorrhage (SAH) in patients with intracranial aneurysms (IA) by IA size. 
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Sex, Hypercholesterolemia, Smoking, and Cocaine Use  

Similar to previous studies, more females (n = 123) than males (n = 28) presented 

with IA. However, there was no statistically significant relationship between sex and risk 

of rupture (p = 1.00). Additionally, neither hypercholesterolemia (p = 0.52) nor smoking 

(p = 0.57) were associated with rupture. Cocaine use was also not statistically significant 

(p = 1.00), although lack of data in many charts limits the interpretation of this finding. 

 

Logistic Regression Analysis 

There was a statistically significant association between hypertension and the risk 

of IA rupture (p = 0.01).  In addition, there was an increased risk of IA rupture with 

posterior location (p = 0.048).  There was an insignificant inverse correlation between 

age and risk of rupture (Spearman’s rho = -0.11; p = 0.17).  No other variable was 

associated with IA rupture at the p ≤ 0.2 level.  Thus, we entered age, hypertension, and 

aneurysm location into a logistic regression model.  Inclusion of these three variables 

explained 14% of the variance in outcome (Nagelkerke R2 = 0.14).  The multivariable 

model performed better for predicting rupture (89% correct) than non-rupture (24.5% 

correct).  Overall, the model's predictive accuracy was 67.8%.  

Hypertension was an independent risk factor for IA rupture, with an adjusted odds 

ratio (95% CI) of 3.05 (1.33, 6.25), and p value = 0.004.  Likewise, posterior aneurysmal 

location conferred increased risk for IA rupture, OR = 5.35 (1.15, 25.0), p = 0.03.  With 

each one-year decrease in age, the risk of IA rupture in this sample increased by 2.6% 

(OR = 1.03, 95% CI 1.00, 1.07; p value 0.07).  

 

Meta- Analysis and Literature Review 

A thorough review of literature identified 25 studies that reported risk factors for 

SAH. However, none met our inclusion criteria nor were suitable to add or compare to 
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our own data (Table 3).  The identified studies were excluded due to violation of one of 

two criteria; (1) study did not contain comparison of rupture vs. non-rupture of IA; or (2) 

study did not report risk factor data by subcategory of aneurysm size (up to 10 mm 

accepted as cut-off for subgroup analysis) in both cases and controls. 

 
Table 3:  Literature review results of 25 studies comparing SAH and risk factors 

 
Author Citation Type of Study Exclusion criteria* 

 
De La Monte et al. 

 
Am J Med 78, 957-64 (1985) 

 
Retrospective (autopsy) 

 
2 

Asari et al. Clin Neurol Neurosurg 95, 205-14 (1993) Prospective 2 

Juvela et al. Stroke 24, 639-46 (1993) Prospective 2 

Ujiee et al. Stroke 24, 1850-6 (1993) Retrospective 2 

Rosenorn et al. Br J Neurosurg 8, 73-8 (1994) Prospective 1 

Mizoi et al. Surg Neurol 44, 114-20 Prospective 2 

Taylor et al. J Neurosurg 83, 812-9 (1995) Prospective 2 

Qureshi et al. Neurosugery 43, 22-6 Retrospective 1 

Menghini et al. Neurology 51, 405-11 Prospective / Retrospective 2 

Juvela et al. J Neurosurg 92, 390-400 (2000) Prospective 1 

Juvela et al. Stroke 31, 392-7 (2000) Prospective 1 

Juvela et al. J Neurosurg 93, 379-87 (2000) Prospective 2 

Nanda et al. Neurosurgery 46, 1063-7  Retrospective 1 

Qureshi et al. Neurosurgery 46, 44-50 (2000) Prospective 1 

Roos et al. Neurology 54, 2334-6 (2000) Prospective 1 

Ellamushi et al. J Neurosurg 94, 728-32 (2001) Retrospective 1 

Forget et al. Neurosurgery 49, 1322-5 Retrospective 1 

Isaksen et al. J Neurol Neurosurg Psych 73, 185-7 (2002) Retrospective 1 

Weir et al. J Neurosurg 96, 64-70 (2002) Retrospective 2 

Winn et al. J Neurosurg 96, 43-9 (2002) Retrospective 1 

Juvela et al. Stroke 34, 1852-7 (2003) Prospective 2 

Matsumoto et al. Surg Neurol 60, 516-22 Prospective 1 

Ogilvy et al. Neurosurgery 52, 82-7 Prospective 1 

Wiebers et al. Lancet 362, 103-10 (2003) Prospective / Retrospective 2 

Ohashi et al. Surg Neurol 61, 239-45 (2004) Retrospective 1 

 
Exclusion criteria:  (1)  Study did not compare rupture vs. no rupture of IA   
                                  (2)  Study did not report risk factor data as a subcategory of aneurysm size. 
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Figure 3: 

IA 20 kindred. Affected and unaffected individuals are shown as filled and unfilled symbols, respectively. 
Individuals I-2, II-5, and IV-1 were assigned affection status unknown prior to linkage analysis and as such 
are depicted with grey symbols. The genotypes of STR marker loci spanning 14 cM at 1p35-36 are shown 
and segments of the haplotype linked to the disease phenotype are enclosed in a box.  

 
IA 20 Phenotype 

We focused our efforts on the IA 20 family (fig. 3), because it has the largest 

number of affecteds within our database and is also has the largest number of affecteds 

within a family reported in the literature (42).  When first described, the IA family had 

six members with proven IA, all in generation II.  The pedigree has since been extended 

and further characterized.  In total, there are now 10 documented IAs, one subject with 

distinctive multiple intracranial vessel occlusions and extensive collateral vessel 

formation of unknown etiology (subject III-3), and one subject with abdominal aortic 

aneurysm (AAA) at a young age (age 32; individual II-5); this latter trait is sometimes 

associated with IA (105).  For the purpose of linkage analysis, the documented IAs and 
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the patient with multiple intracranial vascular occlusions were classified as affected and 

the one with AAA was prospectively classified as phenotype unknown.   

There are also 12 unaffected descendents of subject I-2. Of these, eight were 

asymptomatic over age 30 and had negative screening MRI or angiography (individuals 

II-3, II-6, II-11, II-14, III-1, III-2, III-8, IV-2); three offspring of unaffected subjects were 

asymptomatic over age 30 and did not have screening studies (individuals III-4, III-9, III-

10); one was asymptomatic under age 30 without screening studies (individual IV-1).  

For linkage studies, this latter subject was classified as phenotype unknown, and the 

others were classified as unaffected.    

 
Table 4:  Clinical data of IA 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
* SAH: subarachnoid hemorrhage;  
ACA: anterior cerebral, ACoA: anterior 
communicating, ICA: internal carotid,  
MCA: middle cerebral, OphtA: ophthalmic arteries. 

 

 

Clinical features of affected members are presented in Table 4.  Age of diagnosis 

of IA ranged from 21 to 53 years by MRA or angiography prior to SAH (n = 7), and from 

ages 29 to 57 for patients presenting with SAH (n = 4).  There are scant risk factors for 

IA among kindred members; specifically, there is a history of hypertension in only one 

AFFECTED 

ID Aneurysm Location * 
Age of 
Onset 

II-2 ACoA 38 
II-7 ACA, Lt MCA 53 
II-9 ACoA 40 

II-15 Lt MCA 29 
II-16 Lt MCA (SAH) 32 
II-17 OphtA (SAH) 57 
II-18 Rt MCA, ACoA (SAH) 32 
II-19 Lt ICA (SAH) 29 
III-3 Bilateral MCA occlusion 30 
III-7 Lt MCA 36 
IV-3 Basilar, Rt MCA X 2 21 

UNAFFECTED 

ID Study 

II-3 Normal Angiogram 
II-6 Normal Angiogram 
II-11 Normal Angiogram 

II-14 Normal Angiogram 
III-1 Normal Angiogram, MRA 
III-2 Normal MRI, MRA 
III-4 No study 
III-8 Normal Angiogram 
III-9 No study 
III-10 No study 

IV-2 Normal MRI

UNKNOWN 

ID Study 

II-5 Normal Cerebral Angiogram-AAA 
IV-1 No study 
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individual and while smoking was prevalent among both affected and unaffected family 

members, there was no significant difference between the two groups (8 of 10 affected 

and 10 of 12 unaffected).  Specifically, there is no history of polycystic kidney disease 

(no history of end stage renal disease, and no serum creatnine level > 1.5 mg/dl); no 

history of Marfan syndrome (no history of aortic dissection, ectopia lentis, etc.); no 

history of Ehlers Danlos (no history of hypermobile joints, hyperextensible skin, or easy 

scarring). Finally, in neither the affected only nor the affected plus unaffected genome-

wide linkage analysis (see below) was there evidence of linkage to known loci for any of 

these syndromes. Members of both genders are affected, the trait is present in consecutive 

generations, all affected members are the offspring of either known or suspected IA 

cases, and approximately half the offspring of such subjects have IA (fig. 2).  These 

findings are consistent with autosomal dominant transmission of IA with high penetrance. 

 

Linkage Analysis 

An average of 9468 genotypes was scored per subject (SNP call rate range: 91% – 

97%). To analyze the Genechip data for linkage we created a UNIX based program 

(Chunky) that parses the data sheet into individual files per chromosome in linkage 

format.  Information captured includes chromosome number, SNP markers, map 

distances, genotype calls, and allele frequencies. 

We used multipoint analysis of linkage, we specified the disease locus as 

autosomal dominant, with penetrance that varied from 70% to 99%, a mutant disease-

gene frequency of 0.001, and a phenocopy rate of 0.001. SNP allele-frequency data for 

the white population, as supplied by Affymetrix, were used for the analysis of linkage, 

which was performed using the Allegro program (de-CODE). This analysis identified  
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Figure 4: 

Analysis of linkage in IA 20 from GeneChip data of affected individuals only. Linkage graphs for all 

chromosomes are shown:  x-axis corresponds to genetic distance (cM) and y-axis shows lod score. 
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Figure 4   continued: 

Analysis of linkage in IA 20 from GeneChip data of affected individuals only. Linkage graphs for all 

chromosomes are shown:  x-axis corresponds to genetic distance (cM) and y-axis shows lod score. 
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three intervals with LOD scores near the theoretical maximum of 1.8 (1p34.3-p36.13, 

1q31-q41, and 2p11-p14), with LOD scores of approximately 0 for nearly all of the 

remainder of the genome (fig. 4).  

The LOD scores were confirmed using the GENEHUNTER program. In an 

additional analysis, we specified the trait locus as X-linked dominant, with otherwise 

similar estimates of the trait locus; no interval on the X chromosome achieved a LOD 

score 1_0.2. Additional genotyping with GeneChip of four unaffected individuals yielded 

only these same three intervals with LOD scores of 1.0. Changing the phenocopy rate had 

small effects on the LOD scores and did not identify additional candidate intervals. 

 
 
Table 5: Maximum lod scores for linkage of STRs and IA with varying penetrances 

 
 Interval   Penetrance   

  70%     90% 99% 
1p35 – 1p36 3.4      3.9 4.2 
1q31 – 1q41 1.3            -0.1 -5.6 
2p11 – 2p14 -0.3    -2.3 -6.6 

 
Maximum lod scores are reported for 1p35 – 1p36, 1q31 – 1q41, and 2p11 – 2p14 using STR markers in all family 
members with varying estimates of penetrance. 

 

 

Using data from the University of California–Santa Cruz (UCSC) Genome 

Browser (May 2004) (UCSC Genome Bioinformatics Web site), we identified and 

genotyped from five to nine highly polymorphic di- and tetranucleotide microsatellite 

markers across each of the three candidate intervals in all available kindred members. 

Genotyping for microsatellite analysis was per- n p 23 formed by PCR, with detection of 

fluorescent products on an ABI 3700 sequencer (Applied Biosystems) equipped with 

GeneScan and Genotyper software (Applied Biosystems). The results were analyzed 

using the Simwalk program (we specified marker heterozygosities of 75% and the same 
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autosomal dominant model of the trait locus used above, with penetrance of 70%–99%). 

Our analysis diminished the evidence of linkage to 1q31-q41 and 2p11-p14 (table 5). In 

contrast, it demonstrated that all affected members inherit the same haplotype at 1p34.3-

p36.13; this haplotype was transmitted to none of the unaffected members (fig. 3). 

Parametric linkage analysis (with 99% penetrance specified) yielded a maximum 

LOD score of 4.2 at 1p34.3-p36.13 (table 5 and fig. 5); changing estimates of marker 

allele frequencies had negligible effects on the LOD score. The likelihood of linkage to 

1p34.3-p36.13 was nearly 1,000-fold more likely than the next-most-likely interval at 

1q31-q41 (table 5). The LOD score peak occurs at UT646; the LOD-1 interval is flanked 

by loci D1S199 and D1S496 (fig. 5), which define a 12.5-cM interval that corresponds to 

a 15-Mb segment (from 19.3 million bp to 34.9 million bp). This is the same interval 

defined by the GeneChip analysis, which indicated a LOD-1 interval flanked by 

rs950922 and rs514262 that corresponded to a 15.4 million–bp interval (from 21.3 

million bp to 36.7 million bp on 1p34.3-p36.13). 

Analysis of critical recombinants supports localization of the IA locus within the 

specified interval. Affected subject II-9 is recombinant at the distal border, and subject 

III-7 is recombinant at the proximal border (fig. 3). Nearly identical borders define the 

linked interval by SNP analysis. Examination of the LOD-1 interval identified 240 genes. 

Among these, a number of genes have been identified as plausible candidate genes, 

including polycystic kidney disease–like 1, brain-specific angiogenesis inhibitor 2, 

fibronectin type III domain–containing gene, and collagen type XVI a1. 
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Figure 5: 

Analysis of linkage with microsatelite markers on 1p35-36 localizes the gene causing IA to a 12.5 cM 
region between markers D1S199 and UT5144 with a maximum lod score of 4.2.  Multipoint analysis of 
linkage comparing segregation of IA and marker loci was performed. The location of maker loci used is 
indicated at the top of the diagram. The horizontal bar indicates the extent of the lod-1 interval. 

 

 

DISCUSSION 

 The pathogenesis of intracranial aneurysms has been associated with genetic and 

environmental factors; however, a definitive mechanism has yet to be worked out. In this 

thesis, we took a comprehensive approach to studying the pathogenesis of intracranial 
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aneurysms. Through efforts both domestic and internationally, we have amassed one of 

the largest databases of IA patients – a resource which has enabled us to study the 

environmental and genetic factors associated with formation, growth and rupture of IA.  

Previous genome-wide linkage studies have used affected sibling and / or relative 

pairs to identify various loci throughout the human genome that link to IA (58, 84, 85, 

88). However, the results of these studies have been inconsistent, inconclusive, and have 

not identified a gene leading to IA. Candidate gene studies have been equally 

unsuccessful (58, 84, 88, 106).  

Given the substantial locus heterogeneity, the power of affected sibling pair 

studies or affected relative pair studies is severely limited (107). Alternatively, using rare 

Mendelian forms of IA, we focused on individual families to identify genes and pathways 

that play a key role in the pathogenesis of both the rare and common form of IA (108).  

 

Genetics 

In the present study, we have investigated what we believe is the largest-yet-

reported kindred with IA; genome-wide analysis of linkage provides significant evidence 

that the disease in this family is attributable to inheritance of a single locus at 1p34.3-

p36.13. Our analysis diminished evidence for linkage to 1q32.1 and 2p12 (table 5).  In 

contrast, it demonstrated that all affected members inherit the same haplotype at 1p34-36, 

while this haplotype was transmitted to none of the unaffected members (fig.3). 

Parametric linkage analysis specifying 99% penetrance yielded a maximum lod score of 

4.2 at 1p34-36 (table 5 and fig. 3); changing estimates of marker allele frequencies had 

negligible effects on the lod score.  The likelihood of linkage to 1p34-36 was nearly 1000 

fold more likely than the next most likely interval at 1q32.1 (table 5). 
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The lod score peak occurs at UT646; the lod-1 interval is flanked by loci D1S199 

and D1S496 (fig. 3), defining a 12.5 cM interval which corresponds to a 15 Mb segment 

extending from 19.3 to 34.9 million base pairs.  This is the same interval defined by 

GeneChip analysis which indicated a lod-1 interval flanked by rs950922 and rs514262, 

corresponding to a 15.4 million base pair interval (from 21.3 to 36.7 million base pairs on 

1p34-36).   

Analysis of critical recombinants supports localization of the IA locus within the 

specified interval.  Affected subject II-9 is recombinant at the distal border, and subject 

III-7 is recombinant at the proximal border (fig. 3).  Nearly identical borders define the 

linked interval by SNP analysis.  

Examination of the lod-1 interval identified approximately 240 genes.  Among these, a 

number of genes have been identified as plausible candidate genes including Polycystic 

Kidney Disease Like-1 gene, Brain Specific Angiogenesis Inhibitor 2, Fibronectin type 

III domain containing gene, and Collagen type XVI α1 gene.  

 To our knowledge, the present kindred is the largest yet reported with IA, with 

10 definitively affected subjects and one likely affected subject.  Genome-wide analysis 

of linkage in this kindred demonstrates complete linkage of IA to a 12.5 cM segment of 

chromosome 1, with evidence for linkage that substantially exceeds thresholds for 

significance.  The phenotyping in the kindred was clear-cut; reclassifying the patient with 

multi-vessel occlusions and extensive collateral growth as phenotype unknown would 

reduce the maximum lod score to 3.9.  Moreover, the lod score was substantially 

increased by inclusion of unaffected family members, supporting high penetrance of the 

trait locus. It is also of note that the subject with the early AAA inherited a segment of 

the linked haplotype, suggesting that this vascular aneurysm might be attributable to 
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inheritance at this same locus. It would be of interest to obtain abdominal ultrasounds in 

kindred members in order to determine whether this phenotype commonly co-segregates 

with intracranial aneurysms and/or linked haplotypes.  The pattern of segregation and the 

linkage data indicate that this family defines a new Mendelian form of IA that is 

transmitted as an autosomal dominant trait with high penetrance.  Similar to reported 

cases of familial IAs, members of IA 20 presented with SAH or symptomatic findings at 

an earlier age than typically found in sporadic cases (47). 

 These findings represent a first step in identifying a susceptibility gene for 

intracranial aneurysm.  Other than young age, there are no obvious clinical features that 

would separate IA in members of this family from typical cases in the general population.  

It is presently unknown whether the locus implicated in this study might play a role in 

other common forms of IA.  In principle, it is possible that this might be a one-of-a-kind 

family with a rare mutation resulting in a highly penetrant form of IA.  It is also possible 

that other less penetrant mutations in the same gene or pathway play a role in more 

common forms of IA.  To date, a number of studies have used linkage approaches to 

attempt to identify loci contributing to IA risk (57, 58, 72, 74, 75, 84-86).  Sib pair 

studies from Japanese and Finnish populations and a recent report of a consanguineous 

Dutch family have identified candidate intervals (58, 85, 87).  The only intervals from 

such studies that meet genome-wide evidence of significant linkage is 19q13.3 in the 

Finnish population (88) and 2p13 in the Dutch family (87).   

 The identification of the causative gene in IA 20 will shed light on the pathways 

leading to disease.  Whether this locus or pathway will play a role in more common 

forms of disease remains to be determined.  However, once genes leading to IAs are 

identified, they may better define the pathophysiology and natural history of aneurysm 



44 
 

 

formation and rupture.  Finally, these findings may contribute to improved diagnostic and 

therapeutic approaches to this disease. 

 

Environment 

The management of cerebral aneurysms ≤ 7 mm remains a controversial issue in 

neurosurgery.  Numerous studies have outlined guidelines for treating unruptured 

aneurysms that range from > 7 to 10 mm. However, despite the clinical observation that a 

substantial number of IA ≤ 7mm also rupture, relatively little is known about the risk 

factors associated with the rupture of these smaller aneurysms.  In this study, we show for 

the first time that among patients with aneurysms ≤ 7 mm, hypertension, younger age, 

and posterior circulation are significant risk factors for rupture  

We retrospectively analyzed aneurysm characteristics and social history 

demographics of patients with both unruptured and ruptured aneurysms ≤ 7 mm.  In our 

study population, the average size of ruptured and unruptured aneurysms was 4.65 mm 

and 4.33 mm, respectively.  Consistent with published reports, the majority of ruptured 

aneurysms ≤ 7 mm in our study were of the anterior circulation, mainly the anterior 

communicating (ACoA) and middle cerebral arteries (MCA).  In our unruptured 

population, the majority of aneurysms were also of the anterior circulation (carotid and 

middle cerebral arteries).  Interestingly, however, posterior aneurysmal location conferred 

substantially increased risk for IA rupture. Those whose aneurysms ruptured were more 

likely to have poorly controlled hypertension. 

Our findings extend those of previous retrospective reviews of aneurysmal rupture 

risk.  In particular, aneurysms ≤ 7 mm rupture and the majority of these aneurysms are of 

the anterior circulation (16, 18-20, 33, 93)  Interestingly, other studies, including the 
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prospective arm of the ISUIA study, showed that aneurysms of the posterior circulation 

were more likely to rupture at smaller sizes (≤ 7 mm) (15)  However, based on a 

comprehensive systematic review of the medical literature, we found no published data 

meeting our liberal inclusion criteria for combination with our own data.  Accordingly, to 

the best of our knowledge, this study is the first to report on risk factors specifically 

associated with the rupture of aneurysms less or equal to 7 mm in diameter.   

A recent study analyzing 280 ruptured aneurysms showed that 74% were smaller 

than 10mm, with a mean size of 7.6 mm (33)  The mean size of ruptured aneurysms in 

patients who were normotensive, had medically controlled hypertension, and had poorly 

controlled hypertension were 8.3, 7.4, and 6.5mm, respectively.  Furthermore, patients 

with a family history of subarachnoid hemorrhage or who had poorly controlled 

hypertension were more likely to have ruptured aneurysms less than 5mm.  With respect 

to location, ruptured aneurysms of the anterior communicating artery were smaller on 

average (6.6 mm) than aneurysms in other locations.  These results confirmed the results 

of a previous single-center retrospective analysis that showed that 50% of ruptured 

aneurysms were 6-10 mm in size and 35% were < 5 mm with the majority of small 

aneurysms being of the anterior communicating artery (19) 

The prospective arm of the ISUIA trial outlines the clearest guidelines indicating 

treatment based on size and location of a small, unruptured aneurysm.  This study stated 

that the greatest benefit might be seen when aneurysms > 7 mm of the posterior 

communicating artery are surgically treated in young patients (<50 years of age) (15)  

The recommendation that aneurysms ≤ 7 mm of the anterior circulation in patients with 

no family history of SAH should be left untreated was reinforced by others (32)  

However, the limitation of these studies is the necessary reliance on 5-year or other 
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relatively short-term durations of follow-up.  Patients will be interested to know near-

term rupture risks, but SAH can occur following any time interval, making retrospective 

study data essential for surgical decision-making.  

Because the rupture of small aneurysms is a relatively rare event, it is difficult to 

achieve a sample size that is large enough to detect modest risks for rupture. In this study, 

the absence of a statistically significant relationship between such variables as number of 

aneurysms, smoking, and family history of IA should be interpreted with caution.  Type 

II error (false negative) is a possible explanation, and further studies involving multiple 

centers are warranted for the assembly of large, prospective cohorts with the power to 

provide more precise estimates of the risk associated with these clinically important 

variables. Additionally, as a chart review, we were limited in the direct quantification of 

continuous variables.  Data on pre-hemorrhage aneurysm size was inconsistent and often 

unavailable in our patients presenting with SAH and therefore this data was excluded 

from our analysis.  This is another significant limitation of this study.   

Based on our results, we suggest the need for new guidelines incorporating 

relatively young age, hypertension, and posterior aneurysm location as possible factors 

relevant to surgical management of IA ≤ 7 mm.  These patients are at higher risk for 

rupture, and have lower age-related surgical mortality and morbidity risks.  These results 

are consistent with those presented in the ISUIA prospective study, but add additional 

clinically relevant information regarding the subset of patients with IA ≤ 7 mm.  

Furthermore, more rigorous prospective studies with the specific aim of following 

aneurysms less than or equal to 7mm are needed to justify these new sets of guidelines. 
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CONCLUSION 

Although the pathogenesis of intracranial aneurysm remains poorly understood, 

there is significant evidence associating environmental and genetic factors with disease. 

Size has long been considered the main risk factor for rupture; however, we demonstrate 

that hypertension, posterior circulation, and relatively young age should also be 

considered. In addition we identify 1p34.3-36.13 as a chromosomal region related to the 

pathogenesis of IA. Although the literature is rich with linkage studies pointing to regions 

throughout the genome, it appears that more than one locus will be involved in the IA 

pathogenesis.  

In short, it is likely that both locus and allelic heterogeneity along with 

environmental factors play a role in IA pathogenesis complicating efforts at disease gene 

identification. Certainly the identification of new genes important in IA pathogenesis will 

provide insight into the primary determinants of this disease and will result in new 

opportunities for early diagnosis in the preclinical setting. Identification of risk factors 

related to formation and rupture of aneurysms will also assist in the understanding of 

disease, while allowing clinicians the opportunity to modify treatment based upon risk. 

Ultimately, it is anticipated that novel therapeutic strategies will be developed which will 

target these newly elucidated genetic susceptibilities.  
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APPENDIX 

PATIENT INFORMATION SHEET  

 
Name ______________________ Telephone #  _______________________ 
  
Address  ______________________________________________________ 
 
Date of birth __________ Race __________  Gender ________________ 
 
1. How old were you when your aneurysm / stroke was first diagnosed? ________ 
 
2. How many intracranial aneurysms did / do you have? _____________________ 
 
3. Did your aneurysm rupture and bleed? _________________________________ 
 
4. Did you have surgery to treat the aneurysm?    Yes    /     No 

- If yes, what was the date of surgery:  _____________________________ 
 Name of your neurosurgeon: _______________________________ 

  Hospital where operation was performed: _____________________ 
   
5. Do you have high blood pressure: Yes /  No    When was it diagnosed? _______ 
   - Please list the names of family members with high blood pressure?: _________ 
__________________________________________________________________ 
__________________________________________________________________ 
 
6. Have you ever smoked?   Yes  /  No  
 - If yes, for how many years _______  How many packs a day? ________ 
 
7. Do you drink alcohol / beer / wine / liquor? Yes / No 
 - If yes, what do you drink?  _____   How many drinks per day? ________ 
 
8. Please list any family members that have had an aneurysm or stroke?  
     (For example: cousins, nieces, nephews, grandchildren, grandparents, great aunts / uncles) 
__________________________________________________________________ 
__________________________________________________________________ 
 
9. Please list any diseases that run in your family:   
(Example stroke, high blood pressure, kidney disease, abdominal aneurysm AAA) 
__________________________________________________________________ 
__________________________________________________________________ 

 

PLEASE SEND THIS FORM ALONG WITH THE BLOOD SAMPLES BY FED-EX  
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