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ABSTRACT

NEUTRON DIFFRACTION ANALYSIS OF THE STRUCTURE OF 

ROD PHOTORECEPTOR MEMBRANES IN INTACT RETINAS 

Mark Yeager 

Yale University, 1973 

The technique of neutron d iffraction  is complementary to that of 

x-ray d iffraction  because the neutron scattering amplitudes of hydrogen 

and deuterium are very d iffe ren t.  The neutron scattering density of 

water can be manipulated over a large range by simply changing the 

D2 O-H2 O content of the Ringer's solution. Consequently, several d i f 

ferent images of the membrane can be obtained. Furthermore, the con

tras t between the protein, l ip id ,  and aqueous components of membrane 

systems is greater with neutron d iffraction  than with x-ray d if f ra c 

tion. Isomorphous D2 O-H2 O exchange can also be used to assign phases 

and place Fourier syntheses on an absolute scale, thereby simplifying 

the molecular interpretation.

Neutron diffraction  data have been collected from samples contain

ing 10 dark-adapted Rana catesbiana bullfrog retinas in 100, 30, 60,

40, and 30% D20 Ringer's solution using a step-scanning Sol 1e r - s l i t  

diffractometer. D iffraction was also recorded from retinas equilibrated  

in D2 O solutions with varying osmolarity. The rotationally  symmetric 

disorientation of the rods was characterized by pers istence-w ith -ti lt ,  

s lit -he igh t reduction, and rocking-curve experiments. Structure factor 

amplitudes were obtained using semi-automated curve-f it t ing  procedures, 

and phases were obtained by interpreting the D2 O-H2 O and osmotic Patterson
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maps. In D2 O Ringer's solution the f i r s t  four structure factors are

-353±25, 246+19, 434+13, and 383+19. Neutron scattering density profiles
0

were calculated on an absolute scale to 75 A resolution using the f i r s t  

four structure factors.

Neutron d iffrac tio n  experiments on intact retinas confirm by an 

independent approach the x-ray d iffraction  studies which suggest that the 

l ip id  bilayer is a major structural motif of the rod outer segment disc 

membrane. Neutron Fourier syntheses in d ifferent mixtures of D2 O and 1^0 

indicate that the intradisc and extradisc spaces are predominantly aqueous, 

consistent with the increase in the intradisc and extradisc volumes as 

the Ringer's solution is made more hypotonic. In isotonic Ringer's sol

ution, the thicknesses of the intradisc and extradisc spaces are about
O O

36 A and 160 A, respectively, and the center-to-center separation between 
0 0 

the 50 A thick l ip id  bilayers is 88 A. The neutron scattering density

-14 °3in the center of the membrane (0.45 + 0.20 x 10 cm/A ) is greater than

-14 °3that of pure hydrocarbon (-0.02 x 10 cm/A ) ,  indicating that the vol

ume fraction of protein in the membrane in te rio r  is 0.23 + 0.10. Neutron 

scattering density profiles in D2 O Ringer's solution are s trik ingly  asym

metric with a lower scattering density on the extradisc side of the disc 

membrane. Models that orient rhodopsin asymmetrically on the cytoplasmic 

face of the disc membrane extending into the extradisc aqueous space are 

in close agreement with the observed asymmetry. However, rhodopsin can

not entire ly  account for the observed asymmetry, suggesting that other 

hydrogenated material resides in the extradisc region.
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CHAPTER I 

INTRODUCTION

Visual excitation originates with the absorption of l igh t by rho

dopsin, the photoreceptor protein in the rod cells of the retina. Rho

dopsin is an in tr ins ic  membrane protein composed of an apoprotein, opsin 

and an ll-cis_ retinal chromophore. The absorption of a single photon 

can excite a rod cell (Hecht, Shlaer and Pirenne, 1942). Wald (1968) 

showed that the photoisomerization of 11-cis retinal to the a l l - t rans 

configuration is a c r i t ic a l  early event in visual excitation. However, 

the subsequent cascade of structural events leading to the hyperpolar

ization of the plasma membrane of the rod cell (Tomita, 1970; Hagins, 

1972) is not yet known. Understanding the molecular basis of visual ex

c ita tion  requires a detailed knowledge of the architecture of rod photo

receptor membranes and of rhodopsin. More generally, structural stud

ies on rod cell membranes may help elucidate some of the principles under 

lying the organization of other biological membranes.

Electron and l ig h t  microscopy (Sidman, 1957; Nilsson, 1965; Dowling,

1967; Bownds and Brodie, 1975) have shown that frog rod outer segments

are cylindrical with a diameter of M5y and a length of ^50y (Figure 1).

Rod outer segments are aligned approximately parallel to one another in

the retina and contain a periodic stack of about 1,500 discs. Along the
0

long axis of the rod, the 300 A repeating unit contains two densely 

staining disc membranes with a narrow intradisc space and a wider extra

disc space (Figure 2). The periodic stacking of the disc membranes and 

the parallel alignment of the rod outer segments in the retina makes the

1
Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Figure 1 Scanning electron micrograph of rod photoreceptor cells  

in the retina of the frog Rana catesbiana. (From 

Bownds and Brodie, 1975).)
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Figure 2. Electron micrograph of a rod outer segment, showing the

periodically stacked disc membranes. (From Dowling, 1967).
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system act l ike  a one dimensional c rys ta l,  allowing investigation of 

rod structure by d iffraction  methods in intact retinas. However, 

because the rods are neither perfectly parallel nor the discs stacked 

with perfect regularity , the lim iting  resolution of such a d iffraction
O

study is about 30 A. Although i t  is not feasible to determine the 

structure to atomic resolution, information can be obtained about the 

distribution of molecular components - protein, l ip id ,  and water - 

along the long axis of the rod outer segment.

X-ray d iffraction  analysis has provided the most compelling evi

dence that a major portion of the lip ids in the disc membrane are 

arranged in a bilayer (Blaurock and Wilkins, 1969; Gras and Worthington, 

1969; Corless, 1972; Blaurock and Wilkins, 1972; Chabre, 1975). How

ever, the location of rhodopsin in the membrane and the structural 

changes that occur a fte r  l ig h t  absorption have not been clearly  defined. 

Although the d iffraction  patterns recorded at several laboratories are 

quite similar, the interpretations have been strik ingly divergent: 

models have been proposed that localize rhodopsin on the intradisc side 

(Worthington, 1973; Worthington, 1974), on both sides (Blaurock, 1972; 

Wilkins, 1972; Vanderkooi and Sundaralingam, 1970), and partly on the 

extradisc side of the disc membrane (Corless, 1972; Chabre, 1975). In 

fact, a pure l ip id  bilayer model with no protein (Figure 3b) is quite 

similar to the experimental x-ray scattering density profile  of 

Blaurock and Wilkins (1972) (continuous curve in Figure 3a). There are 

no landmarks in their  experimental electron density pro file  that can 

be readily attributed to protein.

This dissertation reports the f i r s t  use of neutron scattering to 

investigate the structure of rod photoreceptor membranes in intact re t 

inas. The neutron d iffraction  pattern in D2 O Ringer's solution extends to

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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Figure 3. Electron density profiles of rod outer segment disc mem-
O

branes at 30 A resolution, a. (--------------- ) Experimental

Fourier synthesis calculated from the data of Blaurock and 

Wilkins (1972). The experimental structure factors for orders

1 to 10 are 56.8, -9 .80 , 34.7, 59.3, -47 .0 , -143, -143, -69 .1 ,

69.1, and 49.5, respectively (Webb, 1972). ( .................... )

Experimental Fourier synthesis calculated with a phase of -1 

for the f i r s t  re flection , b. Fourier synthesis calculated 

from a pure l ip id  bilayer model of the disc membrane. The 

calculated structure factors for orders 0 to 10 are 2848,

38.8, -7 .96 , 18.7, 64.3, 13.0, -116, -169, -74.5, 54.9, and 

81.0, respectively. The Fourier syntheses have been scaled

to the same vertical peak-to-trough distance. The bilayer

model was identical to that shown in Figure 5 except that

0 -143 A troughs with x-ray scattering density of 4.62 x 10

°3cm/A were placed in the center of the l ip id  bilayers. These 

troughs correspond to localized terminal methyl groups of 

the hydrocarbon chains. The model in Figure 5 with a constant 

x-ray scattering density in the l ip id  hydrocarbon region also 

resembles the experimental Fourier synthesis (continuous curve 

in a . )  quite closely. However, the phase of reflection 3 is 

negative for the model in Figure 5 and the amplitudes of orders

2 and 3 are reversed, compared with the experimental ampli

tudes. When the model Fourier syntheses are scaled to the same 

peak-to-trough distance, the effect of the low density troughs 

is to sh if t  the scattering density of the aqeous regions to a 

higher level re la tive  to the l ip id  hydrocarbon regions.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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33 A resolution. Phases for the f i r s t  4 reflections were determined 

by D2 O-H2 O exchange and by osmotic shrinking and swelling. I t  is im

portant to stress that the analysis of the neutron d iffraction  data

is entire ly  independent of the x-ray studies. Although the resolution
0

of the neutron Fourier syntheses is only 75 A, their  high contrast 

allows conclusions to be drawn that complement and extend the x-ray re

sults. Models having a substantial amount of rhodopsin on the cytoplas

mic face of the disc membrane protruding into the extradisc aqueous 

space are most compatible with the neutron Fourier syntheses. The 

neutron results also suggest that the extradisc aqueous space contains 

an appreciable amount of hydrogenated material. The existence of such 

material may account for the s tab ilization  of the regular, parallel 

arrangements of discs in the outer segment. Summaries and an abstract 

of this work have been published (Yeager, Schoenborn, Engelman, Moore, 

and Stryer, 1974; Yeager, 1975a, b).
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CHAPTER I I  

STRATEGY FOR NEUTRON DIFFRACTION

ANALYSIS OF BIOLOGICAL MEMBRANES AND COMPARISON WITH 

X-RAY DIFFRACTION 

Neutron d iffrac tion  is a powerful technique for investigating 

biological membranes (for a review, see Schoenborn, 1976), as exem

p lif ied  by neutron d iffrac tio n  studies of myelin (Kirschner and Caspar, 

1972; Kirschner, 1974; Kirschner, Casper, Schoenborn and Nunes, 1976) 

and of model membrane systems (Zaccai, Blasie and Schoenborn, 1975; 

Worcester and Franks, 1976; Schoenborn, 1976; Worcester, 1976). The 

unique advantage of neutron d iffraction  for the elucidation of bio

logical structure is the large difference in scattering length between 

hydrogen (-3.72 x 10 ^cm) and deuterium (6.67 x 10 ^cm) (Bacon, 1962). 

This difference can be exploited to enhance the contrast between d i f 

ferent constituents of biological membrane systems. The absolute scat

tering densities of membrane components in x-ray and neutron diffraction  

experiments are compared in Figure 4. The scattering density, p, of 

a molecular component is given by 

n
p = £ a,b. (1)

i=1 1 1 
V

where â  is the number of ith  nuclei in the component, b̂  is the scatt

ering length of the ith  nucleus and V is the molecular volume (Schoenborn

-7-
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and Nunes, 1972). The neutron scattering densities of 1^0 and D̂ O are

-14 -14 °3-.561 x 10 and 6.35 x 10 cm/A , respectively. The neutron scatter

ing density of water, p , is therefore given by

pw = -.561 x 10"14 + 6.91 x 10"14 6 (2)w

where 3 is the volume fraction of D^O. The neutron scattering density of 

rhodopsin, pp, w il l  depend on the D£0 concentration since those hydrogens 

not covalently bonded to carbon are potentia lly  exchangeable.

Pp = 1.9 x 10"14 + 1.27 x 10 '14 3y (3)

where y is the fraction of potentia lly  exchangeable hydrogens. Tritium- 

exchange measurements (Downer and Englander, 1975) have shown that y is 

greater than 0.5 .

The overall enhancement in contrast, indicated by the length of the 

vertical bars in Figure 4, c learly favors the neutron d iffraction  experi

ment conducted in heavy water, D^O. Of particular value is the enhanced

contrast between the membrane molecular components obtained by using

neutron d iffraction  rather than x-ray d iffrac t io n . For instance, the con

trast between D̂ O and l ip id  hydrocarbon in neutron d iffraction  is 8-fo ld  

greater than the water-hydrocarbon contrast with x-rays. Another powerful 

technique is contrast-matching of particular molecular species. Since 

the densities of the membrane components are intermediate between those 

of Ĥ O and D^O, the appropriate D2 O concentration can be chosen to match 

the scattering density of the solvent to that of one of the components.

For example, the volume percent D̂ O at which the neutron scattering density 

of water matches the scattering density of rhodopsin can be found by setting 

pw equal to Pp and solving for 3 . The calculated contrast-match point of 

rhodopsin is 43.5% D̂ O assuming y = 1, so that the scattering from that
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Figure 4. Comparison of absolute scattering amplitude densities and

the contrast between membrane molecular components with

x-ray and with neutron d iffrac tio n . The neutron scattering

density of the l ip id  headgroup and that of rhodopsin are

greater in D̂ O than in F̂ O (upper and lower bound of each

range, respectively) because of exchangeability of hydrogens

not covalently bonded to carbon. Electron densities were

converted to scattering amplitude densities by using the

-12scattering amplitude per electron, 0.28 x 10 cm. Neutron 

scattering densities were calculated from equation (1) using 

the scattering lengths of -3.74 x 10"13, 6.67 x 10"13, 6.65 

x 10 '13, 9.40 x 10"13, 5.80 x 10 '13, and 5.10 x 10'13 cm 

for H,D,C,N,0, and P, respectively (Bacon, 1962; Schoenborn 

and Nunes, 1972). The atomic composition for the average 

rod outer segment l ip id  was calculated from published chemi

cal analyses (Daemen, 1973), and molecular volumes were cal

culated from Traube volumes of the atomic nuclei (Traube, 1899).

°3The molecular volume of rhodopsin (47,000 A ) was calculated 

from its  amino acid composition (Robinson, Gordon-Walker, and 

Bownds, 1972; Heitzmann, 1972) and the partia l specific vol

umes of amino acid residues (Cohn and Edsall, 1943).
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part of rhodospin residing in water vanishes at this D̂ O concentration.

An alternative way of conveying the essence of the neutron d i f f ra c 

tion method is depicted in Figure 5, where a l ip id  bilayer model for  

the disc membrane is shown schematically, followed by the electron den

s ity  image and the neutron scattering density profiles of this model 

in 0^0 and Ĥ O. Since the geometrical nature of both x-ray and coher

ent neutron scattering is the same (Bacon, 1962; Schoenborn and Nunes, 

1972; James, 1965), the structure factors for the x-ray and neutron 

scattering density profiles can be calculated by Fourier transformation

of the ir  respective centrosymmetric step function models: 

d

F(h) = 2 /2 p(x)cos ( ^ - ) d x  (4)
o a

where F(h) is the structure factor for order h; p(x) is the scatter

ing density at a real space distance x; and d is the unit-ce ll repeat 

spacing (James, 1965; Levine, 1973). The profiles in Figure 5 represent
O

the images of the membrane at 30 A resolution calculated by including 

the f i r s t  eleven structure factors from equation 4 in the Fourier trans

formation

where n = 10 and d = 300 A.

In the x-ray d iffraction  p ro f i le ,  the greatest contrast arises be

tween the electron-dense phosphate headgroups and the electron-deficient 

hydrocarbon domains of the l ip id  bilayers. Since the electron density 

of rhodopsin is almost the same as that of the l ip id  headgroups, rho- 

dopsin cannot be detected in a low resolution x-ray map i f  the molecule 

resides in this region. This problem, compounded by the low contrast
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Figure 5. X-ray and neutron scattering density profiles for a

l ip id  bilayer model of the disc membrane. Step function 

profiles for the one-dimensional projections of the l ip id  

bilayer model were obtained from the scattering densities 

in Figure 4. The images of the membrane with x-rays

( .................) and neutrons are quite d iffe ren t.  The neutron

scattering density p ro file  in D2 O (-------- ) is quite d i f fe r 

ent from that in H J ) ( ........... ) .  Thus, several images of

the membrane can be obtained by changing the D2 O/H2 O ratio  

in the Ringer's solution and using neutron radiation. The 

structure factors for orders 0 to 10, respectively, are 

as follows: x-rays (2871, 52.5, -14 .1 , -2 .35 , 44.9, 10.7, 

-99 .4 , -147, -64.1 , 45.4, and 59.1); neutrons^O (1348, 

-323, 127, 351 , 228, 16.1 , -41.2 , 16.2, 27.4, -30 .8 , and 

-60 .4 );  neutrons-^O (-50.1 , 66.5, -23.4, -49 .3 , -13 .3 ,  

2.13, -35.0 , -62 .5 , -30 .1 , 22.9, and 32.6).

permission o f the copyright owner. Further reproduction prohibited w ithout permission.



S
C

A
TT

E
R

IN
G

 
A

M
P

LI
TU

D
E

 
D

E
N

S
IT

Y
 

(x
IO

14 
c

m
/A

3
)

RHODOPSIN
12

8

NEUTRONS (D20)

4

RHODOPSIN

0
NEUTRONS (H20)

0 50 100 150

DISTANCE (A )

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



between structural components in x-ray experiments, may partly account 

for the controversy among x-ray workers regarding the location of rho

dopsin in the disc membrane. In D20, the contrast between rhodopsin 

and the phospholipid headgroups is more than four times higher for 

neutron diffraction than for x-ray d iffraction .

Not only is the contrast between the aqueous and hydrocarbon 

domains enhanced by conducting the experiment with neutron radiation  

in D̂ O, but the scattering density in the aqueous regions can be 

changed up to twelve-fold by simply a ltering the ^ O -D ^  ratio  of the 

Ringer's solution. Many d iffe ren t images of the membrane can be obtained 

in this way. Although the electron density of water can be increased 

up to 20% by adding salts or sugars in an x-ray experiment, the result

ing structure is not necessarily isomorphous with the native one. 

Worthington (1973) has suggested that the thickness of the disc mem

brane changes in glycerol.

The molecular interpretation of neutron Fourier syntheses is 

markedly fac i l i ta ted  by placing the density profiles from experiments 

in d ifferent D20-H20 mixtures on an absolute scale. This can also be 

done with x-ray d iffrac t io n , but the x-ray scattering density can only 

be altered over a much smaller range. Also, the absolute density scale 

determined in an x-ray experiment may not be as re liab le  as one deter

mined by neutron d iffraction  because the series termination error for 

membrane systems is l ik e ly  to be greater with x-rays. This increased 

error is indicated in Figure 5 by the greater deviation of the dotted 

x-ray profile  from its  step-function model compared to the neutron pro

f i l e  in D20 relative to i ts  step-function model. This greater trun

cation error is due to the larger fluctuations of electron density inside
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the l ip id  bilayer as seen with x-rays. I t  is interesting to note that  

the lip id  headgroups are not well resolved in the neutron scattering  

density p ro file  in D̂ O but are clearly  discernible in I^O. Also, the 

neutron and x-ray d iffraction  images of the membrane in Ĥ O are qua li

tatively  sim ilar at low resolution, although the absolute scattering  

densities are d iffe ren t.

The contrast enhancement achieved by using neutron radiation with 

Ĥ O-D̂ O exchange is analogous to the staining procedures used by electron 

microscopists to enhance the contrast in the ir  specimens. I t  should be 

emphasized that the neutron method employing Ĥ O-DpO exchange is an 

innocuous staining procedure. Isomorphous hfO-D^O exchange can also be 

used to assign phases and place neutron Fourier syntheses on an absolute 

scale.
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CHAPTER I I I  

METHODS

(a) Dissection and Mounting of Retinas for Neutron D iffraction  

Rana catesbiana bullfrogs were obtained from the Connecticut 

Valley Biological Supply Co. (Southampton, Mass.) or from the Mogul- 

Ed Biological Supply Co. (Oshkosh, Wis.). Tetracycline (250 mg 

daily) was administered ora lly  to frogs that exhibited "red-leg" dis

ease (Gibbs, 1963; Nace, Culley, Emmons, Gibbs, Hutchison and McKinney, 

1974). Frogs were kept at room temperature in cages that provided 

both an aqueous and a dry environment. Bullfrogs were used because 

the dissected retinas were quite large, ^1.5 cm in diameter.

The Ringer's solution contained 115 mM NaCl, 2.0 mM KC1, 2.0 mM 

CaCl2 , 20 mM dextrose, 10 mM trizma base, 1.0% (w/v) streptomycin sul

fate and 1.0% (w/v) pen ic ill in -G . The pH or pD of the Ringer's solu

tion was t it ra te d  to 7.35 + 0.5 at 5°C using HC1 or DC! (Thompson- 

Packard). For experiments in d ifferent D2 O-H2 O mixtures, a solution 

with the desired volume fraction of D2 O was prepared by mixing the 

approriate volumes of H2 O and D2 O Ringer's. Hypertonic Ringer's 

solution was prepared by adding sucrose to isotonic D2 O Ringer's (w/v), 

and hypotonic Ringer's solutions were prepared by mixing isotonic D20 

Ringer's with pure D20 (v /v ) .  All operations with D̂ O were carried  

out as rapidly as possible to minimize exchange with atmospheric H20.

Several dissection procedures were tested to minimize the dissec

tion time without damaging the tissue. The statement made by Huxley

1 >1
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and Brown (1967) regarding the v a r ia b i l i ty  of performance of d ifferent  

muscles is pertinent here: "We found i t  worthwhile to be exceptionally

careful and painstaking during the dissection, and an extra hour here 

was time well spent. The responsible factors are not easy to identify  

or assess, and general experience was probably the main one."

A dozen eyes were dissected for each neutron scattering experiment, 

and the specimen preparation was carried out in five stages: decapita

tion, enucleation, removal of retinas and pigment epithelium, equilibra

tion, and mounting of retinas in the specimen c e l l .  Frogs were dark- 

adapted for at least 6 hrs, and the dissections were performed under 

dim red l ig h t  with wavelengths > 640 nm using Corning CS-2-64 f i l t e r s .

The surgical instruments and sample holders were s te r il ized  before each 

dissection.

Frogs were sacrificed using a Harvard Apparatus (M il ls ,  Mass.) 

small animal decapitator, and the heads were wrapped in aluminum fo il  

and stored in ice while the dissection for each head was carried out.

The eye cups were enucleated by hemisecting the eyeball in a single cut 

with a razor blade, tangential to the head of the frog and posterior to 

the ora serrata. The musculature and optic nerve were cut using a Bard- 

Parker scalpel with a #15 surgical blade, and the eye cups were trans

ferred to a Petri dish f i l le d  with Ringer's solution. The eye cups 

were maneuvered by holding the sclera with rat-tooth micro-dissecting 

forceps (Roboz Surgical Instrument Co.). With the use of Dumont #5 fo r 

ceps, the retina and its  attached pigment epithelium were peeled away 

from the sclera, and then the pigment epithelium was teased away from 

the retina as a single sheet. D iffraction patterns from specimens with 

and without the pigment epithelium were indistinguishable. Decapitation,
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enucleation, and removal of the retinas and pigment epithelium required 

about 75 minutes for 12 eyes. The Petri dish was placed on ice, and 

the retinas were allowed toequilibrate  for about 30 minutes. To exa

mine the effect of l ig h t ,  retinas were bleached in white l ig h t  during 

equilibration.

For the experiments in D20 Ringer's solution o f varying osmolarity, 

the retinas were draped over aluminum slats 4.13 x 0.79 x 0.064 cm, 

which were then mounted on two parallel rods in an aluminum specimen 

cell (6.4 x 5.7 x 1.27 cm) (Figure 6). When the aluminum slats were 

clamped together, the space between adjacent slats was 1.2 mm. This 

space allowed the photoreceptor layers of apposed retinas to just touch 

one another. The incident neutron beam was attenuated 60% by passing 

through 0^0 samples with a thickness of 9.5 mm. Sample cells with a 

path length of 3.2 mm were used for the experiments in d ifferent mix

tures of 020 and H20 because of the increased beam attenuation from 

incoherent scattering of hydrogen. The retinas were therefore bisected 

before being draped over the thinner aluminum slats. The retinas were 

cut on a thin layer of Bioloid paraffin embedding compound spread on 

the bottom of the Petri dish. The mounting of the retinas in the speci

men cell required about 30 minutes. The specimen ce ll was attached to 

a water jacket maintained at 5°C (Figure 6 ). Luer-Lok f it t in g s  attached 

to the specimen cell allowed continuous cycling of oxygenated Ringer's 

solution by p e r is ta lt ic  pumping at a flow rate of about 1.5 ml/hr.

No evidence of specimen deterioration due to the use of aluminum 

was detected. Aluminum was used because i t  is opaque to l igh t and 

transparent to neutrons.
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Figure 6. The sample holder and scanning apparatus allowed for a 

number of degrees of freedom in the orientation of the 

rods with respect to the incident beam. The sample hol

der was mounted on a water jacket which could be rotated 

to obtain the equatorial and meridional d iffrac t io n ,  

and the axis on which the jacket was mounted could be 

rotated to change the angle, w. The 4.1 cm double

headed horizontal arrow on the face of the water jacket 

indicates the direction of the rod outer segments and 

is parallel to the scanning axis 2e. The meridional 

Bragg d iffraction  was collected with the sample in this 

orientation (x= 0 ° ) .  The equatorial scattering was 

observed with the sample rotated to x=90° so that the 

retinal rods were perpendicular to the 2e axis (double

headed arrow v e r t ic a l) .  The face of the sample holder 

has been removed to show the parallel array of 10 

aluminum bars over which the retinas were draped.
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(b) Neutron Diffraction Methods

235Neutrons were generated by fission of U at the High Flux 

Beam Reactor at Brookhaven National Laboratory (Figure 7 ).  The 020- 

moderated and beryllium -filtered  neutron beam passed down a 6-meter 

nickel-plated beam pipe, and the beam flux was measured by a monitor. 

Neutron d iffraction  data were collected on a paired Soller s l i t ,  step- 

scanning diffractometer (Figure 8) (Nunes, 1973; Moore, Engelman and 

Schoenborn, 1974; Soller, 1924). Seller s l i t  collimators were placed 

before and a fte r  the specimen. The dimensions of the spaces between 

Soller s l i ts  were 1.9 x 0.24 cm. The Soller s l i t  vanes were 71 cm 

long and the aperture measured 1.9 x 1.9 cm. A pyrolytic graphite
O

monochromator was used to select a wavelength band at 4.19 A ( a a / a  = 

0.025) from the scattered neutrons, which were Bragg-reflected into
3

a He detector. The size and mosaic spread of the graphite crystal 

allowed detection of a l l  neutrons that passed through the detecting 

Soller s l i ts .  The horizontal beam divergence was 9 ' ,  and the v e r t i 

cal beam divergence (^0.4° at the sample) was defined by the beam pipe 

rather than by the apertures and heights of the Soller s l i t  collimators. 

The wavelength was calibrated by 0:26 scans of the 002 reflection from 

a pyrolytic graphite crystal placed in the sample position.

The meridional Bragg d iffraction  was recorded at w = 0° and x = 0° 

with the planes of the retinas perpendicular to the 2e axis of the 

detector, so that the retinal rods were parallel with the 2e axis (Fig

ures 6, 8 and 9). The equatorial d iffraction was obtained by rotating

the sample to x = 90° so that the rods were perpendicular to the 20 axis.

Persistence-with-tilt experiments were done by t i l t i n g  the sample to 

values of co and scanning 20. Rocking curves were recorded with the
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Figure 7. Experimental floor of the High Flux Beam Reactor at 

Brookhaven National Laboratory. The shielding of the 

reactor core is located in the top l e f t  portion of the 

picture. The Soller s l i t  diffractometer shown schemati

ca l ly  in Figure 8 is located in the bottom right, and 

the beam pipe passes from the reactor core to the d i f 

fractometer. The two-dimensional position-sensitive  

detector used to collect the data in Figures 10(d) and 37 

is located in the top center of the picture.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



R e p r o d u c e d  w ith  p e rm is s io n  o f  th e  c o p y r ig h t o w n e r . F u r th e r  re p ro d u c t io n  p ro h ib ite d  w ith o u t  p e rm is s io n .



- 2 0 -

Figure 8. Diagram showing a top view of the Soller s l i t  step- 

scanning diffractometer at the High Flux Beam Reactor
O

at Brookhaven National Laboratory, [X = 4.19 A, AX/X 

= 0.025, flux ^10® neutrons/cm^-sec].
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Figure 9. Schematic diagram showing the geometry of the rod outer 

segments with respect to the incident neutron beam. The 

meridional d iffraction  was observed with the sample oriented 

as shown at w = 0° and x = 0°- The equatorial d iffraction  

was observed with the sample rotated to x = 90°• Rocking 

curves were measured by rotating the rods in to at a fixed 

26 for reflection h. The arcs drawn through the tips of 

the rods trace out a surface of disorientation. The rota- 

t iona lly  symmetric disorientation of the rods causes the 

reflections in reciprocal space to be spread out into caps 

of spheres with radii and arc lengths proportional to h.
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detector set at a fixed 2e, and the angle of the rods with respect to 

the incident beam was changed by rotating the sample axis in oi.

The meridional and equatorial d iffraction patterns were recorded 

from 20 = 0.24 to 7.20° in increments of 0.08°. The S c ien tif ic  Data 

Systems computer which controlled the diffractometer was programmed 

to collect a specified number of monitor counts at each scattering angle 

(10^ monitor counts/^110 sec). In 100 and 80% D20 Ringer's solution 

the region from 0.24 to 2.80° was scanned for ^35 min K 1 min/angle), 

and the region from 2.80 to 7.20° was scanned for ^2.5 hrs (%2.5 min/ 

angle). In 60 and 40% D20 Ringer's the d iffraction  pattern was scanned 

for ^3.5 hrs (^2.5 min/angle) and ^5 hrs in 30% D20. In 20 and 0%

DgO no signal could be detected when scanning for ^7 hrs (^5 min/angle). 

Eighty-two days of beam time were used in 9 periods from May 1973 to 

February 1975.
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CHAPTER IV 

RESULTS AND DATA ANALYSIS

(a) In tegrity  of Rod Structure

The two principal obstacles in neutron d iffraction  work with bio

logical tissue are the f in i te  s ta b i l i ty  of the samples and the low flux  

of the neutron beam. Specimen holders were designed to accommodate a 

parallel array of ten dissected retinas to provide a suffic ient number 

of rods in the neutron beam for d iffraction  to be observed. Our in i t ia l
O

experiments (Figure 10a) showed d iffraction  with a 300 A period, but 

the signal was very weak, and the Bragg peaks deteriorated and disap

peared in a few hours. Improvements in the design of the specimen holder 

and in the dissection technique led to a stronger signal (Figure 10b), 

but the d iffrac tio n  pattern s t i l l  deteriorated with time. Several means 

were used to improve the s ta b i l i ty  of the d iffrac tio n : the dissections 

were carried out as rapidly as possible without compromising sample 

orientation; the retinas were maintained at 5°C; and oxygenated Ringer's 

solution containing antibiotics and glucose was continuously flowed 

through the sample c e l l .  The d iffraction  patterns were thereby s ta b i l 

ized for several hours, which allowed the summation of repetitive scans 

of the pattern (Figure 10c). A strik ing improvement in the d iffraction  

patterns was achieved by using a two-dimensional position sensitive detec

tor (A lberi, Fischer, Radeka, Rogers, and Schoenborn, 1975) and only a 

pair of retinas (Figure lOd). This 8-hour d iffrac tion  pattern shows 9
; o

orders of a 300 A period and contains structural information to a

-23-
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Figure 10. Neutron d iffrac tion  patterns from %10 Rana catesbiana 

frog retinas equilibrated in D̂ O Ringer's solution. 

Patterns (a ),  (b), and (c) show successive enhancement of 

Bragg d iffrac tio n  achieved by improvements in dissection 

technique, specimen s ta b i l i ty ,  and sample-cell design. 

These patterns were obtained using a step-scanning Soller  

s l i t  diffractometer (Figure 8). Pattern (d) was obtained 

with only two retinas in the beam; a two-dimensional posi

t ive-sensitive detector with s l i t  collimation was used 

[X = 2.37 A, AX/X = 0.02, flux M0^ neutrons/cm^-sec].
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resolution comparable with that of x-ray experiments.

The birefringence of rod outer segments was used to monitor the 

specimen in tegrity . The edgefold preparations (Denton, 1954) displayed 

l i t t l e  or no birefringence from samples whose Bragg diffraction  had 

deteriorated. Rod outer segment birefringence a f te r  the neutron d i f 

fraction experiments was routinely strong, as shown in Figure 11. Also, 

neutrons do not bleach rhodopsin because the retinas were pink and deter

gent-solubilized rhodopsin displayed almost no change in absorbance at 

498 nm after neutron irrad ia tion .

Neutron d iffraction  experiments conducted in D̂ O Ringer's of vary

ing osmolarity not only strengthened the va l id ity  of the reflection  

phase assignments but also served as a second test of structural integ

r ity .  The neutron d iffrac tio n  patterns in Figure 12 were recorded from 

dark-adapted retinas equilibrated in 2% sucrose (w/v), isotonic, 0.8 

diluted, and 0.6 diluted Ringer's solutions. Diffraction patterns 

recorded from bleached retinas equilibrated in D£0 Ringer's solution 

were quite similar to the dark patterns. The osmotic sensit iv ity  of 

the rod outer segments is c learly  shown in Figure 13 in which the dark 

patterns recorded in 0.3 diluted Ringer's solution and 2% sucrose Ringer's 

solution are superimposed. The reflections sh if t  to lower scattering 

angles and the repeat spacing between discs increases as the hypotonicity 

of the Ringer's increases, consistent with electron microscopic (Dowling, 

1967; DeRobertis and Lasansky, 1961; Brierley, Fleischman, Hughes, Hunter 

and McConnell, 1968; Clark and Branton, 1968; Cohen, 1971; He ller, Ostwald 

and Bok, 1971; Korenbrot, Brown, and Cone, 1973) and x-ray d iffraction  

experiments (Blaurock and Wilkins, 1972; Blaurock, 1972; Corless, 1972; 

Chabre and Cavaggioni, 1975). Although the reflections recorded in 0.4
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Figure 11. Photomicrograph showing strongly birefringent rods in an 

edge fold preparation. The horizontal bright l ine  is 

where the retina has been folded. The top f ie ld  shows 

free-floating  birefringent rods, broken o ff from the sur

face of the retina. The lower f ie ld  of the photomicro

graph shows the plane of the retina.
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Figure 12. Neutron d iffraction  patterns of intact retinas equilibrated

in D̂ O Ringer's solution of varying osmolarity. (a) 2%
0

sucrose Ringer's solution, d = 294 A; (b) isotonic Ringer's 

solution, d = 298 A; (c) 0.8 diluted Ringer's solution, d =

308 A; (d) 0.6 diluted Ringer's solution, d = 328 A. The 

height of the data bars here and in succeeding figures repre

sent + 1 standard deviation, assuming Poisson counting s ta t is 

t ics . Continuous curves through the data bars are the sums of

polynomial f i t s  to the background scattering ( ........... ) and

Gaussian peaks f i t te d  to the background-subtracted reflections.
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Figure 13. The reflections in 2% sucrose Ringer's solution with a
0

spacing of 294 A (primed) are shifted to higher recipro

cal spacings compared with the reflections in 0.8 diluted
O

Ringer's solution with a repeat spacing of 308 A.
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diluted Ringer's solution were broadened, they could be indexed to a
0

unique period of 375 A. However, in 4% sucrose Ringer's solution two
o o

repeat spacings of 285 A and 230 A were detectable. Two repeat spac- 

ings in hypertonic sucrose solutions have also been observed by x-ray 

diffraction (Chabre and Cavaggioni, 1975).

The most compelling evidence for specimen in tegrity  in DpO Ringer's 

solution was that x-ray d iffraction  patterns in this medium (Figure 14) 

were indistinguishable from those recorded in Ĥ O Ringer's solution.

I f  the structures in Ĥ O and D̂ O are isomorphous, then the two patterns 

should be identica l, since 1^0 and D̂ O have the same electron density 

(see Figure 4).

(b) Neutron D iffraction Patterns in Do0-H„0 MixturesL L

Neutron d iffrac tio n  patterns from retinas equilibrated in 100, 80,

60, 40 and 30% 0^0 Ringer's solution (Figure 15) exhibit meridional Bragg
O

reflections with a period of 295 + 5 A. The smooth curves through the 

Bragg peaks are the sums of the diffuse equatorial scattering (dotted

curves) and Gaussian peaks f i t te d  to the meridional scattering a fte r  sub

traction of the equatorial scattering. The effect of D20 concentration 

on the d iffraction  patterns is clearly seen by superimposing the curves 

obtained in 100 and 60% D20 (Figure 16). The difference between the

Bragg peaks and the equatorial scattering is d irectly  related to the coher

ent intensity of the reflections. The decrease in the coherent intensity  

of the reflections as the Ringer's solution is made richer in H20 suggests 

that the contrast within the structure diminishes as the H20 concentration 

increases.

(c) Systematic Errors

In addition to s ta t is t ica l  errors which l im it  the precision of the
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Figure 14. Line-focus x-ray d iffrac tion  pattern of a strip  of intact  

Rana catesbiana frog retina equilibrated in D̂ O Ringer's 

solution. This x-ray pattern is indistinguishable from 

those recorded in ^ 0  Ringer's solution (Blaurock and 

Wilkins, 1969; Gras and Worthington, 1969; Corless, 1972; 

Chabre and Cavaggioni, 1973).
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Figure 15. Meridional neutron diffraction  patterns of intact re t 

inas in 100, 80, 60, 40, and 30% D̂ O Ringer's solution. 

Continuous curves through the data bars are the sums

of polynomial f i t s  to the background scattering ( ............)

and Gaussian peaks f i t te d  to the background-subtracted 

reflections.
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Figure 16. The coherent intensity of the reflections in 60% 020

Ringer's solution is reduced compared with the re flec

tion intensities in 100% D20 Ringer's solution.
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observed d iffrac t io n , several sources of systematic error hinder the 

measurement of the integrated intensity of a reflection. These include 

! absorption, extinction, polarization, disorder, simultaneous re f le c t-
i
i
i  ions, chromatic and geometrical aberrations, background and the Lorentz
j
| factor. The reader is referred to Arndt and W illis  (1966) for an excel-
1
I lent discussion of technical considerations in x-ray and neutron d i f 

fraction.

I Absorption effects arise because the path length of the beam through

the sample is dependent on the scattering angle. At higher scattering 

angles the path length increases, and the scattered radiation is exponent

ia l ly  reduced. Absorption effects can be significant in x-ray d i f f ra c t -  

; ion and are due principally  to the photoelectric effect. For neutrons,

j absorption by nuclear capture is usally negligible except for nuclei such

| as cadmium, boron, gadolinium and other rare earths (Bacon, 1962). The

j highest scattering angle considered in the structural analysis including
i

8 reflections [Chapter V I (d ) ]  was 7 .2°. At such low angles the variation  

in path length of the diffracted rays passing through the sample is very 

; small. Therefore, absorption corrections were not necessary. IncoherentII
| neutron scattering from hydrogen manifests i t s e l f  in the same way as truei

| absorption, causing attenuation in the scattered intensity. This attenu-
!

ation was corrected for by normalizing the scattering profiles to the 

intensity of the direct beam transmitted through the samples. This nor

malization is much simpler in neutron d iffraction studies than in x-ray 

studies because the intensity of the incident beam can be easily monitored.

Extinction is the attenuation of the incident beam as a result of 

Bragg d iffraction . This attenuation can result from multiple internal 

reflections in the crystal (primary extinction) or from the reduction of
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the intensity of the incident beam impinging on a crystal plane due to 

Bragg d iffraction  from preceding planes (secondary extinction) (Woolfson, 

1970; Buerger, 1960). The strongest reflections are most reduced in 

intensity by extinction because they scatter a greater amount of energy 

from the incident beam than do weaker reflections.

A novel approach used by Caspar and Phillips (1976) for detecting 

primary extinction in neutron d iffraction  from myelin membranes is to 

change the D2 O/H2 O ratio  in the Ringer's solution in order to manipulate 

the contrast in the structure. At low resolution, the internal contrast 

within the membrane regions does not change, so that one would predict 

a linear dependence of the structure factors on the percent D2 O. Primary 

extinction effects would appear as a reduction in the intensity of a 

strong reflection as the contrast increases, causing nonlinearity in the 

plot of F versus percent D2 O. This approach has been applied to neutron 

diffraction from intact retinas (Figure 24). The l in e a r ity  of the struc

ture factor of the strong f i r s t  order versus percent D2 O indicates that 

there is l i t t l e  or no primary extinction in this system.

By varying the thickness of the specimens, secondary extinction  

due to multiply scattered neutrons from d ifferen t rods was shown to be 

negligible. D iffraction patterns recorded from samples equilibrated in 

isotonic D2 O Ringer's solution in which the path of the beam through the 

retinas was ^mm (Figure 12b) and ^2.5 mm (Figure 15) were indistinguish

able.

Primary and secondary extinction cause a wavelength dependence of 

the re la tive  values of the observed intensities for d ifferent reflections  

(Arndt and W il l is ,  1966). The close resemblance of the d iffraction  pat-
O 0

terns recorded with 2.37 A neutrons (Figure lOd) and 4.19 A neutrons
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(Figures 12 and 15) also indicates that extinction effects in this system 

! are negligible.
j

! The polarization factor in x-ray d iffraction  has a value close to

! unity in low-angle studies and is usually neglected. There is no polar

ization e ffect associated with the nuclear scattering amplitude in neutron 

diffraction.

Disorder can be due to variation of the unit cell repeat spacing 

( la t t ic e  disorder) or variation of the structure within the unit cell 

(substitution disorder). Methods for treating disorder in one-dimensional 

crystals have been described by Cain (1S74) and by Hosemann and Bagchi

(1962). Schwartz, Cain, Dratz, and Blasie (1975) have carried out a

detailed analysis of disorder from x-ray studies of retinal rods. In 

the analysis of my neutron scattering data, la t t ic e  disorder was cor

rected for by f i t t in g  Gaussian peaks of variable width to the Bragg re f le c t 

ions.

! Simultaneous reflections are recorded when the Bragg reflecting  con-

' dition is satisfied by more than one family of crystal planes. Simul

taneous reflections would not be expected to be recorded from d i f f ra c 

tion by one-dimensional crystals, but, i f  the mosaic spread is large 

enough, or i f  there is a s light variation in d spacing, then reflections  

h - 1 and h + 1 could contribute to the scattering observed for reflection

h. The Gaussian-fitting procedure corrected for overlap from nearest- 

! neighbor reflections.

; Chromatic and geometrical aberrations due to using a diffractometer

I with f in i te  apertures and a beam of f in i te  bandwidth have been discussed

| by Schmatz, Springer, Schelten and Ibel (1974) and by Moore (1976). I f
fI
| the Soller s l i ts  caused substantial smearing, then the resolution of the

|
L

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



minima between the Bragg peaks would improve as the height of the Soller
j
i. slits  is reduced. Since the resolution of the reflections does not

I change as the height of the Soller s l i ts  is reduced (Yeager,1976b), s l i t

smearing effects must be quite small. Chromatic aberrations were also

| small since the bandwidth of the neutron beam was small ( a a / a  = 0.025).

The instrumental angular resolution can be estimated from (Nunes,

i 1973)
i 1̂

428 = [ 40 2 * ( f  ■ 29) 2] ’ (6)

where aq is the width of the direct beam and the scattering angle 2e is 

less than ^30°. For the highest scattering angle measured, 7 .2 ° ,  a 

direct beam width of 0.24° (FWHM) and a a / a  = 0.025, the angular smearing 

A2e, is 0 .3 ° .  The angular smearing in 2e was corrected for by f i t t in g  

Gaussian peaks of variable width to the Bragg reflections.

The major sources of systematic error in these experiments which 

required scrutiny were background scattering and the Lorentz and d isori

entation corrections.

(d) Background Subtraction and Determination of Reflection Intensities  

In x-ray d iffrac t io n , background scattering has several sources: 

white radiation, thermal diffuse scattering, incoherent scattering, detec

tor background and parasitic scattering from the sample, the collimators 

and a ir .  In neutron d iffrac t io n , detector background, parasitic scatter

ing and especially incoherent scattering from hydrogen contribute to the 

background. Given that the observed d iffrac tion  pattern contains back

ground scattering, what are the options available for determining the 

coherent intensity of the Bragg reflections? Certainly i f  one has sev-

! eral hundred independent reflections with a high signal-to-noise ra t io ,
j

fa ir ly  simple techniques can be used to extract the areas of the Bragg

i
t.
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i peaks. One procedure is to select points on e ither side of a reflection

I and perform a linear interpolation to define the background level. The

coherent intensity of a reflection is then obtained by straightforward 

| subtraction of the background (Schoenborn, 1969). In low-angle d iffrac 

tion, manual background subtraction is often employed where only a few 

! reflections are recorded. Semi-automated curve f i t t in g  procedures were

used because of the convenience in analyzing a large number of d iffrac -  

| tion patterns and the ease in carrying out a s ta t is t ica l  analysis of the

data. Since only a few reflections were recorded in each pattern, the 

; influence of each reflection on the Fourier synthesis escalates, and auto-

i mated procedures provided the most objective approach for determining the

reflection in tensities.

The background in some previous low-angle studies was determined 

by f i t t in g  a l ine  or smooth curve between the minima around a Bragg 

reflection (Caspar and Kirschner, 1971; Kirschner, 1971; Worthington and 

I McIntosh; 1974). This approach is valid i f  the minima between reflections

| are well-defined plateaus, which indicates that adjacent reflections are
i

resolved. The regions between reflections in the neutron diffraction  

I patterns from retinas were not plateaus, which suggests that adjacent
j

| reflections were not completely resolved. Therefore, an experimental

| approach was used to ascertain the background underlying the Bragg peaks.

| ( i )  Determination of Background Scattering
|
! Special care was taken to obtain the best estimate of the background

; scattering since the entire retina was exposed to the beam. The best

| estimate of the background was obtained by rotating the retinas 90° in
j

| anglex from the Bragg reflecting position to obtain the equatorial scat-

j tering (see Figures 6 and 9). The diffuse intensity centered at 1/55 A
i '!
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t in equatorial x-ray diffraction patterns has been interpreted as d i f f ra c -
|
| tion between rhodopsin molecules in the plane of the disc membrane (Blasie,

f Dewey, Blaurock and Worthington, 1965; Blasie, Worthington and Dewey,

1969; Blasie and Worthington, 1969; Blasie, 1972). The equatorial neu

tron d iffraction  patterns in Figure 17 are quite featureless compared

| with the Bragg diffraction (Figure 15) and do not display peaks of
' °_1

intensity centered at 1/55 A . However, changes are seen in the pat-
i

terns as the D20 concentrations is varied (Figure 18). As the D20 con

centration decreases, the scattering at reciprocal space distances 
o_l

>0.016 A increases because of incoherent scattering from hydrogen.
°_1

| The scattering at distances<0.016 A is much greater than that observed

with only buffer in the sample c e l l ,  and this diffuse scattering prob

ably arises from those constituents of the retina not periodically organ-

° - l| ized to give Bragg d iffraction . The scattering at distances<0.016 A

decreases as the D20 concentration decreases, which suggests that struc

tures causing this diffuse scattering (e .g . ,  protein, l ip id  and carbo- 

j hydrate) are being contrast-matched as the D20 concentration decreases.

| This diffuse scattering probably arises from nonperiodic constituents of
[

j. the retina , and so i t  should be spa tia l ly  isotropic. The equatorial scat

tering can thus be used to ascertain the background scattering underlying 

j the meridional Bragg reflections. This approach for obtaining the back-
i

| ground would be inapplicable in situations where there is oriented equa-

| torial scattering from the structure. In such situations the scattering

; between the meridional and equatorial re flections, for instance at 45°,

■ could be used to obtain the background. Use of the equatorial scattering

I as the background for the meridional scattering is certainly a valid

j approach for treating that portion of the background contributed by the
t
I-
[
li:
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Figure 17. Intact retinas were rotated 90° in angle x f r °ro the Bragg 

reflecting  position to obtain the equatorial scattering. 

The smooth curves drawn through the data bars are poly

nomial regression f i t s ,  which are superimposed in Figure

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



IN
T

E
N

S
IT

Y

100%  d 2o

0 .01 .02 .03 0 .01 .02 .03

4 0  % D20

0 .01 .02 .03

I 0 5

3 0  % D20

0 i
( A ) -1

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



- 4 0 -

Figure 18. Polynomial regression f i t s  to the equatorial scattering 

observed from neutron d iffraction  of intact retinas in 

d iffe ren t  D̂ O-Ĥ O mixtures. The f i t  to the instrumental 

background scattering with an empty sample cell in place 

is shown for comparison.
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incoherent scattering from hydrogen, since this d iffrac tion  is isotropic.

A variety of functions were tested for f i t t in g  smooth curves to 

the background data. The most successful procedure was to f i t  polynomial 

functions to the data by multiple linear regression analysis (Bevington, 

1969).
1

y(x) = z a.x (7)
i=0 1

where â  is the ith  polynomial coeffic ient. To avoid severe "ringing" 

in the f i t s ,  unweighted y values were regressed as the logarithm of the 

equatorial in tensity , and x was the logarithm of the scattering angle 2e. 

The use of log I and log (2e) values in the polynomial f i t  was necessary 

because the intensities spanned almost four orders of magnitude. The 

degree of the power series, 1, was selected which minimized x > and
O

ninth-order polynomials usually gave optimum f i t s .  Minimum reduced-x 

values <0.03 were typ ical, and the f i ts  to the equatorial data in Figure 

17 are indeed excellent. The reproducibility of the background profiles  

at each D̂ O concentration from different samples was also quite good.

( i i )  Subtraction of Background

The scattering angle, 20, used in the polynomial f i t  was then con

verted to reciprocal space units, s = 2 sin 0/x. The polynomial f i t  and 

the meridional Bragg d iffraction  were scaled to constant monitor counts 

and were normalized to constant beam flux by dividing by the intensity  

of the direct beam transmitted through the sample. The background-sub

tracted intensity , I ( s ) ,  is then given by

I(s) » Mtsl- E[si (8)
CHbM cEbE

where M(s) and E(s) are the meridional and equatorial in tensities ,
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respectively. The c values are the total monitor counts collected with 

the sample in the meridional and equatorial orientations. The b values 

are the intensities at 2e = 0° of Gaussian peaks f i t te d  to direct beam 

scans with the sample in the meridional and equatorial orientations. The 

b values did vary s lig h tly  because the retinas were mounted on parallel 

aluminum bars which were perpendicular and parallel to the scanning axis 

of the diffractometer in the meridional and equatorial geometries, res

pectively (Figure 6 ). The position of Gaussian peaks f i t te d  to the direct 

beam scans was used to correct for a s light amount of angular backlash 

(0 .0 2 ° )  in the scanning axis, and the continuous polynomial f i t  was used 

for background subtraction since the meridional data were not collected  

at exactly the same angular setting as the equatorial data. The value 

of E(s) was therefore given by equation (7 ) .  The data bars in Figure 19 

show a backround-subtracted- profile  for an experiment in D20 Ringer's 

solution.

( i i i )  Determination of 3ragg Peak Areas and the Repeat Spacing

The algorithm for grid-search least-squares f i t  of Gaussian func

tions to the background-subtracted reflections can be described by con

sidering three reflections. Peak height, angular position of the peak 

and the half-width of the reflections were specified i n i t i a l l y  by inspec

tion of the background-subtracted data points. Since the d iffracted  

intensity between reflections was not zero (Figure 19a), the contribu

tions from nearest-neighbor reflections had to be considered in refining  

the parameters for reflection  h. Three standard deviations of data around 

the peak maximum of reflection h were considered in the refinement. Nine 

parameters defined the in i t ia l  f i t  to the p ro f i le ,  which was obtained 

by summation of the Gaussian peaks for reflections h - 1, h and h + 1
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Figure 19. Background-subtracted neutron d iffraction  patterns for  

data collected in D̂ O Ringer's solution, (a) The 

smooth curve through the data bars are the sums of Gaussian 

peaks f i t te d  to the Bragg reflections, (b) Gaussian 

peaks were f i t te d  to the background-subtracted reflections  

using an i te ra t ive  grid-search algorithm. The horizontal 

lines indicate ±1, +2 and +3 standard deviations for each 

Gaussian. The fu l l  widths at e 2 height (+1 standard 

deviation) increase in proceeding from lower to higher 

angle reflections.
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2
over the range of + 3 standard deviations. A raw x was calculated

between the experimental data and the sum of the three Gaussians in the

region of + three standard deviations around reflection h. The six

parameters for reflections h - -1 and h + 1 were held constant while the

three parameters for reflection h were successively refined. The refine-
2

ment of each parameter for reflection h was continued until x changed 

by <0.1%. Then, the parameters for reflection h + 1 were refined with 

the parameters for reflections h and h + 2 kept constant. In this way

all the reflections were refined by considering reflection t r ip le ts ,

except for the f i r s t  and last orders. For the f i r s t  re flec tion , only 

the overlap from the second order was considered in the refinement, and

the f i t t in g  was begun at the minimum between the zero order and the

f irs t  order. For the last re f lec tion , n, only overlap from reflection  

n - 1 was considered, and the las t point considered in the refinement was 

three standard deviations a fte r  the peak maximum of reflection n. One 

complete cycle of refinement was concluded when a ll  reflection param

eters had been refined. About f ive  cycles were required to optimize

the f i t .

By using this curve f i t t in g  procedure the background-subtracted 

data could be described as the sum of the Gaussian reflections:

n i ,  2
G(2e) = I  A, e"^ zh (9)

h=l n

where G(2e) is the f i t  at angle 2e, z^ = (2e - B^J/C^, and A^, and

- 1 / 2are the maximum, position and half-width at e height for the

Gaussian f i t  to reflection h. The progress of the refinement for all
2

reflections was monitored by calculating x between the background-sub

tracted data given by equation 3 and the sum of the Gaussian reflections
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given by equation 9. Refinement cycling was continued until ^  

changed by <1%. The smooth curve in Figure 19a is the sum of the 

Gaussians described by equation 9; the agreement between the f it te d  

curve and the data is quite good. Individual Gaussian peaks f i t te d  

to the background-subtracted data in Figure 19a are shown in Figure 

19b. The fu l l  widths at e ^ height for the Gaussians f i t te d  to re f 

lections 1 to 8 are 0.23, 0.31, 0.34, 0.36, 0.56, 0.56, 0.59 and 0.64 

degrees, respectively. The fu l l  width at e"^ height of the direct 

beam was 0.22°. The increase in reflection width in proceeding from 

lower to higher scattering angles is due to la t t ic e  disorder (varia

tion in the spacing between discs) and the f in i t e  bandwidth of the neu

tron beam ( a a / a  = 0.025). After the Gaussian parameters were determined, 

the relative area of each reflection was simply obtained from the pro

duct, A. • C, . h h

The error in the peak positions of the Gaussians was much greater 

for the higher orders than for the lower orders. Therefore, the repeat 

spacing, d, was calculated from the variance-weighted mean of the
Bh

Gaussian positions: , u \ , n • (-sM
n (hA)/2«sin v 2 1
1 °r  2

d = ]r --r 1  (10)
E 2

w  \

2
where aR is the variance in the position of the Gaussian for reflec-  

h
tion h. The positions for the Gaussians could have been grouped together 

as one parameter, the repeat spacing. However, the d iffraction  patterns 

were obtained using a step-scanning diffractometer, and so different re

flections were not recorded simultaneously. The positions of the Gaussians
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were threfore refined as separate parameters, and the reproducibility  

of the repeat spacing calculated from each reflection served as a con

venient test of specimen in tegrity .

( iv) Error Analysis

Errors were propagated by assuming Poisson counting s ta t is t ics  

in the observed meridional and equatorial data. Therefore, one standard 

deviation of the intensity observed at each scattering angle is given 

by the square root of the observed number of counts. The same error  

propagation procedure was used in treating the background, in f i t t in g  

Gaussian functions to reflections and in determining the Lorentz and 

disorientation corrections [ChapterIV(e)]. According to standard pro

cedures of error analysis described by Bevington (1969), a , the stan

dard deviation of a quantity y , is approximated by

■ «.2 <Sf>2 V
where u and v are the parameters of y. The assumption of equation (11)

is that the fluctuations in the parameters, u and v, are uncorrelated.

2 2To obtain the variances of the parameters, ou and ov , a function y (x 1-)

is f i t te d  to N data points ( x . , y . ). The goodness of f i t  is given by 

2
x •

X2 •  E ( \  [y< -  y (x ,  ) ] 2 > (12)
i=l o,

where a. is the standard deviation of the observed value y . .  The f i t -i

ting procedure involves varying the values of the parameters of y (x . )  to

• . 2
minimize the value of x •

In f i t t in g  a Gaussian function to a reflection , a hypersurface is
2

defined by the values of x as a function of the f i t t in g  parameters: the
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maximum, the position and the half-width at e-1* height of the Gaussian. 

In a grid-search least-squares f i t ,  the three parameters describing the 

Gaussian are successively incremented until the minimum of the x  ̂ hyper

surface is located. Since the standard deviations of the data points, 

were quite variable, the data were weighted by th e ir  variances in 

the least-squares f i t s .  For f i t t in g  Gaussian functions to reflections,  

a parabolic interpolation of the x hypersurface was made, since there 

is no analytical form for the standard deviations of the parameters in 

nonlinear least-squares f i t s .

(v) Evaluation of Background-Subtraction and F itt ing  of Gaussian Peaks 

A necessary condition for the success of the background subtrac

tion and Gaussian f i t s  is that the sum of the polynomial background 

(dotted p ro f ile  in Figure 20) and the Gaussian peaks (Figure 19b) should 

be a good f i t  to the observed meridional d iffrac t io n . The good f i t  of 

the observed data to the smooth curve in Figure 20 suggests that the 

f it t in g  procedure is re liab le . Of a total of 39 independent experi

ments, 66% of the f i t te d  data values fe l l  within + 1 standard deviation 

of the experimental values (tota l number of data points = 2683). Since 

this percentage is close to the theoretical value of 68%, the data 

processing procedure is s ta t is t ic a l ly  v a l id . The data analysis proced

ure was most useful in experiments where i t  would have been d i f f ic u l t  

to determine reflection intensities re liab ly  and objectively by inspec

tion. Although the data obtained in 30% D20 are quite noisy (Figure 15), 

the pattern does contain information. The reflection  intensities were 

objectively determined by using the data analysis procedure, and the 

propagated errors could be used to assess the precision of the intensi

ties.
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Figure 20. Neutron d iffrac t io n  pattern from intact retinas e q u i l i 

brated in D̂ O Ringer's solution. The continuous curve is 

the sum of the polynomial regression f i t  to the background 

data ( • • • • )  and the Gaussian peaks (Figure 19b) f i t te d  to 

the background-subtracted reflections. 60% of the f i t 

ted data values fa l l  within +1 standard deviation of the 

experimental values.
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Procedures similar to those presented here have been used for 

analyzing d iffraction  data from other systems. The background scatter

ing from x-ray d iffrac tion  of tobacco mosaic virus has been carefully  

examined and treated using semi-automated procedures (Barrett, Barrington 

Leigh, Holmes, Leverman, Mandelkow, von Sengbusch and Klug, 1971; Holmes, 

Stubbs, Mandelkow and Gallw itz, 1975). The consideration of overlap 

from nearest-neighbor reflections in f i t t in g  Gaussian peaks to smeared 

reflections was used for reducing x-ray d iffraction  patterns of DNA 

(Langridge, Wilson, Hooper, Wilkins and Hamilton, 1960). Worthington 

and McIntosh (1974) have presented the theoretical basis for the va lid ity  

of this approach. The reader is referred to Diamond, (1969); Blessing, 

Coppens and Becker (1972); Ford (1974), Lehmann and Larsen (1974); 

Krieger, Chambers, Christoph, Stroud and Trus (1974) and Lehmann (1975) 

for methods used in single-crystal d iffraction for treating background 

scattering and reflection  pro file  f i t t in g .  Overlap of reflections is 

prevalent in low-angle studies because many of the structures examined 

are para-crystalline. I f  the overlap between reflections becomes too 

severe, either because of disorder in the structure or chromatic smear

ing, the Gaussians f i t te d  to the data become increasingly less re liab le  

because the d iffraction  approaches the continuous molecular transform 

rather than the sampled transform giving Bragg reflections.

(e) Determination of the Lorentz and Disorientation Corrections

The integrated intensity , I .  t , of reflection h is given by (James, 

1965; Warren, 1969; Arndt and W il l is ,  1966; Buerger, 1960)

! in t (h) = K L(h) P(h) l p(h) I2 (13)

where K is a proportionality constant and the polarization factor P equals
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one at low angles and in neutron d iffrac tio n . The Lorentz factor, L, 

is a geometric correction which takes into account the fact that d i f f e r 

ent reflections spend d ifferent amounts of time intersecting the Ewald 

sphere to satisfy the Bragg reflecting condition. In the rotating crys

tal method the rate of rotation of a zero-level equatorial reciprocal 

la tt ice  point is inversely proportional to the reciprocal space distance 

between the origin in reciprocal space and the point of intersection of 

the reflection with the Ewald sphere. The reciprocal of the Lorentz 

factor, L \  in such an experiment is

L ^(h) = sin 2e = h ( 1 4 )

and so L is approximated by h at low angles. Therefore, the observed 

intensities must be multiplied by sin 2 q to make them proportional to 

the squares of the structure factors in equation (13).

Rotating crystal geometry is equivalent to that of f iber d iffraction  

in which a parallel bundle of fibers is held stationary and the fibers  

have random rotational orientations about their  long axes (James, 1965; 

Warren, 1969; Vainshtein, 1966). The reciprocal la t t ic e  points are spread 

out into circles with radii proportional to the distance between the f iber  

axis and the intersection of the reflection with the Ewald sphere. Since 

a greater fraction of the intensity is recorded for reflections at a 

smaller radius than for those at a greater radius, the Lorentz factor  

given by equation (14) w il l  apply to the equatorial reflections on the 

zero layer l ine . A further disorientation correction D(h) is necessary 

i f  the fibers are not exactly parallel to one another but exhibit dis

orientation about the f iber axis (Franklin and Gosling, 1953; Arnott,

1965). Elegant treatments of the Lorentz and disorientation corrections 

in f iber d iffraction  have been published (Celia, Lee, and Hughes, 1970;
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Deas, 1952; Holmes and Barrington Leigh, 1974; Stubbs, 1974).

Retinal rod outer segments have random rotational orientations  

about the ir  long axes, and the discs are rotationally symmetric. The 

reciprocal Lorentz factor given by equation (14) w ill  therefore apply 

to the meridional reflections from rods, and the structure factor ampli

tude |F(h)| is

|r (h ) |  = /h D(h) 1(h) (15)

where L"^(h) = h and 1(h) is the background-subtracted intensity of 

reflection h integrated over angle 2e as described in Chapter iv (d ) .

The disorientation correction D(h) was determined by mapping the inten

sity distribution of the meridional reflections in reciprocal space.

Three types of experiments were conducted: pers is tence-w ith -ti lt  ex

periments, s l it -h e ig h t  reduction experiments, and rocking curve analy

sis.

Persistence-with t i l t : Bear and Bolduan reported experiments in

the early 1950's for assessing whether a d iffracting  sample is dis

oriented about i ts  f iber axis (Bear and Bolduan, 1950; Bolduan and Bear, 

1950; Bolduan and Bear, 1951). The sample is t i l te d  with respect to 

the incident beam. I f  there is no disorientation, then the d i f f r a c t 

ion orders s h if t  to higher angle, corresponding to an apparent decrease 

in repeat spacing. This method is designated the persistence-with t i l t  

technique since samples with substantial disorientation about the fiber  

axis exhibit reflections whose intensities persist over appreciable t i l t s  

and are not shifted (Figure 21). A pers istence-w ith-ti lt  experiment 

for the meridional d iffraction  observed from neutron scattering of retinas 

equilibrated in D2 O Ringer's solution is shown in Figure 22. The
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Figure 21. The persistence-w ith-ti lt  experiment can be described by 

considering schematic diagrams of Bragg reflections from 

a sample of rods with random rotational orientations.

Lines designated E intersect the Ewald plane which is per

pendicular to the page, (a) The rods are exactly parallel 

so that the reflections have the shape of discs; in cross- 

section, these reflection discs are lines. The reflections  

observed with the sample perpendicular to the incident 

beam (0° t i l t )  sh ift  to higher angles when the sample is 

t i l t e d  (dotted l ines ),  giving an apparent decrease in the 

real space repeat spacing, (b) The rods are disoriented 

so that the reflections are spread out into caps of spheres; 

in cross-section, these reflection caps are arcs of circles  

with rad ii proportional to h. The reflections persist 

over appreciable t i l t  angles and are not shifted to higher 

angles; therefore, the repeat spacing does not change as 

the rods are t i l te d .
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diffraction pattern was scanned in 2e with the sample fixed at w = 0° 

and then at u = -20° (see Figures6, 8 and 9). I f  the rods were com-
0

pletely p a ra l le l ,  the apparent repeat spacing at w = -20° would be 295 A
O

• cos 20° = 277 A. The repeat spacings at 0° t i l t  and 20° t i l t  were
0 O

295+ 1 A and 300 + 5 A. The constancy of the repeat spacing clearly  

indicates that the rods are not perfectly p a ra l le l . In fac t ,  the dis

orientation of the rods must be comparable with the extent of t i l t i n g ,  

20° .

Slit-Height Reduction: To investigate the extent to which the 

detector Soller s l i ts  integrated the intensity distributed over the dis

orientation arcs of the reflections, the height of the Soller s l i ts  

before the sample was reduced, and the d iffrac tion  pattern was scanned 

in 2e with the sample kept fixed at u=0°. I f  the s l i ts  are of in f in i te  

height compared to the height of the reflection  arcs, then the re la tive  

intensities for each reflection should not change as the s l i t  height 

is reduced. However, i f  the s l i ts  are of f in i t e  height compared with 

the height of the reflection arcs, then the re la t ive  intensities for  

each reflection w il l  decrease with decreasing s l i t  height. Such s l i t  

height reduction experiments (Yeager, 1975b) showed that a greater 

fraction of the total intensity was recorded for the lower order re f lec 

tions compared with the higher order reflections. The Soller s l i ts  

are therefore of f in i t e  height and p a r t ia l ly  integrate the disorienta

tion arcs so that the disorientation correction varies with each re f lec 

tion.

Rocking Curve Analysis: In order to calculate a disorientation

correction for each reflection , the intensity distribution across the 

disorientation arcs was mapped by rocking curve analysis. The detector
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Figure 22. Pers istence-w ith-tilt  experiment for neutron d iffraction  of 

in tact retinas equilibrated in D20 Ringer's solution. The 

dotted profiles are the polynomial f i t s  to the background 

data,and the continuous curves through the observed data 

bars are the sums of the background f i t s  and Gaussian peaks 

f i t te d  to the background-subtracted reflections. The repeat 

spacings at 0° t i l t  and 20° t i l t  are 295 + 1A and 300 ± 5A, 

respectively. The constancy of the repeat spacing indicates 

that there is substantial disorientation of the rods.
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was fixed at a scattering angle 20 corresponding to the peak maximum 

for a particular re f lec tion , and the sample was rocked in angle w.

The rocking curves shown in Figure 23a were recorded with the sample 

oriented to observe both the meridional and equatorial d iffraction  

(see Figures6, 8 and 9 ) .  Since the equatorial scattering with the 

sample at x = 90° would be expected to be spatia lly  isotropic, the 

rocking curves should be horizontal lines. The equatorial rocking 

curves in Figure 23a are f i t te d  quite well by lines and the profiles  

are almost horizontal. To correct for the decreased amount of material 

in the beam and the lower beam flux as to increased, the scattering 

observed at each value of u was normalized by using direct beam measure

ments through the sample with the detector at 20 = 0°. The slight up

ward ta il in g  of the equatorial profiles for reflections 1 and 2 in 

Figure 23a may indicate an incomplete correction for this e ffec t.  The 

equatorial rocking curves were considered as the background for the 

meridional rocking curves in Figure 23a. The background-subtracted 

rocking curves shown in Figure 23b are f i t te d  quite well by Gaussian 

functions. The strik ing observations in these profiles are that the 

mosaic spreads for orders 1 to 4 are almost the same and are quite large. 

The mosaic spreads are defined by the fu l l  width at e 2 height of the 

Gaussians (+ 1 standard deviation). These widths for orders 1 to 4 

are 55.8+0.6 , 55.0+1.8°, 58.6+1.2° and 55.2^1.4° respectively.

The Gaussian rocking curves in Figure 23b certainly prove that the 

rods are disoriented in the plane which intersects the Ewald plane. The 

horizontal bright l ine  in the photomicrograph of an edgefold prepara

tion in Figure 11 shows that the rods have preferential alignment paral

lel to one another. The "patchy" birefringence in the plane of the
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Figure 23. Rocking curves for the f i r s t  four reflections from neutron 

diffrac tion  of retinas in D20 Ringer's solution with scat

tering angles of 0.8, 1.6, 2.4, and 3.2 degrees, and scale 

factors of 5.0 x 10"^, 2.5 x 10"^, 2.86 x 10’ ^, and 8.33 x
_3

10 , respectively. Lines were f i t te d  to rocking curves 

with the sample aligned to observe the equatorial scatter

ing at x = 90°. (a) The curves drawn through the data recor

ded with the sample aligned to observe the Bragg d if f ra c 

tion at x = 0° are the sums of the linear equatorial rock

ing curves and Gaussian peaks f i t te d  to the background-sub

tracted meridional rocking curves, (b) Background-subtracted 

rocking curves for the f i r s t  four reflections from neutron 

d iffrac tion  of retinas in D20 Ringer's solution with scale 

factors of 6.67 x 10"^, 5.0 x 10"^, 3.33 x 10"^, and 1.25 x
_3

10 , respectively. The data bars display the rocking curves 

a fte r  subtraction of the equatorial rocking curves in (a ).

The fu l l  width at e~2 height of the Gaussian profiles f i t 

ted to the data defines the mosaic spread q. The mosaic 

spreads for reflections 1 to 4 are 55.8 + 0 .6°, 55.0 ± 1.8°, 

58.6 + 1 .2°, and 55.2 + 1.4°, respectively.
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retina indicates that disorientation of the rods about th e ir  long axes 

is indeed present and that the disorientation does not occur along a 

particular axis of the plane of the retina. Thus, the rods are d isori

ented in a roughly ro ta tiona lly  symmetrical fashion so that the re f lec 

tions in reciprocal space, as depicted in Figure 9, should be approxi

mately c ircu lar in a cross section perpendicular to the Ewald plane.

Since the meridional reflections have been characterized, the dis

orientation correction D(h) for each reflection can now be calculated. 

D(h) is the reciprocal of the fraction of the intensity of reflection h 

accepted by the Soller s l i t  aperture closest to the graphite monochrom

ator. D(h) w il l  increase with increasing h since a smaller fraction of 

the intensity of the higher orders w il l  be recorded compared with the 

lower orders. To calculate D(h), the sample was considered to be made 

up of a one dimensional vertical array of mosaic blocks over the sample 

height. The d iffracted rays from a single mosaic block are smeared

vertically  due to the mosaic spread n- (Since the vertical beam diver

gence was ^1° and n ^60°, the additional smearing due to beam divergence 

is neg lig ib le .)  For a single mosaic block the vertical height of the 

smeared reflection in the plane of the Soller s l i t  aperture is 2e • n •

L where L is the horizontal distance from the sample to the aperture.

The total intensity in the vertical direction of reflection h was ob

tained by numerical integration over a l l  mosaic blocks assuming the s l i t  

to be of in f in i te  height. D(h) was then given by the ra tio  of this  

total intensity to the integrated intensity with f in i te  l im its  given by 

the s l i t  height. Using the values L = 36.8 cm., sample height = 19mm,
O O

s l i t  height = 19mm, X = 4.19 A and d = 300 A, the values of D(h) for

orders 1 to 8 were 1 .2 , 1 .5, 2 .0 , 2 .7 , 3 .4 , 4 .1 ,  and 5.4, respectively.
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Thus, the percentage of the vertical, intensity that was recorded for  

orders 1 to 8 was 83, 66, 49, 37, 30, 25, 21, and 18%, respectively.

A preliminary analysis of d iffraction  patterns recorded using the 2- 

dimensional position-sensitive'detector (Figure lOd), in which the total 

vertical intensity of the reflections is recorded, confirmed the above 

treatment of the Soller s l i t  d iffraction  patterns. The above treatment 

of the Lorentz and disorientation corrections was ju s t if ie d  because the 

mosaic spread was the dominant influence on the recorded intensity; n was 

substantially larger than the beam divergence, the chromatic bandwidth 

of the neutron beam and the mosaic spread of the graphite monochromator. 

Saxena and Schoenborn (1977) have demonstrated the v a l id ity  of using the 

above approach for obtaining the disorientation correction.

(f)  Structure Factor Amplitudes and the Effect of Light

Table I l is ts  the structure factor amplitudes for the experiments 

in d ifferent D2 O-H2 O mixtures shown in Figure 15, and Table I I  l is ts  the 

structure factor amplitudes for the experiments in D2 O Ringer's solution 

of varying osmolarity shown in Figure 12.

Since the d iffraction  patterns were normalized to constant beam flux  

and monitor counts, the structure factors should be on an absolute scale. 

(However, the units of the absolute scale are a rb itra ry .)  The range of 

amplitudes from d ifferent experiments at the same D20 concentration devia

ted by more than the s ta t is t ica l  error for an individual experiment (Fig

ure 24); therefore the number of d iffracting  rods in the beam probably 

varied. However, since the variation of the amplitudes between experi

ments at the same D2 O concentration was less by about a factor of 5 than 

the changes observed as the D2 O concentration was changed, an absolute 

comparison of the amplitudes between experiments is ju s t i f ie d .  The plots
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Table 1

STRUCTURE FACTOR AMPLITUDES 

FROM NEUTRON DIFFRACTION OF INTACT RETINAS 

IN DIFFERENT MIXTURES OF D20 AND H20

% d2o

h 100 80 60 40 30

1 185 + 2 130 + 2 84 + 1 43 + 2 21 + 3

2 128 + 3 86 + 4 50 + 3 24 ± 4 18 + 4

3 234 + 3 170 + 3 114 + 3 58 i  3 47 + 5

4 225 + 3 152 ± 3 97 ± 4 58 + 6 3 8 + 6

The structure factors were calculated from equation (15). The 

errors are one standard deviation obtained by propagation of 

s ta t is t ica l errors through background-subtraction and f i t 

ting of Gaussian reflections to the Bragg peaks.
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T a b le  2

STRUCTURE FACTOR AMPLITUDES 

FROM NEUTRON DIFFRACTION OF INTACT RETINAS 

IN D20 RINGER'S SOLUTION OF VARYING OSMOLARITY

RINGER'S SOLUTION 

h 1% sucrose isotonic 0.8 dilute 0.6 dilute

1 319 + 2 333 + 2 315 + 2 221 + 3

2 231 + 2 254 + 2 210 + 3 165 ± 5

3 382 ± 4 441 + 3 397 + 4 284 ± 3

4 328 + 3 378 ± 3 316 i  3 237 ± 5

d(A) 294 298 308 328

The structure factors were calculated as in Table 1.
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Figure 24. Structure factor amplitudes F(h) for reflections 1 ,2 ,  3, 

and 4 increase linearly  as the D̂ O concentration is 

increased.
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of F(h) versus percent D2 O in Figure 24 show that F(h) depends linearly

on percent D2 O, as expected for a hydrated structure (Bragg and Perutz,

1952; Zaccai, Blasie, and Schoenborn, 1975; Worcester and Franks, 1976).

The linear correlation coefficients for the variance-weighted least-

squares f i t s  in Figure 24 were 0.96, 0.92, 0.93, and 0.96 for orders

one to four respectively.

Structure factors obtained from neutron d iffraction  of dark-

adapted and bleached retinas are shown in Figure 25. To correct for

the variation in the number of d iffracting  rods in d ifferent samples,

data sets were scaled to one another by normalizing to the sum of the

1 ® 2corrected intensities for the f i r s t  3 reflections, -r £ F(h) .
a h=l

Since the light-dependent changes are within the experimental reprodu

c ib i l i ty  of 10%, only small structural changes in the disc membrane
O

occur upon bleaching at 40 A resolution.
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Figure 25. Structure factor amplitudes F(h) from neutron d iffraction  

of dark-adapted (0) and bleached (A) retinas equilibrated  

in D2 O Ringer's solution.
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CHAPTER V 

STRUCTURAL ANALYSIS 

The in tensities , phases, and disorientation corrections are con

siderably more re liab le  for the f i r s t  four orders than for the higher 

orders. The structural analysis described below w ill therefore consi

der only the f i r s t  four strong reflections.

(a) Patterson Maps

One dimensional Patterson maps were calculated by Fourier trans

formation of the corrected intensities

P(x) = \  E h  D(h) 1(h) c o s ( ^ )  
h=l

(16)

where P(x) is the value of the Patterson function at a real space dis

tance x and n=4.

Patterson maps calculated on an absolute scale with arb itrary  units

for experiments in d ifferent D^O^O mixtures (Figure 26) display broad
0

peaks centered at about 84 A with magnitudes of about 60% of the origin
O

peaks. The movement of the 84 A correlation to larger distances as the

D̂ O concentration decreases was not observed in a ll  experiments and may

not be significant. As the D20 concentration of the Ringer's solution 

decreased, the reproducible characteristics of the Patterson maps were
O

a reduction in the magnitude of the origin peak and the 84 A correlation. 

This behavior is consistent with a reduction in the contrast within the

unit cell as the D̂ O concentration decreases and is also suggested by

the reduced coherent intensity of the reflections as the H20 content of

-64-
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Figure 26. Patterson maps calculated on an absolute scale from the 

corrected intensities of the f i r s t  four reflections for 

neutron d iffraction  experiments on intact retinas e q u il i 

brated in 100 (---------- ) ,  80 ( ..............) ,  60 ( ............ ) ,  and

40% D̂ 0 Ringer's solution.
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the Ringer's solution increased (Figure 16). The general modula

tions of the Patterson maps at a l l  D̂ O concentrations are qualita -
0

tively the same, which suggests that at 75 A resolution the principal 

effect of changing the D̂ O concentration from 100% to 30% is to a l te r  

the scattering density of the aqueous regions without changing the 

internal contrast of the disc membrane.

Patterson maps calculated from the intensities from experiments 

in D̂ O Ringer's solution with varying osmolarity (Figure 27) also dis-
O

play a broad correlation which moves from 83 A in 2% sucrose Ringer's
O

solution to 93 A in 0.6 diluted Ringer's solution. The vectors at
O

distances < 30 A should be dominated by intramembrane correlations 

(Caspar and Kirschner, 1971). The s im ila r ity  of the Patterson maps
O

at distances < 30 A suggests that the structure of the membrane is 

not changed as the ton ic ity  is varied.

(b) Phase Determination

Electron microscope images of disc membranes display mirror planes 

in the middle of the intradisc and extradisc regions (Figure 2). For 

a centrosymmetric crystal the structure factors are rea l,  and the 

phase problem reduces to assigning a + or - sign to the square root of 

the corrected in tensities . Kinetic experiments were conducted to 

determine whether phase changes occurred as the D̂ O concentration was 

varied. Retinas were equilibrated in 40% D20, and then 100% D20 

Ringer's solution was kept flowing through the specimen cell while 

the f i r s t  four reflections were repetit ive ly  scanned. The intensity  

of the reflections increased without passing through zero as the D20 

concentration changed from 40% to 100%. Therefore, the phases of the 

f i r s t  four reflections remained the same over this range of D£0
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Figure 27. Patterson maps calculated from the f i r s t  four reflections  

for neutron d iffraction  experiments on intact retinas 

equilibrated in D̂ O Ringer's solution of varying osmolar-
O

ity .  The broad correlation at 83 A shifts to longer dis

tances as the osmolarity decreases. The profiles for all  

experiments have been normalized to the magnitude of 

the ir  origin peaks.
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concentration. This conclusion is also supported by plots of the struc

ture factor moduli versus percent D̂ O (Figure 24). These plots are l in 

ear and phase changes for the f i r s t  four orders do not occur until the 

DgO concentration is < 30%.

The phases for the f i r s t  four orders were determined by analyzing 

the models shown in Figure 28, which are interpretations of the Patterson 

maps in Figures 26 and 27. I t  should be stressed that Patterson maps do 

not uniquely define the structure and hence the phases. However, the 

D2 O-H2 O and osmotic Patterson maps do provide several pieces of inde

pendent evidence that favor model a in Figure 28.
O

The broad correlation at 84 A in Figure 26 is interpreted as aris -
0

ing from correlations between two regions of density spaced 88 A apart. 

This interpretation is compatible with electron microscope images of 

rod outer segment disc membranes which show two densely stained regions 

in the unit c e l l .  The models in Figure 28 predict a Patterson map with
O O

a broad correlation at 84 A in isotonic D2 O Ringer's solution at 75 A

resolution. The differences between the models are whether the regions 
0

of density 38 A apart are nonaqueous troughs re la t ive  to the aqueous 

regions (model a); aqueous peaks relative to the nonaqueous regions 

(model b); nonaqueous peaks re lative  to the aqueous regions (model c); 

or aqueous troughs re la tive  to the nonaqueous regions (model d).

The D2 O-H2 O Patterson maps in Figure 26 show that the contrast within
O

the structure decreases as the D2 O concentration decreases. At 75 A reso

lution, this decreased contrast is due to the decreased scattering 

density in the aqueous regions of the structure and not due to contrast 

fluctuations within the membrane in te rio r .  This conclusion is supported 

by two observations: (1) the Patterson maps for D2 O concentrations
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Figure 28. Models for the interpretation of Patterson maps in
O

Figures 26 and 27. Two 50 A regions of density with a
O

center-to-center separation of 88 A are placed centro-
O

symmetrically in a 300 A unit c e l l .  The bars at the 

top of the figure designate aqueous (stippled) and non

aqueous (solid) regions. The contrast between the 

aqueous and nonaqueous regions is designated by C. In 

models (a) and (b), the contrast decreases and in mod

els (c) and (d), the contrast increases in proceeding

from 100% D20 (------------ ) to 60% D̂ O (-------). The unit

cell spacing and the distance between the troughs incre

ase as the osmolarity of the Ringer's solution decreases 

( • • • • ) •  The models are scaled so that the contrast is 

the same in 100% D20, and the neutron scattering density 

of the aqueous regions decreases in going from 100% to 

60% D20.
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ranging from 100% to 30% have the same modulations and (2) difference
o

Patterson maps using ( F ^ - F ^ )  as coefficients in equation (16), where 

D1 and D2 are d iffe ren t D̂ O concentrations, are identical in shape to 

the Patterson maps in Figure 26. These difference maps display the 

correlations between aqueous regions within the structure (Zaccai,

Blasie, and Schoenborn, 1975) and suggest that the distribution of 

water is the same in 100% and 30% D̂ O since the difference maps are the 

same over this range of D2 O concentration. Models c and d in Figure 28 

predict that the contrast within the structure increases as the D̂ O 

concentration decreases from 100% (continuous line) to 60% D̂ O (dashed 

line) and are therefore incompatible with the observed Patterson maps. 

Models c and d are also unlikely since the scattering density of D̂ O 

is less than the density of the nonaqueous regions, in conflic t  with 

the calculated scattering densities of membrane molecules in Figure 4.
O O

The s h if t  of the 83 A correlation to 93 A and the increase in the

unit cell repeat spacing (Figure 27) are interpreted in the models of
0

Figure 28 as a separation of the regions 83 A apart with decreasing
O

osmolarity (dotted l ines).  Since the 83 A peak shows l i t t l e  or no

increase in width as i t  shifts to longer distances, the widths of the 
0

regions 83 A apart remain constant as the regions separate. In models 

b and d the behavior of the osmotic Patterson maps is explained by the 

increases in the dimensions of the nonaqueous regions, whereas in models 

a and c the aqueous regions increase in size with decreasing osmolarity. 

Due to the low so lub ili ty  of water in l ip id  hydrocarbon, the increased 

water content within the structure with decreasing osmolarity is unlikely  

to be due to infusion of water into the l ip id  hydrocarbon regions. The 

most chemically plausible explanation of the increased water content
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within the unit cell is that the additional water is added to pre

existing water compartments. Such water addition in models b and d 

would cause an increased unit cell repeat spacing but would not cause
0 0 o

the observed s h if t  from 83 A to 93 A. Instead, the 83 A peak would 

increase in width but would not sh if t  position.

Model a is compatible with the observed D20-H20 Patterson maps 

and also provides a chemically plausible explanation for the osmotic 

Patterson maps. The neutron scattering density of the aqueous regions 

and the contrast between the aqueous and nonaqueous regions decrease 

with decreasing D20 concentration. The water content of the aqueous 

regions increases with decreasing osmolarity of the Ringer's solution, 

causing an increase in unit cell size. The aqueous region between the 

troughs increases in size with decreasing osmolarity, causing the
o ' o

observed s h if t  from 83 A to 93 A in the osmotic Patterson maps. Since 

the so lub ility  of water in hydrocarbon is low, the scattering density 

of the nonaqueous regions are independent of D20 concentration. Note 

that model a is essentially equivalent to the neutron scattering density 

profile of the l ip id  bilayer model for the disc membrane shown in
O

Figure 5. The broad Patterson peak at 84 A would represent the sepa

ration of centers of the disc membrane pairs.

Fourier transformation of model a using equation (4) gives the 

phases - ,+ ,+ ,+  for the f i r s t  four orders for the osmotic experiments in 

D20 Ringer's solution. Knowing that there are no phase changes between 

100% and 30% D20, the phases for the reflections at each D20 concentra

tion are also - ,+ ,+ ,+ .  I t  should be noted that of a l l  the possible phase 

combinations, only the phases - ,+ ,+ ,+  y ie ld  Fourier syntheses in D20 

which can be interpreted as having two membranes in the unit cell with
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a higher neutron scattering density in the aqueous regions compared with 

the membranes.

(c) Neutron Scattering Density Profiles

One dimensional neutron scattering density profiles were calcula

ted from

P ( x )  = |  E s(h) F(h) cos ( ^ )  
a h=l a

(17)

where p(x) is the neutron scattering density at a real space distance x,

and s(h) is the phase of reflection h. Centers of symnetry are located

at x = where j  is an integer.

Neutron scattering density profiles for experiments in d ifferent
0

mixtures of D̂ O and H20 were calculated on an absolute scale to 75 A

resolution. The Fourier maps in Figure 29 show that as the D̂ O concent

ration decreases the overall contrast between the low density troughs 
0

at + 44 A and the remainder of the structure diminishes. The highest

density at a l l  D̂ O concentrations is at the origin. The profiles also
0

display shoulders at + 115 A with a density intermediate between that

at the origin and the troughs.

The structure factors in d iffe ren t D20-H20 mixtures are on an

absolute scale, but the units of the scale are arbitrary since the zero

order was not measured and the number of discs comprising the coherent

scattering unit is not known. However, the units of the absolute scale

can be estimated by assuming that the highest point in the neutron
0

scattering density profile  in D20 Ringer's solution (at OA) has the 

density of D20 Ringer's solution (6.35 x 10"^  cm/A^). This assumption 

is reasonable since D20 has a scattering density larger than membrane 

molecules (Figure 4). The scattering densities at the origin in the 

Fourier syntheses for the experiments in d ifferent mixtures of D20 and
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Figure 29. Neutron scattering density profiles calculated from

the f i r s t  four orders of d iffrac tio n  from intact retinas 

equilibrated in isotonic Ringer's solution containing 

d iffe ren t mixtures of D̂ O and H^O. The Fourier synthe

ses from top to bottom are experiments in 100, 80, 60,

40, and 30% D̂ O. The absolute neutron scattering density 

scale was assigned by assuming that (1) the highest 

scattering density in the Fourier synthesis in 100%
O

D£0 Ringer's solution (at 0 A) has the neutron scatter

ing density of 100% D̂ O Ringer's solution, (2) structures 

in d iffe ren t D̂ O-Ĥ O mixtures are isomorphous, (3) ser

ies termination errors are small, and (4) the neutron
0

scattering density at + 44 A, obtained by extrapolation
O

of the contrast at + 44 A to zero in Figure 30 , is inde

pendent of D̂ O concentration.
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Ĥ O are also known since D̂ O-H^O exchange is isomorphous. By equa-
0

tion (2) the neutron scattering densities at 0 A in 80%, 60%, 40%, and

30% D̂ O are 4.97, 3.59, 2.20, and 1.51 x 10"^  cm/A^, respectively. The

Fourier syntheses in Figure 29 have been translated to a common minimum

since the scattering density of the water-excluding hydrocarbon regions

should not vary with D̂ O concentration. The resulting absolute scat-
0

tering densities for the peaks at 0 A match the predicted densities 

based on the D̂ O concentration of the Ringer's solution, consistent with 

the hydrocarbon regions being water-excluding.

By examining the dependence of the contrast at distance x in the 

structure C(x), on the scattering density of the solvent p , the scat-
O

tering density at the center of the low density troughs at + 44 A can 

be obtained. The scattering density at distance x, p(x), in a one 

dimensional hydrated structure can be broken down into contributions 

from the aqueous (w) and nonaqueous (s) regions

p(x) = (1-X)ps + Xpw (18)

where X is the volume fraction of water at x. C(x) is then given by 

C(x) = P w  -  P ( x )  (19)

Substitution of equation (18) into equation (19) yields

C(x) = pw (1-X) -  ps (1-X) (20)

Since the contrast, C(x), depends linearly  on the scattering density 

of the aqueous solvent, p , the scattering density, p . ,  of the nonaque

ous constituents in the unit cell at distance x can be obtained by 

extrapolating a plot of C(x) versus p to C(x) = 0. Note that this  

extrapolation is independent of the absolute density scale of the 

Fourier syntheses and only depends on the existence of an aqueous region
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in the unit c e l l .  I f  the contrast values, C(x), are on an abso

lute scattering density scale, the slope of the contrast plot, (1-X),

yields the volume fraction of water at distance x (Harrison, 1969).
0

By extrapolating a plot of C(+ 44 A)versus p shown in Figure 30 to
0

C(+ 44 A)= 0, the neutron scattering density at the center of the low 

density troughs is 0.45 ±  0.20 x 10"^ cm/A^.

Neutron scattering density profiles for experiments in D̂ O Ringer1 

solution of varying osmolarity are shown in Figure 31. The profile  in 

1% sucrose Ringer's solution (Figure 31a) displays two low density
o o

troughs at +42.7 A which move to +47.6 A in 0.6 diluted Ringer's solu-
0

tion (Figure 31d). The repeat spacing also increases from 294 A to 
0

328 A in proceeding from 2% sucrose to 0.6 diluted Ringer's solution. 

The highest density in the profiles occurs between the troughs at the 

origin. The profiles also display density shoulders which move from
° o

*  115 A in 2t  sucrose Ringer's solution to ± 130 A in 0.6 diluted  

Ringer's solution.
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Figure 30. The contrast at + 44 A in the 75 A resolution neutron 

scattering density profiles of the disc membrane is
O

lin e ar ly  dependent on % D20. The contrast at + 44 A
0

is the vertical distance between the peak at 0 A and the
O

troughs at + 44 A in the Fourier syntheses in Figure 29.

The line is extrapolated to obtain a contrast-match

value for the center of the disc membrane of 0.45 ± 0.20 

-14 °3x 10 cm/A , corresponding to a D,,0 concentration of 

14.6+2.8%. Data points represent d iffe ren t specimens.

In the least-squares f i t ,  the data were weighted by 

th e ir  magnitudes, and the linear correlation coeffic

ient was 0.98.
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Figure 31. Neutron scattering density profiles calculated from the 

f i r s t  four orders of d iffraction  from intact retinas 

equilibrated in D̂ O Ringer's solution of varying osmo-
O

la r i t y .  (a) 2% sucrose Ringer's solution, d = 294 A;
0

(b) isotonic Ringer's solution, d = 298 A; (c) 0.8 d ilu 

ted Ringer's solution, d = 308 A; (d) 0.6 diluted
0

Ringer's solution, d = 328 A. The separation between
O

the low density troughs increases from 85 A in 21  sucrose
O

Ringer's solution to 95 A in 0.6 diluted Ringer's solu

tion. The Fourier syntheses have been scaled to the 

same vertical peak-to-trough distance.
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CHAPTER VI 

DISCUSSION

(a) Summary of the Experimental Findings

Neutron d iffraction  patterns were recorded from intact frog re t 

inas equilibrated in d iffe ren t D̂ O-H^O mixtures and in D̂ O Ringer's 

solution of varying osmolarity. Reflection intensities were deter

mined by semi-automated curve -f it t ing  procedures. The diffuse equa

torial scattering was taken to be the background for the meridional 

Bragg d iffrac tio n , and the background-subtracted reflections were 

f it ted  by Gaussian peaks. The sum of these Gaussians and the poly

nomials f i t te d  to the diffuse equatorial scattering closely matched 

the observed meridional d iffraction  patterns. The reflection intens- 

i t ies  were given by the product of the height and fu l l  width at e 2 

height of the Gaussian peaks. The repeat spacing was calculated from 

the positions of the Gaussian peaks. The structural analysis was lim

ited to the f i r s t  four reflections since the ir  in tensities , correction 

factors, and phases were more re liab ly  determined than for the higher 

orders. The corrected intensities  of the f i r s t  four reflections acco

unt for about 35% of the intensity observed for the f i r s t  eight ord

ers of d iffrac tio n , so that the main structural features are repre

sented even at low resolution.

The phases for the f i r s t  four reflections were determined by 

interpretation of the D2 O-H2 O contrast variation effects and Patterson 

maps of osmotically manipulated retinas. The phases - ,+ ,+ ,+  for orders

-73-
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one to four obtained in this way are equivalent to the choice of a 

l ip id  bilayer model of the disc membrane. The broad Patterson peak
O

at 84 A would represent the separation of centers of the disc membrane 

pairs. Kinetic experiments and plots of the structure factor ampli

tudes versus %D20 showed that the phases do not change sign over the 

30% to 100% D̂ O range.

Neutron scattering density profiles were calculated on an absolute 
0

scale at 75 A resolution. These Fourier syntheses exhibit two low
0

density troughs at +44 A. The contrast-match point for the low dens

ity  troughs is 0.45 + 0.20 x 10"^cm/A^, corresponding to 14.6+2.8 %

d2o.

(b) Bilayer Arrangement of Disc Membrane Lipids

The molecular interpretation of the observed neutron scattering  

density profiles (Figures 29 and 31) is shown in Figure 32. The con

tinuous neutron scattering density p ro f i le  is the Fourier synthesis
O

at 75 A resolution for an experiment in isotonic D̂ O Ringer's solution.
O O

The high density regions between -18 and +18 A and between 70 A and
O

230 A are interpreted as being predominantly aqueous since the scat

tering density in these regions decreases with decreasing D20 concent-
O

ration (Figure 29). The narrower 36 A aqueous region between the low 

density troughs in Figure 32 is interpreted as the intradisc region,
O

and the wider 160 A aqueous region is interpreted as the extradisc 

region. The increases in the unit ce ll dimension and the size of the 

intradisc space as the osmolarity of the Ringer's solution decreases 

(Figure 31) indicate that the volume of water in the intradisc and 

extradisc compartments increases as the osmolarity of the Ringer's solu 

tion decreases.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



-8 0 -

Figure 32. Neutron scattering density profiles at 75 A resolution 

of rod outer segment disc membranes in D̂ O. Fourier 

synthesis calculated for the pure l ip id  b ilayer model 

depicted at the top of the figure ( • • • • ) .  The experi

mental Fourier synthesis calculated from data recorded

in D̂ O Ringer's solution (---------). The experimental

Fourier synthesis was scaled to the calculated Fourier 

synthesis of the l ip id  bilayer model by assuming that 

the neutron scattering density in the center of the in tra 

disc space (0 A) is that of pure D2 O (6.35 x 10"^cm/A3) 

and the scattering density at the center of the low

density troughs is -0.02 x 10"14 cm/A3 (Figure 4 )  for
- M  °3

the l ip id  bilayer p ro f ile  and 0.45 x 10 cm/A (Figure 

30) for the experimental p ro f ile .
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The contrast-match point for the troughs centered at +44 A 

(Figure 30) is 0.45 x 10 ^cm/A^. This low scattering density
O

(Figure 4) and the ^50 A width of the troughs suggest that a major 

portion of the l ip id  molecules are arranged in a bilayer configuration.
O

In isotonic Ringer's solution the bilayers are separated by 88 A, and 

the separation between the bilayers increases as the Ringer's solu

tion is made more hypotonic (Figure 31).

(c) Interpretation of the Contrast-Match Point at the Center of the 

Lipid Bilayers

The contrast-match point for the center of the disc membrane l ip id
O

bilayers at +44 A contains information about the chemical composition 

of the hydrocarbon region. To justify a quantitative interpretation of 

the contrast-match point, the effect of resolution had to be examined. 

Neutron scattering density profiles were calculated for disc membrane 

models with varying amounts of protein in the hydrocarbon region 

[ChapterVI (e ) ] .  Model Fourier syntheses in d iffe ren t D^O-i^O mixtures
o 0 0

were calculated at 75 A resolution, and the contrast at +44 A, C(+44 A),

given by equation (20)was plotted versus D̂ O concentration. The error

due to the resolution was assessed by comparing the exact contrast-

match point defined by the model, and the calculated contrast-match 
0

point at 75 A resolution. These calculations revealed that the value
o o

of C(+44 A) at 75 A resolution d iffers by only ^ 1 % D̂ O from the exact
O

value defined by the models. Furthermore, the contrast at +44 A is

fa i r ly  representative of the entire hydrocarbon region of the l ip id

bilayer because small changes in the neutron scattering density level

through the hydrocarbon region are averaged due to the resolution of 75 
0
A.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



- 8 2 -

Knowing that the contrast-match value at +44 A is quantitatively  

re liab le , the chemical composition of the hydrocarbon region of the 

disc membrane can be estimated. The protein:!ip id  weight ratio  of 

disc membranes is 50+10/50+10 (Daemen, 1973); the molecular weight of 

rhodopsin is 38,000 +3,000 (Robinson, Gordon-Walker, and Bownds, 1972; 

Heitzmann, 1972; Daemen, DeGrip, and Jansen, 1972; Lewis, Krieg, and 

Kirk, 1974; Yeager, 1976a); rhodopsin comprises 80+10% of the disc 

membrane protein (Papermaster and Dreyer, 1974), and the molecular 

weight of the average rod outer segment l ip id  is 800 (Daemen, 1973).

From these values we obtain a 1ipid:rhodopsin stoichiometry of 60+15. 

Assuming that the hydrocarbon region of the disc membrane l ip id  bilayer  

is occupied exclusively by anhydrous protein and hydrocarbon, the 

neutron scattering density of the hydrocarbon region, p , is given by

pm = XHpH + XppP (211

where Xp is the volume fraction of protein in the hydrocarbon region,

is the volume fraction of hydrocarbon, and Xp + X̂  = 1. From

-14 °3equation(3)and using a value of p^= -0.02 x 10 cm/A , equation(21) 

becomes

Pm= -0.02 x 10 '14 + Xp( l .92 x 10"14 + 1.27 x 10"14By ) (22)

and Xp is given by

pm + 0.02 x 10"14 
Xp = — 5-----------------------------------   (23)

1.92 x 10-14 + 1.27 x 1 0 " 14By 

For a 1ipid:rhodopsin stoichiometry of 60+15, the total volume of 

l ip id  hydrocarbon is (60+15)(982 A^/2 hydrocarbon chains) = 58,920
0  0  o o

i  14,730 A . (The volume of 982 A for two average rod outer segment 

hydrocarbon chains was calculated from Traube volumes of the atomic
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nuclei.) The calculated anhydrous volumes of rhodopsin and non- 

rhodopsin protein are 47,000 A3 and 11,750 A3,

By setting Pm=Pw [given by equation(2 )]and substituting the 

experimental value of 8=.146+.028 into equation(2 3 ) , the volume fraction  

of protein residing in the hydrocarbon region is .24 +.10 i f  y=Q or 

• 22-_±• 09 i f  y=l .  I f  all non.,rhodopsin protein resides in the h.ydrocar- 

bon_region, then 35± 25% of the rhodopsin resides in the hydrocarbon

Ig3.ion- I f  a l l  non-rhodopsin protein resides outside the hydrocarbon

region, then 54+ 25% of the rhodopsin resides in the hydrocarbon region. 

I f  a l l  disc membrane protein resides in the hydrocarbon region, the 

calculated contrast-match point would be 23+3% D2 O. Since this value 

is s ignificantly  larger than the experimental value of 14.6+2.8% D2 O 

not a ll  of the disc membrane protein resides in the hydrocarbon region.

Note that the large uncertainties in the estimate of the fraction  

of rhodopsin in the hydrocarbon region are mainly based on (1) the 

large uncertainty in the chemical composition of the disc membrane, 

in particular the 1ip id :rhodopsin stoichiometry and (2) uncertainty in 

the location of the non-rhodopsin protein. I t  must also be stressed 

that the calculation o f the contrast-match point re lied  on the assump

tion that the intradisc space is occupied by pure Ringer's solution.

I f  the intradisc space contains non-aqueous material with a contrast- 

match value greater than 15% D20 (for example protein or carbohydrate), 

then the contrast-match value at +44 A would be greater than 15% D2 O, 

and the estimate of the amount of protein in the hydrocarbon region 

would be correspondingly increased.
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(d) Asymmetry of the Neutron Scattering Density Profiles

The dotted p ro file  in Figure 32 is the calculated neutron scatter-
O

ing density p ro f ile  in D^O at 75 A resolution for the l ip id  bilayer  

model shown at the top of the figure. The curvature in the troughs 

and the modulation in the extradisc space are due to series termina

tion error in the calculated p ro f ile .  As expected, the density levels 

of the intradisc and extradisc spaces in the calculated Fourier syn

thesis for a l ip id  bilayer model are almost the same except for  

a s light difference due to series termination error. In contrast, 

the experimental Fourier synthesis (continuous curve) is s tr ik ing ly  

asymmetric: the neutron scattering density levels in the intradisc

and extradisc spaces are markedly d i f fe re n t . The calculated Fourier 

synthesis for the l ip id  bilayer demonstrates that th is  difference can

not be accounted for by series termination error. The lower density 

of the extradisc space compared to the intradisc space in the experi

mental Fourier synthesis indicates that there is a substantial amount 

of hydrogenated material in the extradisc region.

To investigate the effect of resolution on the neutron scattering  

density p ro files , Fourier syntheses including 6 and 8 reflections
O 0

(50 A and37.5A resolution, respectively) were calculated using the 

observed d iffrac tion  data in D̂ O Ringer's solution. The phases for  

the f i r s t  eight orders were obtained by Fourier trans

formation of the l ip id  bilayer model shown in Figure 32. This method of 

phasing re lies  on the assumption that the l ip id  b ilayer dominates the 

phases since the greatest contrast in the structure in D£0 is between 

the water and hydrocarbon regions. The reduced extradisc neutron
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scattering density compared with the density in the intradisc space is
o o

preserved in the 50 A and 37.5 A resolution Fourier syntheses in D̂ O 

Ringer's solution (Figure 33). I t  should be stressed that by using 

phases calculated from the l ip id  bilayer model in which the intradisc  

and extradisc neutron scattering densities are equal, the experimental 

Fourier syntheses are biased toward symmetric structures. Therefore, 

the retention of the asymmetry in these higher resolution Fouriers 

strongly supports the existence of asymmetry between the intradisc and 

extradisc neutron scattering density levels.

(e) A Model Building Approach to Interpret the Asymmetry of the Neutron 

Scattering Density Profiles

There are three possible explanations for the lower neutron scat

tering density level in the extradisc aqueous space compared with the 

intradisc space: (1) that the asymmetry is due to rhodopsin extending

into the extradisc region; (2) that the asymmetry is not due to rhodopsin 

but other nonaqueous, hydrogenatedmaterial; and (3) that the asymmetry 

is due both to rhodopsin and other nonaqueous hydrogenated material. A 

model building approach was used to examine these three possible in te r 

pretations.

The following parameters defined the models: (1) the anhydrous

°3molecular volume of rhodopsin is 47,000 A (see Figure 4); (2) the

°3volume of two average rod outer segment hydrocarbon chains is 982 A 

[see ChapterVI (c ) ] ;  (3) the volume of the average l ip id  headgroup is
°3  op

640 A with a 64 A cross sectional area (Luzzati, 1968; Johnson,

Bangham, H il l  and Korn, 1971; Engelman, 1971; Demel, Geurts Van Kessel
0

and VanDeenen, 1972) and a 10 A length (Engelman, 1971); (4) the l ip id :  

rhodopsin stoichiometry is 60 [see Chapter VI (c ) ] ;  (5) the neutron
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Figure 33. Neutron scattering density profiles of rod outer seg

ment disc membranes in D̂ O. Fourier synthesis calcula

ted for a pure l ip id  bilayer model ( • • • • ) ;  the l ip id  

bilayer structure factors for orders 1 to 8 are -323, 127, 

351, 228, 16.1, -41 .2 , 16.2 and 27.4, respectively.

Experimental Fourier syntheses (---------) calculated using

phases from the l ip id  bilayer model; the structure 

factor amplitudes given by equation (15)are 333, 254, 441, 

378, 204, 179, 121 and 98. The Fourier syntheses were 

scaled as in Figure 32. (a) 6 orders of d iffraction

included in Fourier synthesis, (b) 8 orders of d i f 

fraction included in Fourier synthesis.
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scattering densities of rhodopsin and water are given by equations 

2  and 3 , respectively, and the scattering densities for the l ip id  

headgroup and hydrocarbon chains are shown in Figure 4; ( 6 ) the disc
O

membrane lip ids are packed in '50 A thick l ip id  bilayers as shown in
O O

Figure 32 with intradisc and extradisc aqueous spaces of 36 A and 160 A,

respectively; (7) the region of the l ip id  bilayers distorted by the

presence of rhodopsin has the same neutron scattering density as the

undistorted bilayer; ( 8 ) the rhodopsin molecule was assumed to be a

cylinder with i ts  axis perpendicular to the plane of the disc membrane.
0

Three general shapes were considered: elongated with a length of 80 A
O

and a diameter of 27 A (model a . ) ,  roughly symmetric with a length of
o o

40 A and a diameter of 38 A (model b.) and flattened with a length of
o o

20 A and a diameter of 54 A (model c .)

Rhodopsin molecules were placed centrosymmetrically at d iffe ren t
O

positions in the 300 A unit c e l l ,  and the one dimensional projection 

of the neutron scattering density was determined. The Fourier trans

form of the model scattering density profile  was calculated by equation 

(4 ),  and the Fourier synthesis by equation (5). A qua lita tive  asses

sment of the model was made by visually comparing the calculated model 

Fourier synthesis to the experimental Fourier synthesis. The calcu

lated structure factor amplitudes, F , (h), were scaled to the observedca 1 c
6 o

structure factor amplitudes, F , (h), by setting E (F , (h)) =
6  2  0DS h=l ca1c
2  (f\,Kc(h)) • The experimental Fourier synthesis could then be placed 

h=l obs
on an absolute neutron scattering density scale by including F , (0) in

C3 IC

equation (5) and using the phases calculated from the model. A quanti

ta tive  assessment of the model which did not rely on the choice of 

phases was made by calculating the residual, R
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where k2 = z (F . (h ) )2/  z (F , (h ) )2. 
h=l calc h=l obs

The results of these calculations are summarized in Table 3.

The distance values in the horizontal direction indicate the position 

of the centroid of the rhodopsin molecule with respect to the center 

of the intradisc space. In the vertical direction the neutron scat

tering density of the cytoplasmic extradisc aqueous space is varied 

-14 °3
from 6.35 x 10 cm/A , corresponding to pure D̂ O Ringer's solution, 

to lower values, corresponding to increasing amounts of non-rhodopsin 

hydrogenated material in the extradisc region. The contours in 

Table 3 surround the regions with R values less than .20 and indicate 

the models in best agreement between the observed and calculated struc

ture factor amplitudes.

Two conclusions can be drawn from Table 3. (1) The best models

have neutron scattering density levels in the extradisc space less than 

pure D̂ O Ringer's solution. Therefore, rhodopsin cannot en tire ly  

account for the asymmetry, suggesting that other hydrogenated material 

resides in the extradisc region. (2) The models in best agreement with 

the experimental structure factor amplitudes orient rhodopsin asymmet

r ic a lly  on the cytoplasmic face of the disc membrane. This result is 

consistent with the interpretation of freeze-fracture electron micro

graphs of rod outer segments (Corless, Cobbs, Costello, and Robertson,
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Table 3

RESIDUAL VALUES COMPARING THE EXPERIMENTAL STRUCTURE FACTOR 

AMPLITUDES IN D20 RINGER'S SOLUTION TO STRUCTURE FACTORS 

CALCULATED FROM DISC MEMBRANE MODELS

Cylindrical rhodopsin molecules are oriented with the ir  axes per
pendicular to the plane of the disc membrane. The distance values in 
the horizontal direction indicate the position of the centroid of the 
rhodopsin molecules with respect to the center of the intradisc space. 
In the vertical direction the neutron scattering density of the cyto
plasmic extradisc space is varied. The contours surround the regions 
with residual values less than .20 and indicate the models in best 
agreement between the observed and calculated structure factor ampli
tudes. See text for details .

MODEL RHODOPSIN DIMENSIONS o
length (A) diameter (A)

a. 80 27

b. 40 38

c. 20 54

DISTANCE (A)

> -
h -
HH
00
z
LU
O

OS
Z

(
O '
LU .----
t_ro
t— 0 <
<Z X
u E00 u

*d-
z f—
o o
O '
h -
Z3 X
LU
Z

<_)

s00

Q.
O
h -
>■
o

c e n te r  o f 
1ntrad1s+c space

0 10 20

a .  6 .35  
6 .05  
5 .75  
5 .45  
5.15 
4 .85  

. 4 .55  
4 .25  
3 .95 
3.65 
3.35

b . 6 .35
6 .05
5 .75
5.45
5.15
4 .85
4 .55
4 .25
3.95
3.65
3.35

C. 6 .35
6 .05
5.75
5.45
5.15
4 .85
4 .55
4 .25
3 .95
3.65
3.35

H p ld  bi la y e r  

30 4 0 50 60

.39 .34 .28

.37 .32 .26

.34 .29  .23
.31 .26
.28  .23 Q l
.24 .21 722"!
.21 .23  .25
.22 .25 .28
.27 .29 .32
.31 .33 .35
.36 .36 .38

70 80 90

.24 J l  .23 
r 7l9'', .21 
.18 1 .20  

.18  .16 7 T P  

.17 .17 .1 9 .  
■ 19 . 1 9 / 722 
.23  .22 .24 
.27 .24 .27 
.30 .27 .29 
.33 .31 .31
.36 .35 .35

120

,  c e n te r  o f 
e x tra d is c  space 

i
130 140 150

.36 .38 .35 .35 .30 .26 .25 .24

.35 , .36 .32 .32 .27 .23 .23 .21

.33 .33 .29 .29 .23 .22

.31 .31 .26 .25 ■ 2 0 ;< 7 lf l>, .20 .16

.29 .27 .23 .27 <715 .14 718 .16

.27 .24 .24 .20 .13 .14 .19 .18

.24 .27 .27 .22 .14 <•21 .21

.21 .31 .31 .25 1 .1 9 ;<721 .24 .25

.24 .35 .35 .29 .26 .27 .29

.28 .40 .38 .33 .29 .30 .31 .32

.32 .44 .39 .37 .34 .35 .35 .36

.55 .37 .28 .38 .29 .30 .31 .33 .26

.54 .35 .26 .36 .25 .27 .29 .31 .23

.53 .32 .23 .34 .21 .24 .27 .30 .21

.52 .30 .22 .31 <7TT\ ■ 21 .25 .28 <718

.50 .27 .26 .30 .11 TnTi .22 .25 .17

.48 .24 .30 .33 .12 J 9 j .21 .26 .17

.45 .20 .35 .37 .15 <723 .23 .27 .20

.43 .21 .40 .41 118V .26 .24 .29 .23

.39 .24 .44 .44 .21 .29 .28 .30 .27

.35 .28 .48 .48 .27 .32 .31 .32 .31

.30 .33 .49 .44 .32 .35 .35 .36 .35

.30 .35 .44

.28 .36 .43

.27 .37 .43

.26 .39 .42

.26 .38 .41

.27 .37 .40

.29 .37 .39

.31 .36 .37

.34 .36 .36

.36 .37 .36

.37 .38 .38

.32 .27 .38 .45

.32 .29 .39 .46

.32 .31 .41 .47

.33 .33 .41 .45

.31 .35 .41 .43

.29 .37 .40 .40

.30 .39 .39 .38

.32 .37 .37 .36

.34 .37 .36 .33

.36 .38 .36 .32

.3 8 .38 .38 .36
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1976) and x-ray d iffrac tion  studies on pelleted disc membranes 

(Santillan and Blasie, 1976). For models a. and b. in which rhodop-
O 0

sin has a length of 80 A and 40 A, respectively, the best models are 

those in which rhodopsin extends into the extradisc aqueous space.

These structures are consistent with the accessib ility  of rhodopsin 

to labelling and proteolysis by water-soluble macromolecular probes 

(Steinemann and Stryer, 1973; Yariv, Kalb, and Giberman, 1974; Trayhurn, 

Mandel, and Virmaux, 1974a, b; Saari, 1974; van Breugel, Daemen, and 

Bonting, 1975; Pober and Stryer, 1975; Pober, Iwanij, Reich, and 

Stryer, 1976). For model c. in which rhodopsin is a flattened cylin -
O

der with a length of 20 A, there are two classes of structures in good 

agreement with the experimental data; however, the structures are 

rather implausible. In the f i r s t  class, rhodopsin is buried in the 

l ip id  bilayer on the cytoplasmic face of the disc membrane. These 

structures are not consistent with the accessibility of rhodopsin to 

labelling and proteolysis. The second class of structures are highly 

implausible since they position rhodopsin in the extradisc space, 

completely detached from the disc membrane.
O

Figure 34 compares the experimental 50 A resolution experimental 

Fourier synthesis to the Fourier syntheses calculated for the best 

models from Table 3. I t  can be seen that the neutron scattering dens

i ty  profiles of the best models closely match the experimental profiles  

and adequately account for the asymmetry between the density levels in  

the extradisc and intradisc aqueous spaces.

( f )  Evaluation of Non-rhodopsin Extradisc Solids

The concentration of non-rhodopsin solids in the extradisc region 

can be estimated from the calculated neutron scattering density in the
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Figure 34. Experimental neutron scattering density profiles in D2 O

Ringer's solution (--------------) and calculated neutron scattering density

profiles for the disc membrane models in Table 3 ( ...............) in best

agreement with the experimental structure factor amplitudes. The
0

experimental Fourier syntheses were calculated at 50 A resolution us

ing model phases and were placed on an abolute scale by including

Fcai c(0) in the Fourier synthesis. The Fourier syntheses of the step
0

function models were also calculated at 50 A resolution.
O O

a. Rhodopsin is 80 A long and extends from 40 to 120 A in the unit 

c e l l .  Cytoplasmic neutron scattering* density = 5.30 x 10"^  

cm/A3. R=.161
O 0

b. Rhodopsin is 40 A long and extends from 40 to 80 A in the unit cell,
-14Cytoplasmic neutron scattering density = 4.70 x 10 A . R=.133

0 . 0
c. Rhodopsin is 20 A long and extends from 40 to 60 A in the unit cell,

-14 °3
Cytoplasmic neutron scattering density = 5.00 x 10 cm/A . R=.ll l  

a. b. c.
h k‘ Fobs Fcalc k *F k, obs Fcalc k*Fobs Fca'

0 1156 1124 1223

1 190 -194 169 -147 159 -156
2 132 135 118 114 111 81

3 234 248 208 241 196 214

4 206 217 183 183 173 178

5 100 72 89 83 84 89

6 95 -1 .4 84 36 79 52

k .538 .479 .451
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-14 °3extradisc space of ^5 x 10 cm/A (Figure 34 and Table 3). The

volume fraction of protein, 1-X, can be solved from equations(2),(3)

and (18) .knowing that p = p . In D90 Ringer's solution p = 6.35 xs p c w

10"14 cm/A"*, 3 = 1 and p(x) = 5 x 10~^4 cm/A^. For a 6 y diameter rod

11 °3
outer segment the unit cell volume is 8.34 x 10 A and the extradisc 

11 °3volume is 4.5 x 10 A . The volume fraction of protein in the extra

disc space is therefore .303 (y=0) to .424 (y= l) corresponding to a

weight concentration of 41% (y=0) to 58% (y=l) for a protein with v =
3

0.74 cm /g . With a rhodopsin concentration in frog rod outer segments 

of 3.1 + 0.1 mM (Liebman, 1975), there are 1.6 x 10® rhodopsin molecules/ 

unit c e l l .  The above concentrations of non-rhodopsin protein in the 

extradisc space therefore correspond to 7 x 104 dal tons protein /38,000  

daltons rhodopsin (y=0) to 1 x 105 daltons protein/38,000 daltons 

rhodopsin (y= l) .

Based on the structure of sucrose with eight potentia lly  exchange

able hydrogens out of 22, the neutron scattering density of carbohydrate, 

P c » is given by

Pc = 1.7 x 10"14 + 2.3 x 10"14 By (25)

I f  the extradisc nonaqueous material is carbohydrate, then its  volume 

fraction would be .29 (y=0) to .57 (y=l) with P S = P C - Using v = .63
3

cm / g the carbohydrate concentration in the extradisc space would be 

46% (y=0) to 91% (y= l).

These estimates for the concentration of solids in the extradisc 

space are very high; i t  is unlikely that the true value is as high as 

predicted by these computations, which are based on low resolution data. 

Nevertheless, these computations do indicate that there is a striking  

amount of non-aqueous material in the extradisc space, and there are
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data from other sources to support this point of view.

I f  there is so much material in the extradisc space, i t  should 

be detectable by x-ray d iffrac t io n . The model refined to f i t  the 

neutron d iffraction  data in Figure 34a predicts the following x-ray  

structure factors for orders 1 to 10, respectively: -50, -71, 29,

40, 10, -69, -122, -67, -5 ,  and 25. The calculated amplitudes for  

orders 6 and 7 are large, in agreement with the observed amplitudes 

l is ted  in Figure 3; however, the amplitudes for orders 2 and 3 are 

reversed, with order 2 having a calculated amplitude substantially  

larger than the experimental value. The phases calculated from the 

model are identical to the experimental phases of the strongest re f 

lections except for the f i r s t  re f lec tion , which has a calculated phase 

of -1 instead of +1. The dotted curve in Figure 3a is the x-ray 

Fourier synthesis calculated using experimental structure factors  

and a phase of -1 for the f i r s t  re f lec tion . The Fourier synthesis 

is s t i l l  dominated by the electron-dense phosphate headgroups, but 

the extradisc x-ray scattering density level is s tr ik ingly  higher 

than the density level in the intradisc space. Since protein and car

bohydrate have x-ray scattering densities larger than water (Figure 4), 

this increased density level in the extradisc space suggests that non

aqueous material resides in this region, consistent with the in te r 

pretation of the asymmetry of the neutron scattering density pro files .  

The argument used by x-ray workers to assign a phase of +1 to the 

f i r s t  re flection  is that the average electron density of the disc is 

greater than the electron density of cytoplasm in the extradisc region. 

However, i f  a substantial amount of nonaqueous material resides in the 

extradisc space, then the average electron density of this region may
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exceed that of the disc, allowing the f i r s t  reflection to have a 

phase of - 1 .

I f  the lower neutron scattering density on the extradisc sides 

of the disc membrane is due to rhodopsin and other protein or carbo

hydrate, then the extradisc and intradisc levels should be equal 

between 30 and 45% D̂ O where these chemical components would be ex

pected to be contrast-matched. Although the extradisc shoulders in 

the neutron Fourier syntheses in Figure 29 appear to be suppressed 

as the D̂ O concentration changes from 100 to 30%, the extradisc 

neutron scattering density level is s t i l l  less than the intradisc  

level in 30% D̂ O. However, model calculations sim ilar to those des

cribed in ChapterVI (e) showed that contrast-matching of extradisc
O

material would not be detectable at 75 A resolution, although i t
O

should be detectable at 30 A resolution.

The concentration of solids in the rod outer segment obtained 

by refractometry is 44 + 10 g/100 cm3  (Sidman, 1957; Blaurock and 

Wilkins, 1969; Webb, 1972). Based on the rod outer segment composition 

and size stated above, this solids concentration predicts that the 

extradisc space contains a solids content of 30%. The solids content 

of the extradisc space based on birefringence studies (Liebman, et al_., 

1974) is 16%. In a personal communication Liebman has stated that the 

birefringence data are consistent with an extradisc solids concentration 

ranging from 10-30%. Furthermore, a source of uncertainty in the 

measurement of the index of refraction and the s ta tic  birefringence 

is whether the isolated rod outer segments were osmotically intact. 

Although these measurements with v is ib le  l ig h t  predict a solids con

centration in the extradisc region lower than our estimates based on
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neutron d iffrac tio n , the results are clearly  in qualita tive agreement; 

there indeed appears to be a large amount of solute material in the 

extradisc space.

(9) Comparison with S a ib il,  Chabre and Worcester (1976)

Table 4 compares my neutron diffraction  experiments on intact 

retinas with similar experiments on isolated rod outer segments oriented 

in a magnetic f ie ld  (Chabre, Saibil and Worcester, 1975; S a ib i l ,  Chabre 

and Worcester, 1976). The d iffraction  patterns in D̂ O Ringer's solu

tion are qua lita tive ly  very similar (Figure 35). The f i r s t  four orders 

dominate the pattern with the intensity of reflection 1 strongest, 

followed by reflections 3, 2 and 4, respectively. The intensities of 

reflections 2, 3 and 4 are stronger in pattern b. compared with a. 

because the intensities in b. were obtained by integrating over the 

arcs of mosaic spread. The resolution of the peaks in a. is substanti

a l ly  better than in b. because the instrumental angular resolution,

A 2 e > is about three-fold smaller in a. Gaussian peaks were f i t te d  

to the Bragg reflections as described in Chapter IV (d) ( i i i ) .  The 

f i t  to the f i r s t  four reflections in pattern b. is quite good; however, 

the f i t s  to reflections 5, 6 , and 7 are unreliable because the re f lec 

tions are not resolved and there are only four points defining each 

reflection. Note that in pattern a. each reflection is defined by 9 

points, and reflections 5 and 6  are well-resolved. Since the intensi

ties in pattern b. were obtained by integrating over the arcs of 

mosaic spread, Chabre et al_. (1976) applied a reciprocal Lorentz factor 

of h to the integrated in tens ities , so that their  structure factor ampli

tudes are given by F(h) = |(h * I ( h ) ) ^ | . The structure factor amplitudes 

for the reflections in a. are given by equation 15.
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Table 4 

COMPARISON OF MY RESULTS 

WITH THOSE OBTAINED 3Y SAIBIL, CHABRE, AND WORCESTER (1976)

Sample

Orientation of rods 

Detector

Yeager

intact frog retinas 

natural

Soller s l i t  step- 
scanning d iffrac to 
meter
(a a / a =.0 2 5 )

Saibil et al_.

isolated frog rod 
outer segments

magnetic f ie ld

Area detector 
( a a / a = . 08 )

Time of data collection  
for orders 1-4

Period

Structure Factor Ampli
tudes in D2 O Ringer's 
Solution

3̂5 min

295 + 5 A

'JO min

295 A

F(l)
F(2)
F(3)
F(4)
F(5)
F( 6 )
F( 7)
F( 8 )

Phases

Width of Intradisc 
Space

Width of Extradisc 
Space

Center-to-Center Sepa
ration of Lipid 
Bi layers

* 353 
246 
434 
383 
136 
176 
113 

98

25
19
13
19
21
8
18
8

^36 A

J 6 0  A

^ 8 8  A

/  353 
229 
383 
235 
126 
136 

85

^36 A

J 5 5  A

^90 A
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Yeager Saibil et a l .

Neutron Scattering 0o 
Density (x 101 4  cm/A ) 
(origin at center of 
intradisc space)

p ( 0 A )  o 
p(44-45A) 
p ( 1 1 5 A )  o 
P(147-150A)

% Rhodopsin in Hydro
carbon Region

Estimated Concentra
tion of Solids in 
Extradisc Space 
(daltons/38,000 dal
tons rhodopsin)

6.35
0.45
4.1
5.5

+ 0 .2 0

35+25 -  54+25 % 
depending on location 
of non-rhodopsin pro
te in ; pure Ringer's 
in intradisc space;
60 + 15 1i pi ds/rho- 
dopiin

8  x 1 0 4  - 1 . 6  x 1 0 5  

i f  carbohydrate;r 
7 x 10 - 1 x 10 i f
protein

* *  6.01 -  7.06 
0.48
5.63 - 6.65 
5.99 -  7.06

50 -> 100% 
lower l im it :  
pure Ringer's in 
aqueous spaces 
upper l im it :  2 0 % 
carbohydrate in 
aqueous spaces; 
90 1i pi ds/rho- 
dopsin

* Errors are+1 standard deviation from the mean

/  Structure factors in D?0 Ringer's solution were obtained by extra
polation of F(h) versus plots to 100% D̂ O.

**  Range of densities is due to d ifferent phase choices for reflection
5.
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Figure 35. Comparison of neutron d iffraction  in isotonic DgO 

Ringer's solution from intact retinas a. and iso

lated rod outer segments oriented in a magnetic 

f ie ld  b. (Chabre, Saibil and Worcester, 1976). The 

background-subtracted pattern in a. is from the 

experiment shown in Figure 15. The d iffraction  pat

terns in a.and b.were scaled to the same peak maxima 

for reflection 1  (continous curve) and for re f lec 

tion 5 in the expanded plots (dotted curves). The 

scale factors are (— 0— 0— x8.3 x l ( f 4 j ,  ( • • •& ••  • -x

5.00 x 10"2) in a. and (— 0— 0— x 4.43 x 10‘ 3) ,

( . . .A * . - a  x g , 4 5  x iQ-2 ) in b. The curves drawn

through the data points are Gaussian peaks f i t te d  to 

the Bragg reflections. The instrumental resolution a 2e 

given by equation ( 6 ) is shown for the low-angle d i f 

fractometer used at Brookhaven National Laboratory a. 

and the Dll instrument at the In s t itu t  Laue-Langevin 

in Grenoble b.
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O
The Fourier syntheses at 75 A resolution (Figure 36) are also 

very similar in that they both display low density troughs correspond

ing to the l ip id  bilayers and high density regions in the aqueous in tra 

disc and extradisc spaces. The notable difference between the Fourier 

syntheses is that the neutron scattering density level in the extra

disc region is lower in my Fourier, thereby predicting a greater amount 

of nonaqueous material in the extradisc space. Since the Fouriers were 

calculated using the same phases, these density differences in the extra

disc region must be due to differences in the structure factor amplitudes. 

Table 4 shows that the amplitudes for orders 2, 3 and 4 are larger in 

our experiment, causing the lower density level in the extradisc space 

in my Fourier synthesis. I t  is not clear at this time whether these 

structure factor differences represent differences in the rod outer seg

ments in the two preparations or whether they arise from methodological 

differences. I t  is noteworthy that the large bandwidth of the neutron 

beam (8%) in the experiments of Saibil et al_. (1976) caused substantial 

smearing of adjacent reflections, hindering the quantitative determin

ation of the reflection in tensities . The reflection smearing caused by 

the bandwidth of 2.5% and the large mosaic spread of the samples in my 

experiments was quantitatively treated by curve-fitt ing  procedures 

described in Chapter IV (d).

Saibil et aL  (1976) observed changes of 10-15% in the structure 

factors for orders one to four upon bleaching the rods. These changes 

were within the experimental reproducibility of my bleaching experi

ments. The same contrast-match point for the center of the l ip id  b i

layers was obtained in both experiments (15% D20). The difference in 

the estimate of the amount of rhodopsin residing within the hydrocarbon
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O
Figure 36. 75A resolution neutron scattering density profiles of rod

outer segment disc membranes in D̂ O Ringer's solution.

( -------- ) Fourier synthesis calculated using the integrated

intensities obtained from the areas of Gaussian peaks 

f i t te d  to the neutron d iffraction  from isolated rod outer 

segments oriented in a magnetic f ie ld  shown in Figure 35b.

The structure factor amplitudes given by F(h) = | ( h * I ( h ) ) ^ |  

are 353, 229, 383 and 235 for orders 1 to 4 respectively.

( ) Fourier synthesis calculated using mean structure

factor amplitudes from 13 independent experiments on intact 

retinas. The mean structure factor amplitudes, F(h), 

given by equation 15 are 353±25, 246+15, 434±13 and 383+19 

for orders 1 to 4, respectively. The errors are + 1 stan

dard deviation from the mean (± la ) .  ( ......... ) Error synthe

ses calculated using Fourier coeffic ients F(h) + 2a(h) in 

equation (17). The continuous and dashed profiles have 

been scaled to the same vertical peak-to-trough distance.

The Fourier syntheses were calculated using phases - ,+ ,+ ,+  

for orders 1 to 4, respectively.
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region calculated from the contrast-match point is based on d i f f e r 

ent assumptions for the chemical composition of the disc membrane.
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CHAPTER V II  

CONCLUSIONS

Neutron d iffraction  experiments on intact retinas confirm by 

an independent approach the x-ray d iffraction  studies which suggest 

that the l ip id  bilayer is a major structural motif of the rod outer 

segment disc membrane. Neutron Fourier syntheses in d ifferent mix

tures of D£0 and H£0 indicate that the intradisc and extradisc spaces 

are predominantly aqueous, consistent with the increase in the in tra 

disc and extradisc volumes as the Ringer's solution is made more 

hypotonic. In isotonic Ringer's solution the thicknesses of the in tra -
O O

disc and extradisc spaces are about 36 A and 160 A, respectively, and
O

the center-to-center separation between the 50 A thick l ip id  bilayers 

is 83 A.

Assuming that the intradisc space is occupied by pure Ringer's

solution, the contrast-match point for the hydrocarbon region of the
- 1 4  °3

disc membrane is 0.45 + 0.20 x 10 cm/A , corresponding to 14.6+2.8% 

D̂ O. I f  the hydrocarbon region is occupied exclusively by anhydrous 

protein and hydrocarbon, then the volume fraction of protein in the 

hydrocarbon region is 0.23 + 0.10. I f  a l l  non-rhodopsin protein 

resides in the hydrocarbon region, then the proportion of rhodopsin 

residing in the hydrocarbon region is 35 + 25%. I f  a l l  non-rhodopsin 

resides outside the hydrocarbon region, then the proportion of rhodop

sin residing in the hydrocarbon region is 54 + 25%.

- 102 -
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Neutron scattering density profiles in D20 Ringer's solution

are s trik ingly  asymmetric with a lower scattering density on the

extradisc side of the disc membrane compared with the intradisc space.

Models that orient rhodopsin asymmetrically on the cytoplasmic face

of the disc membrane extending into the extradisc aqueous space are

in close agreement with the observed asymmetry. However, rhodopsin

cannot en tire ly  account for the observed asymmetry, suggesting that

other hydrogenated material resides in the extradisc region. From

-14 °3the neutron scattering density level of 5 x 10 cm/A for the extra

disc region, the concentration of extradisc solids is estimated to 

4 5be between 7 x 10 and 1.6 x 10 daltons per 38,000 daltons rhodopsin, 

depending on the chemical components residing in the extradisc space. 

The existence of such material may account for the stab iliza tion  of  

the regular, parallel arrangements of discs in the rod outer segment.
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CHAPTER V I I I  

PROSPECTS

Experiments on in tact retinas have demonstrated the power of

the neutron d iffrac tion  method to obtain structural information

about biological membranes. Considering the technical d i f f ic u l t ie s ,
0

i t  is pleasing that neutron Fourier syntheses at 75 A resolution 

have provided at least as much information about the architecture
O

of the disc membrane as x-ray Fourier syntheses a t  30 A resolution.

This is a result of the enhanced contrast in the structure with

neutron radiation and of the a b i l i t y  to obtain d iffe ren t images of

the structure by varying the D2 O/H2 O ratio .

Future effo rts  w il l  be directed at obtaining higher resolution

data over the entire  range of D2 O concentration. Neutron d iffraction

experiments using the two-dimensional position sensitive detector

(Alberi, et al_., 1975) are quite promising. In D20 Ringer's solu-
0

tion, the d iffraction  pattern extends to 33 A resolution (Figure lOd), 

and the f i r s t  6 orders of d iffraction  can be obtained in only 5 minutes

(Figure 37). Thus, i t  should be possible to obtain d iffraction  from

a single specimen in H2 O and D20. At least four structural issues are 

amenable to investigation by neutron diffraction of retina l photore

ceptor membranes. (1) The structural changes that occur upon bleach

ing can be assessed by comparing diffraction from a specimen in
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Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.



-1 0 5 -

Figure 37. Neutron d iffraction  pattern of two bleached retinas 

obtained with a two-dimensional position-sensitive
O

detector, showing 6 reflections (50A resolution) a fte r  

only 5 min of data collection. The spectrum displays 

the intensity distribution across the horizontal axis 

of the counter a fte r  integration of the intensities  

around the vertical position of the incident beam.
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the dark and l ig h t .  I t  may also be possible to examine the struc

tures of spectra lly -identified  intermediates in the photolysis of 

rhodopsin. (2) Higher resolution neutron Fourier syntheses may 

reveal whether rhodopsin is a transmembrane protein. (3) The 11- 

cis  ̂ retinal chromophore can be located in the unit cell by d i f f e r 

ence Patterson analysis of d iffraction  from retinas with and without 

a deuterated chromophore. (4) I t  may be possible to locate sites 

of Ca++ accumulation in the unit cell since the scattering length 

of Ca44 (0.13 x 10 ^cm) is much less than the scattering length 

of Ca40 (0.49 x 10“12cm).

Such studies should provide further insight into the molecular 

basis of visual excitation and the molecular structure of biological 

membranes and membrane proteins.
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