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Abstract

Direct Evidence for a Membrane Deforming M otif in Endophilin: 

Implications Beyond Synaptic Vesicle Recycling

Khashayar Farsad 

2003

Effective neurotransmission is dependent on fast, reproduceable synaptic vesicle 

recycling. The synaptic vesicle recycling process is a complex event involving both 

protein-protein, as well as protein-lipid interactions. A central part o f the retrieval 

process o f synaptic vesicles lies in the ability o f soluble proteins to deform the plasma 

membrane into a nascent bud which will eventually reform a fully competent synaptic 

vesicle upon fission. This process involves clathrin-coat proteins, which form a protein 

scaffold around the vesicle bud, as well as proteins which have more recently been 

thought to be involved in generating the high curvature membranes present at the tubular 

neck o f the nascent vesicle bud.

Endophilin 1, a protein highly enriched in the pre-synaptic neuronal 

subcompartment has been implicated in many stages o f synaptic vesicle retrieval. The 

following work represents evidence o f a direct role for endophilin in tubular membrane
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deformation, which may play an important part in the regeneration o f  synaptic vesicles. 

This behavior o f endophilin complements that o f one o f its major pre-synaptic binding 

partners, dynamin, a large GTPase strongly implicated in the fission process o f 

endocytosis. Endophilin forms a coordinated complex with dynamin along membrane 

tubules, and stabilizes these membrane tubules against the biomechanical changes 

imparted by dynamin to the membrane in a GTP-dependent manner.

The membrane deforming motif in endophilin comprises a putative amphipathic 

helical region. This motif is conserved in amphiphysin, another major pre-synaptic 

dynamin binding partner implicated in synaptic vesicle recycling, and in another 

endophilin-related protein localized to the Golgi complex. Membrane deforming 

amphipathic helices have since been found in other proteins localized to additional 

cellular subcompartments, implicating this type o f membrane interaction in diverse 

functions within the cell.
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Chapter 1 

Neurotransmission and the Synaptic Vesicle Cycle

The Neuron Doctrine

The vertebrate central nervous system has evolved into a specialized organ 

responsible for higher cognitive and functional behaviors. Fast, reliable, stereotyped 

relays o f messages from one neuron to the next is responsible for both intrinsic 

homeostatic functions such as breathing, to much o f the responses necessary for 

adaptation and higher neuronal functioning. The concept o f neurotransmission was 

revolutionized in the second half o f  the nineteenth century by the seminal work o f the 

neuroanatomist, Santiago Ramon Y Cajal. Using new stains for microscopy and 

impeccable observational skills, Cajal was the first neurobiologist expanding the cell 

theory, introduced by Schleiden and Schwann in the 1830s, to suggest that the nervous 

system was a collection o f  diverse cellular entities which communicated with each other 

through non-continuous comiections. These connections were termed synapses by 

Charles Sherrington in 1897, after the Greek word for “clasp” (Cowan and Kandel, 2001). 

Thus the neuron doctrine, which holds that the nervous system is comprised o f individual 

cells, termed neurons, gained fervor in the scientific community. Cajal’s belief was in 

contrast to the one popularized by his famous contemporary, Camillo Golgi, whose
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reticularist model contended that the nervous system was one big syncycium of 

interconnected parts with a directly communicating protoplasm (Cowan and Kandel, 

2001).

In fact, the neuron doctrine has been unequivocally supported by rigorous 

experimentation, with the ultimate proof provided by electron microscopic studies o f the 

synapse by George Palade and others in the mid 1950s (Cowan and Kandel, 2001; De 

Robertis and Bennett, 1955; Palay and Palade, 1955). Interestingly, it has been 

determined that certain few neurons directly communicate through specialized 

intercytoplasmic junctions, termed gap junctions, which allow for bi-directional flow of 

ions and small signaling molecules (Bennett, 1997; Cowan and Kandel, 2001; Falk, 2000; 

Unger et al., 1999). The function o f these electrical synapses, however, is mainly thought 

to be the synchronization o f activity within certain groups o f neurons (Bennett, 1966; 

Bennett, 1972; Cowan and Kandel, 2001).

Since the establishment o f the neuron doctrine, it has been determined that the 

central nervous system is comprised o f roughly 10" cells o f more various types than any 

other organ known (Kandel, 2000). These cells participate in up to 10b synaptic 

comiections. Furthermore, more o f the primate genome is believed to be active in the 

central nervous system compared with any other organ (Gilliam et al., 2000). This, in 

part, reflects the complex underpinnings of neuronal function.

2
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The Synapse

The synapse is the principal computational unit o f the nervous system. It has 

long been known that neurotransmission relies on the propagation o f  electrical impulses. 

In fact, there are four principal ways that neurons may communicate: a chemical 

interaction mediated by small neurotransmitter molecules secreted into the synaptic cleft 

between two neurons; an electrical interaction mediated by diffusion o f an electrical 

impulse between two neurons; ephaptic interactions mediated by electrical field effects of 

closely apposed neurons; and regional interactions mediated by release o f chemical and 

gaseous signaling molecules. This discussion will primarily deal with the chemical 

synaptic interactions which are by far the most dominant in the mammalian nervous 

system.

The chemical synapse is comprised o f a presynaptic nerve terminal, a 20-40 mu 

synaptic cleft maintained by intercellular adhesive contacts, and a postsynaptic nerve 

terminal (De Camilli et al., 2001a; Heuser and Reese, 1977). Synapses are most often 

asymmetric intercellular junctions between two communicating excitable cells, typically 

neurons, or neurons and muscle cells (De Camilli et al., 2001a). Synaptic connections 

arise during development through a complex and poorly understood mechanism of axonal 

pathfinding and target recognition underlying the intricate circuitry o f the nervous system 

(Benson et al., 2001). The synapse is so structurally robust, that "synaptosomes" 

containing only the presynaptic and postsynaptic terminals connected via the synaptic

3
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cleft can be biochemically purified (Gray and Whittaker, 1962; Hannah et al., 1999; Takei 

et al., 1995; Takei et al., 1996).

The morphological hallmark o f a presynaptic terminal, or bouton, is the presence 

o f a dense sub-plasmalemmal cytomatrix around which exist tens to hundreds and, in 

some instances, up to thousands o f small 35-50nm membrane bound vesicles loaded with 

neurotransmitter molecules (Figure 1.1) (De Camilli et al., 2001a; Jahn et al., 1990). The 

active zone, a term coined by Couteaux and Pecot-Dechavassine, defines the release site 

o f the neurotransmitter containing vesicles (Couteaux and Pecot-Dechavassine, 1970). 

Occasionally, a nerve terminal may contain more than one active zone with distinct 

postsynaptic contacts (De Camilli et al., 2001a). The terminal bouton also contains 

cytoskeletal elements which are believed to be involved in the generation and organization 

o f this specialized compartment. The postsynaptic terminal also contains a dense sub- 

plasmalemmal cytomatrix, termed the postsynaptic density, in which the cognate 

receptors o f  the neurotransmitter molecules are clustered (De Camilli et al., 2001a).

Chemical synaptic transmission begins with the propagation o f an electrical depolarizing 

impulse, termed the action potential, down the axon to the nerve terminal. At the nerve 

terminal, the depolarizing impulse opens voltage gated calcium channels localized at or 

near the active zone, which then allow an increase in the local calcium concentration by up 

to four orders o f magnitude. The increase in cytosolic calcium triggers fusion o f the 

synaptic vesicle with the synaptic plasma membrane surrounding the active zone

4
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Figure 1.1: Electron micrograph of a mammalian central synapse

Ultrastructure o f the synapse between a parallel fiber axon terminal and the dendritic 

spine o f  a Purkinje cell in the cerebellar cortex o f a rat. Note the numerous synaptic 

vesicles adjacent to the cell membrane. PSD = post-synaptic density, G = glial cell 

Reproduced from (De Camilli et al., 2001a)

5
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in a highly coupled process linking excitation with neurotransmitter release.

Subsequent to the release o f neurotransmitter molecules into the synaptic cleft, 

neurotransmitters bind to their cognate receptors, which either directly or indirectly gate 

ion channels. The subsequent influx o f  ions through the postsynaptic ion channels 

generates a postsynaptic potential that then may or may not generate another action 

potential to continue the propagation o f  the signal. A given neuron may integrate the 

potentials generated by several presynaptic contacts enabling complex computational 

processing. Thus, an electrical impulse is converted into a chemical signal, which is then 

reconverted into an electrical impulse. By virtue o f its many different regulated steps, the 

synapse is also the principle effector o f  plasticity within the nervous system, which 

underscores the need to functionally understand this important physiologic structure.

The Quantal Nature of Neurotransm itter Release: Synaptic Vesicles

The concept that neurotransmitters were released in discrete packets, or quanta, 

was postulated before physical evidence o f synaptic vesicles was known. Based on 

physiological recordings o f  the frog neuromuscular junction in the early 1950s, Bernard 

Katz and colleagues determined that there existed spontaneous stimulation independent 

potential changes o f uniform 0.5 millivolt amplitudes (Fatt and Katz, 1951; Fatt and 

Katz, 1952). They postulated that these mini-end plate potentials (MEPPs), as they

7
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were called, must define the minimal unit, or quantum, o f neurotransmitter release to 

generate such a change in potential (Del Castillo and Katz, 1954; Fatt and Katz, 1952).

In 1955, electron microscopic studies by Palay and Palade, and de Robertis and 

Bennett gave quantal theory a morphological correlate (De Robertis and Bennett, 1955; 

Palay and Palade, 1955). The presence o f numerous small membrane-bound vesicles 

present at the nerve terminal led to the suggestion that these organelles must be the 

determinants o f quantal neurotransmitter release by fusing with the plasma membrane and 

releasing their stored quantity o f neurotransmitter (Figure 1) (Katz and Miledi, 1965). It 

has since been found that the quantum of neurotransmitter which generates the MEPP 

corresponds to the amount which is loaded in synaptic vesicles o f  the frog neuromuscular 

junction, roughly five to ten thousand molecules o f acetylcholine (Kuffler and Yoshikami, 

1975). The most compelling evidence that quantal release translates to synaptic vesicle 

exocytosis is a study correlating amounts o f released quanta measured 

electrophysiologically in the frog neuromuscular junction with electron micrographic 

images o f  synaptic vesicles appearing to be in intermediate stages o f fusion with the 

plasma membrane (Ceccarelli et al., 1973; Haimann et al., 1985; Heuser, 1989; Heuser et 

al., 1979). Although there is little doubt, it should be mentioned, for the sake o f 

completeness, that since no absolute physical proof for the causal relationship between 

vesicle exocytosis and synaptic trasmission has yet been found, the vesicle theory of 

quantal release remains a hypothesis.

8
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Neurotransmitter molecules released from synaptic vesicle exocytosis cross the 

synaptic cleft within two microseconds, and expose the postsynaptic receptors to a 

concentration o f 1 mM neurotransmitter, sufficient to open up to two thousand 

postsynaptic ion channels. This would theoretically generate a postsynaptic potential on 

the order o f that seen with the MEPP. It has been estimated that at each release site, or 

active zone, an action potential has a probability o f 0.3 for causing release o f a synaptic 

vesicle (although this is likely variable and regulated at different synapses). It follows, 

then, that in a large neuromuscular junction containing about one thousand active zones, 

an action potential results in the release o f roughly three hundred vesicles within 1.5 

milliseconds, generating the large postsynaptic end-plate potential capable o f stimulating 

muscle fiber excitation.

Biogenesis of Synaptic Vesicles

The identification o f synaptic vesicles begged the next question o f how and when 

these organelles are created. The generation o f mature synaptic vesicles is thought to 

occur within the nerve terminal itself, compared with the direct generation from the Golgi 

complex typical for vesicles o f regulated exocytosis. Precursor proteins and membranes, 

however, are formed in the endoplasmic reticulum (ER) and Golgi complex. These 

precursors are transported down the axon via membrane-bound tubulo-vesicular 

organelles through fast axonal transport. These macromolecules include the integral

9
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membrane synaptic vesicle proteins, such as synaptophysin and SV2, as well as lipid 

molecules (Hannah et al., 1999).

A fair amount o f molecular sorting occurs to generate a mature synaptic vesicle, 

given its compositional difference with the plasma membrane. Most evident is the virtual 

lack o f gangliosides and a relatively large enrichment o f cholesterol in synaptic vesicles 

when compared with the plasma membrane (Hannah et al., 1999). Cholesterol is known 

to be important for the structure o f high curvature membranes, and depletion o f 

cholesterol from the plasma membrane prevents efficient fomiation o f vesicles, resulting 

in shallow buds which appear stunted in their ability to form high curvature (Rodal et al., 

1999; Subtil et al., 1999). In addition, synaptophysin has been shown to directly bind 

cholesterol, potentially serving as its biochemical sorter in synaptic vesicles (Huttner and 

Schmidt, 2000; Thiele et al., 2000).

Different lines o f  evidence point to the generation o f a synaptic vesicle occurring 

at the nerve terminal (Hannah et al., 1999). First, the pleiomorphic, membranous 

organelles which contain the synaptic vesicle precursor proteins do not share the same 

size or morphology with synaptic vesicles (Tsukita and Ishikawa, 1980). Second, it is 

known that different synaptic vesicle proteins are transported on different vesicular 

carriers (Okada et al., 1995), with the full complement o f synaptic vesicle proteins co­

existing on the same organelle only in the mature synaptic vesicle at the nerve terminal. 

These axonal carriers also contain other non-synaptic vesicle cargo destined for traffic to 

the distal axon/nerve terminal (Okada et al., 1995). Third, neurotransmitter molecules are

10
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loaded into vesicles at the nerve terminal. Finally, it is believed that nascent transport 

vesicles carrying the synaptic vesicle precursors need to undergo some exo-endocytic 

recycling before they can load neurotransmitter molecules, implying a degree o f sorting at 

this stage requisite for the generation o f  a mature synaptic vesicle. It is unclear whether 

some axonal endosomal sorting compartment may also be important in this process 

(Heuser and Reese, 1973). Thus, it can be thought that a synaptic vesicle is ultimately 

formed upon endocytosis from the plasma membrane, a fact which has important 

ramifications for the recycling nature o f  synaptic vesicles.

Synaptic Vesicles Exist in Distinct Pools

Two pools o f synaptic vesicles exist at the nerve terminal: the readily releasable 

pool, and the reserve pool (Hannah et al., 1999; Regehr and Stevens, 2001). 

Electrophysiological evidence exists for two pools o f synaptic vesicles. Upon a high- 

frequency train o f action potentials, there ensues a burst o f  fast synaptic vesicle 

exocytosis, followed by a lower, steady-state level o f  release (Elmqvist and Quastel,

1965; Liu and Tsien, 1995; Regehr and Stevens, 2001; Rosenmund and Stevens, 1996). 

The burst defines the readily releasable pool o f synaptic vesicles, while the steady-state 

is thought to correspond to a reserve pool o f  synaptic vesicles. This reserve pool is not 

immediately available for release, but is able to generate continued neurotransmission at a 

lower rate upon continuous stimulation, therefore highlighting the importance o f  this pool 

o f vesicles during high-frequency synaptic firing. Once depleted, the readily releasable

11
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pool o f  vesicles is regenerated only upon a discontinuation o f the excitatory train (Stevens 

and Tsujimoto, 1995). Given continuous high frequency stimulation, neurotransmission 

will grind to a halt as both pools o f  synaptic vesicles are exhausted.

Morphologically, the readily releasable pool o f synaptic vesicles is thought to be 

those vesicles docked with the active zone in close proximity to the presynaptic plasma 

membrane (Rosenmund and Stevens, 1996; Zucker, 1973). These vesicles are the ones 

postulated to be immediately available to fuse with the plasma membrane and release their 

neurotransmitter into the synaptic cleft upon stimulation (Schikorski and Stevens, 1997; 

Stevens and Tsujimoto, 1995). Alteration o f the functional size o f  the readily releasable 

pool can be an important modulator o f synaptic transmission and plasticity (Rosenmund 

and Stevens, 1996). Around these docked vesicles exist many more synaptic vesicles in a 

cluster thought to comprise the reserve pool o f vesicles (Schikorski and Stevens, 1997). 

While not immediately available to fuse with the plasma membrane and release their 

stored neurotransmitters, these vesicles are believed to be gradually recruited to the 

release sites at the plasma membrane where they may then dock and fuse. It is believed 

that the inherent delay in this recruitment process is what differentiates the readily 

releasable pool from the reserve pool, electrophysiologically.

There are several proteins thought to be important in the dynamics o f these two 

pools o f  synaptic vesicles. The synapsins are a highly conserved protein family having 

activity dependent association with synaptic vesicles (Bahler et al., 1990; De Camilli et 

al., 1990; De Camilli et al., 1983a; De Camilli et al., 1983b; Huttner et al., 1983). At rest,

12
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the synapsins are clustered around the synaptic vesicles. Upon stimulation, the 

synapsins become phosphorylated and no longer bind to the synaptic vesicles, diffusing 

along the axon (Chi et al., 2001). It is thought that this release from synapsin binding is 

what frees the vesicle in the reserve pool to progress to docking at the presynaptic 

plasma membrane (Chi et al., 2001). Binding may then proceed to large multi-domain 

proteins, such as RIM, piccolo, and bassoon, which are closely associated with the active 

zone cytomatrix, through other synaptic vesicle proteins such as rab 3A (Lin and Scheller, 

2000). From this "docked" site, vesicles are ready to fuse with the plasma membrane in a 

calcium dependent manner to release neurotransmitter molecules into the synaptic cleft.

Synaptic Vesicle Exocytosis

Due to the ability to biochemically purify a homogeneous population o f synaptic 

vesicles, these organelles have been catalysts for the study o f regulated exocytosis 

(Huttner et al., 1983; Lin and Scheller, 2000). One postulated mechanism for fusion of 

the synaptic vesicle membrane with the presynaptic plasma membrane occurs via the 

SNARE proteins (Lin and Scheller, 2000; Rothman, 1994; Schiavo et al., 1997). The 

SNAREs comprise a diverse family o f membrane associated molecules which have the 

ability to bind to one another to form a robust complex having high melting temperatures 

and resistance to SDS denaturation (Brunger, 2001; Lin and Scheller, 2000). SNAREs 

have been classified into those associated with the vesicle (vSNAREs), and those 

associated with the target membrane (tSNAREs) (Parlati et al., 2000). In general, a

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



SNARE complex consists o f  one vSNARE and two different tSNAREs (Brunger, 2001), 

with the specificity o f the vesicle-target membrane interaction thought to be inherent in 

the specific interactions o f the various SNARE proteins (M cNew et al., 2000). The 

prototypical vSNARE is the synaptic vesicle integral membrane protein, synaptobrevin. 

The prototypical tSNAREs are the integral membrane protein, syntaxin, and the lipid 

modified protein SNAP-25. It is generally believed that complex formation between the 

respective SNARE proteins o f the vesicle and target membrane contains enough energy to 

begin a process which pulls the apposing membranes together. The energy contained 

within the SNARE complex is thought to thermodynamically drive the approximation of 

the two adjacent membranes until they mix, allowing for fusion. SNARE mediated 

membrane fusion has been implicated in many forms o f membrane trafficking events 

(McNew et al., 2000).

Two major lines o f evidence support the SNARE hypothesis o f  membrane fusion. 

The first involves use o f bacterial toxins from Clostridia which selectively target various 

sites in the different neuronal SNARE proteins for proteolytic cleavage. These toxins 

potently block neurotransmission, and are fatal if  left untreated (Pellizzari et al., 1999). 

The block in neurotransmission lies at the level o f  synaptic vesicle exocytosis, with no 

effect on the total number o f synaptic vesicles and an increase in the numbers o f vesicles 

docked at the active zone (Hunt et al., 1994). This implicates the SNAREs to be 

necessary in a late stage o f fusion with the plasma membrane, after docking o f the vesicle 

to the active zone. The other line o f evidence directly tests the ability o f  the SNARE 

proteins to mediate lipid bilayer fusion. Using artificial proteoliposomes containing
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various populations o f vSNAREs and tSNAREs, Rothman and colleagues showed that 

the SNARE proteins are the minimal machinery sufficient to produce coordinated 

membrane fusion between proteoliposomes containing complementary SNARE proteins 

(Weber e t a l ,  1998).

The probability o f synaptic vesicle exocytosis increases five to six orders o f 

magnitude with the influx o f calcium at the nerve terminal; however, the nature o f the 

calcium sensor in this process has remained elusive (Lin and Scheller, 2000). The calcium 

channels at the nerve terminal exist at the active zone, and generate a stimulation 

dependent increase in local calcium concentration from roughly 100 nM to 100 pM  . The 

time from influx o f calcium to vesicle release can occur within 100-200 microseconds, 

indicating that the calcium sensor must reside in an area at least within 100 nm from the 

calcium channels, close to the active zone (Lin and Scheller, 2000).

Several synaptic proteins are known to bind calcium. The integral synaptic 

vesicle protein, synaptotagmin, has been the candidate most intensively studied. The 

calcium binding sites o f synaptotagmin reside in its two C2 domains, homologous to the 

calcium binding region in protein kinase C (PKC). The low affinity binding o f this 

domain for calcium is consistent with the concentrations o f calcium needed to stimulate 

membrane fusion. Furthermore, various perturbation studies o f  synaptotagmin function, 

including protein overexpression and microinjection o f antibodies and peptides, has 

revealed a role for this protein in synaptic transmission (Bommert et al., 1993; Mikoshiba 

et al., 1995). Moreover, synaptotagmin is known to be able to oligomerize, bind to the
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tSNARE proteins, syntaxin and SNAP-25, as well as bind to phospholipids in a calcium 

dependent fashion (Chapman et al., 1995; Li et al., 1995; Schiavo et al., 1997). These 

data are consistent with a model whereby calcium binding by synaptotagmin at the active 

zone is involved in the facilitation o f SNARE complex formation and fusion. However, 

some of the many mammalian isoforms o f synaptotagmin do not bind calcium, and gene 

knock-out studies in C.elegans, D. melanogaster, and mice have produced ambiguous 

results concerning the role for synaptotagmin in calcium dependent synaptic vesicle 

exocytosis (Broadie et al., 1994; Chapman, 2002; Geppert et al., 1994; Littleton et al., 

1994; Littleton et al., 1993; Nonet et al., 1993). Therefore, the true identity o f the 

synaptic calcium sensor remains obscure.

Synaptic Vesicle Recycling

Even at low levels o f stimulation, the complement o f synaptic vesicles would 

rapidly become depleted if there were no compensatory mechanism for their 

replenishment. Given the presence o f variable-frequency stimulation, and the ability of 

the nervous system to quickly alter the flux o f neuronal firing, the rapid regeneration of 

synaptic vesicles is crucial for the maintenance o f productive neurotransmission. In 

addition, the other consequence o f unopposed synaptic vesicle exocytosis would be the 

large accumulation o f membrane at the synapse, with the resulting drastic disruption of 

synaptic architecture. This problem is elegantly solved through the local recycling of 

synaptic vesicles at the nerve terminal (Ceccarelli et al., 1973; Heuser and Reese, 1973).
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Synaptic vesicle recycling at the nerve terminal can regenerate and maintain the synaptic 

vesicle pool, while at the same time, balance the total surface area o f  the presynaptic 

membrane through a cycle o f exo- and endocytosis (De Camilli et al., 2001b).

Indeed, exocytosis is tightly coupled to endocytosis in the synaptic vesicle cycle. 

The nature o f the tight coupling is most likely through a combination o f  sensitivities to 

the same biochemical trigger, calcium, as well as through the detection, by the endocytic 

machinery, o f synaptic vesicle components delivered to the presynaptic plasma 

membrane (De Camilli et al., 2001b). Experimental evidence supports both o f these 

potential coupling mechanisms. Formation o f endocytic complexes is facilitated through 

calcium-dependent dephosphorylation o f several proteins in the endocytic pathway by 

the phosphatase, calcineurin (Robinson et al., 1994; Slepnev et al., 1998). Furthermore, 

the putative exocytic calcium sensor, synaptotagmin, binds to the alpha-adaptin subunit 

o f the clathrin adaptor AP-2, serving to potentially nucleate the formation o f a clathrin- 

coated pit at sites where synaptotagmin has been delivered to the plasma membrane 

(Haucke and De Camilli, 1999). In addition, in the vertebrate fish, lamprey, artificial 

uncoupling o f exocytosis from endocytosis resulted in the endocytosis o f synaptic 

vesicles only until the vesicle pool had replenished, arguing for a biochemical stimulus 

present at the plasma membrane which was triggering the endocytic process, namely, the 

presence o f synaptic vesicle proteins delivered to the plasma membrane by exocytosis 

(Gad et al., 1998). There is evidence showing that the rate o f endocytosis directly 

correlates with the rate o f exocytosis, further demonstrating the intimate coupling o f these 

two processes (Klingauf et al., 1998; Marks and McMahon, 1998). Moreover, recent
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data have implicated phosphoinositide metabolism in the exo-endocytic cycle o f vesicles 

recycling from the plasma membrane, suggesting lipid-mediated coupling o f these two 

processes (Cremona and De Camilli, 2001; Cremona et al., 1999; Czech, 2003; Kim et al., 

2002; W enket al., 2001).

Using styryl dyes which fluoresce upon embedding into lipid bilayers, the kinetics 

o f evoked synaptic vesicle recycling have provided new data demonstrating robust vesicle 

turnover (Betz et al., 1992; Betz et al., 1996; Ryan and Smith, 1995). These experiments 

reveal kinetics which are dependent on the intensity and duration o f  stimulation. 

Following a brief 10 Hz stimulation, the half-life o f synaptic vesicle endocytosis is 

roughly twenty seconds in central synapses as measured by these methods (Ryan and 

Smith, 1995; Ryan et al., 1996; Wu and Betz, 1996). However, different kinetics of 

uptake have been found under different stimulation protocols and in different synapses, 

reflecting a potential functional role for various recycling dynamics within the diversity of 

the nervous system (De Camilli et al., 2001b; Klingauf et al., 1998). Based on the 

kinetics o f  styryl dye unloading after internalization, it has been determined that roughly 

another 30 seconds is required after endocytosis for subsequent availability o f the nascent 

vesicle for another round o f exocytosis, placing the total time o f recycling at just under 

one minute (Betz and Bewick, 1992; Ryan et al., 1993). Thus, the recycling pathway 

appears most critically important for maintenance o f the reserve pool o f synaptic 

vesicles.
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Interestingly, there is segregation at the nerve terminal with respect to regions of 

exocytosis and endocytosis o f synaptic vesicles. While exocytosis is thought to occur 

principally at the active zone proper, where synaptic vesicles are seen to be closely 

apposed to the presynaptic plasma membrane by electron microscopy, the major 

endocytic activity primarily occurs at the outer boundaries o f the active zone, in a loose 

halo around the synaptic vesicle cluster (De Camilli et al., 2001b; Gad et al., 1998; 

Jarousse and Kelly, 2001; Teng and Wilkinson, 2000). In fact, the periphery o f the active 

zone is enriched in proteins involved in endocytosis (Jarousse and Kelly, 2001; Roos and 

Kelly, 1999). The mechanism for this functional segregation o f exo- and endocytosis is 

not understood, although clearly there must be a role for protein-protein and protein- 

membrane interactions which favor this distribution. Conceptually, a separation o f these 

two processes in space would in some ways prevent a functional competition 

unproductive for neurotransmission, and there may also be steric requirements for the 

separation o f the different machineries required for exo- and endocytosis.

Two Putative Pathways for Synaptic Vesicle Retrieval

In what way does the local recycling o f synaptic vesicles occur? In the early 

1970s, electron microscopic studies o f stimulated nerve terminals revealed clathrin- 

mediated endocytosis to be a major pathway o f synaptic vesicle retrieval after exocytosis 

(Heuser and Reese, 1973). This highly specialized version o f a general endocytic 

pathway is necessary for the maintenance o f the synaptic vesicle pool, and perturbation
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of this system results in rapid depletion o f synaptic vesicles at the nerve terminal (Gad et 

a l ,  2000; Koenig and Ikeda, 1989; Shupliakov et al., 1997).

The clathrin-mediated pathway for endocytosis o f synaptic vesicles has been 

rigorously supported through experimentation using a variety o f methods. Biochemically, 

the brain is an abundant source of clathrin-coat proteins, derived from a coated vesicle 

fraction enriched in synaptic vesicle proteins (Maycox et al., 1992). Furthermore, by 

immunofluorescence, clathrin-coat proteins are highly concentrated in the nerve terminal, 

indicative o f a major role for these proteins in a synaptic process (De Camilli et al., 

2001b). Moreover, cellular manipulation experiments, through which the clathrin- 

mediated endocytic pathway was perturbed by either peptide or antibody microinjection, 

have clearly shown a major role for this pathway in synaptic vesicle recycling (Gad et al., 

2000; Ringstad et al., 1999; Shupliakov et al., 1997). Some o f the most striking examples 

o f the importance o f the clathrin-mediated recycling pathway are seen in the 

microinjection studies using the living giant reticulospinal synapse o f the vertebrate fish, 

lamprey. In this preparation, disrupting proteins involved in clathrin-mediated synaptic 

vesicle recycling demonstrate a crucial role for this pathway in the maintenance o f the 

synaptic vesicle pool, at either low or high levels o f stimulation (Gad et al., 2000;

Ringstad et al., 1999; Shupliakov et al., 1997). Such a disruption o f clathrin-mediated 

endocytosis in the lamprey reticulospinal synapse results in near total depletion o f the 

synaptic vesicle cluster, with many “trapped” intermediates o f the clathrin-mediated 

endocytic pathway seen at the periphery o f  the active zone (Gad et al., 2000; Ringstad et 

al., 1999; Shupliakov et al., 1997). Furthermore, genetic studies in D. melanogaster and
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mice have further supported a major role for clathrin-mediated synaptic vesicle recycling, 

demonstrating both lethality and severe neurological dysfunction (Cremona et al., 1999; 

Di Paolo et al., 2002; Gonzalez-Gaitan and Jackie, 1997; Guichet et al., 2002; Verstreken 

et al., 2002; Zhang et al., 1998).

An alternative pathway for synaptic vesicle recycling has also been proposed, 

independent o f  clathrin-mediated endocytosis. This hypothesis stemmed from 

electrophysiological studies o f membrane capacitance, as well as electron micrographs 

showing synaptic vesicles in a state o f  partial fusion with the plasma membrane (Koenig 

and Ikeda, 1996). Known as ‘kiss and run,’ this hypothesis posits that the vesicle may, 

rather than completely collapsing into the presynaptic plasm a membrane, only form a 

transient fusion pore which may then be resealed quickly to reform the synaptic vesicle 

(Ceccarelli et al., 1973; Fesce et al., 1994). Opening o f the fusion pore would be 

sufficient for release o f neurotransmitter, without compromising the overall integrity o f 

the vesicle. Advantages for this pathway would be potentially faster recycling kinetics 

derived from reversal o f a partial fusion event, as well as circumventing the need to sort 

vesicle constituents from the pool o f  proteins and lipids present in the plasma membrane.

The most tenable evidence that the ‘kiss and run’ mode o f vesicle recycling occurs 

has been from capacitance studies o f large secretory granule secretion (Breckenridge and 

Aimers, 1987a; Breckenridge and Aimers, 1987b; Spruce et al., 1990). The addition o f 

membrane upon fusion o f a large vesicle granule with the plasma membrane o f a secretory 

cell is sufficient to detect an increase in the capacitance o f the plasma membrane. Using
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these techniques, coupled with biochemical detectors o f  granule content release, it has 

been shown that a given granule may undergo a ‘flicker’ state where the capacitance o f the 

plasma membrane quickly changes in a reversible fashion in conjunction with secretion 

(Aimers and Tse, 1990; Fesce et al., 1994; Neher, 1993). The amplitude o f  the 

capacitance change is similar to what would be seen with a single total fusion event. This 

led to the notion that the vesicle was reversibly fusing with the plasma membrane and 

releasing its contents in brief spurts.

Although the ‘flicker’ or ‘kiss and run’ mechanism of fusion has been 

demonstrated for secretion o f these large vesicles, evidence for the same phenomenon 

occurring with synaptic vesicles has not been nearly as robust, particularly since the small 

size o f synaptic vesicles is below the reliable detection limit for capacitance studies. 

Furthermore, the large secretory granules studied for capacitance changes are more akin to 

the large dense-core vesicles containing neuropeptides present in some neurons, rather 

than the small neurotransmitter-containing synaptic vesicles. These neuropeptide- 

containing large dense-core vesicles most likely do not undergo exocytosis at the active 

zone, and thus may have a qualitatively different mechanism o f fusion distinct from that 

o f synaptic vesicles (De Camilli et al., 2001a). This fact limits the ability to generalize a 

process involved with large granule secretion to synaptic vesicle exocytosis. The ‘kiss 

and run’ model is still a viable one, however, and more experimentation may reveal a 

potential role for this pathway in synaptic vesicle recycling (Klingauf et al., 1998).
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The Cast of Players in Synaptic Vesicle Retrieval

Clathrin-mediated synaptic vesicle retrieval involves an intricate sequence o f 

protein and membrane dynamics. A central question in this process is the how the 

nascent vesicle bud is generated from the plasma membrane, and then severed to form an 

independent organelle. Many proteins have been implicated in this process, from 

clathrin, to the adaptins, to a whole group o f accessory proteins the functions o f which 

have become increasingly studied in recent years (De Camilli et al., 2001b; Schmid, 1997; 

Slepnev and De Camilli, 2000).

Clathrin-coat proteins purified from brain are comprised principally o f clathrin 

heavy and light chains, the hetero-tetrameric adaptor, AP2, and the large monomeric 

adaptor, API 80 (Brodsky et al., 2001). Each o f these proteins has independently been 

implicated as important components for clathrin-coat formation. The triskelion is the 

principal structural unit o f clathrin assemblies (Brodsky, 1985). The clathrin triskelion is 

comprised o f three clathrin heavy chains (Brodsky, 1988; Natlike et al., 1992). The 

central hub of the triskelion is where the light chains are localized (Brodsky et al., 1991; 

Liu et al., 1995), and the terminal domains represent the NH2-terminal regions o f the 

clathrin heavy chains which are known to be involved in protein-protein interactions with 

adaptors (ter Haar et al., 2000). Rather than forming a major structural part o f the 

triskelion, the clathrin light chains are mainly thought to exert regulatory effects on coat 

formation (Brodsky et al., 2001; Winkler and Stanley, 1983; Ybe et al., 1998). The 

presence o f clathrin light chains inhibits clathrin cage formation at physiological pH, and
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phosphorylation o f light chains may play a role in regulating the interaction o f the light 

chains with the heavy chains (Brodsky et al., 1991; Chu et al., 1999).

Clathrin triskelia can organize to form hexagonal and pentagonal lattices (Brodsky 

et al., 2001). Geometric models o f these shapes indicate that while triskelial hexagons can 

form flat sheets, triskelial pentagons introduce curvature in the lattice due to stearic 

considerations o f such a pentagonal assembly (Kirchhausen, 2000). With the appropriate 

ratio o f hexagons to pentagons, clathrin is able to form structures resembling geodesic 

domes, or ‘buckminster fullerenes’ (Musacchio et al., 1999; Smith et al., 1998). Under 

acidic conditions below pH 6.5, clathrin itself can oligomerize into lattices and cages in 

solution comprised solely o f triskelial units (Brodsky, 1988); however, at physiologic 

pH, clathrin adaptor proteins are required for cage formation (Ahle and Ungewickell, 

1986).

Both AP2 and API 80 can independently and synergistically stimulate free 

clathrin cage formation (Ford et al., 2001). A P I80 has also been shown, both in vitro and 

in vivo in C. elegans and D. melanogaster, to be necessary for the stringent size 

determination o f the clathrin-coat for synaptic vesicles (McMahon, 1999; Nonet et al., 

1999; Zhang et al., 1998). AP2 and A P I80 are also able to bind to phospholipids (De 

Camilli and Takei, 1996; Ford et al., 2001; Mao et al., 2001), and therefore provide an 

additional structural link to the site o f action for the clathrin-coat. In fact, purified 

clathrin-coat proteins can form coated buds on protein-free artificial liposomes, 

demonstrating that soluble components alone are sufficient to generate the structural
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intermediates in endocytosis (Takei et al., 1998). In addition, the p2-subunit o f AP2 has 

been shown to bind to a tyrosine based sorting m otif present in synaptotagmin, and 

therefore, provides a link for the sorting o f synaptic vesicle components implicit in 

clathrin-mediated synaptic vesicle retrieval (Haucke and De Camilli, 1999; Haucke et al., 

2000). Consistent with this idea, API 80 C. elegans mutants were shown to mislocalize 

the vSNARE, synaptobrevin, indicating an important role for API 80 in the sorting o f this 

important exocytic protein (Nonet et al., 1999).

Recently discovered in Drosophila, the novel synaptic protein, stoned B, has been 

shown to associate with clathrin-coat proteins and to be important in synaptic vesicle 

recycling (Andrews et al., 1996; Martina et al., 2001; Walther et al., 2001). Stoned B has 

structural homology to the p2-subunit o f  AP2, and concordantly, interacts directly with 

synaptotagmin (Phillips et al., 2000). Deletion o f the Stoned B locus results in 

mislocalization o f  synaptotagmin and defects in neurotransmission attributed to a 

dysfunction o f synaptic vesicle recyling (Fergestad and Broadie, 2001; Fergestad et al., 

1999; Stimson et al., 2001). This further demonstrates how proteins associated with the 

clathrin-coat can be intimately involved in sorting o f  synaptic vesicle proteins and in the 

efficiency of synaptic vesicle recycling.

Ring Around the Collar

In addition to the proteins comprising the clathrin-coat, several other proteins 

have been implicated in this endocytic pathway (De Camilli et al., 2001b). While
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clathrin-coat proteins are involved in budding from the plasma membrane, they are not 

sufficient to cause fission o f the bud into a vesicle. The first evidence that factors other 

than the clathrin-coat proteins were involved in clathrin-mediated synaptic vesicle 

retrieval came from the study o f a Drosophila temperature-sensitive mutant severely 

defective in neurotransmission (Koenig and Ikeda, 1989). Morphological analysis of the 

shibire temperature sensitive mutation in D. melanogaster showed that, at the restrictive 

temperature, paralysis coincided with depletion o f the synaptic vesicle cluster and the 

arrest o f clathrin-mediated endocytosis at deeply invaginated buds (Figure 1.2) (Koenig 

and Ikeda, 1989). Interestingly, electron dense collars were found at the necks o f these 

clathrin-coated buds (Koenig and Ikeda, 1989). The mutant gene was subsequently found 

to encode the Drosophila ortholog o f dynamin, a 1 OOkDa GTPase initially cloned as a 

microtubule associated protein (Shpetner and Vallee, 1989; van der Bliek and 

Meyerowitz, 1991). Dynamin has three different isoforms totalling up to twenty-seven 

different splice variants (McNiven et al., 2000). Dynamin 1 is specific to the brain and is 

highly enriched at the nerve terminal. Dynamin 2 is ubiquitously expressed, while 

dynamin 3 is predominantly in testes, with some brain and lung expression.
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Figure 1.2: The shibire mutant in D. melanogaster displays a temperature 

sensitive arrest of synaptic vesicle recycling due to failure o f vesicle fission as a 

result o f a defect in the gene encoding the GTPase, dynamin

(A) At the permissive temperature, the pre-synaptic compartment is replete with 

synaptic vesicles and the fly behaves normally. (B) At the restrictive temperature, 

paralysis coincides with a depletion o f synaptic vesicles and an accumulation o f clathrin- 

coated profiles arrested at a deeply invaginated state. Note the electron-dense ring-like 

structures evident at the neck o f many o f the coated buds.

Reproduced from the following reference: (Koenig and Ikeda, 1989)

(C) The domain structure o f dynamin, the 100 kDa GTPase product o f the shibire gene. 

The GTPase activity o f the NH2-terminal GTPase domain is required for fission of the 

nascent clathrin-coated bud into a vesicle. The COOH-terminal proline- and arginine-rich 

domain is responsible for dynamin binding to various SH3 domain-containing proteins. 

CC = coiled coils; GED = GTPase effector domain
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Dynamin is comprised o f five major domains: an NH2-terminal GTPase domain; 

a middle domain containing a region o f coiled-coils potentially involved in dynamin- 

dynamin interactions; a pleckstrin-homology (PH) domain with affinities for 

phosphoinositides, and which may also participate in protein-protein interactions; a 

GTPase effector domain (GED) thought to stimulate dynamin GTPase activity as well as 

to regulate dynamin-dynamin oligomerization through two predicted coiled-coil segments; 

and a COOH-terminal region rich in prolines and arginines (PRD) known to bind several 

proteins containing src-homology 3 (SH3) domains (Figure 1.2C) (Hinshaw, 2000). The 

large NH2-terminal GTPase domain, the most highly conserved amongst the dynamins, is 

characterized by very high GTPase activity and low affinity for nucleotides. Indeed, 

these traits o f a large GTPase with high hydrolytic activity and low nucleotide affinity 

have defined a family o f GTPases, including members ranging in function from the 

immune system to mitochondrial dynamics (McNiven et al., 2000) (Danino and Hinshaw, 

2001 ).

Two important lines o f  evidence initially implicated dynamin as an important 

endocytic protein in mammals. Overexpression, in mammalian cells, o f a dynamin 

construct unable to bind GTP acted in a dominant negative fashion to potently block 

endocytosis (Damke et al., 1994; van der Bliek et al., 1993). Furthermore, treatment of 

isolated synaptic membranes with brain cytosol and GTPyS, a non-hydrolyzable analog 

o f GTP, could mimic the fission arrest phenomenon seen in the shibire mutant, with 

multiple electron dense rings constricting the membrane below a clathrin-coated bud 

(Figure 1.3 A) (Takei et al., 1995). These electron dense collars were immuno-gold
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positive for dynamin. Moreover, dynamin was shown to form stacks o f rings in solution 

by electron microscopy (Hinshaw and Schmid, 1995), and purified dynamin alone 

deformed both natural membranes and artificial lipid bilayers into tubules with the 

approximate diameter o f the neck o f  a clathrin-coated bud (Takei et al., 1998). Upon 

addition o f GTP, some tubules generated by dynamin on liposomes were seen to constrict 

in diameter, and many tubules fragmented to small vesicular structures (Sweitzer and 

Hinshaw, 1998). Thus, fission o f a nascent clathrin-coated bud from the plasma 

membrane requires dynamin, and specifically, a GTP-dependent function o f  dynamin. 

Given the in vitro and in vivo dynamics observed with dynamin and lipid bilayers, the 

GTP-dependent function is likely a mechanochemical transduction o f energy sufficient to 

mediate scission o f the tubular neck o f the clathrin-coated bud (Marks et al., 2001). An 

alternative mechanism has also been proposed whereby dynamin may stimulate a 

downstream fission machinery in a GTP-dependent fashion (Sever et al., 1999), and it is 

possible that both mechanisms may work in tandem.

Dynamin exists as dimers and tetramers in solution and is able to form high order 

oligomers under conditions of low salt, or on the surface o f lipid bilayers. Recently, a 20 

Angstrom structure o f dynamin oligomerized in a tubule has been solved by electron 

cryo-microscopy (Klockow et al., 2002; Zhang and Hinshaw, 2001). This structure 

shows the unit o f dynamin assembly to be a dimer, and a dynamin ring to be composed o f 

dimeric oligomers with an eleven-fold axis o f symmetry (Klockow et al., 2002; Zhang and 

Hinshaw, 2001). Dynamin is assembled as a continuous stack o f rings which is poised in 

such a way as to mediate constriction with conformational change (Klockow et al., 2002;
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Zhang and Hinshaw, 2001). This model supports a mechanochemical function for 

dynamin, although downstream effectors may still play a role in the fission reaction.

Protein Complexes in the Endocytic Fission Ring

Thin-section electron microscopic specimens o f membrane tubules generated by 

purified dynamin do not exhibit the dense ring pattern observed when membranes are 

treated with brain cytosol and GTPyS. The rings generated by purified dynamin are only 

seen by negative stain electron microscopy, and they are thinner and spaced more closely 

together than the rings formed with brain cytosol (Figure 1.3) (Takei et al., 1999). The 

rings seen with brain cytosol, therefore, most likely represent a complex o f  proteins 

involved in membrane deformation during clathrin-mediated endocytosis, which together 

are able to generate the electron density observed by thin sectioning.

The most likely candidates for the proteins involved in the endocytic fission ring include 

major dynamin interacting partners at the nerve terminal. One such protein is 

amphiphysin, a 128 kDa protein comprising a highly conserved NH2-terminal coiled-coil 

region and a COOH-terminal SH3 domain (Figure 1.4) (David et al., 1996). The coiled- 

coil region is involved in protein-membrane interactions as well as 

dimerization/multimerization (Ramjaun et al., 1997; Wigge et al., 1997a), while the SH3 

domain binds dynamin and the synaptic polyphosphoinositide phosphatase, 

synaptojanin (David et al., 1996; de Heuvel et al., 1997). Furthermore, upstream o f its
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Figure 1.3 M embrane tubules generated by purified dynamin have a different 

protein coat compared with tubules generated by brain cytosol

(A) Thin section electron micrograph o f epon-embedded membrane tubules generated in 

the presence o f  synaptic membranes, brain cytosol, and GTPyS. Note the presence o f 

electron-dense rings similar to those seen in the shibire nerve terminals at the restrictive 

temperature. These tubules are highly immunoreactive against anti-dynamin antibodies. 

Reproduced from (Takei et al., 1995)

(B) Negative stain electron micrograph o f membrane tubules generated in the presence of 

liposomes and purified rat brain dynamin. Note that although the dimensions o f  the 

membrane tubule are the same as compared with cytosol in A (roughly 25-100 nm 

diameter), the morphology o f  the protein coat on the tubule is different, with purified 

dynamin being represented by thinner rings spaced more closely together. This suggests 

that a protein complex is likely responsible for the thick electron-dense structure seen 

with brain cytosol.
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SH3 domain, neuronal isoforms o f amphiphysin contain partially overlapping sequences 

known to bind clathrin and AP2 (Slepnev et al., 2000), thus providing for a putative link 

between interactions with dynamin and the clathrin-coat (Takei et al., 1999).

The role o f amphiphysin in endocytosis has been shown by the strong inhibition 

o f endocytosis found using its SH3 domain for acute perturbation studies. Cells 

transiently expressing the amphiphysin SH3 domain exhibit a profound block in clathrin- 

mediated endocytosis (Wigge et al., 1997b). Moreover, microinjection o f the 

amphiphysin SH3 domain in the stimulated nerve terminal o f  the lamprey reticulospinal 

synapse results in depletion o f synaptic vesicles secondary to a block in clathrin- 

mediated synaptic vesicle retrieval (Shupliakov et al., 1997). The block in synaptic 

vesicle recycling is at the late fission step, as numerous deeply invaginated clathrin-coated 

buds were seen accumulated at the periphery o f the active zone (Shupliakov et al., 1997). 

Chronic perturbation o f amphiphysin function mediated by targeted disruption o f the 

amphiphysin gene, in a subset o f mutant mice, leads to severe cognitive deficits correlated 

with dysfunctional synaptic vesicle recycling (Di Paolo et al., 2002). Amphiphsyin 

knockout mice also suffer premature death due to an enhanced susceptibility to seizures 

(Di Paolo et al., 2002). These data point to a role for amphiphysin in the high-efficiency 

synaptic vesicle recycling required for higher order brain functioning.

In vitro, amphiphysin forms a complex with dynamin, which, by comparison, forms more 

widely spaced electron dense rings visible also by thin sectioning (Takei et al., 1999). 

These rings more closely resemble the morphology o f the rings seen using total brain
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Figure 1.4: M ajor pre-synaptic dynamin binding partners

Amphiphysin and endophilin are proteins which are highly enriched at the synapse, and 

which interact with dynamin, and the polyphosotidlyinositol phosphatase, synaptojanin, 

via their COOH-terminal SH3 domains. Both proteins have a highly conserved NH2- 

terminal domain predicted to form alpha helices and coiled-coils. Brain isoforms of 

amphiphysin have a central domain with binding sites for clathrin and the clathrin adaptor 

protein, AP2.
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cytosol, rather than the rings seen with dynamin alone (Takei et al., 1999), supporting the 

notion that a complex o f proteins is present at the thick electron-dense collar present at 

the tubular neck o f the clathrin-coated bud. Moreover, recombinant amphiphysin alone 

was able to tubulate liposomes to roughly the same diameter as the tubules generated by 

dynamin (Takei et al., 1999). Thus, the role o f  amphiphysin in the synaptic vesicle cycle 

may relate to its structural interaction with dynamin at the tubular neck o f the clathrin- 

coated bud.

Lipid M etabolism in Synaptic Vesicle Recycling

As mentioned, the other major binding partner of amphiphysin at the nerve 

terminal is the polyphosphoinositide phosphatase, synaptojanin (Figure 1.4) (de Heuvel 

et al., 1997). Synaptojanin is concentrated at the nerve terminal, and is found on coated 

endocytic intermediates in an incubation using synaptic membranes with brain cytosol 

and GTP_S (Haffner et al., 1996; Haffner et al., 1997). This led to the speculation that 

phosphoinositide metabolism is an important part o f the synaptic vesicle cycle (Cremona 

et al., 1999).

Synaptojanin has two phosphoinositide phosphatase domains which mediate the 

dephosphorylation o f the phosphoinositides, P I^ P  (PIP2) and PI 3;4i5P (PIP3)

(McPherson et al., 1996). The synaptojanin COOH-terminal proline-rich domain 

mediates protein-protein interactions. Both chronic and acute perturbations have
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implicated synaptojanin in synaptic vesicle recycling. Targeted disruption o f the 

synaptojanin locus in mice leads to severe neurological deficits, failure to thrive, and a 

concomitant deficiency in neurotransmission (Cremona et al., 1999). An increase in brain 

PIP2 levels compared with wild type mice was noted, indicating a possible causal link 

between the phenotype and the defect in phosphoinositide metabolism (Cremona et al., 

1999). Furthermore, microinjection studies in the lamprey synapse have demonstrated a 

block in endocytosis with the ensuing accumulation o f clathrin-coated vesicles and the 

proliferation o f an actin cytomatrix (Gad et al., 2000).

The importance o f lipids in synaptic vesicle recycling has been underscored by 

several observations. Dynamin shows a preference for acidic phospholipids, with its PH 

domain having an affinity for PIP2 (Klein et al., 1998; Salim et al., 1996). PIP2 is a 

biologically active lipid, and the observed effects o f  synaptojanin perturbation may reflect 

the affinity o f the clathrin-coat adaptors to PIP2, as well as the ability o f PIP2 to nucleate 

actin dynamics (Cremona and De Camilli, 2001; Takenawa and Itoh, 2001). Indeed, a 

brain-enriched isoform o f a PI(4)P 5-kinase, which generates PIP2 by the addition o f a 

phosphate to position 5 ’ o f the inositol ring in the precursor, PI(4)P, has recently been 

identified (Wenk et al., 2001). This kinase is enriched at the nerve terminal, and localizes 

to clathrin-coated intermediates in the cell free incubation previously mentioned with 

brain cytosol (Wenk et al., 2001).

Interestingly, amphiphysin has been reported to act as an inhibitor o f 

phospholipase D, an enzyme mediating the conversion o f phosphatidyl-choline to
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phosphatydic acid by cleavage o f the choline moiety o f the head group (Lee et al., 2000). 

The action o f phospholipase D is a part o f an enzymatic cascade leading to PIP2 

generation, and therefore, inhibition o f this enzyme would theoretically block this 

cascade, preventing additional formation o f  PIP2. Along with its binding partner, 

synaptojanin, amphiphysin may work to decrease PIP2 levels in a function which may 

have importance for synaptic vesicle dynamics. Thus, a putative cycle o f 

phosphoinositide metabolism may occur in tandem with the synaptic vesicle cycle, 

whereby generation o f PIP2 after exocytosis leads to coated bud formation in addition to 

undefined actin dynamics, and removal o f PIP2 leads to vesicle uncoating and competence 

to enter the recycling pool o f synaptic vesicles (Cremona and De Camilli, 2001).

Endophilin and Synaptic Vesicle Recycling

Another major binding partner o f dynamin and synaptojanin is endophilin 1, a 

40kDa SH3 domain-containing protein enriched in the synapse (Figure 1.4) (de Heuvel et 

al., 1997; Ringstad et al., 1997). Microinjection studies in the living giant reticulospinal 

synapse o f lamprey have implicated endophilin in many stages o f clathrin-mediated 

synaptic vesicle endocytosis, from early events generating deep membrane curvature in 

the developing clathrin-coated bud, to later stages such as fission and uncoating o f the 

nascent vesicle(Gad et al., 2000; Ringstad et al., 1999). Furthermore, endophilin was 

found to be necessary for generation o f small synaptic-like micro vesicles (SLMVs) in a 

PC 12 cell based assay (Schmidt et al., 1999).
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In Drosophila, the endophilin 1 ortholog is essential, with mutants containing P- 

element insertions in the endophilin 1 gene leading to death at the third instar larval stage 

(Guichet et al., 2002; Verstreken et al., 2002). Drosophila endophilin is a crucial part o f 

synaptic function, and analysis o f the nerve terminals in these mutants prior to death 

revealed depletion o f synaptic vesicles and the presence o f large vacuoles (Guichet et al., 

2002; Rikhy et al., 2002; Verstreken et al., 2002). In some nerve terminals which were 

only mildly affected, numerous clathrin-coated intermediates were seen which remarkably 

resembled the shallow pits seen in the lamprey synapse upon microinjection o f 

endophilin antibodies (Guichet et al., 2002; Ringstad et al., 1999).

In a cell free assay with rat brain cytosol and synaptic membranes incubated with 

GTP_S, endophilin co-localized with dynamin on membrane tubules, and selective 

depletion o f endophilin from the cytosol resulted in diminished numbers o f dynamin- 

coated tubules (Ringstad et al., 1999). These data suggest that endophilin plays a major 

role in synaptic vesicle recycling, and that the generation or stabilization o f the dynamin- 

coated membrane tubule at the neck o f the clathrin-coated bud may be a part o f its 

function at the synapse. Interestingly, both endophilin and amphiphysin, the two major 

presynaptic binding partners o f dynamin, co-localize to the membrane tubules generated 

with brain cytosol (Ringstad et al., 1999; Takei et al., 1999). However, it is unclear 

whether these two SH3 domain containing proteins are functioning in a similar manner 

with dynamin at the neck of the clathrin-coated bud, or whether they serve differential 

roles in space and/or time.
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Recently, endophilin was biochemically identified in a cytosolic extract containing 

lysophosphatidic acid acyl transferase (LPA-AT) activity, making endophilin the first 

cytosolic protein reported to have such an activity (Schmidt et al., 1999). This acyl 

transferase activity, which generates phosphatidic acid (PA) by the transfer o f 

arachidonoyl-CoA to lysophosphatidic acid (LPA), was thought to be crucial for the 

generation o f membrane curvature by the conversion o f an "inverse cone" lipid (LPA) to a 

"cone-shaped" shaped lipid (PA) in the cytoplasmic leaflet o f the membrane (Schmidt et 

al., 1999). The authors o f this study speculated that this activity was necessary for the 

transition from the positive membrane curvature of the budding vesicle, to the negative 

membrane curvature o f the neck o f the clathrin-coated bud (Schmidt et al., 1999), thereby 

being involved in fission. No direct evidence for a membrane deforming activity of 

endophilin was shown, however. Whether endophilin is involved in generating membrane 

curvature through this enzymatic activity or through some unknown mechanism 

potentially related to its role in the generation o f dynamin tubules remains to be 

answered. To this end, the goal o f the following study is to investigate a direct role for 

endophilin in the generation o f membrane curvature.

Concluding Remarks

Fast point-to-point neurotransmission underlies the complex physiology of the 

nervous system. Elucidating the molecular mechanisms o f this action is crucial to our
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understanding o f nervous system function. The cell biology o f  the nerve terminal is an 

important piece in this puzzle, and within this context, the efficient recycling o f synaptic 

vesicles serves to maintain the high transfer o f information characteristic o f  neuronal 

activity. Undoubtedly, we have only scratched the surface o f  the complex molecular 

interactions that are a part o f the synaptic vesicle recycling process, and much is left to be 

studied. Clearly, clathrin-mediated endocytosis is an important part o f  synaptic vesicle 

retrieval and remains the most well characterized pathway known to function in this 

process. It will be interesting to see whether parallel pathways exist which may define a 

unique biology within synaptic vesicle recycling. Studying the detailed function o f the 

various macromolecules shown to play a role in clathrin-mediated synaptic vesicle 

endocytosis will provide us with more tools to model our understading o f the dynamic 

function o f the nervous system.
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Chapter 2

Generation of High Curvature Membranes Mediated by Direct 

Endophilin-Bilayer Interactions

Abstract

Endophilin 1 is a presynaptically enriched protein which binds the GTPase 

dynamin and the polyphosphoinositide phosphatase synptojanin. Perturbation o f 

endophilin function in cell free systems and in living synapses has implicated endophilin 

in endocytic vesicle budding (Gad et al., 2000; Guichet et al., 2002; Rikhy et al., 2002; 

Ringstad et al., 1999; Schmidt et al., 1999; Verstreken et al., 2002). Here we show that 

purified endophilin can directly bind and evaginate lipid bilayers into narrow tubules 

similar in diameter to the neck o f a clathrin-coated bud, providing new insight into the 

mechanisms through which endophilin may participate in membrane deformation and 

vesicle budding. This property o f endophilin is independent o f its putative 

lysophosphatydic acid acyl transferase (LPA-AT) activity, is mediated by its NH2- 

terminal region, and requires an aminoacid stretch homologous to a corresponding region 

in amphiphysin, a protein previously shown to have similar effects on lipid bilayers 

(Takei et al., 1999). Endophilin co-oligomerizes with dynamin rings on lipid tubules and 

inhibits dynamin's GTP-dependent vesiculating activity. Endophilin B, a protein with 

homology to endophilin 1, partially localizes to the Golgi complex and also deforms lipid
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bilayers into tubules, underscoring a potential role o f endophilin family members 

diverse tubulo-vesicular membrane trafficking events in the cell.

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Introduction

A major pathway of synaptic vesicle retrieval after exocytosis is clathrin-mediated 

endocytosis (Heuser and Reese, 1973). This specialized version o f  a general endocytic 

pathway is necessary for the maintenance o f the synaptic vesicle pool, and perturbation 

o f this process results in rapid depletion o f synaptic vesicles (Gad et al., 2000; Koenig 

and Ikeda, 1989; Ringstad et al., 1999; Shupliakov et al., 1997). The lOOkDa GTPase, 

dynamin, has been implicated in the "fission" stage o f clathrin-mediated endocytosis 

(Koenig and Ikeda, 1989), and disruption o f dynamin function results in an accumulation 

o f electron-dense "collars" at the tubular neck o f deeply invaginated clathrin-coated buds 

(Koenig and Ikeda, 1989; Takei et al., 1995). These collars are enriched with dynamin, as 

well as two o f  the major SH3 domain-containing dynamin binding partners at the 

synapse: endophilin 1 (endophilin) and amphiphysin 1 (amphiphysin) (David et al.,

1996; de Heuvel et al., 1997; Ringstad et al., 1997). Recombinant dynamin 1 and 

amphiphysin have been shown to deform artificial lipid bilayers into narrow tubules, both 

independently as well as cooperatively in a complex, likely reflecting a role for these 

proteins in membrane binding and deformation at the neck o f  clathrin-coated pits (Takei 

et al., 1998; Takei et al., 1999)

Endophilin has been implicated in many stages o f clathrin-mediated synaptic 

vesicle endocytosis, from early events generating membrane curvature, to later stages such 

as vesicle fission and uncoating (Gad et al., 2000; Ringstad et al., 1999). Selective 

depletion o f endophilin from rat brain cytosol inhibited the generation o f synaptic-like
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microvesicles (SLMVs) in broken PC 12 cells, and markedly reduced the formation of 

dynamin-coated tubules on synaptic membranes in the presence o f  ATP/ GTPyS 

(Ringstad et al., 1999; Schmidt et al., 1999). We therefore tested whether endophilin 

plays a direct role in the generation o f membrane curvature in a similar fashion to dynamin 

and amphiphysin.
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Materials and Methods

Liposomes

Liposomes composed o f brain lipid extract (type 1, Folch fraction 1, Sigma) were made as 

described (Takei et al., 1999). Briefly, a lipid mixture solubilized in chloroform was 

added to a 2:1 chlorofornrmethanol mixture and thoroughly mixed in a glass tube. Lipids 

were adhered along the sides o f the glass tube under a stream o f nitrogen gas by gently 

rotating the tube until the chloroforrmmethanol solvent had evaporated. This procedure 

generates layers o f lipids dried as multiple bilayers along the glass surface. 300mM 

filtered sucrose was then gently added to the tube with the dried lipid bilayers, and the 

tube was allowed to incubate, covered with parafilm, at 37 °C for 15-60 minutes. During 

this incubation, the dried bilayers gradually begin to peel off o f the glass surface and 

swell. Following the incubation, vigorous vortexing shears the bilayers into vesicles o f 

heterogeneous size. For liposomes of specific size, this mixture was passed through a 

filter with the requisite pore size. Liposomes loaded with sucrose could thus be spun 

down due to the increased density o f  sucrose compared with the incubation buffer o f the 

subsequent reactions. Synthetic liposomes were made in a similar fashion, using HPLC 

purified DOPC (40%), DOPS (40%), and DOPE (20%) from Avanti Polar Lipids.

Purified Proteins
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Dynamin was affinity purified from rat brain cytosol using amphiphysin 1-SH3 domain 

as described (Owen et al., 1998). Briefly, three to five rat brains were homogenized and 

spun in a single step at high speed to remove nuclei, particulates, and heavy membranes. 

This supernatant was then incubated for two hours at 4 °C with three to five milligrams 

o f a recombinant GST-tagged amphiphysin 1 construct, comprising a COOH-terminal 

fragment including the SH3 domain, coupled to glutathione sepharose beads. The beads 

were then washed extensively in the homogenization buffer, and the bound material was 

eluted in elution buffer (Pipes, pH 6.2, 1.2M NaCl, lOmM Ca2+, ImM dithiothreitol 

(DTT)). The eluate was dialyzed overnight into 20mM Hepes, pH 7.4, lOOmM NaCl, 

ImM  DTT. This material, as assessed by SDS PAGE, yielded roughly 90-95% 

dynamin, and 5-10% synaptojanin. All data shown use this material. Synaptojanin was 

immunodepleted from this affinity purified material using a monoclonal antibody to yield 

a more highly purified dynamin preparation, and similar results were obtained.

Recombinant rat endophilin A l, human amphiphysin 1, human endophilin B l, and PLC5- 

PH were cloned in pGEX (Pharmacia), and purified as Glutathione-S Transferase (GST) 

fusion proteins according to standard methods (Pharmacia). For endophilin and 

amphiphysin, the GST tag was subsequently cleaved by PreScission Protease 

(Pharmacia).

Endophilin deletion constructs were prepared by PCR to yield the following fragments: 

amino acids 1-125, 1-261,126-352, 34-352. The constructs were subcloned and purified
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as above. Point mutants were generated using mutant primers and plasmid extension by 

PCR.

Clathrin-coat fraction was purified from bovine calf brain as described (Takei et al., 1999). 

Electron Microscopy

Liposomes (0.1 mg/ml final) were incubated at 37 °C for 10-20 minutes in buffer A 

(25mM Hepes-KOH, pH 7.4, 25mM KC1, 2.5mM Mg2+ acetate, 150mM K-glutamate) 

with various proteins and nucleotides at the following final concentrations: dynamin 

0.1 mg/ml, amphiphsyin 0.1 mg/ml, endophilin 0.1 mg/ml, endophilin deletion constructs 

0.1-0.2 mg/ml, coat proteins 0.5mg/ml, PLC8-PH O.lmg/ml, GTP ImM , GTPyS 0.5mM 

(Takei et al., 1999). At the end o f the incubation, aliquots were adsorbed onto 200-400 

pM  formvar- and carbon-coated copper EM  grids for 3-5 minutes at room temperature, 

washed in 0.1 M Hepes pH 7.4, stained in 1-2% uranyl acetate, blotted and allowed to air 

dry. For incubations at 4 °C, all o f the above was performed on ice.

Average ring spacing was determined by counting the number o f rings in ten 350nm 

tubules, and then dividing by the tubule length. To quantify the number o f  tubules seen 

under various conditions, six 13 pm areas o f the grid were scored. Each independent 

tubule and each branch o f a tubule was counted as a tubule.
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Liposom e Binding

Liposome sedimentation was performed using lOOpg sucrose-loaded liposomes incubated 

with 5-10pg protein (l-25pg for saturable binding) in 400-500pl buffer A or in Hepes- 

KC1 pH 7.4 (to determine salt sensitivity) for 10-20 minutes at 37 °C. Liposomes were 

sedimented at 100,000g in a Beckman TLA 100.3 rotor for 20 minutes, the supernatant 

was thoroughly removed, and sedimented liposomes were solubilized in 2% SDS. To 

monitor recovery, liposomes were labeled with 0.5% NBD-phosphatidyl choline and 

absorbance was measured at 460 nm. In some cases, proteins in the pellet and 

supernatant were concentrated by chloroform precipitation and methanol extraction. 

Samples were subjected to SDS-PAGE and analyzed by either Coomassie staining, or by

125slot blot analysis using affinity purified polyclonal endophilin antibodies and I. Band 

intensities were quantified by optic densitometry or phosphorimaging.

For the crosslinking assay, 4pg o f the endophilin 125 amino acid fragment (with or 

without 8pg liposomes) was pre-incubated in Hepes pH 7.4, lOOmM KC1 for 20 

minutes at 37 °C, then an equal volume o f  2X buffer with the hetero-bifunctional chemical

• 3crosslinker bis(sulfosuccinimidyl) suberate (BS ) was added to achieve final 

concentrations o f 0, 1, 5, and lOmM crosslinker. The mixture was incubated for an 

additional 30 minutes at 37 °C, and the samples were then prepared for SDS-PAGE 

analysis.

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



M iscellaneous Procedures

Immunogold labeling of endophilin was performed by standard agarose embedding/labelin 

protocols as described (Ringstad et al., 1999) followed by thin sectioning. The GTPase 

activity o f dynamin was determined by phosphate release as described (Takei et al.,

1999). Western blotting and immunofluoresence was performed using standard 

procedures as described (Ringstad et al., 1997).
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Results

Endophilin Directly Binds and Deforms Lipid Bilayers

To analyze the direct effects o f endophilin on lipid bilayers, we took advantage o f 

a liposome-based assay previously shown to support generation o f coated intermediates 

o f  clathrin-mediated endocytosis (Takei et al., 1998; Takei et al., 1999). This liposome 

assay has demonstrated that soluble components o f clathrin-mediated endocytosis are 

sufficient for reproducing the complement o f morphological intermediates seen in this 

process, and rules out a significant contributory structural role for membrane proteins in 

the budding process. Using this assay allows for the study o f purified proteins in 

isolation and in combination, as well as the study o f  the different lipid components which 

may be required.

Upon a brief fifteen minute incubation with liposomes at 37 °C, purified 

recombinant endophilin (Figure 2.1 A) efficiently and robustly deformed lipid bilayers 

into tubules with outer diameters ranging between 20-1 OOnm (Figure 2 .IB). The tubule 

surfaces were decorated by tightly packed thin transverse striations, reminiscent o f the 

coat observed on tubules generated by recombinant amphiphysin (Figure 2 .IB, see inset 

for a comparison o f the endophilin, amphiphysin, and dynamin coats on tubules) (Takei 

et al., 1999). The recombinant pleckstrin homology (PH) domain o f phospholipase C 

delta (PLC5), a known phopholipid binding domain, did not deform the lipid bilayers into 

tubes, thereby distinguishing this activity from non-specific changes due to protein-
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Figure 2.1: Endophilin directly binds and deforms lipid bilayers.

(A) Recombinant endophilin 1 was subcloned into pGEX6Pl (Pharmacia), expressed and 

purified on glutathione-S sepharose beads. The GST-tag was subsequently cleaved using 

PreScission Protease (Pharmacia), yielding the full length protein in a highly purified 

fraction. This material was used for the subsequent assays. (B) Negative stain EM o f 

liposomes composed o f a brain lipid extract after addition o f recombinant endophilin 1 or 

(C) of the PH domain o f PLC8 (GST-tagged) as a control, respectively. Liposomes were 

incubated for 15' at 37 °C with the purified proteins. Endophilin deformed the spherical 

liposomes into long tubules with 20-1 OOnm diameters. Inset shows a comparison o f the 

protein coats observed on the tubules generated by endophilin (left), amphiphysin 

(center), and dynamin (right). Bar, lOOmn; 70nm for inset.
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membrane interactions (Figure 2.1C). Endophilin binding to liposomes appeared to 

saturate at a molar ratio o f under 1:200 (protein to lipid) in a liposome sedimentation 

assay (Figure 2.2A), and displayed a non-linear loss o f binding with increasing salt (Figure 

2.2B). By electron microscopy, it is evident that not all liposomes are tubulated by 

endophilin, reflecting a cooperativity in the process which is likely reflected in an 

underestimation of the molar ratio saturation noted above.

The NH2-terminus of Endophilin is Necessary and Sufficient for 

Tubulation and Lipid Binding

Deletion constructs o f endophilin defined amino acids 1-125 as both necessary 

and sufficient for tubulation (Figure 2.3A). Correspondingly, this 125 amino acid 

fragment was also seen to co-sediment with liposomes, while a construct that lacked this 

fragment stayed in the supernatant (Figure 2.3A). In the presence o f a chemical 

crosslinker, bis(sulfosuccinimidyl) suberate (BS ), the endophilin N-terminal fragment 

crosslinked into higher order oligomers in a liposome stimulated manner, whereas in the 

absence o f liposomes, the fragment crosslinked only to a dimer (Figure 2.3B). Similar 

results were obtained using a second crosslinker, EDC, and with the full length protein 

(unpublished results). The presence o f coated striations on the tubules and the cross- 

linking data together suggest that endophilin generates bilayer curvature by oligomerizing 

on the surface o f liposomes.
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Figure 2.2: Binding characteristics o f endophilin to liposomes.

(A) Saturable binding o f endophilin to liposomes with increasing concentrations o f 

endophilin. This is likely an underestimation o f endophilin saturation on the membrane, 

since by electron microscopy, not all liposomes are tubulated under these conditions, 

suggesting a cooperativity which favors tubule formation at areas o f higher protein 

concentrations (B) Salt sensitivity o f endophilin binding to liposomes with increasing 

KC1 concentration.
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Figure 2.3: The NH2-terminal region of endophilin is necessary and sufficient for 

lipid binding and tubulation.

(A) Deletion constructs o f endophilin were incubated with or without liposomes as 

shown, and co-sedimentation with liposomes was determined. In the absence o f 

liposomes, full length endophilin remains in the supernatant. The grey area in the cartoon 

represents the moiety conserved amongst the endophilins. Amino acids 1-125 within this 

region bind and tubulate liposomes. (B) The NH2-terminal 125 amino acid fragment was 

incubated with or without liposomes as shown, with increasing concentrations o f the 

chemical crosslinker BS3 for 20' at 37 °C . Samples were then prepared for SDS-PAGE 

analysis on a 4-12% gradient gel. In the absence o f liposomes, the endophilin construct 

crosslinks into a dimer, while in the presence o f liposomes higher molecular weight 

products are formed suggestive o f oligomerization (see arrowheads).
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M em brane Tubulation by Endophilin is Independent From LPA-AT  

Activity

The property o f  endophilin to deform the lipid bilayer is independent from its 

reported lysophosphatidic acid acyl transferase (LPA-AT) activity (Schmidt et al., 1999). 

Endophilin tubulated synthetic liposomes devoid o f  the putative substrates for the LPA- 

AT reaction, arachidonoyl-CoA and lysophosphatidic acid (LPA) (Schmidt et al., 1999) 

(Figure 2.4A). Furthermore, endophilin tubulated liposomes in a reaction incubated on 

ice, minimizing any potential enzymatic contribution (Figure 2.4A, inset). Thus, bilayer 

deformation may represent a thermodynamically favorable transition mediated by 

endophilin polymerization at the liposome surface, rather than by the active enzymatic 

generation o f specific membrane micro-domains. We did observe that endophilin binds 

and tubulates liposomes made from a brain lipid extract more efficiently than synthetic 

liposomes, thus indicating some role for the composition o f the bilayer. In addition, using 

purified lipid components, endophilin was found to have a very mild affinity for the 

presence o f LPA in the synthetic liposomes when compared to several other lipids. 

Addition to the liposomes o f PA, as a head group control, or LPC, as an acyl chain 

control, did not have the same effect as addition o f LPA, suggesting that the slight 

increase in binding due to the presence o f LPA in the liposomes is apparently specific. 

What role this mild lipid preference may have in this process is hard to determine and 

requires further experimentation.
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Figure 2.4: The lipid tubulation activity of endophilin does not require 

Iysophosphatidic acid (LPA)-acyl transferase (LPA-AT) activity.

(A) Endophilin was incubated with synthetic liposomes lacking both LPA and 

arachidonoyl Co-A, the two substrates for its reported LPA-AT activity. The inset 

shows a liposome composed o f brain lipids after incubation with endophilin for 20' at 4 

°C. Bar, lOOnm. (B) Clathrin-coated buds are observed on endophilin tubules when 

liposomes are incubated with a mixture o f purified clathrin-coat proteins and recombinant 

endophilin 1. Bar, 200nm.
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Incubation o f liposomes, purified clathrin-coat proteins, and endophilin generated 

tubules associated with clathrin-coated buds, consistent with a potential role for this 

protein in generating tubular membrane curvature at the neck o f the nascent clathrin- 

coated pit (Figure 2.4B). Similar observations were made for amphiphysin (Takei et al., 

1999). O f note, amphiphysin has binding sites for clathrin and the endocytic clathrin 

adaptor, AP2 (Slepnev et al., 2000), but we have never observed binding to clathrin or to 

clathrin adaptors by endophilin.

Endophilin and Dynamin Form a Protein Com plex on Bilayer Tubules

Since endophilin, like amphiphysin, interacts with dynamin via its SH3 domain, 

we investigated whether dynamin and endophilin could form a complex on liposomes 

similarly to what has been described for dynamin and amphiphysin (Takei et al., 1999). 

The coat generated by affinity purified dynamin 1 on bilayer tubules was represented by 

rings with an average spacing o f 132 +/- 5 Angstroms (Figure 2.5A), in agreement with the 

previously reported ring spacing determined by electron diffraction (Sweitzer and 

Hinshaw, 1998). Liposomes incubated with both recombinant endophilin and purified 

dynamin created a different ring morphology (Figure 2.5B, and lower inset). The rings 

were thicker, and had an average spacing o f 202 +/- 15 Angstroms, a difference o f over 

50% compared to the rings formed by dynamin alone (Figures 2.5A and 2.5B).

In the presence o f  GTPyS, the difference in ring spacing between dynamin alone 

and the dynamin-endophilin complex became more pronounced mainly due to an increase

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



in the spacing o f the dynamin-endophilin complex on the liposomes (Figure 2.5C). In the 

presence o f GTPyS, the spacing between the endophilin-dynamin ring complex increased 

25% to 255 +/- 15 Angstroms compared with conditions in which no nucleotides were 

used (Figure 2.5D). This increase in ring spacing resulted in an almost two-fold difference 

between the endophilin-dynamin complex and dynamin alone under equivalent conditions 

(Figure 2.5C). Thus, due to the regular assembly o f endophilin and dynamin into rings 

around lipid tubules, we noted a distinct change in ring conformation attributable to the 

presence o f the GTP analog, GTPyS. This nucleotide dependent conformational change 

may underlie some o f the dynamics observed with dynamin and lipid bilayers, and 

suggests a mechanochemical basis for dynamin function. Both the NH2-terminal lipid 

binding domain o f  endophilin and its COOH-terminal dynamin binding SH3 domain were 

necessary for the formation o f  the complex with dynamin on the membranes, since neither 

domain alone could reproduce the phenomenon (Figure 2.5E). The ring morphology seen 

with endophilin and dynamin is similar to the ring morphology generated by the dynamin- 

amphiphysin complex (Takei et al., 1999) and by brain cytosol with ATP/ GTPyS (Takei 

et al., 1998; Takei et al., 1995). This finding supports the presence o f a multi-protein 

complex in the thick electron-dense rings observed at the neck o f clathrin-coated pits on 

synaptic membranes, and explains the co-localization o f endophilin with dynamin on 

coated tubules formed by incubating synaptic membranes with brain cytosol and ATP/ 

GTPyS (Figure 2.5B, upper inset) (Ringstad et al., 1999; Ringstad et al., 1997).
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Figure 2.5: Complex of endophilin with dynamin along membrane tubules.

(A) and (B) The tubular coat produced by dynamin is modified by the presence o f 

endophilin. Liposomes were incubated for 15' at 37 °C with affinity purified dynamin (A) 

or with dynamin plus recombinant endophilin (B) Bar, 200nm. The upper inset o f (B) 

shows the immunogold localization o f endophilin on dynamin-coated tubules formed by 

incubating synaptic membranes with brain cytosol, ATP and GTPyS. See also Ref. 

(Ringstad et al., 1999). The lower inset o f (B) shows a comparison o f the tubules 

generated on liposomes by brain cytosol, ATP and GTPyS (left, thin section), with those 

generated by purified dynamin (center, negative stain) and dynamin plus recombinant 

endophilin (right, negative stain). Note the similarity o f the electron-dense rings produced 

by brain cytosol with those formed by the dynamin-endophilin complex. Bar, 50nm. (C) 

Spacing between protein rings along the lipid tubules in the presence o f GTPyS increases 

from 132 +/- 5 Angstroms with dynamin alone to 202 +/- 15 Angstroms with the complex 

of endophilin and dynamin. (D) In the presence o f GTPyS, the ring spacing o f the 

endophilin-dynamin complex increases by roughly 25%, indicating a structural change 

occuring upon binding the nucleotide. (E) Both the NH2-terminal lipid binding region 

and the SH3 domain o f endophilin (which binds dynamin) are required to form a complex 

of endophilin and dynamin on the lipid bilayer.
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Since endophilin and dynamin were forming a complex on liposomes, we were 

interested in what role adding endophilin to dynamin had on the recruitment o f  these two 

proteins onto lipsomes. Increasing the amount o f endophilin in the reaction mixture had 

very minimal if  any effect on the recruitment o f dynamin onto liposomes (Figure 2.6A). 

Correspondingly, increasing the amount o f the purified dynamin/synaptojanin fraction 

also did not stimulate the recruitment o f endophilin onto the liposomes (Figure 2.6B). 

Both endophilin and dynamin appeared to be quantitatively binding to the liposomes 

under these conditions. Interestingly, increasing the endophilin concentration in the 

reaction mixture did have a selective stimulatory effect on the recruitment o f synaptojanin 

onto the liposomes (Figure 2.6A). This is consistent with the observations demonstrating 

a phenotype similar to what has been found with perturbation o f synaptojanin function 

as a part o f the phenotype seen upon perturbation o f endophilin function at the lamprey 

synapse. This suggests that one o f the major roles o f endophilin in synaptic vesicle 

recycling may be to help recruit synaptojanin to its site o f  action at the clathrin-coated 

vesicle. This recruitment would serve to localize the lipid phosphatase activity o f 

synaptojanin to the PIP2 substrates on the clathrin-coated vesicle to aid the uncoating 

process.
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Figure 2.6: Recruitment of synaptojanin to liposomes is specifically enhanced by 

endophilin.

(A) Using a fixed concentration o f an affinity purified mixture o f dynamin and 

synaptojanin from rat brain cytosol, increasing amounts o f endophilin were added and 

incubated with liposomes. Note that with increasing endophilin concentrations, there is a 

selective enhancement o f synaptojanin recruitment to liposomes, with no effect on 

dynamin recruitment. (B) The converse experiment, where the endophilin concentration 

is fixed and the amount o f  the dynamin/synaptojanin material is increased shows that 

there is no stimulation o f further recruitment o f endophilin under these conditions.
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Lipid Binding and Tubulation by Endophilin Requires an 

Amphipathic Stretch Conserved in Amphiphysin

We were intrigued by the similarities in the membrane deformation properties of 

endophilin and amphiphysin (Figure 2.7A), and in the tubular coats which they form 

(Figure 2.1 A, inset). The two proteins have an overall similar domain structure, each with 

a phylogenetically highly conserved NH2-terminal region comprising predicted alpha 

helices and coiled-coils, and a COOH-terminal SH3 domain which binds dynamin and 

synaptojanin (Figure 2.7B). Furthermore, the membrane tubulating properties o f both 

proteins map to their respective NH2-termini (Takei et al., 1999). We explored whether 

endophilin and amphiphysin share any primary sequence similarity within this region. A 

BLAST alignment o f full-length rat endophilin 1 and human amphiphysin 1 identified the 

highest scoring region to be a 29 amino acid stretch (41% identity and 75% similarity) 

within the first 35 amino acids o f endophilin and the first 41 amino acids o f amphiphysin 

(Figure 2.8A). Secondary structure algorithms (nnpredict and PSIPRED) for this 29 

amino acid stretch predict alpha helices and random coils. When plotted on a helical 

wheel, a similar amphipathic pattern emerged for both endophilin and amphiphysin 

within this homologous region, creating a putative hydrophobic patch and an opposite 

hydrophilic face consisting o f several basic residues (Figure 2.8A). This feature may 

allow this domain to interact with phospholipid headgroups via the hydrophilic face, and 

then to partially embed into the bilayer via the hydrophobic patch in a manner which 

favors membrane deformation. Accordingly, deleting most o f this region o f homology 

abolished binding to liposomes (Figure 2.8B) and tubulation (unpublished
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Figure 2.7: Endophilin and amphiphysin share similar membrane tubulation 

properties

(A) Incubation o f liposomes with endophilin or amphiphysin generates membrane 

tubules with similar morphology (Scale bar = lOOnm). (B) Schematic cartoon o f the 

basic domain structure o f endophilin and amphiphysin. The grey area corresponds to a 

conserved region o f predicted alpha helices and coiled-coils in each protein, respectively, 

along the NH2-terminus. This region is known to be involved in both lipid binding and in 

dimerization. The respective SH3 domains o f endophilin and amphiphysin both bind 

dynamin and synaptojanin.
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Figure 2.8: An endophilin amino acid stretch homologous to a corresponding 

region in amphiphysin is required for lipid binding and tubulation.

(A) BLAST alignment o f rat endophilin 1 and human amphiphysin 1 reveals a region of 

homology within the NH2-terminus o f both proteins. Plotting this region, which is 

predicted to form alpha helices and random coils, along a helical wheel reveals a similar 

amphipathic pattern. (Hydrophobic residues are highlighted in grey. *Phenylalanine 

targeted for point mutations) (B) Endophilin and amphiphysin deletion constructs 

missing most o f  this region o f homology no longer co-sediment with liposomes (s= 

supernatant; p = pellet), and also fail to tubulate liposomes (not shown).
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results) for both endophilin and amphiphysin.

We further examined the role o f putative amphipathic chemistry in the lipid 

binding dynamics o f  endophilin. We knew from earlier studies that there was a 

hydrophilic, salt sensitive component to liposome binding, as increasing salt 

concentrations prevented endophilin-liposome association (see Figure 2.2B). To test for 

a potential role for hydrophobic interactions in endophilin lipid binding, a point mutation 

o f a conserved hydrophobic residue to an acidic residue (phenylalanine to glutamate) 

within this putative hydrophobic patch in endophilin was generated via site directed 

mutagenesis (Figure 2.9 A and B). As predicted, this mutation within the endophilin 

hydrophobic patch abolished both lipid binding and tubulation (Figure 2.9 A and B). As 

a control, a conservative hydrophobic to hydrophobic point mutation (phenylalanine to 

tryptophan) o f the same residue preserved both lipid binding and tubulation, highlighting 

the importance o f hydrophobicity within this region o f endophilin for lipid binding and 

tubulation (Figure 2.9 A and B).

Endophilin and Am phiphysin have Different Effects on Dynamin 

Vesiculation of Bilayer Tubules

Given the similar morphology o f amphiphysin and endophilin coated tubules both 

in the presence and absence o f  dynamin, we compared their individual effects on 

dynamin-mediated membrane fragmentation. Dynamin coated membrane tubules readily
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Figure 2.9: Hydrophobic interactions are involved in endophilin lipid binding and 

tubulation.

(A) and (B) A point mutation (F10E) in endophilin o f a hydrophobic residue to an acidic 

residue within the putative hydrophobic patch in the endophilin-amphiphysin homology 

region, prevents liposome binding and tubulation, whereas a conservative hydrophobic to 

hydrophobic mutation (F10W) preserves liposome binding and tubulation (WT, F10E, 

F10W = wild type and mutant endophilins, respectively; p and s = pellet and 

supernatant, respectively).
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fragment into small vesicles in the presence o f GTP (Sweitzer and Hinshaw, 1998; Takei 

et al., 1999). As previously reported, amphiphysin supports this fragmentation (Takei et 

al., 1999). Accordingly, following an incubation o f liposomes with dynamin + GTP, or 

dynamin with amphiphysin + GTP, a large number o f small vesicles were seen as 

evidenced by electron microscopy (Figure 2.10A and B). Any tubules which remained 

were generally much shorter. In contrast, when liposomes were incubated with dynamin 

and endophilin + GTP, fragmentation was inhibited, with a large number o f  long tubules 

persisting (Figure 2.10A and B).

The differential effects on liposome vesiculation by dynamin observed between 

endophilin and amphiphysin were confirmed using a dynamic light scattering assay 

(Figure 2.11). In this assay, larger complex structures, such as long tubules, scatter more 

light than small spherical vesicles and liposomes. The light scattering is measured by a 

fluorimeter, and there is the advantage o f looking at the population o f the reaction as 

opposed to isolated areas on an electron microscope grid. Using this assay, addition of 

dynamin to liposomes significantly increased the amount o f light scattered (Figure 

2.11 A). Subsequent addition o f GTP caused a rapid decrease in the amount o f light 

scattered, corresponding with the robust vesiculation occurring under these conditions as 

seen by electron microscopy (Figure 2.11 A). Addition o f amphiphysin to dynamin 

caused an immediate decline in light scattering, even in the absence o f  GTP (Figure 

2.1 IB). After addition o f GTP, the degree o f  light scattered decreased to below baseline 

levels, reflecting the reported enhanced vesiculation o f liposomes under these conditions 

(Figure 2.1 IB). By contrast, addition o f endophilin to dynamin caused an even greater

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 2.10: Different effects of endophilin and amphiphysin on dynamin 

properties in vitro.

(A) Liposomes incubated with buffer, GTP, and either purified dynamin (center), or 

dynamin plus amphiphysin (left) vesiculate liposomes. In contrast, addition o f 

endophilin to dynamin (right) inhibits this phenomenon. Bar, lOOnm. (B)

Morphometric analysis o f the reactions shown in (A). (C) Phosphate release from y 32P 

labeled GTP incubated with dynamin and dynamin interactors, or GST as a control, in the 

absence (hatched bars) or presence (solid bars) o f liposomes. Note the decrease in 

phosphate release by dynamin in the presence o f endophilin and amphiphysin.
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Figure 2.11: Dynamic light scattering analysis of the differential effects on 

dynamin vesiculation with endophilin and amphiphysin.

(A) Using a Hitachi fluorimeter, we assayed for real-time changes in light scattering based 

on changes in liposome morphology upon incubation with tubulating proteins.

Incubation o f liposomes with dynamin increased the level o f  scattered light relative to 

background. Addition o f GTP, known to cause rapid vesiculation under these conditions, 

diminished the level o f light scattering, corresponding to smaller structures. (B) Addition 

o f amphiphysin to dynamin causes an immediate fall in scattered light, followed by an 

even further drop upon addition o f GTP. (C) Addition o f  endophilin to dynamin causes 

a synergistic increase in the level o f light scattered which persists even after the addition 

o f GTP, consistent with the presence o f long tubules observed by electron microscopy 

under these conditions.
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increase in light scattering compared to what was seen with dynamin alone (Figure 

2.11C). This high level o f light scattering persisted even after the addition o f GTP (Figure 

2.11C). An endophilin deletion construct defective in liposome binding and tubulation 

was unable to generate an increase in light scattering, indicating that the light scattering 

observed was a reflection o f changes in liposome morphology (not shown).

For amphiphysin, addition o f GTPyS maintained the level o f light scattering to 

that which persisted after addition o f amphiphysin to dynamin, consistent with the 

observation o f tubules comprising a dynamin-amphiphysin complex under these 

conditions (Figure 2.12A). Not surprisingly, addition o f GTPyS to the reaction including 

dynamin and endophilin maintained the high degree o f light scattering seen without 

addition o f nucleotides (Figure 2.12B). An aliquot o f this reaction including dynamin, 

endophilin, and GTPyS was taken for observation under the electron microscope, and, 

indeed, these conditions of highly scattered light corresponded to a large degree of 

liposome tubulation (Figure 2.12C).

What could be the possible source o f difference between these two conditions? Some 

clues can be found in the crystal structure o f the amphiphysin 2 SH3 domain, which bears 

high identity with the amphiphysin 1 SH3 domain (Owen et al., 1998). When compared 

with other known SH3 domains, the amphiphysin SH3 domain contains two additional 

insertions which are highly acidic (Owen et al., 1998). These insertions appear to 

destabilize dynamin rings in solution, and a chimeric Grb2 (growth hormone receptor 

bound 2) SH3 domain onto which these loops were grafted conferred a degree o f
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Figure 2.12: Effect of GTPyS on dynamin light scattering with endophilin and 

amphiphysin.

(A) Addition o f GTPyS to amphiphysin and dynamin maintains the level o f  light 

scattering seen at equilibrium after addition o f  amphiphysin to dynamin. This reflects the 

tubules seen by electron microscopy under these conditions. (B) Addition o f GTPyS to 

dynamin and endophilin makes no appreciable change from that o f GTP addition. (C) An 

aliquot o f this reaction was analyzed by electron microscopy to confirm that the high 

level o f light scattering corresponded with tubule formation.
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instability to the formation o f dynamin rings in solution compared with the wild-type 

Grb2 SH3 domain (Owen et al., 1998). When tested in the liposome tubulation assay, the 

isolated recombinant amphiphysin 1 SH3 domain completely blocked tubulation by 

dynamin as assayed by both electron microscopy and light scattering (Figure 2.13B). A 

mutant amphiphysin SH3 domain which no longer binds dynamin had no effect (Figure 

2.13C). Moreover, the endophilin SH3 domain also did not inhibit tubulation by 

dynamin (Figure 2.13D). Furthermore, in pull-down assays using purified proteins, the 

amphiphysin-dynamin interaction was less robust in the presence o f GTP as compared to 

either no nucleotides or GTPyS (Figure 2.14A), whereas for endophilin, the interaction 

with dynamin was not modulated by the presence o f nucleotides (Figure 2.14B).

These results suggest that the presence o f endophilin stabilizes the lipid tubule 

against the structural changes in dynamin which lead to vesiculation in the presence o f 

GTP. Furthermore, the interaction o f  amphiphysin with dynamin is inherently unstable 

on liposomes and in solution, particularly in the presence o f GTP. This may be due to 

unique features o f the amphiphysin SH3 domain and may have an important function in 

the observed interactions with dynamin. Interestingly, both endophilin and amphiphysin 

inhibited phosphate release by dynamin-GTP in the presence and absence o f  liposomes 

(Figure 2 .IOC). These results may reflect unique dynamics o f dynamin oligomers in co­

assembly with endophilin vs. amphiphysin: one which allows for a mechano-chemical 

transduction productive for vesiculation, and another which hinders this. Therefore, 

despite important similarities, the dynamin-endophilin interaction is qualitatively 

different from the the dynamin-amphiphysin interaction on lipid bilayers. This difference
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Figure 2.13: Effects of the isolated SH3 domains o f endophilin and amphiphysin 

on dynamin tubule formation.

(A) Tubule generated by incubation o f purified dynamin with liposomes. (B) Dynamin 

tubules fail to form when dynamin is incubated in the presence o f  the isolated 

amphiphysin SH3 domain. Inset shows the light scattering data for this reaction showing 

very little increase in light scattering upon addition o f dynamin. (C) Tubules are seen 

when dynamin is incuabated with a mutant amphiphysin SH3 domain which no longer 

binds dynamin. Inset shows that the change in light scattering occurs upon addition of 

dynamin to this reaction. (D) Incubation o f dynamin with the isolated SH3 domain o f 

endophilin has no negative effect on dynamin tubule formation. Inset shows the light 

scattering data for this reaction showing the typical increase in light scattering observed 

upon incubation o f dynamin with liposomes.
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Figure 2.14: Effects of G TP on dynamin binding for endophilin and amphiphysin.

(A) Solution binding o f dynamin to amphiphysin in affinity chromatography diminishes 

in the presence o f GTP, likely reflecting diminished amounts o f  oligomerized dynamin 

under these conditions. (B) No change in dynamin binding by endophilin is seen 

regardless o f the presence o f GTP, indicative o f the relative preservation o f dynamin 

oligomers seen under these conditions.
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may have significant ramifications for the in vivo dynamics o f these complexes at the neck 

o f clathrin-coated pits.

Discussion: Tubular Dynamics in Synaptic Vesicle Recycling

Collectively, our results provide evidence that endophilin directly binds and 

deforms lipid bilayers into narrow tubules within the size range o f the tubular neck of 

clathrin-coated pits. This activity o f  endophilin is a protein mediated phenomenon, 

which likely occurs by oligomerization at the surface o f the bilayer. Endophilin tubulates 

membranes at 4°C, and also tubulates synthetic bilayers devoid o f the putative substrates 

o f its reported LPA-AT activity, showing that formation o f high curvature membranes by 

endophilin can be independent o f lipid-modifying enzymatic activity. We hypothesize 

that the tubulating activity o f endophilin reflects one possible function for this protein in 

clathrin-mediated endocytosis. Along with dynamin and amphiphysin, endophilin may 

be part o f a protein complex governing aspects o f membrane deformation and fission.

Our findings provide a rationale for the observed requirement for endophilin in the 

tubulation o f synaptic membranes by brain cytosol in the presence o f GTPyS (Ringstad 

et al., 1999). These observations may also partially explain the arrest o f clathrin-mediated 

synaptic vesicle retrieval at shallow stages of invagination upon perturbation of 

endophilin function in lamprey (Ringstad et al., 1999). Endophilin membrane binding and 

protein-protein interactions may serve to localize and functionally orient the protein at

91

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



the clathrin-coated pit. Importantly, the selective recruitment o f synaptojanin to lipid 

bilayers by endophilin may have a function in the spatial localization o f this lipid 

phosphatase at the clathrin-coated vesicle, and provides a suggestion for the observed 

phenotype o f increased clathrin-coated vesicles upon perturbation o f endophilin function 

at the lamprey synapse (Gad et al., 2000). Amphiphysin and endophilin tubulate lipid 

bilayers both independently and as a complex with dynamin; however, their distinct 

effects on dynamin in vitro suggest a potential differential modulatory role on dynamin 

function in vivo which needs to be explored further.
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Chapter 3 

An Endophilin-like Protein Localizes to the Golgi Complex and 

Also Tubulates Lipid Bilayers: Implications for Membrane 

Traffic

Abstract

Tubular membranous structures have been increasingly implicated in vesicular 

trafficking events. We have shown that dynamin, endophilin, and amphiphysin are three 

proteins involved in synaptic vesicle recycling which display independent and 

cooperative abilities to deform spherical/planar membranes into long membranous tubules 

decorated by a protein coat (Farsad et al., 2001; Takei et al., 1998; Takei et al., 1999).

For endophilin and amphiphysin, specifically, we have found a conserved putative 

amphipathic amino acid stretch at the NH2-terminal region o f the proteins which is 

necessary for the lipid binding and liposome tubulation activity shared by these proteins 

(Farsad et al., 2001). We were interested whether other proteins in the database could be 

found with similarity to the endophilin protein in an effort to identify more proteins 

capable o f this membrane deformation. A BLAST search found a recently discovered 

protein family, the endophilin B family (in contrast to the above mentioned endophilin A 

family), which shares strong homology to the endophilin NH2-terminus, including the
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putative amphipathic amino acid region implicated for endophilin liposome tubulation. 

Endophilin B is expressed in many tissues, with several putative isoforms present in 

brain. Immunocytochemistry reveals both a synaptic staining pattern, as well as internal 

membranous staining which partially co-localizes with the Golgi compartment. Electron 

microscopy of purified Golgi membranes shows extensive localization of endophilin B 

along the Golgi stacks and vesicles. The purified, recombinant endophilin B protein binds 

and tubulates liposomes in a manner similar to endophilin A. For endophilin B, although 

deletion o f the NH2-terminal putative amphipathic amino acid region blocks liposome 

tubulation, binding to liposomes is preserved, suggesting an alternate lipid binding site 

present in the protein. Implications for a membrane deforming domain involved in diverse 

membrane trafficking events are discussed.
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Introduction

Membrane trafficking is characterized by the selective transport o f cargo along 

membrane bound intracellular carriers. Membrane traffic is part o f the 

compartmentalization o f the cell which allowed for the evolution o f eukaryotic biology, 

with its associated specialization o f diverse cellular functions within distinct intracellular 

organelles (Shorter and Warren, 2002). Pleiomorphic tubulo-vesicular intracellular 

membranes have been noted in virtually every process involving membrane defined 

compartments and events: the plasma membrane (Henley et al., 1999; Schnitzer et al., 

1996); axonal and dendritic process outgrowth (Martinez-Area et al., 2001); fast axonal 

transport (Nakata et al., 1998); endosomes and lysosomes (Gruenberg and Maxfield,

1995; Lippincott-Schwartz et al., 1991; Prekeris et al., 1999); the endoplasmic reticulum 

(ER) (Bannykh et al., 1996; Dabora and Sheetz, 1988; Klumperman, 2000; Mcllvain et 

al., 1993); cytokinesis (Verma, 2001); and the dynamics o f the Golgi apparatus 

(Lippincott-Schwartz et al., 2000; Lippincott-Schwartz et al., 1991; Shorter and Warren, 

2002).

The simplest o f  intracellular organelles is the vesicle, used by the cell primarily as 

a structure for transport and storage o f  various macromolecules involved in homeostasis 

as well as regulated cell function. Synaptic vesicles are some o f the best characterized o f 

vesicular organelles by virtue o f their ability to be purified to high biochemical 

homogeneity (Hannah et al., 1999; Huttner et al., 1983). Studies o f how synaptic vesicles
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are formed and recycle from the plasma membrane has revealed that, in addition to 

vesicular based membrane traffic, tubular membrane invaginations and evaginations also 

are involved in the dynamics o f these and other membrane-bound structures. The large 

GTPase, dynamin 1, and its two major synaptic binding partners, endophilin 1, and 

amphiphysin 1, have all been shown to be involved in the tubular invagination o f the 

clathrin-coated bud during the process o f synaptic vesicle retrieval (De Camilli et al., 

2001b). Perturbing the function o f any o f these proteins through microinjection studies in 

the living giant reticulospinal synapse o f the lamprey results in depletion o f the 

presynaptic vesicle cluster due to a potent inhibition o f clathrin-mediated endocytosis 

(Gad et al., 2000; Ringstad et al., 1999; Shupliakov et al., 1997).

Endophilin 1 (hereafter called endophilin A), a 40 kilo-Dalton (kDa) 

presynaptically enriched protein that binds the GTPase dynamin and the 

polyphosphoinositide phosphatase synptojanin, has been implicated in many stages o f 

clathrin-mediated synaptic vesicle retrieval (Ringstad et al., 1999) (Gad et al., 2000). 

Depletion o f endophilin 1 from brain cytosol has been shown to inhibit tubular synaptic 

membrane formation by dynamin in the presence o f GTPyS (Ringstad et al., 1999). 

Moreover, purified recombinant endophilin A has been shown to rapidly deform artificial 

liposomes into long tubular structures o f various diameter through a process o f lipid 

stimulated oligomerization and mechanochemical membrane deformation (Farsad et al., 

2001). This membrane deforming activity o f endophilin A may be suggestive o f its 

putative role in the process o f synaptic vesicle retrieval.
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The basic domain structure o f endophilin A includes a highly conserved NH2- 

terminal domain consisting primarily o f alpha helices and coiled coils by secondary 

structure prediction (Farsad et al., 2001), and a COOH-terminal SH3 domain which 

interacts primarily with dynamin, synaptojanin, and amphiphysin (Micheva et al., 1997; 

Ringstad et al., 1997). The lipid binding and membrane tubulation activity o f endophilin 

A has been mapped to a putative amphipathic region within the conserved NH2-terminus 

o f the protein (Farsad et al., 2001). In an effort to explore whether this membrane 

deformation function o f endophilin A is conserved in proteins functioning in other 

compartments within the cell, we searched the database for proteins with sequence 

homology to the NH2-terminus o f endophilin A (Farsad et al., 2001).

Materials and Methods

Antibodies

Rabbit polyclonal antibodies were raised against the COOH-terminal portion o f the 

endophilin B protein including the SH3 domain. The antibodies were affinity purified to 

1 mg/mL concentration. Affinity purified antibodies were tested by Western blotting, 

immunofluorescence, and electron microscopy. The Golgi-complex specific antibodies to 

giantin and TGN-38 were kindly provided by the laboratory o f Graham Warren.
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Cell Culture and Transfection

Chinese Hamster Ovary fibroblasts (CHO) and Normal Rat Kidney fibroblasts (NRK) 

were grown according to standard protocols in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% fetal calf serum, glutamine, and 

penecillin/streptomycin. For transient transfection studies, cells were grown on flamed 

22 millimeter square coverslips in six-well plates containing 3 milliliters o f medium. 

Constructs were subcloned into pCDNA 3.1 with an HA-tag or in pEGFPCl vectors, 

and 5 pg o f plasmid DNA was transfected with Lipofectamine 2000 reagent for 16 hours. 

Cells were rinsed in phosphate buffered saline (PBS) and fixed in 4% paraformaldehyde in 

120 mM sodium phosphate buffer warmed to 37 °C for 30 minutes. Cells were rinsed in 

PBS and blocked in goat serum dilution buffer. Immunocytochemistry was performed 

with polyclonal antibodies to endophilin B, a monoclonal antibody against the HA-tag, 

and antibodies to the Golgi-complex (anti-giantin, polyclonal antibody; anti-GM130, 

monoclonal antibody) using standard protocols. Primary antibodies were visualized with 

Texas Red and Oregon Green conjugated secondary antibodies.

Liposomes

Liposomes composed o f brain lipid extract (type 1, Folch fraction 1, Sigma) were made as 

described (Takei et al., 1999). Briefly, a lipid mixture solubilized in chloroform was 

added to a 2:1 chloroform:methanol mixture and thoroughly mixed in a glass tube. Lipids 

were adhered along the sides o f the glass tube under a stream o f nitrogen gas by gently 

rotating the tube until the chloroform:methanol solvent had evaporated. This procedure 

generates layers o f lipids dried as multiple bilayers along the glass surface. 300 mM
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filtered sucrose was then gently added to the tube with the dried lipid bilayers, and the 

tube was allowed to incubate, covered with parafilm, at 37 °C for 15-60 minutes. During 

this incubation, the dried bilayers gradually begin to peel off o f  the glass surface and 

swell. Following the incubation, vigorous vortexing shears the bilayers into vesicles o f 

heterogeneous size. For liposomes o f specific size, this mixture was passed through a 

filter with the requisite pore size. Liposomes loaded with sucrose could thus be spun 

down due to the increased density o f sucrose compared with the incubation buffer o f the 

subsequent reactions. Synthetic liposomes were made in a similar fashion, using HPLC 

purified DOPC (40%), DOPS (40%), and DOPE (20%) from Avanti Polar Lipids.

Purified Proteins

Dynamin was affinity purified from rat brain cytosol using amphiphysin 1-SH3 domain 

as described (Owen et al., 1998).

Recombinant human endophilin B1 was cloned in pGEX (Pharmacia), and purified as 

Glutathione-S Transferase (GST) fusion proteins according to standard methods 

(Pharmacia). The GST-tag was subsequently cleaved by PreScission Pro tease 

(Pharmacia).

Endophilin B 1 deletion constructs were prepared by PCR to yield the following 

fragments: amino acids 46-365, the isolated SH3 domain, the NH2-terminal portion o f the 

protein without the SH3 domain. The constructs were subcloned and purified as above.
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Electron M icroscopy

Negative Staining: Liposomes (0.1 mg/ml final) were incubated at 37 °C for 10-20 

minutes in buffer A (25 mM Hepes-KOH, pH 7.4, 25 mM KC1, 2.5mM Mg2+ acetate, 

150 mM K-glutamate) with purified, recombinant endophilin B1 with the GST-tag 

cleaved off (Takei et al., 1999). At the end of the incubation, aliquots were adsorbed onto 

200-400 pM formvar- and carbon-coated copper EM grids for 3-5 minutes at room 

temperature, washed in 0.1 M Hepes pH 7.4, stained in 1-2% uranyl acetate, blotted and 

allowed to air dry. For incubations at 4 °C, all o f the above was performed on ice.

EPON embedding: CHO cells were grown to 60-80% confluence in 10cm tissue culture 

dishes and transiently transfected overnight with pEGFPCl vector containing either no 

insert, full-length endophilin B l, or an endophilin B1 construct lacking the NH2-terminal 

region responsible for tubulation. Transfection efficiency was observed at 80% based on 

inspection under a fluorescence microscope prior to fixation. Cells were rinsed with 37 

°C PBS, and fixed in the dish with 10 mL 4% glutaraldehyde warmed to 37 °C for one 

hour at room temperature. After 15 minutes of fixation, the glutaraldehyde was removed 

and 1 mL of fresh 4% glutaraldehyde was added. The cells were gently scraped in this 

fixative solution, and were then spun for 10 minutes at 14,000 rpm in a table top 

centrifuge.

Cryo-Sections: Incubations with purified Golgi membranes were spun down and 

infiltrated for 48 hours in 2.3 M sucrose after fixation. Pellets were frozen and sectioned
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according to standard methods, followed by post-section immunostaining using affinity 

purified rabbit polyclonal antibodies to endophilin B l.

In Vitro Budding Assay

An in vitro Golgi budding assay was performed in an incubation using purified rat liver 

Golgi membranes, purified, recombinant, lipidated ARF 1, and purified coatomer 

proteins. Briefly, 1 mg/mL Golgi membranes, 20 pg coatomer, and 4 pg ARF 1 were 

incubated with 1.5 mM GTP and an ATP regenerating system for two minutes at 37 °C 

in assay buffer (25 mM Hepes, pH 7.3, 70mM KC1, 2 mM Magnesium-Acetate, 5% 

sucrose, protease inhibitor tablets). A 200 pi pipette tip was filled with 10% porcine 

gelatin in 20mM Hepes buffer, the tip sealed with melted plastic from another pipette 

tip, and overlayed with fixative (8% paraformaldehyde in 250 mM Hepes, pH 7.3,200 

mM sucrose) and 12% sucrose in 25 mM Hepes, 100 mM KC1. The membranes were 

layered on top o f this fixative/sucrose mixture and recovered by spinning in a Beckman 

TLS55 rotor, with adaptor tubes made to fit the pipette tips using an epon mold, at 

12,000 rpm (6000 X g) for 10 minutes. The supernatant was removed and replaced with 

fixative without sucrose, and the pellets were left at 4 °C for two days. The pellets were 

then infiltrated with 2.3 M sucrose in 25 mM Hepes buffer and prepared for cryo- 

sectioning and electron microscopic analysis.

Liposome Binding

Liposome sedimentation was performed using 100 pg sucrose-loaded liposomes incubated 

with 5-10 pg protein in 400-500 pi buffer A or in Hepes-KCl pH 7.4 (to determine salt
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sensitivity) for 10-20 minutes at 37 °C. Liposomes were sedimented at 100,000g in a 

Beckman TLA 100.3 rotor for 20 minutes, the supernatant was thoroughly removed, and 

sedimented liposomes were solubilized in 2% SDS. In some cases, proteins in the pellet 

and supernatant were concentrated by chloroform precipitation and methanol extraction. 

Samples were subjected to SDS-PAGE and analyzed by either Coomassie staining.

Results

A BLAST search o f the Swissprot database was performed for full-length 

endophilin 1. The search revealed a family o f endophilin-like proteins which share a 

common domain structure with the endophilin family, including a conserved NH2- 

terminal domain comprising o f alpha helices and coils, as well as a COOH-terminal SH3 

domain (Farsad et al., 2001; Huttner and Schmidt, 2000; Modregger et al.,

2003)(GenBank accession number AF263364; GenBank accession number AF263293) 

(Figure 3.1 A and B). These endophilin-like proteins have been recently named endophilin 

B family o f proteins (Huttner and Schmidt, 2000). The endophilins will be called the 

endophilin A family hereafter. Phylogenetic analysis o f the endophilin B genes reveals 

that, although displaying broad homology to the endophilin A genes, they indeed cluster 

as a separate gene group (Figure 3.1C). The cDNA for endophilin B was cloned into 

vector pGEX 6P1, and antibodies were raised to the recombinant endophilin B1 protein. 

By Western blot analysis, this antibody recognized a 41 kDa protein mainly in heart, 

brain, spleen and lung, with lower expression in liver and testis (Figure 3 .ID). Additional 

higher molecular weight bands were also detected specifically in brain, possibly
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representing other splice isoforms or post-translational modifications (GenBank accession 

number AF263364) (Figure 3 .ID).

By immunofluoresence o f rat brainstem frozen sections, endophilin B was 

detected in a synaptic-like pattern along the neuro-somal periphery, as well as on 

intracellular membranes (Figure 3.2A)(Farsad et al., 2001). The synaptic-like staining 

colocalized with syaptic markers such as amphiphysin (which shows additionally diffuse 

cytosolic staining) as shown (Figure 3.2A). Further analysis o f  the intraneuronal staining 

pattern o f endophilin B showed partial co-localization with the Golgi-complex marker, 

GM-130 (Figure 3.2B). In CHO cells, endogenous endophilin B localized to a perinuclear 

membrane compartment strongly positive for GM-130, in addition to a more diffuse 

reticular staining pattern throughout the cell (Figure 3.2C). Endophilin B staining was 

also seen to partially co-localize with the Golgi-specific marker, giantin, as well (not 

shown). Moreover, there was also partial co-localization with a trans-Golgi network 

specific marker, TGN-38, indicating the presence o f endophilin B throughout both the 

cis- and trans-Golgi compartments (Figure 3.2D). Brefeldin A caused dispersion o f the 

perinuclear staining by endophilin B, consistent with localization to the Golgi complex 

(data not shown). There was no co-localization to endosomal compartments labeled with 

transferrin (data not shown).

In electron microscopic analyses o f  cryosections o f purified rat liver Golgi 

complex, endophilin B immunogold staining was seen throughout the Golgi stacks (Figure 

3.3A). In particular, some vesicular structures were densely stained as well
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Figure 3.1: The endophilin B protein family is homologous to endophilin A.

(A) Cross-species sequence alignment (Clustal method) o f the endophilin A l and 

endophilin B1 class o f proteins showing broad homology along the NH2-terminal regions 

as well as along the COOH-terminal SH3 domains, h = human, m = mouse, If = lamprey 

(L. fluviatilis), dm = D. melanogaster, ce = C. elegans. (B) Cartoon schematic for 

endophilin A and endophilin B illustrating the homology observed with the sequence 

alignments. (C) Phylogenetic tree o f the alignment above showing that although the two 

protein families are very similar, the endophilin B family clusters as a separate grouping 

across species. (D) Multiple tissue Western blot using a polyclonal rabbit antibody 

raised against full-length endophilin B1 shows expression primarily in heart, brain, spleen, 

and lung, with lower expression evident in liver and testis. Note the presence o f  brain 

specific higher molecular weight bands,
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(Figure 3.3A, upper and lower right insets). By contrast, a control antibody raised 

against endophilin A l showed no specific Golgi-complex staining (Figure 3.3B).

To observe the localization o f  endophilin B during active Golgi dynamics, an in 

vitro Golgi budding assay, using only purified rat liver Golgi, ARF, coatomer, and an 

ATP regenerating system was used. This assay is able to cause virtually complete Golgi- 

complex fragmentation into vesicles if  taken to completion. The in vitro budding reaction 

was carried out for only five minutes in order to preserve and observe budding 

intermediates as they are formed from the Golgi stacks. After a five minute incubation at 

37 °C, endophilin B staining could be seen throughout both stacks and vesicles, with an 

apparent concentration o f stain around the periphery o f the stacks, around vesicular 

structures (Figure 3.4). This pattern o f staining around the stack periphery was also 

noted in the absence o f obvious vesicle formation (Figure 3.4). Immunogold staining was 

often present around clusters o f small vesicular structures as well (Figure 3.4).

In order to study the in vitro dynamics o f endophilin B with isolated lipid bilayers, the 

recombinant endophilin B protein was expressed in bacteria. The amphipathic region of 

homology between endophilin A l and amphiphysin is also conserved in endophilin B l, 

therefore, we tested the purified recombinant endophilin B l constructs for its ability to 

bind and tubulate liposomes (Figure 3.5A). Incubation o f the purified recombinant human 

endophilin B l protein (GST-tag cleaved) with liposomes generated bilayer tubules in a 

manner morphologically indistinguishable from endophilin A l and amphiphysin (Figure 

3.5B). Deletion o f the homologous amphipathic region in endophilin B l also blocks
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Figure 3.2: Immunocytochemical localization of endophilin B

(A) Immunofluoresence o f  a rat brainstem frozen section using antibodies directed against 

recombinant endophilin B l (upper panel) and amphiphysin 1 (lower panel). Note the 

localization o f endophilin B in a synaptic-like pattern at the cell periphery similar to the 

localization o f amphiphysin. In addition to this synaptic staining, endophilin B localizes 

to intracellular particles, while amphiphysin shows a diffuse cytosolic staining pattern.

(B )  Endophilin B (upper panel) partially co-localizes with a Golgi complex-specific 

marker, GM-130 (lower panel) in a large brainstem neuron. (C )  Endophilin B l (upper 

panel) partially co-localizes with a Golgi-specific marker, GM-130 (lower panel) in 

cultured CHO cells. (D ) NRK cells were fixed and prepared for immunocytochemistry. 

Endophilin B, on the left, partially co-localizes with TGN-38, a marker for the trans- 

Golgi network, seen on the right. Bar, 10 pm.
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Figure 3.3: Endophilin B localizes to Golgi stacks and vesicles by electron 

microscopy.

(A) Affinity purified rabbit polyclonal antibodies to endophilin B were used to localize 

the protein in preparations o f isolated Golgi membranes from rat liver. Immunogold 

staining was seen throughout the Golgi stacks, with some heavy staining seen around 

vesicles found in the preparation (see insets on upper and lower right). (B) The same rat 

liver Golgi membrane preparation does not have any reactivity to affinity purified rabbit 

polyclonal antibodies raised against the similar endophilin A protein.
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tubulation, consistent with the importance o f this m otif for liposome tubulation as seen 

for both endophilin A1 and amphiphysin as well (not shown). Interestingly, although 

deletion of this region involved in tubulation for both endophilin and amphiphysin also 

blocks binding to the liposomes, in endophilin B l, this deletion, despite blocking 

membrane tubulation, does not prevent membrane association (Figure 3.5C). The 

endophilin B deletion mutant lacking the tubulation m otif still co-sedimented with 

liposomes, indicating the presence of an alternate lipid binding site downstream of the 

region necessary for liposome tubulation. This alternate lipid binding site may help 

localize endophilin B to a specific membrane subcompartment, or to the Golgi-complex 

itself.

Discussion: A Lipid-Interacting/Deforming Domain for Tubulo- 

vesicular Dynamics in Membrane Trafficking

Endophilin B l, a member o f a newly discovered family o f proteins which we find 

localizes to both synaptic and Golgi/intracellular membrane compartments, displays a 

similar membrane tubulating activity as that o f endophilin A1 and amphiphysin. All 

three proteins share a short NH2-terminal amphipathic region which we show to be 

required for membrane tubulation. This may have implications for a shared function for 

this motif in tubulo-vesicular dynamics in cellular trafficking events.

I l l
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Figure 3.4: Localization of endophilin B in an in vitro Golgi budding assay 

Isolated rat liver Golgi membranes were used for an in vitro budding assay using purified 

coatomer proteins, recombinant ARF, and an ATP regenerating system. The incubation 

was performed for five minutes at 37 °C before being spun down and prepared for 

cryosectioning. Cryosections o f the reaction were then incubated with endophilin B 

antibodies according to standard protocols. Endophilin B staining is seen throughout the 

Golgi, with an apparent concentration o f stain around the periphery o f the stacks and 

around vesicular clusters. Panels represent examples o f similar reaction conditions.
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Figure 3.5: Endophilin B tubulates liposomes.

(A) Alignment o f the NH2-terminal regions o f endophilin A l, endophilin B l, and 

amphiphysin 1 shows homology for all three proteins along the putative amphipathic coil 

region identified previously for endophilin A l and amphiphysin 1. Helical wheel 

alignment o f this homologous region o f endophilin B shows an amphipathic distribution 

o f  the amino acid residues if  they were to fall along a helical axis. (B) Purified 

recombinant endophilin B l deforms liposomes into tubules similar to those seen with 

endophilin and amphiphysin. Bar, lOOnm. (C) Deletion o f the region o f homology 

between endophilin A 1, endophilin B l, and amphiphysin 1 abolishes tubulation for all 

three proteins (not shown). While this deletion also blocks the lipid binding properties o f 

endophilin A l and amphiphysin 1, endophilin B l is still able to associate with liposomes, 

suggesting the presence o f an additional lipid binding site(s).
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Endophilin B is seen to localize both to synaptic regions in brain stem sections, as 

well as to intracellular membranes positive for Golgi complex markers. By western blot, 

the endophilin B antibodies recognize several bands in the brain, possibly indicating the 

presence o f different splice isoforms. It would be intriguing if  the different splice 

isoforms differentially localized within the cell. This may explain the peripheral and 

intracellular membrane staining observed in neurons, while mainly intracellular membrane 

staining is seen in fibroblasts. A neuron-specific isoform o f endophilin B may be 

involved in dynamics at the plasma membrane, in addition to other isoforms active at the 

Golgi complex.

By immunofluorescence, endophilin B partially co-localizes with both cis- and 

trans-Golgi markers, indicating a diffuse presence throughout the Golgi complex. 

Ultrastructural immuno-gold electron microscopy reveals relatively dense staining 

throughout the Golgi stacks as well as on some vesicles. In an in vitro Golgi budding 

assay, there was some evidence that staining appeared to concentrate along the periphery 

o f  the Golgi stacks, where vesicles were also seen in relatively higher proportions by 

inspection. More rigorous quantitative experimentation will need to be performed to 

determine whether this differential distribution is significant.

The possibility exists that endophilin B may be involved in vesicle budding and 

tubulation at the Golgi complex, in an analogous fashion to the known role o f endophilin 

A l at the plasma membrane. The fact that endophilin B shares the same membrane
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bilayer tubulation dynamics as other proteins involved in vesicular budding is further 

suggestive o f a possible role for this protein in Golgi complex vesicle dynamics. In 

contrast to endophilin A l and amphiphysin, deletion o f  the membrane tubulation region 

in endophilin B does not abrogate its association with lipid bilayers. This suggests that 

there is an alternate lipid binding domain within endophilin B, likely within the stretch 

between the tubulation domain and the COOH-terminal SH3-domain, and further 

experiments should help to map this additional membrane binding site. For example, 

muscle amphiphysin 2, which localizes to the PIP2-rich T-tubule system, is an example 

o f a tubulating protein which has a second lipid binding motif, in addition to its tubulation 

domain, that selectively recruits and localizes this protein to PIP2-rich regions o f the 

membrane (Lee et al., 2002). Elucidation o f the biochemical properties o f this internal 

membrane binding site may help to determine whether there are particular lipid affinities 

which may aid in the localization or partitioning of endophilin B to the Golgi complex. 

Furthermore, understanding what role endophilin B may play in the Golgi complex will be 

facilitated by experiments which perturb the function o f endophilin B, such as antibody 

microinjections or overexpression experiments. In addition, finding putative binding 

partners for endophilin B may also help delineate the pathways in which this protein 

participates.

Conceptually, it is conceivable how tubular membrane deformation would be an 

appropriate intermediate in the constriction and ultimate scission o f a nascent bud from a 

donor membrane. Thus, along with membrane coat proteins such as clathrin and the 

COPs, other proteins primarily active at the tubular neck o f the buds generated by these
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coat proteins would need to be present and conserved. In addition, tubular membrane 

carriers may independently be a significant part o f membrane traffic. Dynamin has been 

shown to be intimately involved in the vesiculation process in various cellular endocytic 

events (Hinshaw, 2000; McNiven et al., 2000). Indeed, dynamin-dependent endocytosis 

has developed into its own class o f endocytic process. The ability o f dynamin to 

tubulate membranes, and its postulated role in fission have been major avenues o f debate 

and research within the field o f endocytosis.

It is likely more than just coincidence that two major dynamin binding partners in 

the brain, endophilin and amphiphysin, also tubulate membranes. As noted, endophilin 

and amphiphysin form a complex with dynamin along membrane tubules, further 

underscoring a potential functional role for this membrane-deforming capacity in vivo 

(Ringstad et al., 1999; Takei et al., 1999). The role o f endophilin and amphiphysin in 

endocytosis for non-synaptic events is less clear. Perhaps the requirement for rapid, 

efficient, and highly reproduceable synaptic vesicle retrieval at the synapse presents a 

unique function for these proteins with dynamin in this process. The elucidation o f a 

temporal sequence for the recruitment o f the soluble proteins responsible for synaptic 

vesicle recycling will be invaluable toward understanding the role for these proteins in this 

highly specialized form o f clathrin-mediated endocytosis.

It is becoming apparent that tubulo-vesicular dynamics represent an intrinsic part 

o f membrane traffic. Virtually every trafficking event involving membranous 

subcompartments has, in addition to budding and fusion, elements o f tubulo-vesicular

118

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



dynamics. Trafficking through the ER, Golgi, lysosomes, mitochondria, endosomes, the 

plasma membrane, and organelle transport all have documented tubulo-vesicular 

dynamics (Lippincott-Schwartz et al., 2000; Lippincott-Schwartz et al., 1991; Sciaky et 

al., 1997; White et al., 1999). This may represent a highly conserved functionality which 

has evolved with cellular compartmentalization. Recent advances in microscopy have 

allowed time-lapse visualization o f these trafficking events, and what has become 

apparent is that the budding process often involves tubular intermediates (Prekeris et al., 

1999; Sciaky et al., 1997). Furthermore, organelles which were previously thought of 

primarily as vesicular in nature, such as axoplasmic transport organelles, are now seen as 

pleiomorphic tubular structures (Nakata et al., 1998).

Perhaps the growing list o f proteins with the intrinsic ability to tubulate lipid 

bilayers, most o f which have demonstrated importance in membrane dynamics, is a 

reflection o f the fact that we are only at the beginning o f uncovering other proteins which 

share this characteristic potentially involved in diverse membrane trafficking events. The 

few proteins currently known to perform or putatively perform this tubular membrane 

deformation are found in various locations within the cell, presumeably participating in 

different cellular processes. This is a suggestive hint that proteins sharing this function 

may be active in various events important to eukaryotic cell dynamics.
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Figure 3.6: More proteins with homology to endophilin A

A recently identified protein, RICH 1, has been found to have homology to the 

endophilin NH2-terminal domain. An alignment o f endophilin A l, endophilin B l, 

amphiphysin 1, and RICH 1 shows that the proteins have homology along the same 

putative amphipathic region. An alignment o f the RICH1 amino acid residues in this 

homologous region along a helical wheel shows a pattern very similar to endophilin A l, 

making it likely that this protein is also involved in lipid binding and/or tubulation.
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Recently, RICH (RhoGAP Interacting with CIP4 Homologues), a novel RhoGAP 

containing protein was found in a yeast two-hybrid screen looking for CIP 4 (CDC-42 

Interacting Protein 4) interacting proteins (Richnau and Aspenstrom, 2001). RICH has an 

NH2-terminal domain with homology to endophilin A l, and the amphipathic motif o f 

endophilin A l is also conserved (Figure 3.6). A splice isoform o f RICH which only 

contains the endophilin homology domain (RICH IB) localizes to intracellular punctate 

compartments (Richnau and Aspenstrom, 2001). Preliminary data suggest that RICH 

also has a membrane interacting/tubulating function, further expanding the diversity o f 

proteins with this m otif in membrane dynamics o f the cell (Richnau and Aspenstrom, 

unpublished results). The application o f proteomic and cell biological tools to this field 

should help determine the breadth and depth o f tubulo-vesicular events in the cell.
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Chapter 4 

Mechanisms of Membrane Deformation

Abstract

Membrane traffic requires the generation o f  high curvature lipid-bound transport 

carriers represented by tubules and vesicles. The mechanisms through which membranes 

are deformed has gained a lot o f recent attention. A major advance has been the 

demonstration that direct interactions between cytosolic proteins and lipid bilayers are 

important in the acquisition o f membrane curvature. Rather than being driven only by the 

formation o f membrane associated structural scaffolds, membrane deformation requires 

physical perturbation o f the lipid bilayer. A variety o f proteins have been identified 

which directly bind and deform membranes. An emerging theme in this process is the 

importance o f  amphipathic peptides that partially penetrate the lipid bilayer.
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Introduction

Cellular compartmentalization requires membrane-bound structures. Traffic 

between membranous organelles occurs via tubular and vesicular membrane carriers which 

bud and fuse, effectively maintaining the compartmentalized state while allowing for 

dynamic flux. Over the past several years, we have garnered greater understanding of the 

molecular processes by which the trafficking organelles -  the tubules and vesicles -  form 

and behave. Generation o f these structures can be driven by a cooperation o f mechanisms 

both extrinsic and intrinsic to the membrane. Mechanical forces applied to the membrane 

by the cytoskeleton can induce membrane tubule formation. Proteinaceous coats 

selectively associated with the surface o f membrane buds are key mediators o f vesicle 

formation in the endocytic and secretory pathways. Accessory factors to the main 

constituents o f coat proteins have also recently been found to be an integral part o f both 

vesicle formation as well as cargo selection within the bud. Proteins that can deform the 

membrane into tubules have been identified and characterized. In addition, lipid 

components o f the membrane, either directly or via interaction with proteins, have been 

suggested to facilitate the structural changes necessary to deform membranes.

Extrinsic Forces on the Membrane

Cytoskeletal elements have long been known to play some role in membrane 

traffic, not only by forming the structural scaffold and network over which membrane
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traffic flows, but also by directly deforming membranes (Dabora and Sheetz, 1988; 

Lippincott-Schwartz et al., 2000; Vale and Hotani, 1988). A characteristic property of 

membrane bilayers is that the application o f an external focal force results in bilayer 

tubule formation rather than a broad ‘tenting’ o f the membrane (Figure 4.1). Many 

intracellular membrane tubules are generated in this fashion (Allan and Schroer, 1999; 

Hirokawa, 1998; Robertson and Allan, 2000; Roux et al., 2002; Tooze and Hollinshead, 

1992). For example, microtubule motors can pull a developing tubule along a preformed 

microtubule track in vitro (Dabora and Sheetz, 1988; Robertson and Allan, 2000; Roux et 

al., 2002). Microtubule-dependent mechanisms, possibly in cooperation with other 

cytosolic factors (Dreier and Rapoport, 2000), have also been shown to play a role in 

vitro and in vivo for the tubular dynamics o f the endoplasmic reticulum (ER) (Dabora and 

Sheetz, 1988; Vale and Hotani, 1988) (Klopfenstein et al., 1998; Waterman-Storer and 

Salmon, 1998), as well as for the Golgi and endosome tubulation events following 

treatment with the fungal metabolite, brefeldin A (BFA) (Lippincott-Schwartz et al., 

1991).

Other cytoskeletal elements, such as actin filaments and membrane-tethered myosin 

motors, may similarly participate in membrane deformation (Buss et al., 2001; Geli and 

Riezman, 1996; Hasson and Mooseker, 1995; Morris et al., 2002; Schafer, 2002). One 

obvious example o f actin-dependent membrane deformation is the formation o f cell 

surface tubular microvilli, formed by the extension of actin filaments against the plasma 

membrane. Actin dynamics have also been suggested to play a role in endocytosis, 

particularly because o f the reproduceable association between abnormalities
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Figure 4.1: Cytoskeletal mechanisms for membrane deformation. Cytoskeletal 

elements may have multiple roles in membrane deformation: (A) cytoskeleton-dependent 

formation and maintenance o f tubular organelle structures; (B) formation o f membrane 

tubules pulled by a cytoskeletal motor protein; (C) external cytoskeletal forces abutting 

the membrane and causing deformation; (D) cytoskeletal elements constricting the 

membrane and propelling a vesicle along a polymerizing ‘comet’
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in endocytosis and actin dynamics in yeast mutants (Schafer, 2002). In mammalian cells, 

the data have not been as conclusive; however, several proteins have been found 

which likely serve to couple the endocytic machinery with actin dynamics (Qualmann et 

al., 2000; Schafer, 2002).

Recent data have illustrated a qualitative temporal relationship between 

endocytosis and actin polymerization (Merrifield et al., 2002; Pelkmans et al., 2002). 

Using techniques o f video microscopy, actin and dynamin were found to be recruited to 

sites o f clathrin-mediated endocytosis just prior to (for dynamin) and immediately after 

(for actin) the movement o f a nascent clathrin-coated vesicle away from the plasma 

membrane (Merrifield et al., 2002). In another study observing caveolar internalization of 

SV40 virus, brief bursts o f dynamin 2 signal at the plasma membrane, as well as actin 

dynamics involving a reorganization o f the actin cytoskeleton and formation of actin tails, 

were found to be associated with caveolae loaded with SV40 virus (Pelkmans et al., 2002). 

While confirming the role o f dynamin in endocytosis prior to fission, the data further 

highlight the importance o f actin filaments in this process. The roles actin could play in 

endocytosis are diverse. Actin filaments may be directly involved in membrane 

deformation, may help to sever the highly curved neck o f  the developing bud in fission, 

and may be part o f  a machinery propelling the nascent vesicle along an actin comet 

(Figure 4 .ID) (Qualmann et al., 2000; Schafer, 2002). Furthermore, actin dynamics may 

influence local remodeling o f the cortical cytoskeleton to facilitate endocytosis, and also 

may serve as a potential scaffold for the endocytic apparatus (Qualmann et al., 2000; 

Schafer, 2002).
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Myosin motors may also play a role with actin in membrane traffic events 

(Hasson and Mooseker, 1995). A type I myosin is required for receptor-mediated 

endocytosis in yeast (Geli and Riezman, 1996). In mammalian cells, myosin VI has been 

implicated in endocytic events (Buss et al., 2001; Morris et al., 2002). Myosin VI 

interacts with clathrin and AP2 through its COOH-terminal domain, and overexpression 

o f this domain blocks transferrin uptake (Buss et al., 2001). Myosin VI, one o f only two 

known minus-end directed motors, may provide a mechanism for movement o f the 

nascent vesicle away from the plasma membrane, in the direction o f the minus end o f an 

actin filament oriented along the long axis o f microvilli (Buss et al., 2001). Working with 

actin filaments, myosin-dependent forces could provide many mechanical functions to 

generate membrane deformation in this process. However, outside o f the results seen in 

yeast genetics, a requirement for actin in general endocytic events has not been 

unequivocally shown. There is most probably some significance to the findings 

implicating actin in vesicular dynamics, and membrane-dependent activities are one of the 

many potential events in which actin dynamics are involved. Thus, the cytoskeleton may 

potentially affect membrane traffic by both structural and dynamic forces acting on the 

membrane.

Intrinsic Forces on the Membrane: Protein-Mediated Effects

Over the last several years, emerging data have implicated cytosolic proteins in 

bilayer deformation upon recruitment to the membrane. Oligomerization o f these
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proteins into a coat scaffold on the membrane has traditionally been thought to promote 

budding by imposing curvature on the membrane (Figure 4.2A) (Heuser and Keen, 1988; 

Kadota and Kadota, 1973; Rothman and Warren, 1994). This view, first developed for 

the clathrin coat, was then extended to other protein coats observed on vesicles, such as 

COPI (Rothman and Warren, 1994) and COPII (Kuehn and Schekman, 1997), and has 

since been supported by data revealing an intrinsic curvature in the structure o f coat 

protein scaffolds (Bi et al., 2002; Musacchio et al., 1999). Importantly, the observation 

that coat assembly, bilayer invagination, and, in some cases, even fission could occur on 

protein-free liposomes demonstrated that no integral membrane proteins were required for 

this process (Bremser et al., 1999; Drake et al., 2000; Matsuoka et al., 1998; Spang et al., 

1998; Takei et a l ,  1998; Zhu et a l ,  1999).

As with the soluble proteins which constitute the coat on a developing bud, 

cytosolic proteins have also been found to drive bilayer tubulation following recruitment 

to the membrane (Figure 4.2B). The first evidence that cytosolic proteins play a 

physiological role in the generation o f membrane tubules came from studies o f dynamin, a 

GTPase critically implicated in the fission reaction o f clathrin-coated vesicles and other 

membrane trafficking events (Damke et a l ,  1994; Hinshaw, 2000; McNiven et a l ,  2000). 

Purified dynamin has the property to self-assemble into rings and spirals both in solution, 

as well as at the narrow tubular stalks o f endocytic vesicles (Hinshaw and Schmid, 1995; 

Takei et a l ,  1998). Both in vitro and in vivo, dynamin can deform lipid bilayers into 

narrow tubules coated by dynamin spirals (Marks et a l ,  2001; Sweitzer and Hinshaw, 

1998; Takei et a l ,  1998). A predominant theory emerged: coat proteins were involved in
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budding from the donor membrane, and dynamin rings were involved in forming the 

tubular neck o f the clathrin-coated bud (Hinshaw and Schmid, 1995; Takei et al., 1995). 

Upon GTP hydrolysis, constriction o f the dynamin ring would mediate fission (Hinshaw, 

2000; Klockow et al., 2002; Marks et al., 2001; Zhang and Hinshaw, 2001) (but see 

(Sever et al., 1999; Stowell et al., 1999) for alternative interpretations).

The identification and characterization o f  proteins associated with clathrin and 

dynamin, in conjunction with recent theoretical considerations o f membrane biophysics, 

have since expanded and revised this view. With respect to clathrin for example, to 

effectively drive membrane curvature, the rigidity o f  the coat protein polymer has to 

supercede the resistance o f mechanically bending the membrane, described as the 

membrane bending elastic modulus (Nossal, 2001). This notion has recently been 

challenged for clathrin, due to estimations that the rigidity o f clathrin triskelia is similar to 

the membrane bending elastic modulus (Nossal, 2001). I f  true, clathrin could at best serve 

to maintain an already curved membrane, thereby preventing its collapse back into an 

effectively planar form (Nossal, 2001). Thus, mechanisms in addition to coat protein 

lattice formation that may help in deforming the bilayer are likely to come into play.

With respect to dynamin, the identification o f other endocytic proteins which tubulate 

lipid bilayers has implicated these proteins as well in physiological membrane 

deformation. Amphiphysin and endophilin, two major interactors o f dynamin, were 

found to robustly deform liposomes into narrow membrane tubules (Farsad et al., 2001; 

Takei et al., 1999). Epsin, an interactor o f clathrin and o f the clathrin adaptor AP-2 

(Chen et al., 1998; Rosenthal et al., 1999; Traub et al., 1999), was also shown shown to
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Figure 4.2: P rotein-m ediated  m em brane deform ation. (A) Polymerizing vesicle coat 

proteins could potentially drive budding. (B) Polymerizing membrane tubulating 

proteins such as dynamin, endophilin, and amphiphysin are potential affectors of 

membrane deformation. (C) Membrane deformation according to the bilayer couple 

hypothesis. By penetration o f an amphipathic helix into the interfacial section o f the 

bilayer, proteins could possibly drive membrane deformation due to bilayer surface area 

discrepancy.
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induce membrane tubulation (Ford et al., 2002). There is no evidence as o f yet that these 

proteins self-assemble into rings, like dynamin, in the absence o f a lipid bilayer. The 

property o f  these proteins to deform membranes is likely to reflect a unique interaction 

with the membrane bilayer (see below), since not all proteins which bind lipid bilayers are 

able to induce deformation.

There is evidence for a function o f these endocytic proteins in early stages o f 

clathrin-mediated budding, prior to the generation o f a tubular neck, suggesting that the 

physiological role for these proteins may not be restricted to the formation o f tubular 

membranes. For example, dynamin can be found on the dome o f clathrin-coated buds, and 

antibody disruption o f  dynamin function (lamprey synapse) leads to markedly impaired 

clathrin-coated bud formation (H Gad, 0  Bloom, P Low, P De Camilli, V Slepnev, O 

Shupliakov, L Brodin, Molecular Biology o f  the Cell, Suppl., 11:218a, 2000).

Furthermore, impairment o f endophilin function at the synapse by antibody injection 

(lamprey synapse) or by genetic disruption (Drosophila) results in synaptic vesicle 

depletion and the accumulation o f shallow clathrin-coated pits (Gad et al., 2000; Guichet 

et al., 2002; Ringstad et al., 1999; Verstreken et al., 2002). Amphiphysin also binds 

clathrin and AP-2 in addition to dynamin (Brett et al., 2002; Slepnev et al., 2000), and 

clathrin-coated buds generated in the presence o f amphiphysin have a more homogenous, 

smaller size than buds generated in the presence o f clathrin-coat fractions alone 

(unpublished data). Finally, epsin is able to recruit clathrin onto a lipid monolayer and 

induces ‘puckered’ clathrin-coated structures (Ford et al., 2002). Thus, via their ability to
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deform planar membranes, these proteins may assist clathrin in early stages o f bud 

formation.

While the above considerations apply to clathrin coats, it is still unknown whether 

similar mechanisms, i.e. cooperation of scaffold proteins and membrane-deforming 

proteins, may function also in the case o f coats comprising the COP proteins. In 

addition, caveolin polymerization and membrane interactions are thought to play a role in 

caveolar budding (Drab et al., 2001; Fernandez et al., 2002; Fra et al., 1995; Rothberg et 

al., 1992). As a final note, one possibility is that various properties o f integral membrane 

proteins may also contribute to membrane deformation. For example, this has been 

proposed for peripherin, a transmembrane protein concentrated at areas o f  high curvature 

in the outer segment discs o f  retinal photoreceptors, and which induces flattened 

microsomal vesicles when expressed in vitro (Arikawa et al., 1992; Molday et al., 1987; 

Wrigley et al., 2000).

Intrinsic Forces on the Membrane: Lipid-Mediated Effects

The role o f lipid-specific dynamics in enabling or generating membrane curvature 

has also been an area o f provocative research (Evans, 1974; Farge and Devaux, 1992; 

Lipowsky, 1991). For example, selective transfer o f lipids between bilayer leaflets has 

been proposed as a means by which surface area asymmetries could influence budding and 

endocytosis (see below) (Farge and Devaux, 1992; Farge et al., 1999). In addition, certain
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lipid species are postulated to favor bilayer curvature due to their physico-chemical 

properties and/or their relative geometries (Burger, 2000; Chemomordik, 1996).

For example, cholesterol is required for the generation o f high curvature clathrin- 

coated buds in vivo, since cholesterol depleting compounds prevent maturation o f a bud 

past a shallow level o f curvature (Rodal et al., 1999; Subtil et ah, 1999). One possible 

function o f cholesterol is to selectively intercalate into the budding-side leaflet o f the 

bilayer in order to enable bud formation without producing unfavorable hydrophobic- 

hydrophilic interactions as the bilayer is distorted. Two proteins enriched in endocytic 

vesicle carriers, synaptophysin and caveolin, bind cholesterol (Murata et ah, 1995; Thiele 

et ah, 2000). These proteins may function to selectively concentrate this lipid in the 

budding portion o f the bilayer, thus allowing more favorable phase interactions as the 

nascent bud forms (Murata et ah, 1995; Thiele et ah, 2000). In this way, the influence of 

cholesterol on membrane structure would encompass two non-exclusive possibilities. 

First, selective enrichment o f cholesterol into one leaflet o f the membrane may alter the 

relative bilayer surface areas to favor budding. Second, through differential partitioning, 

cholesterol may minimize the energy needed for budding by both decreasing local 

membrane stiffness, and by preserving hydrophobic and van der Waals forces between 

the leaflets as the bilayer deforms (Baba et ah, 2001; Brown et ah, 2001; Brown et ah, 

2002).

In addition, enzymatic alteration o f lipids has been suggested to facilitate 

membrane deformation by generating particular lipid geometries. Formation of type I
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Figure 4.3: Lipid driven membrane deformation. (Above) Transfer o f  lipids to one 

leaflet could promote deformation by creating surface area discrepancy between the 

leaflets. (Middle) Selective accumulation o f cholesterol could decrease membrane rigidity, 

create bilayer surface area discrepancy, and facilitate budding. (Below) Type I and type 

II lipids, based on their relative geometries, have been postulated to play a role in 

membrane deformation.
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lipids, such as lysophosphatidyl choline (LPC), may favor positive curvature by 

adopting a wedge-like geometry, and formation o f type II lipids, such as phosphatidyl 

ethanolamine (PE), may favor negative curvature by effectively creating the reverse 

geometry (Burger, 2000; Chernomordik, 1996). For example, sphingomyelinase, an 

enzyme which cleaves phosphorylcholine from sphingomyelin to generate the type II 

lipid, ceramide, promotes the formation of bilayer invaginations independently from a 

protein-mediated effect (Holopainen et al., 2000). Furthermore, phospholipase A2 

activity was shown to be required for the 60-80 nm Golgi tubules formed upon treatment 

with BFA, as well as for the formation o f tubular endosomal recycling organelles (de 

Figueiredo et al., 2001; de Figueiredo et al., 1998). While the effect o f phospholipase A2 

on membrane deformation is not well understood mechanistically, one suggestion is that 

formation o f type I lysolipids in the membrane may have a role. Putative roles for 

phospholipase C and phospholipase D in influencing membrane structure through lipid 

modification have also been described (Basanez et al., 1997; Ktistakis et al., 1996; 

Liscovitch, 1996). O f note, lipid metabolism may alter bilayer structure not only 

directly, by affecting lipid geometries, but also indirectly, via the regulated recruitment of 

membrane deforming proteins (Burger et al., 2000; Ford et al., 2002).

Endophilin has been reported to have lysophosphatidic acid acyl transferase 

(LPAAT) activity, mediating the transfer o f a fatty acyl-CoA to lysophosphatidic acid 

(LPA), a type I lipid (Modregger et al., 2003; Schmidt et al., 1999). Similarly, BARS, a 

protein involved in Golgi tubulation and fission, was also reported to have LPAAT
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activity (Weigert et al., 1999). It remains unclear what role LPAAT activity plays in 

induction o f membrane curvature, especially since endophilin has been directly shown to 

deform lipid bilayers independently from this enzymatic activity (Farsad et al., 2001). 

Furthermore, LPA is a relatively soluble lipid, and like most Type I lipids, it is likely not 

significantly present in biological membranes (Burger, 2000). It has been suggested that 

perhaps endophilin undergoes the LPAAT reaction in the cytosol, with soluble LPA, and 

then partitions into the bilayer upon the creation o f the insoluble reaction product, 

phosphatidic acid (PA) (Huttner and Schmidt, 2000). However, this would serve to 

promote positive rather than negative curvature. Moreover, at neutral biological pH, PA 

likely acts as a bilayer promoting lipid, rather than a Type II negative curvature 

promoting lipid like PE (Burger, 2000). In addition, it is difficult to reconcile the 

apparent opposing activities o f an acyl transferase and a phospholipase (see above for 

PLA2) both creating the same membrane deformation. However, although the importance 

o f  the LPAAT activity o f these proteins is as yet undefined, the ability o f these proteins 

to bind certain lipids may prove important for their biological function.

Amphipathic Peptides and the Bilayer-Couple Hypothesis

The bilayer-couple hypothesis, initially popularized by Sheetz and Singer in 

1974, postulates that the two halves o f a closed lipid bilayer, by virtue o f asymmetries 

between the bilayer leaflets, may have differential responses to various perturbations 

(Sheetz et al., 1976; Sheetz and Singer, 1974). Thus, a relative increase in surface area o f

140

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



one leaflet o f  a closed bilayer, as discussed above, is predicted to increase the 

spontaneous curvature o f the bilayer. In order to minimize its energy state and maintain 

hydrophobic and van der Waals interactions between the leaflets, an unopposed bilayer 

will conform to its spontaneous curvature (Nossal, 2001). Specifically, the leaflet to 

which additional surface area is added will be the side to which the bilayer will deform in 

compensation. Sheetz and Singer observed that compounds with amphipathic qualities, 

presumably by intercalating into a particular leaflet o f the membrane bilayer, were able to 

deform erythrocyte membranes according to the predictions o f the bilayer-couple theory 

(Sheetz et al., 1976; Sheetz and Singer, 1974).

The bilayer-couple theory may explain the mechanism through which certain 

proteins affect morphological changes in planar membranes. By physically penetrating 

into one face o f the bilayer, amphipathic peptides may cause membrane deformation 

(Figure 4.2C). The NH2-termini o f the tubulogenic proteins endophilin and amphiphysin 

contain an amino acid stretch predicted to form an amphipathic helix necessary for lipid 

bilayer tubulation (Farsad et al., 2001). The ENTH domain o f epsin also forms an 

amphipathic helix, upon binding phosphatidyl inositol 4,5-bisphosphate (PIP2), which is 

necessary for bilayer tubulation (Ford et al., 2002). In addition, the ARP family 

GTPases, involved in recruitment o f coat proteins for vesicular trafficking along the 

secretory and endocytic pathways, have an NH2-terminal amphipathic helix critical for 

membrane binding(Amor et al., 1994; Antonny et al., 1997; Goldberg, 1998; Pasqualato et 

al., 2001; Pasqualato et al., 2002), which potentially could play a role in budding. An 

intriguing possibility exists that all o f these proteins are sharing a common mechanism for
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enabling membrane deformation through the interactions o f  an amphipathic peptide with 

the lipid bilayer. Identifying the mechanisms for how these protein-bilayer interactions 

are regulated will be paramount to understanding the dynamics o f this process.

Recent biophysical studies using the prototypical amphipathic helical peptide, 

melittin, have shown that an amphipathic helix oriented parallel to a lipid bilayer surface 

would be ideally poised to reside at an interfacial location between the head groups and 

the hydrophobic core (Hristova et al., 2001; Lam et al., 2001). The steep gradient from 

the polar head groups to the non-polar tails within a lipid monolayer is estimated to be on 

the order o f the diameter o f an alpha helix, rendering an amphipathic helix an appropriate 

structural solution to a protein binding the monolayer in this fashion (White et al., 2001). 

Thus, perhaps many o f these proteins involved in membrane deformation may function 

by orienting an amphipathic helix parallel to the membrane surface in such a way as to 

affect changes in membrane structure. A striking illustration o f the power o f  an 

amphipathic peptide in affecting such a process was shown in the ability o f  a designed 

amphipathic 18-mer peptide to form extensive tubules 40-50 nm in diameter and up to 

600 nm in length from liposomes comprised o f various lipid combinations (Lee et al., 

2001).

There are likely some key factors which are essential for these peptides to affect 

membrane deformation. For example, penetration into the bilayer is necessary for this 

process, since proteins which bind superficially to the bilayer without penetration, such 

as the PH domain o f  PLC delta or the ANTH domain o f API 80 (similar to the epsin
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ENTH domain, but without the ligand-induced amphipathic helix), do not cause 

deformation (Farsad et al., 2001; Ford et al., 2002; Ford et al., 2001; Hurley and Misra, 

2000). Another likely part o f this process is clustering o f these proteins such that 

sufficient concentrations are achieved to enable a significant membrane deforming effect. 

Proteins such as endophilin and amphiphysin may cluster by polymerization, whereas 

proteins such as epsin may cluster due to the presence o f localized interacting proteins.

In vitro, and with overexpression, clustering may be a product o f high protein 

concentrations, whereas the situation in vivo is likely more subtle and regulated. It 

remains to be seen whether different mechanisms for clustering have different effects on 

membrane structure.

Is there a role for the interaction o f amphipathic peptides with lipid bilayers in 

both monomeric and polymeric forms? Studies with melittin have shown that the 

monomeric amphipathic helix had only modest effects on bilayer structure at lower 

concentrations, causing only slight increases in area per lipid. In contrast, melittin 

monomers cystein-linked to create dimers, affected a significant change in bilayer 

structure and perturbation at the same monomer/lipid concentration used for monomeric 

melittin (Hristova et al., 2001). Thus, the self-association o f an amphipathic helix is 

thought to have a qualitatively different effect, compared with non-associating monomers, 

on the structural perturbation o f a lipid bilayer (Hristova et al., 2001). As such, it is 

possible that biological membrane dynamics may use the effects o f both monomeric and 

polymeric proteins to create variations on bilayer perturbation and deformation. The 

ability o f these proteins to concentrate in the membrane, either alone or in various
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combinations, may affect the degree to which membrane structure is perturbed. Indeed, at 

high concentrations, both monomeric and dimeric melittin significantly perturbed bilayer 

structure, and were ultimately membrane-lytic (Hristova et al., 2001).

Membrane-deforming proteins likely work in conjunction with clathrin-coat 

proteins to promote budding. In vitro data with epsin, amphiphysin, and endophilin 

illustrate this point. As mentioned above, co-incubation o f epsin with clathrin induced 

puckered clathrin polymers on a lipid monolayer (Ford et al., 2002). Clathrin-coat 

proteins incubated with amphiphysin resulted in coated buds associated with 

amphiphysin tubules (Takei et al., 1999). Both epsin and amphiphysin are well known 

to interact biochemically with clathrin, and as such, it makes sense that these proteins 

could couple clathrin bud formation with other membrane deforming activities. 

Interestingly, when incubated with coat proteins, many endophilin generated tubules were 

also capped by clathrin-coated buds, despite the fact that endophilin has no known 

binding properties to clathrin-coat proteins (Farsad et al., 2001). This suggests that 

endophilin tubules and clathrin coats may serve as structural, rather than biochemical, 

substrates under conditions favorable for budding (Farsad et al., 2001). Thus, proteins 

which alone are able to drive membrane curvature may facilitate clathrin-mediated bud 

formation by altering bilayer structure to favor this process.
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Future Directions and Closing Remarks

Our understanding o f the mechanisms generating membrane deformation will no 

doubt increase our awareness o f  how this process affects various aspects o f  cell biology. 

Roles for membrane budding and tubulation have been described in both immunity and 

disease. For example, ‘reverse’ budding, budding away from the cytosol, is a mechanism 

for the formation o f the multi-vesicular bodies (MVB) in the late endosomal pathway 

(Katzmann et al., 2002; Piper and Luzio, 2001; Stahl and Barbieri, 2002). Recent work in 

this field has demonstrated a role for three protein complexes, ESCRT I, II, III (Babst et 

al., 2002a; Babst et al., 2002b; Katzmann et al., 2001), in addition to the mono-ubiquitin 

pathway (Dupre et al., 2001; Hicke, 2001) and phosphoinositide metabolism (Odorizzi et 

al., 1998; Odorizzi et al., 2000), in the generation o f the lumenal vesicles o f  the MVBs. 

Budding into the MVBs is an efficient way to target membrane proteins/receptors to 

lysosomes for degradation (Katzmann et al., 2002). In addition, the lumenal vesicles o f 

the MVBs are also involved in the immune response by both the loading o f  the major 

histocompatibility complex (MHC) class II molecules with antigen, as well as by the 

formation o f exosomes, secreted lumenal vesicles containing MHC class II molecules and 

T-cell costimulatory factors which are potent immune stimulators and potential anti­

tumor agents (Denzer et al., 2000; Katzmann et al., 2002; Schartz et al., 2002; Thery et 

al., 2002; Wolfers et al., 2001). Furthermore, in the case o f  enveloped viruses such as 

HIV-1, viral budding from the plasma membrane has apparently usurped the MVB
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machinery in an analogous process o f budding away from the cytosol into the extracellular 

space (Garrus et al., 2001; Hicke, 2001; Katzmann et al., 2002; Pomillos et al., 2002). 

How this budding process occurs will likely represent a new mechanism in membrane 

deformation.

The parasite Toxoplasma gondii represents a new example o f the role for 

tubulating proteins in disease. Once the parasite enters the cell into the parasitic vacuole, 

parasite secreted proteins have been shown to be involved in the generation o f a 60-90 nm 

tubular network emanating into the vacuole from the vacuolar membrane (Mercier et al., 

2002). The parasite secreted protein, gra2, is involved in the formation o f these tubules, 

and impaired tubule formation results in diminished parasite virility (Mercier et al., 2002). 

Gra2 contains two amphipathic alpha helical regions which are critical for tubulation 

(Mercier et al., 2002). Thus, Toxoplasma gondii uses a secreted tubulogenic protein, with 

requisite amphipathic helices, in its infectious biology.

Membrane-deforming proteins involved in diverse cellular processes besides 

intracellular membrane traffic have also been described. A member o f the amphiphysin 

protein family has been localized to the muscle T-tubule system, where its membrane- 

deforming properties may likely play a role in the biology of these structures (Lee et al., 

2002). Furthermore, dynamin and endophilin isoforms have been localized to the tubular 

plasma membrane invaginations often observed at podosomes, dynamic actin/membrane 

structures involved in motility and adhesion (Ochoa et al., 2000).
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The number o f factors involved in generating membrane curvature has increased 

and has underscored our appreciation o f the complexity o f the process. Many issues 

remain to be resolved, and it is likely that the process is driven by a cooperation o f both 

proteins and lipids. A major contribution to bilayer deformation is from the reversible 

recruitment o f cytosolic proteins, which have the advantage o f being recycled, to the 

membrane. The interaction o f amphipathic peptides with the membrane, as identified in 

proteins such as endophilin, amphiphysin, and epsin, is an emerging theme that may 

describe one mechanism for membrane deformation. Ultimately, more membrane- 

deforming factors will be identified, and we will likely find that nature has created more 

than one solution to this problem.
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Chapter 5 

Membrane Tubulating Proteins and a Putative Regulatory Role 

in the Recruitment of Clathrin-Coat Proteins to Membranes: A 

Study with Amphiphysin

Abstract

Amphiphysin 1 is a brain-specific protein enriched at the synapse and a major 

binding partner for the large GTPase, dynamin (David et al., 1996). Amphiphysin has 

been shown to be involved in synaptic vesicle recycling by both acute and chronic 

perturbation studies (Di Paolo et al., 2002; Shupliakov et al., 1997). One potential role 

for amphiphysin function in the synaptic vesicle recycling process involves its binding 

affinities for both clathrin-coat proteins and dynamin, as well as for lipid bilayers and 

biological membranes (Slepnev et al., 2000; Takei et al., 1999). Here we show that 

amphiphysin directly stimulates clathrin recruitment onto liposomes in an in vitro assay. 

Amphiphysin-dependent clathrin-coat recruitment is enhanced by the interactions of 

amphiphysin with dynamin (through the dynamin PRD domain) and endophilin (through 

the endophilin SH3 domain). We show that the amphiphysin SH3 domain is also able to 

bind full-length amphiphysin, likely via an internal poly-proline region, and clathrin 

recruitment onto liposomes by amphiphysin is enhanced in the presence o f the 

amphiphysin SH3 domain. Thus, amphiphysin stimulated clathrin recruitment onto
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liposomes may be regulated via intramolecular binding between the amphiphysin COOH- 

terminal SH3 domain and its internal poly-proline region.
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Introduction

Clathrin-mediated endocytosis remains the best characterized pathway of 

synaptic vesicle retrieval (De Camilli et al., 2001b). In addition to the proteins which 

comprise the clathrin-coat, several other proteins have been implicated in this process. 

These accessory proteins are thought to function in various processes related to clathrin- 

mediated budding, including playing a role at the tubular neck o f the clathrin-coated bud, 

where they may possibly regulate the fission reaction (Chen et al., 1991; Koenig and 

Ikeda, 1989; Ringstad et al., 1999; Takei et al., 1995; Takei et al., 1999). Dynamin, 

amphiphysin, and endophilin are some o f the best characterized proteins in this process. 

Amphiphysin and endophilin are major dynamin binding partners at the synapse, and all 

three proteins localize to the tubular neck of the clathrin-coated pit (David et al., 1996; 

Gad et al., 2000; Ringstad et al., 1999; Ringstad et al., 1997; Takei et al., 1998; Takei et 

al., 1995).

A role for these proteins in synaptic vesicle recycling has been shown by both in 

vitro and in vivo experimentation. Perturbation o f either dynamin, amphiphysin, or 

endophilin function at the synapse demonstrates, among other things, an arrest o f the 

clathrin-mediated endocytic process at various stages o f acquisition o f deep membrane 

invagination and fission (Gad, 2000; Gad et al., 2000; Guichet et al., 2002; Hill et al., 

2001; Koenig and Ikeda, 1989; Ringstad et al., 1999; Shupliakov et al., 1997; Verstreken 

et al., 2002). These findings suggest that these proteins, all o f which are known to
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independently and coordinately form lipid bilayer tubules, may participate in membrane 

deformation during clathrin-mediated budding (Farsad et al., 2001; Takei et al., 1999).

A role for dynamin and SH3-mediated interactions at this late stage in clathrin- 

mediated synaptic vesicle recycling o f deep membrane invagination and fission has been 

suggested by microinjection experiments in the living reticulospinal synapses o f lamprey 

(Shupliakov et al., 1997). Microinjection o f  the amphiphysin SH3 domain in this 

preparation results in a near-total depletion o f synaptic vesicles corresponding to a 

potent block o f late stages in clathrin-mediated synaptic vesicle retrieval (Shupliakov et 

al., 1997). Under these conditions, numerous deeply invaginated clathrin-coated pits 

were accumulated at the peri-active zone (Shupliakov et al., 1997). Furthermore, targeted 

disruption o f the amphiphysin 1 gene in mice revealed, in a subset o f mice, a phenotype 

displaying severe cognitive deficits and a lowered seizure threshold correlated with 

deficient synaptic vesicle recycling (Di Paolo et al., 2002). Moreover, biochemical 

analysis o f brain cytosol in these mice revealed a selective impairment in the recruitment 

o f  the clathrin-coat proteins, clathrin and AP2 (clathrin adaptor protein-2), onto lipid 

bilayers (Di Paolo et al., 2002), suggesting a possible etiology for the decreased efficiency 

o f  synaptic vesicle recycling.

The brain-specific isoforms o f  amphiphysin contain internal binding sites for 

clathrin and AP2, and it has been postulated that one possible function o f amphiphysin in 

synaptic vesicle recycling is to help coordinate endocytic protein complexes involving 

clathrin and AP2 (Slepnev et al., 2000; Takei et al., 1999). Consistent with this,
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dephosphorylation o f amphiphysin by the calcium-dependent phosphatase, calcineurin, 

stimulated the formation o f endocytic protein complexes including amphiphysin, clathrin, 

AP2, and dynamin, while phosphorylated amphiphysin was less competent for the 

formation o f these protein complexes (Slepnev et al., 1998). Moreover, it has been 

shown that amphiphysin helps to coordinate clathrin-coated buds on tubules with 

dynamin in vitro (Takei et al., 1999). In this study we expand on these observations by 

using purified components to explore the role o f amphiphysin in the recruitment of 

clathrin-coat proteins onto lipid bilayers, and investigate a potential role for an endocytic 

protein complex in this recruitment process.

Materials and Methods 

Electron microscopy

Liposomes (0.1 mg/ml final) were incubated at 37 °C for 10-20 minutes in buffer A 

(25mM Hepes-KOH, pH 7.4, 25mM KC1, 2.5mM Mg2+ acetate, 150mM K-glutamate) 

with various proteins and nucleotides at the following final concentrations: dynamin 0.1 

mg/ml, amphiphsyin 0.1 mg/ml, endophilin 0.1 mg/ml, coat proteins 0.5 mg/ml, clathrin 

6pg, AP2 16 pg, GTP ImM, GTPyS 0.5mM (Takei et al., 1999). At the end o f the 

incubation, aliquots were adsorbed onto 200-400 pM formvar- and carbon-coated copper 

EM grids for 3-5 minutes at room temperature, washed in 0.1 M Hepes pH 7.4, stained in
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1-2% uranyl acetate, blotted and allowed to air dry. For incubations at 4 °C, all o f the 

above was performed on ice.

Purified Proteins and Peptides

Dynamin was affinity purified from rat brain cytosol using amphiphysin 1 SH3-domain 

as described above (Owen et al., 1998).

Recombinant rat endophilin A l and human amphiphysin 1 were cloned in pGEX 

(Pharmacia), and purified as Glutathione-S Transferase (GST) fusion proteins according 

to standard methods (Pharmacia). The GST tag was subsequently cleaved by PreScission 

Protease (Pharmacia).

Amphiphysin SH3-domain G-P R-L mutant (GPRL) was generated by primer mediated 

mutagenesis and subcloned into pGEX and pCDNA vectors.

Amphiphysin partial constructs were prepared by PCR to yield the following fragments: 

amino acids, the poly-proline domain (PPD), amino acids, the protein with the deleted 

COOH-terminal SH-domain. The constructs were subcloned and purified as above.

Clathrin-coat fraction was purified from bovine calf brain as described (Takei et al., 1999). 

Briefly, clathrin-coated vesicles were purified from bovine brains and the clathrin-coat
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proteins were extracted in 0.8M Tris-HCl, pH 7.4, 2mM EGTA, 0.03% sodium azide, 

0.5mM dithiothreitol (DTT) and ImM  phenylmethylsulphonyl fluoride (PMSF) for 15 

hours at room temperature. Stripped coat proteins were isolated by centrifugation at 

100,000 g in a TLA 100.1 rotor for 1 hour at room temperature and stored at -7 0  °C. For 

experiments studying purified clathrin, the coat-protein fraction was separated by gel 

filtration.

A peptide corresponding to the clathrin binding region o f amphiphysin was synthesized 

and purified as observed by FPLC (Slepnev et al., 2000).

Liposomes

Liposomes composed o f  brain lipid extract (type 1, Folch fraction 1, Sigma) were made as 

described (Takei et al., 1999). Briefly, a lipid mixture solubilized in chloroform was 

added to a 2:1 chloroform:methanol mixture and thoroughly mixed in a glass tube. Lipids 

were adhered along the sides o f  the glass tube under a stream o f nitrogen gas by gently 

rotating the tube until the chloroforrmmethanol solvent had evaporated. This procedure 

generates layers o f lipids dried as multiple bilayers along the glass surface. 300mM 

filtered sucrose was then gently added to the tube with the dried lipid bilayers, and the 

tube was allowed to incubate, covered with parafilm, at 37 °C for 15-60 minutes. During 

this incubation, the dried bilayers gradually begin to peel off o f the glass surface and
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swell. Following the incubation, vigorous vortexing shears the bilayers into vesicles o f 

heterogeneous size.

Liposome Recruitment

Liposome sedimentation was performed using lOOpg sucrose-loaded liposomes incubated 

with 5-10pg protein (l-25pg for saturable binding) in 400-500pl buffer A or in Hepes- 

KC1 pH 7.4 (to determine salt sensitivity) for 10-20 minutes at 37 °C. Liposomes were 

sedimented at 100,000g in a Beckman TLA 100.3 rotor for 20 minutes, the supernatant 

was thoroughly removed, and sedimented liposomes were solubilized in 2% SDS. To 

monitor recovery, liposomes were labeled with 0.5% NBD-phosphatidyl choline and 

absorbance was measured at 460 nm. Samples were subjected to SDS-PAGE and 

analyzed by Coomassie staining or by Western blotting with the respective antibodies 

(amphiphysin polyclonal antibody, CD5; clathrin heavy-chain monoclonal antibody TD- 

1; AP2 monoclonal antibody to alpha-adaptin subunit, Mab061; dynamin polyclonal 

antibody DG1; endophilin polyclonal antibodies).

The effect o f clathrin recruitment by amphiphysin was studied by the addition o f various 

proteins and peptides, including a peptide corresponding to the amphiphysin binding 

region within the dynamin proline-arginine domain.
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Light Scattering

Dynamic light scattering induced by liposomes was used to monitor a gross indicator o f 

change in morphology for the pool of liposomes in the reaction mixture. Light scattering 

at a wavelength o f 350 nm was measured in a Hitachi F-3010 fluorescence 

spectrophotometer with a heated cuvette holder. Excitation and emission slit widths were 

set at 3 nm. Liposomes at a concentration o f  100 pg/ml were incubated with proteins at a 

final concentration o f 20-40 pg/ml and 1 mM nucleotide for the times indicated in a 

reaction cuvette containing a stir bar. The recordings were traced in real time.

Cell Culture and Transfection

Chinese Hamster Ovary fibroblasts were grown according to standard protocols in 

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal calf serum, 

glutamine, and penecillin/streptomycin. For transient transfection studies, cells were 

grown on flamed 22 millimeter square coverslips in six-well plates containing 3 milliliters 

o f  medium. Constructs were subcloned into pCDNA 3.1 with an HA-tag, and 5 pg o f 

plasmid DNA was transfected with Lipofectamine 2000 reagent for 16 hours. Cells were 

rinsed in phosphate buffered saline (PBS) and fixed in 4% paraformaldehyde in 120 mM
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sodium phosphate buffer warmed to 37 °C for 30 minutes. Cells were rinsed in PBS and 

blocked in goat serum dilution buffer. Immunocytochemistry was performed with 

polyclonal antibodies to amphiphysin (CD 5), and monoclonal antibodies to clathrin (X- 

22, Upstate Biochem.) and AP2 (Mab0166, Santa Cruz) using standard protocols. 

Primary antibodies were visualized with Texas Red and Oregon Green conjugated 

secondary antibodies.

Results

Amphiphysin Binds Liposomes in a Saturable Reaction

To examine the effect o f amphiphysin on recruitment o f clathrin-coat proteins to 

liposomes, we used a liposome sedimentation assay to test for liposome associating 

proteins (Farsad et al., 2001). As mentioned, this assay takes advantage o f the property 

o f sucrose loaded lipomes to readily sediment, thereby allowing assessment o f liposome 

binding through centrifugation. Purified recombinant amphiphysin, with the GST-tag 

cleaved off, readily binds to liposomes in a saturable fashion upon a 15 minute incubation 

at 37 °C (Figure 5.1). The liposome binding region o f  amphiphysin has been mapped to 

its NH2-terminus, with the first 37 amino acids being critical for lipid interactions as 

defined by deletional mutagenesis (See Figure 2.8B, and (Farsad et al., 2001)).
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Figure 5.1: Amphiphysin binding to liposomes is saturable.

Recombinant human amphiphysin 1 in pGEX6Pl vector was purified and the GST-tag 

was subsequently cleaved using PreScission Protease (Pharmacia). Liposomes made from 

a total brain lipid extract were incubated with increasing concentrations o f  purified 

recombinant amphiphysin 1 (GST-tag cleaved) for 15 minutes at 37 °C. Protein bound to 

liposomes was analyzed by centrifugation at 100,000g in a Beckman TLA 100.3 rotor, 

SDS-PAGE o f the pelleted material, and densitometric analysis o f  the band intensities. 

Amphiphysin has an apparent saturation o f 1:1000 molar ratio proteimlipid, although see 

chapter 2 for discussion on why this is likely an underestimation due to a cooperative 

process o f membrane binding.
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Am phiphysin Stimulates Recruitment o f Clathrin-coat Proteins onto 

Liposomes

The brain isoforms o f amphiphysin contain internal binding sites for clathrin and 

the clathrin adaptor protein, AP2 (Slepnev et al., 2000). Given the strong affinity of 

amphiphysin for lipid bilayers, we examined what effect these known protein-protein 

interactions would have on the potential recruitment o f clathrin-coat proteins onto 

liposomes. Incubation o f amphiphysin with clathrin-coat proteins, purified from bovine 

brain, stimulated the recruitment o f coat proteins onto liposomes in a dose-dependent 

fashion (Figure 5.2A). Clathrin was then purified from the coat-protein fraction by gel 

filtration. Recruitment o f purified clathrin onto liposomes was directly stimulated by 

amphiphysin (Figure 5.2B). Recruitment o f the AP2 complex onto liposomes was only 

mildly stimulated in the presence o f amphiphysin (not shown). In our experience, 

recruitment was consistently more robust when the full clathrin-coat protein fraction was 

used, making it likely that other macromolecular interactions work cooperatively in this 

process. Separation o f the coat complex into clathrin and AP2 may somehow render the 

individual components less ‘coatogenic’ than when present together with potentially 

other proteins in the coat complex. Indeed, reformation o f clathrin-coated buds on 

liposomes by adding separated clathrin and AP2 is much less efficient than when clathrin- 

coat proteins are added directly without separation (not shown). Thus, it appears as 

though amphiphysin has a specific ability to stimulate clathrin recruitment onto
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Figure 5.2: Amphiphysin stimulates recruitment of clathrin onto liposomes.

(A) Liposomes were incubated with a fixed concentration o f clathrin-coat proteins (4 pg), 

with increasing concentrations o f amphiphysin. Binding to liposomes was deterimined 

by co-sedimentation with centrifugation and western blot analysis using antibodies to the 

clathrin heavy chain (HC) and amphiphysin. Increasing amphiphysin concentrations 

leads to increasing amounts o f coat proteins recruited to the liposomes as determined by 

the presence o f the clathrin heavy chain. (B) Amphiphysin directly stimulates clathrin 

recruitment onto liposomes. Clathrin-coat proteins were separated into clathrin and 

adaptin fractions through gel filtration and used in the liposome recruitment assay.
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liposomes, and there may be other interactions between and amongst clathrin-coat 

proteins which enhance this recruitment.

Dynamin Increases Am phiphysin-mediated Clathrin-coat Recruitment

Since amphiphysin has been postulated to potentially serve as a multi-protein 

adaptor, linking the clathrin-coat with dynamin on the membrane (Takei et al., 1999), we 

examined what role addition o f purified dynamin has on the recruitment o f clathrin by 

amphiphysin. Co-incubation o f dynamin with amphiphysin enhanced the recruitment of 

clathrin-coat proteins onto liposomes (Figure 5.3A). This enhanced recruitment was seen 

with purified clathrin as well (Figure 5.3B). To further examine the effect o f the 

dynamin-amphiphysin interaction on clathrin-coat recruitment onto liposomes, a peptide 

corresponding to the proline- and arginine-rich COOH-terminal domain (PRD) of 

dynamin, known to bind amphiphysin (Grabs et al., 1997), was incubated with 

amphiphysin and clathrin-coat proteins. The dynamin PRD also enhanced clathrin-coat 

recruitment onto liposomes mediated by amphiphysin (Figure 3.3C). These data suggest 

that an interaction with the amphiphysin COOH-terminal SH3 domain is potentially 

involved with its ability to bind and/or recruit the clathrin-coat proteins onto liposomes.
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Figure 5.3: Dynamin increases amphiphysin-mediated clathrin recruitment onto 

liposomes.

(A) Liposomes were incubated with clathrin-coat proteins, or with clathrin-coat proteins 

and amphiphysin. With the concentrations o f clathrin-coat proteins and amphiphysin 

held constant, increasing the concentration o f dynamin stimulated further recruitment of 

clathrin-coat proteins above that seen with amphiphysin. (B) The stimulatory effect of 

dynamin on amphiphysin-mediated clathrin-coat recruitment was seen with gel purified 

clathrin as well. (C) The stimulatory effect o f dynamin on amphiphysin-mediated 

clathrin-coat recruitment was seen with increasing concentrations o f the dynamin PRD 

peptide, which interacts with the amphiphysin SH3 domain. This suggests that there is 

an intrinsic effect on amphiphysin incurred through an SH3-domain interaction with the 

dynamin PRD-domain which increases the ability o f  amphiphysin to recruit clathrin onto 

liposomes.
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In order to explore a potential contribution o f dynamin itself on clathrin-coat 

recruitment, we incubated dynamin and purified clathrin with liposomes. Upon this 

incubation, we detected a dose-dependent increase in the amount o f clathrin heavy chain 

recruited onto liposomes in the presence o f dynamin (Fig. 5.4A). This interaction 

between dynamin and clathrin-coat proteins was examined further by investigating what 

effect coat proteins would have on the GTPase activity o f dynamin. As measured in a 

phosphate release assay, clathrin-coat proteins strongly inhibited dynamin GTPase 

activity in a dose-dependent fashion (Figure 5.4B). This finding independently suggests a 

direct interaction between dynamin and clathrin-coat proteins. Thus, dynamin itself 

interacts with clathrin, and presents an independent stimulus for clathrin recruitment onto 

liposomes.

Am phiphysin-Endophilin Interaction Stimulates Am phiphysin- 

mediated Clathrin-Coat Recruitm ent

Endophilin has been reported to interact, via its SH3 domain, with a putative 

poly-proline binding site in amphiphysin. Under our experimental conditions, the 

endophilin SH3 domain directly bound amphiphysin (Figure 5.5A). A construct which 

lacked the endophilin SH3 domain was unable to bind amphiphysin (Figure 5.5A).

We next tested the effect o f the purified endophilin SH3 domain on the 

amphiphysin-mediated recruitment o f clathrin-coat proteins onto liposomes. Co-
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Figure 5.4: Interaction between clathrin-coat proteins and dynamin

(A) Liposomes incubated with purified clathrin and increasing dynamin concentrations 

showed that dynamin is able to stimulate clathrin recruitment onto liposomes in a dose- 

dependent fashion. (B) Dynamin was incubated with or without increasing 

concentrations o f brain purified clathrin-coat proteins, and the effect on dynamin GTPase 

activity was determined through release of radioactive phosphate. Increasing clathrin-coat 

concentrations had a potent inhibitory effect on dynamin GTPase activity, likely 

reflecting a modulatory interaction.
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incubation o f the endophilin SH3 domain with amphiphysin enhanced amphiphysin- 

mediated clathrin-coat recruitment onto liposomes (Figure 5.5B). There was also an 

apparent increase in the amount o f  amphiphysin recruitment onto liposomes in the 

presence o f the endophilin SH3 domain (Figure 5.5B). Endophilin does not interact with 

clathrin-coat proteins (not shown), therefore, the enhanced coat recruitment in this 

reaction must somehow be due to an effect on the property o f amphiphysin to either bind 

or recruit clathrin-coat proteins.

The Am phiphysin SH3 Domain Binds Full-length Am phiphysin and 

Stimulates Am phiphysin-m ediated Clathrin-Coat Recruitm ent onto 

Liposomes

Upon analysis o f the putative endophilin binding site in amphiphysin, the poly­

proline stretch in amphiphysin reported to bind endophilin was found to be located 

upstream o f the amphiphysin binding sites for clathrin and AP2 (Figure 5.6A and 

(Micheva et al., 1997; Slepnev et al., 2000; Wechsler-Reya et al., 1997)). This poly­

proline stretch spans roughly one hundred amino acids, and contains several serine 

phosphorylation sites (Floyd et al., 2001). Studying the various amphiphysin isoforms, 

we noted that some splice variants o f  amphiphysin which did not have the clathrin and 

AP2 binding sites, such as the muscle specific isoforms, were also missing this poly­

proline stretch (Butler et al., 1997). We became interested in whether this poly-proline 

stretch potentially could regulate amphiphysin interactions with clathrin-coat proteins.
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Figure 5.5: Amphiphysin-Endophilin interaction stimulates amphiphysin- 

mediated clathrin recruitment onto liposomes

(A) Recombinant full-length amphiphysin was incubated in affinity chromatography 

experiments with endophilin constructs, or GST alone. Amphiphysin was able to 

directly and specifically bind to the endophilin SH3 domain. (B) The presence o f the 

endophilin SH3 domain, shown to bind amphiphysin, was able to increase the amount of 

clathrin recruitment to the liposomes above that seen with amphiphysin alone.
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For example, interactions with amphiphysin binding partners could stimulate recruitment 

o f clathrin-coat proteins by somehow making the clathrin and AP2 binding sites more 

available.

The fact that the isolated PRD of dynamin, as well as the isolated SH3 domain of 

endophilin, stimulated clathrin recruitment to liposomes by amphiphysin, points to 

perhaps a more subtle dynamic intrinsic to amphiphysin itself. Given the results 

obtained from the interaction o f these isolated domains with amphiphysin in clathrin-coat 

recruitment, we investigated whether there could be a potential intramolecular interaction 

within amphiphysin itself. The src kinase has been shown to regulate its activity by 

intramolecular interactions involving its SH2 and SH3 domains (Xu et al., 1999). We 

tested, therefore, whether the amphiphysin SH3 domain could interact with the full- 

length protein, presumably via the poly-proline domain upstream o f the clathrin and AP2 

binding site. Indeed, incubation o f purified amphiphysin with its isolated GST 

(glutathione S-transferase)-tagged SH3 domain, immobilized on glutathione sepharose 

beads, revealed an interaction above that seen with GST alone (Figure 5.6B).

Having observed an interaction between amphiphysin and the amphiphysin SH3 

domain, we next tested what the consequence o f this interaction would be on 

amphiphysin-mediated clathrin-coat recruitment. Addition o f  the amphiphysin SH3 

domain to the reaction with amphiphysin and clathrin-coat proteins increased recruitment 

o f  clathrin-coat proteins onto liposomes above that observed with amphiphysin alone 

(Figure 5.6C). This result suggests that a putative SH3-mediated interaction with the
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Figure 5.6: A putative amphiphysin intramolecular interaction regulating 

amphiphysin-mediated clathrin recruitment onto liposomes

(A) Schematic cartoon o f the amphiphysin primary protein sequence showing the highly 

conserved NH2-terminal domain known to bind and tubulate lipid bilayers, an internal 

poly-proline rich region just upstream o f the clathrin and AP2 binding sites, and a 

COOH-terminal SH3 domain. (B) Interaction o f full-length amphiphysin with the 

amphiphysin SH3 domain. Affinity chromatography using purified reagents shows a 

specific binding o f full-legth amphiphysin to the immobilized GST-amphiphysin SH3 

domain above that o f GST alone. (C) Effect o f the amphiphysin SH3 domain on 

amphiphysin-mediated clathrin recruitment onto liposomes. Increasing concentrations of 

the amphiphysin SH3 domain stimulates further amphiphysin-mediated clathrin 

recruitment than that seen with amphiphysin alone.
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central poly-proline domain o f amphiphysin upstream o f its clathrin and AP2 binding 

sites has a stimulatory role on the recruitment o f clathrin-coat proteins to liposomes.

Evidence for a putative intramolecular interaction within amphiphysin regulating 

clathrin-coat protein recruitment is seen in transfection studies o f fibroblasts.

Transfection o f the amphiphysin SH3 domain in fibroblasts blocks receptor mediated 

endocytosis, while transfection o f a mutant amphiphysin SH3 domain, which has a G-P 

and R-L mutation (GPRL) within its SH3 domain, a mutation which renders the SH3 

domain non-functional with respect to binding capacity (Grabs et al., 1997), has no effect. 

By contrast, this mutation in the amphiphysin SH3 domain has a potent inhibitory effect 

on the endocytosis o f the transferrin receptor when transfected into fibroblasts in the 

context o f the full-length protein, while a cell line stably transfected with wild type 

amphiphysin 1 does inhibit transferrin uptake (V. Slepnev and G. Ochoa, unpublished 

results). Although one possible interpretation o f these results is that the mutant 

amphiphysin no longer interacts with dynamin, thereby blocking the fission reaction, it 

does not fully explain why the two SH3 domains produce opposite results depending on 

whether they are being expressed alone or part o f the full-length protein.

Immunofluorescence studies o f these transfected cells show a gradual 

accumulation o f dysfunctional aggregates composed o f  amphiphysin, clathrin, and AP2 

(V. Slepnev and G. Ochoa, unpublished results). At low levels o f amphiphysin GPRL 

expression, the aggregations first appear at the cell membrane, and then with further 

overexpression, the aggregates form large inclusion bodies within the cell (V. Slepnev and
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G. Ochoa, unpublished results). The wild type expressing cell line does not form such 

aggregates. Furthermore, caveolin internalization was not perturbed in amphiphysin 

GPRL transfected cells, thus indicating that clathrin-independent, dynamin-dependent 

endocytosis was still functional (V. Slepnev and G. Ochoa, unpublished results). Thus, 

transfection o f an amphiphysin construct with a binding-deficient SH3 domain resulted in 

a potent block o f endocytosis corresponding to the massive accumulation o f  protein 

aggregates comprising clathrin and AP2. This effect may be secondary to unregulated 

interactions between amphiphysin and clathrin-coat proteins due to a mutant 

amphiphysin SH3 domain.

Ternary Protein Complexes with Am phiphysin, Endophilin, and 

Dynamin: A Role in Facilitating Clathrin Recruitm ent onto Liposomes

Given that interactions with dynamin and endophilin enhanced amphiphysin- 

mediated clathrin-coat recruitment onto liposomes, we were interested in seeing whether 

these proteins could interact in a ternary complex. Using GST fusion proteins o f 

endophilin constructs, a protein complex consisting o f  dynamin, synaptojanin, and 

amphiphysin was specifically seen only in the presence o f the endophilin SH3 domain 

(Figure 5.7A). A construct which lacked the endophilin SH3 domain was unable to bind 

the protein complex above background levels (Figure 5.7A). In addition, we observed 

simultaneous binding o f dynamin, synaptojanin, endophilin, and amphiphysin on
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Figure 5.7: A ternary complex including amphiphysin, endophilin, dynamin, and 

synaptojanin observed in solution and on liposomes

(A) A complex between amphiphysin, endophilin, dynamin, and synaptojanin forms in 

solution. The endophilin SH3 domain was used for affinity chromatography with the 

brain purified dynamin/synaptojanin fraction and the recombinant amphiphysin protein. 

A complex including all o f  the proteins was selectively observed only in the presence of 

the endophilin SH3 domain. (B) Amphiphysin, endophilin, dynamin, and synaptojanin 

co-sediment in the presence o f liposomes. Increasing concentrations o f amphiphysin 

does not compete away the presence o f a fixed concentration o f  either endophilin or 

dynamin, suggesting that there are potential non-competitive binding sites for all three 

proteins.
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liposomes (Figure 5.7B). Furthermore, increasing amphiphysin concentrations recruited 

slightly more dynamin to the membrane (Figure 5.7B).

Both amphiphysin and endophilin have been shown to co-localize with dynamin 

along coated tubules at the neck of clathrin-coated buds (Ringstad et al., 1999; Takei et al., 

1998), and both proteins have been shown to form an in vitro tubular ring complex with 

dynamin along liposomes (Farsad et al., 2001; Takei et al., 1999). As seen with the light 

scattering assay above, addition o f amphiphysin to dynamin enhances the 

fragmentation o f liposomes by dynamin in a GTP dependent fashion, while addition o f 

endophilin to dynamin prevents this process (see Figure 2.11). However, when 

endophilin and dynamin are incubated with liposomes and GTP, the presence o f 

amphiphysin does not diminish the high light scattering above that created upon addition 

o f GTP (Figure 5.8). This likely reflects the presence o f light scattering structures, such 

as tubules, upon incubation o f liposomes with these proteins.

This was observed by negative stain electron microscopy. Co-incubation of 

amphiphysin, endophilin, and dynamin with liposomes produces a phenotype consistent 

with an endophilin-dynamin dominant complex. In the presence o f  GTPyS, regular 

protein rings are seen decorating lipid tubules characteristic o f the morphology generated 

by a complex o f dynamin and endophilin, and/or amphiphysin (Figure 5.9A). In the 

presence o f GTP, tubules are still visualized in addition to smaller vesicular structures 

(not shown). This is similar to the effect produced when liposomes are incubated with
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Figure 5.8: Incubation of liposomes with amphiphysin, dynamin, and endophilin 

shows persistence o f high light scattering structures.

Liposomes incubated with dynamin and endophilin show a cooperative increase in the 

amount o f light scattering observed. The addition o f amphiphysin under these conditions 

does not reverse the light scattering effect. This reflects the persistence o f tubular 

structures seen by electron microscopy under these conditions, suggesting that the 

presence o f endophilin is able to prevent the loss o f light scattering normally seen upon 

incubation o f dynamin with both GTP and amphiphysin.
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Figure 5.9: Effect of liposome incubation with amphiphysin, endophilin, and 

dynamin seen by electron microscopy

(A) Liposomes incubated with amphiphysin, endophilin, and dynamin in the presence of 

GTPyS show long, straight tubules with a morphology characteristic o f  dynamin with 

either o f its two binding partners under these conditions as visualized by negative stain 

electron microscopy. (B) In the presence o f GTP, a phenotype more similar to the 

dynamin and endophilin complex is seen; however, occasionally we observed tubulated 

structures which were twisted and contorted as though in the process o f  vesiculation.

This may represent an intermediate to vesiculation seen in the presence o f amphiphysin, 

endophilin, and dynamin.
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dynamin and endophilin in the presence o f GTP. Occasionally in this preparation, 

however, the tubules assumed a contorted, twisted appearance, as though a rotational 

force is being applied (Figure 5.9B). This appeared to be an intermediate structure in the 

process o f vesiculation, and suggests a potential in vitro interaction between dynamin, 

endophilin, and amphiphysin in creating this phenotype. More definitive experiments 

will be needed to demonstrate a direct interaction amongst these three proteins on 

membranes.

Discussion

In this study, we have expanded on previous results showing an interaction 

between clathrin, AP2, and amphiphysin to examine the solution-membrane dynamics o f 

this interaction in an in vitro system with purified components. We have shown 

amphiphysin to have a specific interaction with lipid bilayers composed o f a total brain 

lipid extract, as evidenced by saturation binding in a liposome sedimentation assay. 

Amphiphysin has been shown to interact with clathrin-coat proteins in solution (Slepnev 

et al., 2000). In our assay, addition o f the lipid binding amphiphysin to purified clathrin- 

coat proteins enables the recruitment o f clathrin-coat proteins onto the liposomes. This 

indicates that amphiphysin binds both liposomes and clathrin-coat proteins in a bivalent 

manner, consistent with the separation o f these two binding sites in the amphiphysin 

molecule. The lipid binding region of amphiphysin maps within the NH2-terminal 37
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amino acids (Farsad et al., 2001), while the clathrin and AP2 binding sites are further 

downstream in the primary sequence structure o f amphiphysin (Slepnev et al., 2000).

In this in vitro assay, amphiphysin recruited clathrin more robustly than the 

clathrin adaptor, AP2 (not shown). The fact that intact coat-proteins were more 

efficiently recruited to liposomes than the separated components argues for a more 

complex interaction both within the coat complex itself, as well as between amphiphysin 

and the coat complex. Indeed, targeted disruption o f the amphiphysin 1 locus in mice 

resulted in a diminished steady-state level o f membrane association for both clathrin and 

AP2, indicative o f the intimate association o f these proteins in vivo (Di Paolo et al.,

2002). Multivalent binding between amphiphysin, clathrin, and AP2 may help 

concentrate these proteins in order to facilitate high efficiency synaptic vesicle recycling 

dynamics. Consistent with this, amphiphysin knock-out mice exhibited reduced synaptic 

vesicle recycling efficiency associated with severe cognitive deficits in fear conditioning 

and memory (Di Paolo et al., 2002).

Amphiphysin-stimulated clathrin-coat recruitment onto liposomes was more 

robust in the presence o f proteins involved in synaptic vesicle recycling known to interact 

with amphiphysin, namely, dynamin and endophilin (Grabs et al., 1997; Micheva et al.,

1997). Addition o f either the dynamin PRD or the endophilin SH3 domains increased the 

recruitment by amphiphysin o f  clathrin-coat proteins more than what was observed with 

amphiphysin alone. The fact that these isolated amphiphysin interacting domains 

increased the recruitment ability o f amphiphysin for clathrin-coat proteins suggests that
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these interactions somehow affect clathrin-coat recruitment by an intrinsic effect on 

amphiphysin itself. Using a GST-amphiphysin 2 construct, dynamin has been shown to 

displace clathrin from binding amphiphysin in solution, suggesting that binding of 

dynamin and clathrin to amphiphysin is competitive (McMahon et al., 1997). Our 

results clearly show an enhancement of amphiphysin-mediated clathrin recruitment to 

liposomes in the presence of dynamin, as opposed to a competitive interaction. Although 

these differences may be a reflection o f solution versus membrane dynamics, a complex of 

amphiphysin, dynamin, and clathrin has also been isolated in solution upon 

dephosphorylation o f endocytic proteins after nerve terminal stimulation (Slepnev et al.,

1998).

Intriguingly, despite the fact that both the dynamin PRD as well as the endophilin 

SH3 domain increase clathrin-coat recruitment mediated by amphiphysin, these two 

domains interact with different sites within the amphiphysin protein. One possible 

suggestion for how binding to different sites within amphiphysin produces the same 

effect with respect to clathrin-coat recruitment could be that these two binding sites 

somehow interact with each other in the native amphiphysin protein. The fact that these 

two binding sites are an SH3 domain and a poly-proline stretch, respectively, makes this 

possibility all the more plausible. Accordingly, we were able to detect a specific 

interaction between the full-length amphiphysin molecule and its SH3 domain by using 

purified components. Moreover, addition o f the amphiphysin SH3 domain to the 

reaction including full-length amphiphysin and clathrin-coat proteins increased the 

recruitment o f the coat proteins relative to amphiphysin alone. I f  present, amphiphysin
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intramolecular binding must be o f a low affinity nature, since amphiphysin is not detected 

by Coomassie staining in affinity chromatography experiments with whole brain extract, 

using the amphiphysin SH3 domain as bait. However, within the molecule itself, there is 

such a high local concentration o f ligand, that such an interaction may still be present.

Since the poly-proline region o f amphiphysin lies upstream o f the binding sites 

for clathrin and AP2, it is conceivable that putative intramolecular binding to this region, 

whereby the COOH-terminal amphiphysin SH3 domain folds back over itself to bind the 

upstream poly-proline stretch, regulates binding to clathrin-coat proteins. O f note, 

analysis o f  the exon-intron structure o f  the amphiphysin genes has determined the 

presence o f  an “endocytic exon,” exon 12, comprising four sub-exonal components found 

in amphiphysin isoforms which are thought to participate in endocytosis (Wechsler-Reya 

et al., 1997). In addition to the sequences mediating binding to clathrin and AP2, the 

poly-proline stretch is part o f this “endocytic exon” (W echsler-Reya et al., 1997), 

suggesting a functional link between these regions o f amphiphysin.

An intramolecular interaction between the amphiphysin SH3 domain and the 

upstream poly-proline region is appealing because it could potentially serve as a single 

switch to generate a non-reactive amphiphysin molecule (Figure 5.10). Through such an 

interaction, amphiphysin ostensibly would be unable to bind any o f  its major binding 

partners -  dynamin, synaptojanin, endophilin, clathrin, or AP2. Perhaps only through 

proper localization, amphiphysin could then be activated by exposing its binding sites. 

One potential function o f amphiphysin interactions with dynamin and endophilin at
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Figure 5.10: Model showing how an amphiphysin intramolecular interaction 

could regulate association with amphiphysin binding partners

Amphiphysin SH3-domain mediated intramolecular interaction with the polyproline 

region upstream o f the clathrin/AP2 binding site could conceivably block the association 

o f  amphiphysin with its major binding partners. Binding to either the SH3-domain or the 

polyproline region by other proteins would expose the remaining binding sites, and may 

explain the enhanced recruitment o f clathrin-coat proteins onto liposomes in the presence 

o f domains interacting with these regions in amphiphysin.
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highly concentrated foci would be to create an equilibrium favoring the open amphiphysin 

state only at areas primed for endocytosis. Consistent with this hypothesis, transfection 

o f an amphiphysin construct which has a mutated SH3 domain resulted in a potent 

inhibition o f endocytosis and an accumulation o f protein aggregates comprising the 

mutant amphiphysin construct, clathrin, and AP2. The mutant amphiphysin construct 

may no longer be able to maintain intramolecular interactions with its SH3 domain, and 

therefore may produce unregulated and dysfunctional binding to clathrin and AP2. Thus, 

a single intramolecular interaction within amphiphysin may serve to regulate the 

dynamics o f  this protein for its role in facilitating efficient synaptic vesicle recycling.

A complex consisting o f endophilin, amphiphysin, dynamin was detected in 

solution and, putatively, on liposomes, suggesting that multimeric ternary interactions 

between these proteins may enhance clathrin-coat recruitment. Endophilin and 

amphiphysin have distinct binding sites for dynamin and synaptojanin (Cestra et al.,

1999; Grabs et al., 1997; Ringstad et al., 1999), making it possible that a large 

macromolecular endocytic complex may exist at the nerve terminal. Moreover, 

endophilin, amphiphysin, and dynamin have all been shown to be dimers in solution 

and/or on the membrane, suggesting the potential for multivalent interactions (Farsad et 

al., 2001; Klockow et al., 2002; Ramjaun et al., 1999; Ringstad et al., 2001; Zhang and 

Hinshaw, 2001).
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A protein complex such as this would be a way to maintain the high specificity 

required for synaptic vesicle recycling, as well as to maintain the efficiency o f recycling 

by concentrating a pool o f  proteins involved in the endocytic reaction. Endocytic 

proteins have been shown to be highly concentrated in a localized area surrounding the 

active zone, where most synaptic vesicle recycling is believed to occur (De Camilli et al., 

2001b; Gad et al., 1998). Clustering o f proteins may facilitate protein polymerization 

phenomena such as clathrin-cage formation and dynamin oligomerization with endophilin 

and amphiphysin. As seen with microtubules and microfilaments, polymerization of 

proteins is directly related to protein concentration, and maintaining a highly concentrated 

pool o f proteins would serve to increase the efficiency o f producing a rapid 

polymerization event such as clathrin-coat formation (McKinley, 1983).

It is noteworthy that dynamin was found to have an independent stimulatory 

effect on clathrin recruitment to liposomes. This interaction with the clathrin-coat 

proteins was also reflected in the potent inhibition o f dynamin GTPase activity upon 

incubation with clathrin-coat proteins. Dynamin has been shown to have affinity for the 

appendage domain o f the alpha-adaptin subunit o f AP2 (Wang et al., 1995b). In addition, 

the dynamin PH domain is believed to have binding affinity for WD40/beta-transducin 

repeats, found in the beta-gamma subunit o f hetero-trimeric G-proteins known to interact 

with dynamin (Wang et al., 1995a). The amino-terminal domain o f the clathrin heavy 

chain has a beta-propeller structure which is related to those o f WD40 repeats, and 

therefore may serve as a potential binding substrate for dynamin (ter Haar et al., 2000). 

Although the direct inhibition o f dynamin GTPase activity by clathrin-coat proteins
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needs to be confirmed, it may suggest a mechanism whereby the fission activity of 

dynamin is regulated by the clathrin-coat so that unproductive and potentially destructive 

fission would not prematurely occur before the coat has assembled. This implies that 

another factor may relieve this inhibition to promote GTP hydrolysis and fission.
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