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ABSTRACT

Action potentials initiate via the voltage-dependent opening of plasma 

membrane-associated sodium channels. The number and type of sodium channels in a 

neuronal membrane determine the quantity of sodium current that results from a given 

stimulus. The expression of sodium channels in neurons is plastic, and is not only 

altered by injury and disease, but also by subtle changes in physiologic environment. In 

this dissertation, the effect of neuronal activity level on the expression and function of 

sodium channels is explored within several neuronal populations. First I examine the 

response of vasopressin-producing magnoceliuiar neurosecretory cells of the supraoptic 

nucleus to the hyperosmotic setting of chronic diabetes mellitus. Evidence for up-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



regulation of sodium channels, and metabolic overactivation leading to apoptosis, in 

these neurons is presented. Second, ! test the effect of electrical stimulation on 

expression of sodium channels in cultured sensory neurons. And lastly, I demonstrate 

that there is dysregulated sodium channel expression within cortical neurons in a 

specific region of the brain in a model of absence epilepsy.

Together, the results of these experiments support the hypothesis that the 

activity level of a neuron influences its rate of production and expression of sodium 

channels. Identification of this phenomenon could lead to new therapeutic strategies for 

1) limiting end-organ pathogenesis in diabetes (by reducing magnoceliuiar 

neurosecretory cell sodium channel activity, thereby preventing chronically up-regulated 

vasopressin secretion), 2) treating pain (by using stimulation to normalize post-injury 

sodium channel expression and reduce neuronal hyperexcitability), and 3) treating 

epilepsy (by targeted modulation or block of seizure-initiating sodium channel activity). 

Development of novel therapeutic approaches will depend on further characterization of 

the regulatory feedback mechanism that links changes in neuronal activity level with 

modulation of sodium channel expression.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 VOLTAGE-GATED SODIUM CHANNELS

Neuronal Information transmission occurs by voltage-gated sodium channel 

(VGSC)-dependent action potential firing. There are at least eight VGSC genes 

expressed throughout the nervous system, each with different tissue specificities and 

functional characteristics (Akopian et al., 1996; Black et al., 1996; Catterall, 2000; Dlb- 

Hajj et al., 1998a; Goldin et al., 2000; Kayano et al., 1986; Noda et al., 1986b; 

Sangameswaran et al., 1996; Schaller et al., 1995; Toledo-Aral et al., 1997) (Table 1.1). 

The distinct combination of VGSCs present in a neuronal membrane determines Its firing 

pattern and electrical conduction properties. VGSC expression Is a dynamic process, 

and alterations In physiological state as well as Injury and disease Induce changes In 

sodium channel expression, which lead to changes In neuronal behavior.

The VGSC Itself Is a polypeptide whose primary structure consists of a 260 kD a- 

subunlt associated with two p subunits (Isom et al., 1994), p i (36 kD) (Isom et al., 1992) 

and p2 (33 kD) (Isom et al., 1995). While sodium currents can be elicited by functional 

expression of the a-subunit alone (Goldin et al., 1986; Noda et al., 1986a), the 

P subunits are required for normal physiologic voltage-dependent kinetics (Isom et al., 

1992; Isom et al., 1995). The a-subunIt Is comprised of four Internally homologous 

domains (l-IV), each of which contains six transmembrane segments (S1-S6). The pore.
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through which sodium ions flow upon channel opening, is formed by close association of 

hydrophilic residues within S5 and S6 of each domain. Positively-charged residues on 

S4 endow the channel with voltage sensitivity.

Table 1.1. Voltage-gated sodium channel (VGSC) a-subunits (Goldin et al., 2000).

Channel Former name Expression

Navl.1 rat 1, SCN1A CNS/PNS
Navi .2 rat II, SCN2A CNS/PNS
N avi.3 rat III CNS/PNS
Navi .4 SkMI, p1 skeletal muscle
N avi.5 SkM2, HI heart muscle
N avi.6 NaCh6, PN4, Scn8a, Cer III CNS/PNS
N avi.7 hNE, PN1 PNS/Schwann cells
N avi.8 SNS, PN3 PNS
N avi.9 NaN, SNS2, PN5, Sen 12a PNS

1.2 PLASTICITY OF VGSC EXPRESSION IN INJURY AND DISEASE

Neuronal firing is critically dependent on the repertoire of sodium channels within 

the plasma membrane. Injury-induced changes in expression of multiple sodium channel 

subtypes can lead to altered firing properties including spontaneous ectopic activity and 

hyperexcitability (Rizzo et al., 1996). This effect has been studied in dorsal root ganglia 

(DRG) sensory neurons after a variety of injuries. Molecular analysis has revealed that 

different sodium channel genes underlie different currents recorded in DRG neurons: 

Aa/p neurons express tetrodotoxin-sensitive (TTX-S) currents which are generated by 

Navl.1, N avi.6 and N avi.7, while C-type neurons preferentially express tetrodotoxin- 

resistant (TTX-R) currents, generated by Navi .8 and Navi .9 (Akopian et al., 1996; 

Cummins et al., 1999).
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Following sciatic nerve axotomy, a down-regu!ation of TTX-R current 

corresponding to sodium channel genes Nav1.8 and Nav1.9 has been demonstrated in 

C-type DRG neurons (Cummins and Waxman, 1997; Dib-Hajj et al., 1996; Dib-Hajj et 

a!., 1998a; Sleeper et al., 2000). In addition, a previously silent rapidly-repriming TTX-S 

current, corresponding to the sodium channel Navi.3, is expressed in the axotomized 

neurons. Up-regulation of Navi .3 has also been demonstrated in dorsal horn neurons 

following contusion spinal cord injury (Hains et a!., 2003). These changes are thought to 

occur, at least in part, as a result of decreased neurotrophic factor availability in the 

transected axons. NGF deprivation is known to decrease Navi .8 expression and its 

TTX-R current in cultured DRG neurons (Fjell et al., 1999b). These changes in sodium 

channel expression contribute to the increased firing frequency observed following 

axotomy. Hyperexcitability leading to ectopic and spontaneous firing may underlie 

initiation and maintenance of neuropathic pain.

In addition to direct nerve injury, application of inflammatory mediators also alters 

sodium channel expression in DRG neurons. Carrageenan, which causes localized 

erythema, edema, and hyperalgesia when injected subcutaneously, induced an up- 

regulation of Navi .8 mRNA and TTX-R current in C-type DRG neurons (Tanaka et al., 

1998). It is thought that increased peripheral levels of NGF (produced normally by 

fibroblasts, Schwann cells, and keratinocytes, and by immune cells during inflammation) 

may cause the up-regulation of Navi .8 in this model.

Sodium channel plasticity has also been demonstrated in several diseases. In 

streptozotocin (STZ)-induced diabetes, DRG neurons up-regulate mRNA and protein 

expression of NavI.S, N av i.6, and N avi.9, and down-regulate expression of N avi.8, 

after the onset of allodynia (Craner et al., 2002a). This effect is associated with a 

significant down-regulation of IGF and its receptor in diabetic DRG neurons (Craner et 

al., 2002b). There is also evidence for up-regulated VGSC expression within cortical
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neurons in experimentai epilepsy (Aronica et al., 2001; Bartolomei et a!., 1997; Gastaldi 

et a!., 1998; Vreugdenhil et a!., 1998). Increases in expression of VGSCs producing 

persistent currents, in particular, may contribute to the sustained depolarizations 

characteristic of seizure activity (Segal and Douglas, 1997; Segal, 2002).

In all of these examples, neuronal activity is altered based on changes in 

transcription of normal sodium channel genes. These so-called “transcriptional 

channelopathies” are distinct from other channelopathies characterized by either 1) 

mutations causing abnormal or absent channel protein, or 2) autoimmune and toxic 

effects causing altered channel function (Waxman, 2001). The ability of a neuron to 

remodel its electrogenic apparatus by altering the number and ratio of various sodium 

channels in its membrane is a focus of this dissertation.

1.3 ACTIVITY-DEPENDENT MODULATION OF EXPRESSION

Do changes in neuronal activity induce plasticity of VGSC expression? At the 

transcriptional level, VGSC gene expression is known to be growth factor dependent 

(Fjell et al., 1999a), but the effect of afferent stimulation and neuronal firing on VGSC 

gene expression remains unclear. It has been suggested that neurons adjust their gain 

and excitability by altering VGSC expression to adapt to, or react to, new input 

environments (Desai et a!., 1999; Spitzer, 1999; Stemmier and Koch, 1999; Waxman, 

1999a; Woolf and Salter, 2000). The underlying activity-dependent transcriptional 

signals for these modifications are only partially understood. There is some evidence 

that activity-dependent changes in sodium channel expression are mediated through 

changes in intracellular calcium levels, but much of this data, as will be discussed, is 

derived from experiments on non-neuronal sodium channels, for example. Navi .4 in 

skeletal myotubes (Brodie et al., 1989; Monjaraz et al., 2000; Offord and Catterall, 1989; 

Sherman and Catterall, 1984; Shiraishi et al., 2001).
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Since alterations in physiologic environment influence the functional output of a 

neuron, a link between neuronal activity level and VGSC gene expression is anticipated 

(Fig. 1.1). If properly characterized, this link might provide a new paradigm for 

therapeutic control of neuronal transcriptional sodium channelopathies by activity 

modulation.

C a * '-

neurotrophic _  
growth factors

external environmental factors 
electrical stimulation 

stress

Na* Na* Na"

(sodium channels)/ AA/,
■5 . I >■ i-.. 
.... \ .

channel A 
transcription
&
; CREB, 

transcription, 
'  .....factors 

*  *  *

sodium
currer.t

membrane depolarization, 
impulse propagation

Fig. 1.1. The effect of neuronal activity on voltage-gated sodium channel expression is 

unknown, but likely involves regulatory feedback (question mark) that either directly or 

indirectly influences the activity of transcription factors.
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1.4 SPECIFIC AIMS

The objective of this dissertation is to identify whether changes in VGSC 

expression occur in experimental models where neuronal activity levels are altered. In 

Chapter 2, vasopressin producing neurons of the hypothalamic supraoptic nucleus are 

studied in the hyperosmotic setting of streptozotocin (STZ)-induced diabetes. In 

response to elevated serum osmolality, these neurons increase their synthesis of 

vasopressin. I demonstrate that the increased biosynthetic activity of these neurons is 

accompanied by up-regulated expression of two sodium channels, Navi ,2 and Nav1.6, 

and their currents. This molecular reorganization of the electrogenic apparatus enables 

these neurons to increase their firing, and this increases the depolarization-dependent 

calcium-mediated release of vasopressin. The long-term effects of this increased 

demand for vasopressin and up-regulated sodium channel expression are explored in 

Chapter 3, using 6 month STZ-induced diabetic animals. In these animals, apoptosis 

was detected in a sub-population of neurons within the supraoptic nucleus, indicating 

that chronic diabetes induces neuronal loss, possibly as a result of activity-dependent 

overactivation.

The effect of electrical activity on neuronal VGSC expression is examined in 

Chapter 4. Cultured embryonic mouse DRG neurons, which normally express high levels 

of N avis  and N av l9 , are known to down-regulate expression of these channels after 

NGF withdrawal. In these experiments I show that, using non-limiting concentrations of 

NGF, expression of N av lB  and N av l9  mRNA and protein are down-regulated following 

electrical stimulation. This finding provides direct evidence that sodium channel 

expression can be regulated and altered by changes in neuronal activity.

Epilepsy is a condition characterized by abnormally elevated neuronal activity, 

and therefore provides a useful model for studying activity-dependent changes in VGSC 

expression. I demonstrate that in a rodent model of absence epilepsy, mRNA and
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protein expression of Nav1.1 and Nav1.6 are up-regulated in layer ll-IV neurons 

specifically within the facial somatosensory region of the cortex, compared to controls 

(Chapter 5). This region of cortex approximately corresponds to the 

electrophysiologically-determined region of seizure onset in this model. The 

dysregulated sodium channel expression parallels the increase in seizure frequency and 

duration observed in these animals.

Activity-dependent modulation of VGSC expression is therefore explored within 

several neuronal populations, and the functional significance and implications of the 

observed changes are discussed within each chapter.
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CHAPTER 2

SODIUM CHANNEL EXPRESSION IN HYPOTHALAMIC 

OSMOSENSITIVE NEURONS IN EXPERIMENTAL DIABETES

2.1 SUMMARY

Vasopressin is synthesized by neurons in the supraoptic nucleus of the 

hypothalamus and its release is controlled by action potentials produced by specific 

subtypes of voltage-gated sodium channels expressed in these neurons. The 

hyperosmotic state associated with uncontrolled diabetes mellitus causes elevated 

levels of plasma vasopressin, which are thought to contribute to the pathologic changes 

of diabetic nephropathy. We demonstrate here that in the rodent streptozotocin model of 

diabetes there are increases in expression of mRNA and protein for two sodium channel 

a-subunits and two (3-subunits in the neurons of the supraoptic nucleus. Transient and 

persistent sodium currents show parallel increases in these diabetic neurons. In the 

setting of chronic uncontrolled diabetes, these changes in sodium channel expression in 

the supraoptic nucleus may be maladaptive, contributing to the development of 

secondary renal complications.
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2.2 INTRODUCTION

The role of the centra! nervous system in the pathophysiology of diabetes 

mellitus is incompletely understood. Vasopressin is synthesized in magnoceliuiar 

' neurosecretory cells (MNCs) of the supraoptic nucleus (SON) of the hypothalamus and 

released from the posterior pituitary in response to elevated plasma osmotic pressure. 

There is now evidence that prolonged elevated levels of vasopressin are a risk factor for 

the development of diabetic nephropathy, which can lead to end stage renal disease 

(Ahloulay et al., 1999; Bardoux et al., 1999). The amount of vasopressin released is a 

function of action potential firing in the MNCs. This firing, which occurs in a characteristic 

bursting pattern (Andrew and Dudek, 1983) is dependent on the opening of voltage- 

gated Na"' channels in the MNCs, and in fact, application of tetrodotoxin (TTX) to 

dissociated MNCs strongly reduces vasopressin secretion (Sperlagh et al., 1999).

At least eight types of voltage-gated sodium channels are expressed in neurons 

(Catterall, 2000; Goldin et al., 2000), each with different tissue specificities. These 

channels consist of an a-subunit which comprises the channel pore and voltage-sensor, 

and accessory p-subunits (Isom et al., 1994). Supraoptic MNCs express the Navi .2 and 

Navi .6 a-subunits, and p i and p2 subunits, under physiological conditions (Tanaka et 

al., 1999). Transcription of these channel subunits is up-regulated and increased 

numbers of functional subunits are inserted in the membranes of MNCs with chronic 

salt-loading, a maneuver that results in increased plasma osmolality; the increase in 

sodium channel expression can result in a lowered threshold for firing in the MNCs 

(Tanaka et al., 1999).

In this study we asked whether the hyperosmolality associated with diabetes 

could trigger a change in sodium channel expression in hypothalamic MNCs. After 

confirming in initial studies that sodium channels Navi .2 and Navi .6, but not N av i. 1 and
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Nav1.3, are present at significant levels in normal and diabetic SON, we focused on 

Nav1.2 and Nav1.6 and (31 and [32. We report here that in experimentally-induced 

diabetes, there is a previously undescribed change in the hypothalamus: molecular and 

functional alteration of MNCs by up-regulation of expression of specific a- and p-subunit 

sodium channel genes and insertion of additional functional channels into the 

membranes of these neurosecretory neurons.

2.3 MATERIALS AND METHODS

Induction of Diabetes. Adult male Sprague-Dawley rats (225-250 g) were injected with 

streptozotocin (STZ, 60mg/kg i.p., Sigma, St. Louis, Missouri). Plasma glucose (Encore 

Glucometer, Miles Inc., Elkhart, Indiana) and plasma osmotic pressure (Wescor model 

5500, Logan, Utah) were measured at intervals 2-6 weeks post-injection. Ten animals (5 

control, 5 diabetic) were studied 2-6 weeks after STZ injection using in situ hybridization, 

8 animals (4 control, 4 diabetic) using immunocytochemistry, and 10 animals (5 control, 

5 diabetic) using patch-damp electrophysiology.

In situ Hybridization. Rats were anesthetized with ketamine/xylazine (80/5 mg/kg, i.p.) 

and perfused with 4% paraformaldehyde in 0.14 M phosphate buffer. Brains were 

postfixed, cryoprotected and serial coronal sections (20 pm) including the supraoptic 

nucleus were cut. Control and diabetic sections were hybridized with isoform-specific 

riboprobes (Black et al., 1996) in parallel as described previously (Tanaka et al., 1999). 

Sense riboprobes yielded no signals on in situ hybridization (not shown).

Immunocytochemistry. Brains were postfixed, cryoprotected in PBS, and sections of 

SON (20 fim) were processed for immunocytochemistry as previously described

10
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(Tanaka et al., 1999) using antibodies to vasopressin (1:1000, Oncogene Research 

Products, San Diego, CA), or sodium channel subunits Navi .2 (1:100, Sigma), Navi .6 

(1:100, Alomone, Jerusalem, Israel), and the p2-subunit (1:100, Alomone). Control 

experiments without primary or secondary antibody incubations showed no staining.

Data Analysis. Quantitative microdensitometry of hybridization and immunostaining 

signals were performed using a Nikon Eclipse E80G light microscope (20X objective) and 

IPLab Image Processing software (Scanalytics Inc., Fairfax, Virginia). Signal intensities 

were obtained by manually outlining the SON and using IPLab integrated densitometry 

functions to calculate mean signal intensities for the selected areas. Background optical 

intensity measured adjacent to the SON in each section was subtracted from all signals; 

the results are expressed as means ± SEM. Diabetic tissue was compared to controls 

processed in parallel. Control and diabetic groups were compared using non-paired t- 

tests.

Patch clamp electrophysiology. MNCs in the SON were acutely dissociated from 

control and diabetic animals as previously described (Tanaka et al., 1999; Widmer et al., 

1997). MNCs were recorded in the whole-cell patch-clamp configuration as described 

previously (Tanaka et al., 1999) within two hours with an EPC-9 amplifier (HEKA 

electronics, Lambrecht/Pfaiz, Germany) using 1-2 MQ electrodes (85% series resistance 

compensation). The pipette solution contained (in mM): 140 CsF, 2 MgCIa, 1 EGTA, and 

10 Na-HEPES (pH 7.3) and the saline solution (above) was used as extracellular bath. 

All recordings were conducted at room temperature (-21 °C).
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2.4 RESULTS

Induction o f diabetes. All animals injected with STZ developed hyperglycemia (>250

pg/dl) and elevated plasma osmotic pressure compared with control animals injected 

with vehicle (control 294.3±6.5 mOsm; diabetic 314.4±7.6 mOsm; p<0.01). Animals were 

studied 2-6 weeks after injection with STZ. Vasopressin expression was up-regulated in 

the diabetic SON (Fig. 2.1).

Up-regulation o f sodium channel mRNA and protein In the diabetic SON. Because 

our earlier studies (Widmer et al., 1997) demonstrated that N av i.2, NavI.S, p i and p2 

(but not Navl.1 or NavI.S) are present in MNCs and are up-regulated by salt-loading, 

we focused on these channel subunits. In situ hybridization using isoform-specific anti

sense riboprobes showed that in control animals, there are moderate levels of mRNA for 

Na'" channel a-subunits N av i.2, NavI.S, and p-subunits p1 and p2. In diabetic animals, 

we observed a statistically significant (p<0.05) increase in mRNA levels for each of these 

four Na" channel subunits within the SON (Fig. 2.2). There was no change in sodium 

channel expression within the surrounding neuropil. Immunocytochemical observations 

using isoform-specific antibodies showed that there are parallel changes in protein for 

both of the a-subunits and the p2-subunit within the SON (Fig. 2.3).

Functional changes in diabetic MNCs. To determine whether the up-regulated mRNA 

and protein resulted in an increase in the number and/or density of functional channels 

inserted into the neuronal membrane, we acutely dissociated MNCs from control (n=5) 

and diabetic (n=5) animals and studied them using patch clamp electrophysiology. 

Control and diabetic MNCs both produced fast, TTX-sensitive sodium currents. The 

voltage dependence of activation and steady-state inactivation of the transient sodium
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current were similar for diabetic and control MNCs (Fig. 2.4A,B)- The time constant for 

inactivation (measured at 0 mV) was similar for MNCs from diabetic (x=.65±.03 ms, 

n=31) and control (x=.67±.03 ms, n=22) animals. However the peak transient current 

amplitude was 130% greater in MNCs isolated from the diabetic animals (Fig. 2.40; 

13.2±12.2 nA, control, n=23; 30.4±2.9 nA, diabetic, n=34; p<0.001). Since MNCs from 

diabetic animals showed an increased soma size (measured by cell capacitance; 

16.7±1.1 pF, control; vs. 20.0±0.9 pF, diabetic; p<0.05), peak current density (peak 

amplitude divided by cell capacitance) was also compared. Peak current density in 

diabetic MNCs was 65% greater (p<0.05) than in control animals (Fig. 2.4D).

Because persistent sodium currents are known to contribute to neuronal bursting 

(Crill, 1996; Parri and Crunelli, 1998; Taddese and Bean, 2002) and are increased in 

MNCs exposed to hyperosmolar conditions (Tanaka et al., 1999), we elicited persistent 

sodium currents by slow ramp depolarizations (233 mV/s) and compared them in control 

and diabetic MNCs (Fig. 2.4E). Both control and diabetic MNCs produced TTX-sensitive 

ramp currents that were activated at potentials close to threshold (-65 to -55 mV). The 

diabetic MNCs exhibited significantly larger ramp currents than control MNCs (218±29 

pA, control, n=21; 428+45 pA, diabetic, n=31; p<0.005). The ramp current density was 

-50% larger in the diabetic MNCs (21.5±2.0 pA/pF, n=31) than in control cells (14.5+2.5 

pA/pF, n=21, P<0.05) (Fig. 2.4D).
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Fig. 2.1. A. Streptozotocin-induced diabetes causes elevated serum osmolality. B. 

MNCs increase their production of vasopressin, as detected by vasopressin antibody 

immunoreactivity (left panel (VP) = control, right panel (VP*) = diabetic).
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Fig. 2.2. Sodium channel subunit mRNA transcripts are up-regulated In diabetic MNCs. 

A, Moderate levels of Nav1.2, Nav1.6, p1 and p2 were detectable In control SON (no *) 

and there was a significant up-regulatlon of each of these transcripts In the diabetic 

animals (*). The fields of control and diabetic tissue shown were digitally contrast- 

enhanced to qualitatively Illustrate the up-regulatlon of transcripts, but they do not 

Illustrate the quantitative magnitude of the changes. B, Optical Intensity measurements 

from unenhanced Images in the histogram provide quantitative comparisons between 

control (■ ) and diabetic (□ ) animals. Optical densities were normalized for each 

transcript to facilitate comparison of diabetic and control tissue. Error bars Indicate SEM, 

* = p<0.05.
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Fig, 2,3. Sodium channel subunit protein is up-regulated in diabetic MNCs. A, Moderate 

levels of Navi .2, Navi .6, and p2 were detectable in control SON (no *) and there was a 

significant up-regulation of each of these proteins in the diabetic animals (*). The fields 

of control and diabetic tissue shown were digitally contrast-enhanced to qualitatively 

illustrate the up-regulation of transcripts, but they do not illustrate the quantitative 

magnitude of the changes. B, Optical intensity measurements from unenhanced images 

in the histogram provide quantitative comparisons between control (■ ) and diabetic (□ ) 

animals. Optical densities were normalized for each channel to facilitate comparison of 

diabetic and control tissue. Error bars indicate SEM, * = P<0.05.
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Fig. 2.4. Comparison of sodium currents in control and diabetic MNCs. A, The 

normalized peak current-voltage relationship for control (■ ; MVk = -28.4+1.7 mV, n=16) 

and diabetic (O; V14 = -31.0±1.5 mV, n=28) MNCs are similar. B, Comparison of control 

(■ ; V72=-62.7±1 .2 mV, n=22) and diabetic (O; V72=-67.4±1.3 mV, n=32) MNC steady- 

state inactivation. Steady-state inactivation was measured with 500 ms inactivating 

prepulses. Cells were held at prepulse potentials over the range of -130 to -10 mV prior 

to a test pulse to 0 mV for 20 ms. Error bars indicate SEM. C, Family of traces from 

representative neurons acutely isolated from control (left panel) or diabetic (right panel) 

rats. The currents were elicited by 40 ms test pulses to various potentials from -80 to 40 

mV. Cells were held at -100 mV. D, The peak and ramp current densities (estimated by 

dividing the maximum currents by the cell capacitance) are larger in diabetic MNCs (□,
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n=34) than in control MNCs (H, n=23). Error bars indicate SEM, and the * indicates 

P<0.05. E, Representative ramp currents elicited in MNCs by slow voltage ramps (600 

ms voltage ramp extending from -100 to +40 mV) are shown.

2.5 DISCUSSION

Magnoceilular neurosecretory cells (MNCs) are responsible for the synthesis and 

controlled release of vasopressin. We have demonstrated that MNCs normally 

coexpress the Navl.2, N avi.6 , p i and p2 voltage-gated sodium cShannel subunits and 

that in experimental diabetes, the mRNA and protein levels for these sodium channel 

subunits are elevated. We have also shown that electrophysiological changes parallel 

these molecular changes.

Neuronal firing patterns are dependent on sodium currents, and persistent 

currents lower the threshold for firing and predispose neurons to fire spontaneously 

(Crill, 1996; Parri and Crunelli, 1998; Taddese and Bean, 2002). It is known that 

electrical activity, cAMP levels, and intracellular calcium influence sodium channel 

expression in excitable cells (Offord and Catterall, 1989; Sashihara et al., 1997), while 

activity-dependent phosphorylation state influences the functional properties of the 

channel (Cantrell and Catterall, 2001; Cukierman, 1996; Li et al., 1993). Consistent with 

increased transcription and translation of two sodium channel a-subunits and their 

insertion into the ceil membrane, we observed higher amplitudes and densities of two 

sodium currents (transient and persistent) in MNCs of diabetic rats, similar to the 

changes that accompany the transition of MNCs to the bursting state in salt-loaded rats 

(Tanaka et al., 1999). This would be expected to contribute to increased excitability and 

vasopressin release in diabetes.
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Diabetic nephropathy is thought to result from prolonged elevated levels of serum 

vasopressin (Ahloulay et al., 1999; Bardoux et al., 1999), which raise blood pressure and 

increase filtration demand to the kidneys (see Fig. 2.5). It has been demonstrated i) that 

the antidiuretic V2-receptor-dependent effects of vasopressin directly affect glomerular 

filtration rate and albumin excretion, and ii) that in STZ-injected vasopressin-deficient 

rats there is no hyperfiltration and decreased renal hypertrophy and albuminuria 

compared to controls (Bankir et al., 2001; Bouby et al., 1999). In this study we have 

shown that there is a link between the onset of experimental diabetes (which is 

associated with vasopressin release (Ahloulay et al., 1999; Bardoux et al., 1999)), and 

changes in sodium channel transcription and translation which result in the insertion of 

increased numbers of functional channels in the cell membrane of neurosecretory 

neurons within the hypothalamus. These changes in expression of sodium channels in 

the SON represent a previously undescribed change in the brain in experimental 

diabetes which may represent a component of the pathogenesis of diabetic nephropathy 

(see Fig. 2.5).
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Fig. 2.5. Chronic hyperglycemia induces changes in gene transcription in 

vasopressinergic MNCs of the hypothalamus and these changes, in turn, can contribute 

to the development of diabetic nephropathy.

Our results demonstrate up-regulation of sodium channel transcription, and 

insertion of increased numbers of functional sodium channels in the membranes of 

MNCs in experimental diabetes. We propose that, in untreated or under-treated 

diabetes, the SON attempts to correct osmolality and normalize blood pressure by 

persistent release of vasopressin, which requires sustained impulse activity. As 

discussed above, action potential activity in MNCs triggers the release of vasopressin, 

which over time irreversibly damages the microvasculature of the kidney and causes the 

changes characteristic of diabetic nephropathy. Identification of this change in the brain 

in experimental diabetes, and of the specific sodium channel subtypes associated with it, 

may suggest new therapeutic strategies for preventing or delaying the onset of vascular 

and renal complications of diabetes.
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CHAPTER 3

APOPTOSIS OF VASOPRESSINERGIC HYPOTHALAMIC 

NEURONS IN CHRONIC DIABETES MELLITUS

3.1 SUMMARY

The hyperosmolality associated with diabetes mellitus triggers an increase in 

neuronal activity and vasopressin production within magnoceilular neurosecretory cells 

of the hypothalamic supraoptic nucleus (SON). In this study, we examined the effect of 

chronic diabetes on the function and survival of these neurons. After 6 months, but not 6 

weeks, of streptozotocin (STZ)-induced diabetes, we observed an increase in the 

appearance of small hyperchromatic neurons, and a decrease in SON neuronal density. 

A sub-population of neurons within the SON at this time point demonstrated positive 

staining for cleaved caspase-3 and TUNEL, two markers of apoptosis. In addition, the 

number of vasopressin-positive neurons was decreased. Markers for apoptosis did not 

colocalize with vasopressin immunopositivity; this was probably due to a diabetes- 

induced degenerative process causing down-regulation of vasopressin expression 

and/or depletion of neuropeptide. Although the phenotypes of the apoptotic neurons 

were not identified, other SON neurons including oxytocin-producing neurons are 

unlikely to be affected by chronic hyperglycemia. Microglial hypertrophy and 

condensation was also observed in the 6 month diabetic SON. Although up-regulation of 

vasopressin production in response to acute hyperosmolality is adaptive, prolonged 

overstimulation of vasopressin-producing neurons in chronic diabetes results in 

neurodegeneration and apoptosis.
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3.2 INTRODUCTION

The diabetic state results in an increase in plasma vasopressin levels, primarily 

as a result of hyperglycemia-induced hyperosmolality. This effect is observed in humans 

with diabetes mellitus and in experimental models of diabetes (Bankir et al., 2001; 

Brooks et al., 1989; Van Itallie and Fernstrom, 1982). While elevated vasopressin levels 

may be adaptive in the short term, there is evidence suggesting that prolonged elevated 

levels of vasopressin can cause chronic renal hyperfiltration, albuminuria, and 

hypertrophy, and ultimately contribute to diabetic nephropathy and renal failure (Ahloulay 

et al., 1999; Bardoux et al., 1999).

Vasopressin is synthesized in magnoceilular neurosecretory cells (MNCs) within 

the supraoptic nucleus (SON) of the hypothalamus, and released from the neuropituitary 

in response to elevated plasma osmotic pressure. In diabetes, there is an increased 

demand on these neurons to produce enough vasopressin to maintain euvolemia and 

minimize fluid shifts between intracellular and extracellular environments.

Experimental evidence suggests that chronic overactivation of these neurons 

may have adverse effects on their survival. Ultrastructural studies first demonstrated that 

in streptozotocin (STZ)-induced diabetes there is an age-dependent progressive 

degeneration of SON neurons including the appearance of abnormal somata, dendrites, 

axonal profiles, and cytoplasmic vacuoles (Dheen et al., 1994a). This same study 

reported a significant increase in mean cross-sectional area and cross-sectional nuclear 

area of diabetic SON neurons compared to controls (Dheen et al., 1994a). Nuclear and 

somal hypertrophy is suggestive of increased mRNA and protein synthesis, which 

reflects the increased demand for, and production of, vasopressin in diabetic MNCs 

(Crespo et al., 1990). While the diabetic SON is indeed characterized by hypertrophic 

neurons, Luo et al. (2002) recently observed that in addition, shrunken and 

hyperchromatic neurons are also present.
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Changes in the transcription of several genes in diabetic SON neurons have 

been examined. After 4 months of STZ-induced diabetes, vasopressin levels in SON 

neurons remain elevated compared to controls, but there is less up-regulation compared 

to earlier time points (Luo et a!., 2002), suggesting that in chronic diabetes, a functional 

insufficiency of vasopressin production may develop. The expression of voltage-gated 

sodium channels Nav1.2 and Nav1.6, which support the bursts of action potentials that 

release vasopressin, is up-regulated in diabetic SON neurons (Klein et al., 2002). 

Likewise, the glutamate receptor NMDAR and neuronal nitric oxide synthase (nNOS), 

which plays a role in the modulation of secretion of vasopressin, are also up-regulated in 

diabetic SON neurons (Kadowaki et al., 1994; Luo et al., 2002; Serino et al., 1998). In 

these neurons, NMDAR and nNOS overactivation may be excitotoxic and result in 

degeneration or apoptosis (Brecht et al., 2001). Following STZ-induced diabetes, 

neuronal apoptosis has in fact been demonstrated in hippocampal neurons (Li et al.,

2002) and retinal ganglion cells (Barber et al., 1998; Zeng et al., 2000).

In the present study we asked whether chronic STZ-induced diabetes leads to 

apoptotic cell death in vasopressinergic neurons of the SON. We report here that in 

chronic STZ-induced diabetes, there is increased expression of activated caspase-3 and 

markers of DNA degradation within SON neurons, compared to age-matched 

normoglycemic controls. These changes were evident after 6 months of diabetes, but 

not after 6 weeks of diabetes. We propose that long-term neuronal overstimulation in 

chronic diabetes induces a heterogenous response in the SON; some neurons 

degenerate and/or undergo apoptosis while others continue to produce and secrete 

vasopressin.
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3.3 MATERIALS AND METHODS

Induction o f diabetes. Adult male Sprague-Dawley rats (225-250g) were injected with

streptozotocin (STZ, 60 mg/kg Lp., Sigma, St. Louis, MO). Animals were housed in a 12 

h light-dark cycle with free access to water and food. Plasma glucose (Encore 

Glucometer, Miles inc., Elkhart, IN) was measured at 6 weeks and 6 months post- 

injection and compared to control rats injected with saline. In total, 18 animals were 

used: 5 diabetic and 4 control rats at 6 weeks, and 5 diabetic and 4 control rats at 6 

months. All experimental manipulations were carried out in accordance with National 

Institutes of Health guidelines for the care and use of laboratory animals, and all animal 

protocols were approved by the Yale University Institutional Animal Care and Use 

Committee.

Neuronal morphology. All rats were anesthetized with ketamine/xylazine (80/5 mg/kg 

i.p.) and then underwent intracardiac perfusion with 0.01 M PBS followed by a 4% 

solution of cold buffered paraformaldehyde. Brains were removed, postfixed and 

cryoprotected in 30% sucrose in 1 M phosphate buffer solution (PBS), and coronal 

cryosections (10 pm) of cortex containing the SON were cut. Sections were stained with 

Cresyl Violet (Sigma). Neuronal area and diameter were determined by outlining 

individual neurons whose nuclei were visible in the plane of section, using IPLab vS.O 

Image Processing software (Scanalytics, Fairfax, VA). Counts of neurons within the SON 

were performed by arbitrarily selecting an area within the SON and averaging multiple 

counts (fj=6) of neurons from the 6 week and 6 month control and diabetic animals.

Immunocytochemistry. Sections were incubated in blocking solution (5% normal goat 

serum and 1% BSA in PBS) containing 0.1% Triton X-100 and 0.02% sodium azide at
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room temperature for 30 min, then incubated with antibodies to either vasopressin 

(1:1000, Oncogene Research Products, San Diego, CA), cleaved caspase-3 (1:50, Cell 

Signaling Technology, Beverly, MA), glial fibrillary acidic protein (GFAP) (1:50, 

Chemicon, Temecula, CA), or OX-42 (C DIIb/c) (1:50, BD Biosciences, Franklin Lakes, 

NJ) overnight at 4 °C. Sections reacted with the caspase-3 antibody were washed in 

PBS and incubated with biotinylated goat anti-rabbit serum (1:1000, Sigma) in blocking 

solution for 3 hours, then washed in PBS and incubated in ExtrAvidin-HRP (1:1000, 

Sigma) in blocking solution for 3 hours. These sections were then washed again in PBS 

and exposed to heavy metal enhanced 3,3’-diaminobenzidine*4HCI in IX  peroxide 

substrate buffer (Pierce, Rockford, IL) for 7 min, washed in PBS, and mounted with 

Aqua-Polymount (Polysciences, Warrington, PA). Alternatively, for double labeling 

experiments utilizing fluorescent labels, goat anti-rabbit lgG-Cy3 (1:2000, Amersham, 

Piscataway, NJ) and goat anti-mouse lgG-Cy2 (1:1000, Molecular Probes, Eugene, OR) 

secondary antibodies were used. Vasopressin signal was detected using rhodamine 

epifluorescence illumination (emission wavelength 570-620 nm) and GFAP and OX-42 

signals were detected using fluorescein epifluorescence illumination (emission 

wavelength 516-565 nm).

For detection of terminal d-UTP nick end labeling (TUNEL) of genomic DNA, 10 

pm coronal sections of SON that had been previously reacted with vasopressin antibody 

were incubated sequentially in: PBS, 3% H2O2 in methanol for 10 min., PBS, 0.1% Triton 

X-100 in freshly prepared 0.1% sodium citrate for 15 min., PBS, and a mix of 100 ml 

label solution (containing fluorescein-dUTP) and 400 ml enzyme solution (containing 

terminal deoxynucleotidyl transferase, TdT; In Situ Cell Death Detection Kit, Roche, 

Indianapolis, IN), at room temperature for 3 hours.

Following vasopressin and TUNEL localization, sections were reacted with the 

nuclear stain Hoechst 33342 (10 pg/ml. Molecular Probes) for 10 min, washed with PBS,
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and mounted with Aqua-Polymount. TUNEL positive neurons were detected using 

fluorescein epifluorescence illumination. Hoechst 33342 signal was observed using 

ultraviolet (UV) fluorescence illumination. To evaluate colocalization of staining, 

rhodamine-, fluorescein-, and UV-filtered images were merged using Adobe Photoshop 

v5.5.

Data Analysis. Quantitative microdensitometry was performed with a Nikon Eclipse 

E800 light microscope (20X objective) using IPLab software (Scanalytics). Signal 

intensities were determined by outlining individual neurons, and IPLab integrated 

densitometry functions were used to calculate mean signal intensities for the selected 

areas. Only neurons with distinct borders and visible nuclei in the plane of section were 

counted. Immunopositive neurons were defined as signal greater than 2X background 

levels and specifically localized within the margins of the neuronal plasma membrane. 

Immunopositive neurons were counted as a fraction of total neurons in the SON. TUNEL 

positive neurons were also compared to counts of vasopressin positive neurons in the 

SON. Data from neuron counting procedures was analyzed using one-way ANOVA with 

post-hoc multiple comparison analysis. Microglial morphology was quantified by 

comparing the maximum microglial cell diameter including dendritic processes in control 

and diabetic animals (Kreutzberg, 1996), and analyzed using a nonpaired t-test. An 

alpha level of 0.05 was used as a threshold for statistical significance. All data is 

presented as mean ± SE.

3.4 RESULTS

Morphological changes occur in diabetic MNCs. All animals injected with 

streptozotocin (STZ) developed hyperglycemia (>250 pg/dl) compared to control animals 

injected with saline. After either 6 weeks or 6 months, tissue sections of supraoptic
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nucleus (SON) from control and diabetic animals were stained with Cresyl Violet (NissI) 

to examine changes in cellular morphology. In control animals at 6 weeks and 6 months, 

there was relatively little variation in cell size, with the majority of neurons in the 10-15 

fim range (Fig. 3.1A,A’,C,C’). In contrast, after 6 weeks of diabetes, there was a change 

in size distribution of magnoceilular neurosecretory cells (MNCs) such that a greater 

proportion of neurons were larger (15-25 pm) (Fig. 3.1B,B’). After 6 months of diabetes, 

an even greater heterogeneity of SON size was observed: there was a similar trend 

toward larger neurons, but in addition, there was an increased proportion of smaller 

neurons (<10 pm) (Fig. 3.1D,D’), which were not seen in controls or the 6 week diabetic 

SON. The larger neurons showed nuclear and Golgi distention and cytoplasmic swelling 

and vacuolization (arrows), while the smaller neurons tended to be hyperchromatic 

(arrow heads).

Counts of neurons revealed no significant difference between 6 week and 6 

month control SONs, or between 6 week diabetic and 6 week control SONs. In the 6 

month diabetic animals, neuronal density was significantly decreased, by 34.5% 

compared to 6 month controls (Fig. 3.IE, *=p<0.05).

Cleaved caspase-3 expression is up-regulated in the chronically diabetic SON.

Cleaved caspase-3 is the activated form of caspase-3, a critical effector of apoptosis 

(Cohen, 1997). Immunocytochemistry using an antibody directed against cleaved 

caspase-3 revealed low levels of caspase-3 immunoreactivity in neurons from control 

animals at 6 weeks and 6 months, and from diabetic animals at 6 weeks (Fig. 3.2A-C). 

Six month diabetic animals demonstrated a large up-regulation of cleaved caspase-3 

expression, which was visible in the cytoplasmic compartment of the neurons (Fig. 

3.2D). 28% of SON neurons in the 6 month diabetic group were immunopositive.
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compared to approximately 5% in the other groups (Fig. 3.2E, *=p<0.05). In general, the 

level of immunostaining of neurons in the 6 week diabetic group (Fig. 3.2B) was greater 

compared to the controls (Fig. 3.2A,C), but many of these moderately stained neurons 

(Fig. 3.2B) were not above the threshold for inclusion in the immunopositive group.

DNA fragmentation occurs in the chronically diabetic SON. Having demonstrated an 

up-regulation of caspase-3 in the 6 month diabetic SON, we sought to confirm these 

findings using an additional marker of apoptosis. The TUNEL assay was used to identify 

DNA strand breaks, which occur in apoptotic neurons as a result of cleavage of genomic 

DNA. At 6 months, TUNEL positive neurons were not seen in control MNCs (Fig. 3.3B), 

but were clearly visible in neurons in the diabetic SON (Fig. 3.3E, arrows). Fig. 3.3A and 

D are phase-contrasted images of the cells shown in B and E. Fig. 3.30 and F are 

overlays of 3.3A and B, and 3.3D and E, respectively. TUNEL positive neurons were 

detected extremely infrequently in the 6 week control, 6 week diabetic, and 6 month 

control SON, and were significantly increased in 6 month diabetic SON (Fig. 3.4, 

*=p<0.05).

TUNEL and vasopressin are not colocallzed in the chronically diabetic SON. It is

well established that vasopressin is up-regulated in diabetic MNCs, and it has been 

hypothesized that neuronal overactivation due to chronic hyperosmotic stimulation may 

lead to neuronal degeneration and apoptosis. Table 3.1 shows a quantification of 

neuronal phenotype in control and diabetic animals after 6 weeks and 6 months of 

diabetes. These measurements indicate that (1) the percent of vasopressin-positive 

neurons in increased in 6 week diabetic animals; (2) the number of vasopressin-negative 

neurons in decreased in 6 week and 6 month diabetic animals; (3) the number of 

vasopressin-positive neurons is decreased in 6 month diabetic animals, and (4) the
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number of total SON neurons in decreased in 6 month animals. We then attempted to 

correlate vasopressin immunoreactivity with TUNEL staining in the 6 month diabetic 

animals. Vasopressin immunopositive neurons are clearly visible in Fig. 3.5A (arrow 

heads). TUNEL positive neurons can be seen in Fig. 3.5B (arrows). Hoechst 33342 

staining of nuclei is shown in Fig. 3.5C. The vasopressin immunopositive neurons had 

normal-appearing nuclei (Fig. 3.5C, arrow heads), while the TUNEL positive neurons 

showed condensed, pyknotic, and irregular nuclei (Fig. 3.5C, arrows). Overlay of Fig. 

3.5A-C, as seen in Fig, 3.5D, demonstrated that after 6 months of diabetes, vasopressin 

positive neurons do not exhibit overlap with TUNEL positive neurons. This result was 

quantified in Fig. 3.4. The apoptotic neurons appeared to comprise a separate 

population from the presumably functional vasopressin-producing neurons.

Microglial activity is enhanced in the diabetic SON. Because neuronal density in the 

6 month diabetic SON was decreased (Fig. 3.1E), we examined the possibility that 

microgliosis and/or astrocytosis occurs in conjunction with neuronal degeneration and 

apoptosis. Vasopressin and either OX-42 (a marker for activated microglia) or GFAP (a 

marker for reactive astrocytes) were detected simultaneously in tissue slices containing 

the SON, using fluorescence microscopy. At 6 weeks, the SON from both control and 

diabetic animals showed similar staining for OX-42 (Fig. 3.6A,B), and GFAP (Fig. 

3.6A’,B’). At 6 months, GFAP staining in both the control and diabetic SON was 

modestly increased compared to 6 weeks, and GFAP staining in control and diabetic 

SON appeared similar at this time point (Fig. 3.6A’,B’,C’,D’). In contrast, OX-42 staining 

in the 6 month diabetic SON showed hypertrophic and condensed microglia (Fig. 3.6D, 

arrows), which differed from the normal branched dendritic pattern seen in controls (Fig. 

3.60, arrow heads). The maximum diameter of microglial cells including their dendritic 

processes was quantified (Fig. 3.6E). Six month diabetic animals demonstrated
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truncated processes and reduced maximum cell diameter suggesting microglial 

activation in these animals.
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Fig. 3.1. Morphological changes of diabetic neurons. Cresyl violet staining of sections of 

supraoptic nucleus from 6 week control (A) and diabetic (B), and 6 month control (C) 

and diabetic (D) animals. Arrows in B and D indicate hypertrophic neurons; arrow heads 

in D indicate shrunken, hyperchromatic neurons. Size frequency histograms 

corresponding to A-D are shown in A’-D’ . Neuronal density is quantified in E. Scale bar 

in A = 50 |im. Data are plotted as mean ± SE, * = p <  0.05.
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Fig. 3.2. Cleaved caspase-3 Immunoreactivity in sections of supraoptic nucleus from 6 

week control (A) and diabetic (B), and 6 montfi control (C) and diabetic (D) animals. 

Images were converted to greyscale and identically digitally contrast-enhanced to 

qualitatively illustrate differences in immunostaining. Quantitative microdensitometry of 

unenhanced images was used to obtain data shown in E. Neurons defined as 

immunopositive demonstrated signal greater than 2X background levels with staining 

specifically localized to within the margins of the plasma membrane. Scale bar in (A) = 

50 pm. Data are plotted as mean ± SE, * = p < 0.05.
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Fig. 3.3. TUNEL assay for apoptosis-related DNA fragmentation. Pfiase-contrast Images 

of 6 month control (A) and diabetic (D) supraoptic nucleus are shown to identify neuronal 

boundaries. TUNEL staining Is shown for 6 month control (B) and diabetic (E) sections. 

C Is an overlay of A and B, and F is an overlay of D and E. Positive TUNEL staining (E, 

arrows) occurs within neuronal boundaries (F, arrows), and Is not detected In control 

SON neurons (C, arrow heads). Scale bar In A = 50 pm. Data are plotted as mean ± SE, 

* = p <  0.05.
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Fig. 3.4. Quantification of TUNEL positive neurons within the supraoptic nucleus of 6 

week and 6 month control and diabetic animals (white bars). TUNEL positive neurons 

demonstrated signal greater than 2X background levels. The percentage of neurons that 

were both TUNEL positive and vasopressin immunopositive is shown (grey bars). Data 

are plotted as mean ± SE, * = p < 0.05.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. 3.5. Vasopressin (VP), TUNEL, and Hoechst 33342 (H33342) images from 6 month 

diabetic supraoptic nucleus. Vasopressin immunopositive neurons are clearly visible in A 

(arrow heads). TUNEL positive cells are visible in B (arrows). Hoechst 33342 nuclear 

stain is shown in C. Arrow heads in C showing low intensity nuclear staining correspond 

to vasopressin immunopositive neurons in A. Arrows in C showing pyknotic, condensed, 

and hyperchromatic nuclei correspond to TUNEL positive cells in B. Overlay of A, B, and 

C is shown in D; arrow heads correspond to vasopressin immunopositive neurons, 

arrows correspond to TUNEL positive neurons. Scale bar in A = 50 pm.
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Fig. 3.6. Glial response to chronic diabetes. Sections of supraoptic nucleus were stained 

with vasopressin (red) and either OX-42 (green, left panels. A-D) or GFAP (green, right 

panels, A ’-D’). A and A’ are from 6 week controls; B and B’ are from 6 week diabetics; C 

and C’ are from 6 month controls; and D and D’ are from 6 month diabetics. Arrow heads 

in C show normal branched dendritic microglial morphology. Arrows in D show 

hypertrophic and condensed microglia. Insets in A-D show greater detail of microglial 

cells. The histogram in E is a quantification of changes in microglial morphology. Six 

month diabetic animals demonstrate reduced maximum cell diameter suggesting 

microglial activation. Data are plotted as mean ± SE, * = p < 0.05. Scale bar in A = 50

|Lim.

Table 3.1. Quantification of SON neuronal phenotype. Data is shown as mean ± SE, 

p <0.05; significant difference from corresponding control group.

VP+ VP- Total

6 week control 20.0 ± 5.5 (29.3%) 48.3 ± 3.5 (70.7%) 68.3 ± 5.5 (100.0%)

6 week diabetic 24.3 ±3.3 (40.1%*) 36.3 ± 2.6* (59.9%*) 60.7 ±3.8 (100.0%)

6 month control 20.0 ± 2,0 (29.9%) 46.6 ± 5.5 (70.1%) 66.7 ± 5.4 (100.0%)

6 month diabetic 14.0 + 0.8* (27.5%) 37.0 ± 1.5* (72.5%) 51.0 ±2.2* (100.0%)
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3.5 DISCUSSION

The hyperosmolality associated with diabetes mellitus triggers both structural and 

metabolic changes within magnoceilular neurosecretory cells (MNCs) of the 

hypothalamic supraoptic nucleus (SON). These changes occur, at least in part, as a 

result of neuronal activation and the demand for increased production and secretion of 

vasopressin. It is well established that chronic neuronal overactivation can lead, by a 

variety of mechanisms including nNOS activation and progressive intracellular calcium 

accumulation, to neuronal degeneration and apoptosis (Brecht et al.. 2001; Dawson et 

al., 1991). In the present study, we asked the question of whether apoptosis occurs 

among vasopressin-producing neurons after prolonged diabetes. We utilized 

morphometric and immunocytochemical criteria to examine diabetic SON neurons.

Although we did not label SON neurons that produce and secrete oxytocin, it is 

unlikely that these neurons are affected by experimental diabetes. Our use of male 

animals also limited gender effects on oxytocin secretion. Assuming the oxytocin 

neurons do not become overactivated or undergo apoptosis as a result of chronic 

diabetes, then our estimates of vasopressin neuron loss in diabetes are, if anything, an 

underestimate of the actual percentage of vasopressin neurons lost in chronic diabetes.

Our principal findings are that after 6 months of diabetes: (1) small 

hyperchromatic neurons with condensed and irregular somal and nuclear profiles are 

present in addition to hypertrophic neurons; (2) neuronal density is significantly 

decreased in the SON; (3) cleaved caspase-3 immunoreactivity is up-regulated in a sub

population of SON neurons; (4) DNA fragmentation is detectable in some SON neurons; 

(5) the number of vasopressin-positive neurons is decreased; (6) TUNEL positive 

neurons do not colocalize with vasopressin-producing neurons; and (7) microglial 

hypertrophy and condensation is evident. Identification of neuronal apoptosis in the SON 

after chronic diabetes is an important finding, as tight regulation of plasma osmolality is a
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critical physiologic requisite, without which dysregulation of fluid homeostasis will occur.

Analysis of neuronal area and diameter by Cresyl Violet staining provided the 

first suggestion of neuronal degeneration and apoptosis in this study. The 6 month 

diabetic SON contained a unique population of neurons that were <10 pm in diameter 

and appeared hyperchromatic. Neuronal density was also decreased in the 6 month 

diabetic SON. We reasoned that cell death by an apoptotic mechanism might account 

for these changes, and assayed for several hallmarks of apoptosis to test this 

hypothesis.

Caspase-3 is an important regulator of apoptosis, and its proteolytically cleaved 

form is known to be up-regulated in neurons undergoing apoptosis (Kermer et al., 1999; 

Srinivasan et al., 1998). In our study, cleaved caspase-3 immunoreactivity was strongly 

up-regulated in 6 month diabetic SON neurons (Fig. 3.2). The interval over which 

cleaved caspase-3 yields an immunopositive signal is thought to span the entire active 

process of neuronal degeneration, and thus may include much of the time course of 

apoptosis (Brecht et al., 2001). Therefore, the percent of immunopositive neurons 

reported in Fig. 3.2E may not be an accurate measure of the incidence of apoptosis, and 

almost certainly represents an overestimate of the rate of neuronal death at any given 

time point. Morphological assessment of neurons expressing cleaved caspase-3 might 

be helpful in determining how far along the apoptotic process individual neurons are.

The TUNEL assay is a useful marker for apoptosis-related genomic DNA 

fragmentation (Gavrieli et al., 1992; Migheli et al., 1995) and was used in conjunction 

with caspase-3 immunoreactivity in this study as a second marker of apoptosis. DNA 

fragmentation results from oxidative DNA damage and is a final irreversible step of the 

apoptotic process (Brecht et al., 2001). Neurons only transiently show positive TUNEL 

staining and therefore TUNEL positivity may be a more accurate reflection of the 

incidence of neuronal death compared to caspase-3 immunoreactivity (Duan et al.,
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2003). Detection of TUNEL positivity, however, is challenging. Whereas 

immunocytochemical procedures benefit from signal-boosting amplification steps such 

as the biotin-avidin-HRP process, the TUNEL reaction is a one-step procedure. In our 

study, it was necessary to increase the gain (identically for diabetic and control tissue 

slices) on the microscopic images in order to detect and compare TUNEL positive and 

TUNEL negative neurons (Fig. 3.3). It is possible, as a result of this manipulation, that 

our false positive rate was increased, and that the percentages of TUNEL positive 

neurons shown in Fig. 3.4 are in fact an overestimate. In order to more accurately 

confirm TUNEL positivity, we used Hoechst 33342 nuclear staining as a means of 

colocalization with the TUNEL signal (Fig. 3.5). TUNEL positive neurons showed 

pyknotic and irregular nuclei, which are characteristic of apoptotic cell death (Fig. 3.5C, 

arrows).

In addition to apoptosis, the decreased neuronal density observed in the 

chronically diabetic SON could also be due to gliosis, and reflect a relative dilution of 

neurons by proliferating astrocytes and microglia. Peri-neuronal astrocytes can modulate 

hormone release by altering their processes. In rats subjected to dehydration (and 

consequent hyperosmolality), a gross retraction of astrocytic processes has been 

reported in the SON, which is reversible with hydration (Hawrylak et al., 1998). Detailed 

ultrastructurai analysis of this phenomenon reveals that in dehydrated rats 

neurovascular astrocytic contacts expand while neuroglial contacts decrease in size 

(Miyata et al., 2001; Miyata and Hatton, 2002). The increase in terminal-capillary 

contacts provides a route for increased neuropeptide release.

Like the dehydrated state, chronic diabetes subjects the SON to a hyperosmotic 

environment, and triggers an increase in vasopressin production and release. 

Immunocytochemical experiments have shown astrocyte retraction and condensation in 

the diabetic SON (Luo et al., 2002). In contrast to this response to dehydration,
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astrocytes can also hypertrophy following neuronal injury and degeneration. GFAP 

immunoreactivity in the chronically diabetic SON may therefore reflect multiple (and 

possibly opposing) factors, and in this study, the pattern of GFAP staining in diabetic 

SON was not distinguishable from age-matched control SON.

Previous work has shown that microglia within the SON hypertrophy and shorten 

their processes in response to diabetes (Luo et al., 2002). In the present study, this 

effect was clearly evident after 6 months of diabetes. Microgliosis and microglial 

activation can occur in response to a variety of stimuli including neuronal ischemia, 

inflammation, infection, neoplasia, and neurodegeneration (Kreutzberg, 1996). 

Neurotoxic overactivation and apoptosis were the likely triggers for microglial 

proliferation, condensation, and truncation of processes as seen in Fig. 3.6.

Several important questions are raised by this study. First, why were the 

apoptotic changes not seen at 6 weeks? Because there is no time point at which acute 

diabetes is delineated from chronic diabetes, it is not possible to conclude that the onset 

of neuronal apoptosis corresponds to chronic diabetes. Instead, the detection of 

apoptosis after 6 months of diabetes is indicative of a dynamic process of accumulating 

neuronal injury which is likely to be present at lower levels, in this case, largely 

indistinguishable from controls, at the 6 week time point.

Second, as shown in Fig. 3.4, the rate of vasopressin and TUNEL overlap is very 

low in the diabetic SON. A possible explanation for this is that overstimulated neurons 

reach a degeneration threshold, where normal function (vasopressin production) is 

attenuated and the irreversible steps of apoptosis (positive TUNEL signal) begin. The 

few neurons that demonstrated positive labeling for both vasopressin and TUNEL may 

have been transitioning between functioning and degenerating states. The molecular 

changes that account for this transition may result from alterations in intracellular 

calcium homeostasis, secondary to neuronal overstimulation. Elevated intracellular
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calcium levels are known to exist within many diabetic tissues (Levy et al., 1994). 

Diabetic hippocampal neurons, for example, undergo a slow progressive dysregulation 

of calcium homeostasis, which at first alters their synaptic function (Biessels et al., 2002; 

Kama! et al., 1999), and can eventually lead to apoptosis (Li et al., 2002).

Diabetes remains a chronic progressive disease with significant vascular and 

neurologic complications (Biessels et al., 1994; Donnelly et al., 2000; McCall, 1992). 

While chronically up-regulated circulating levels of vasopressin can cause glomerular 

damage within the kidney, we have shown here that chronically overstimulated 

vasopressin-producing neurons within the SON undergo apoptosis. While up-regulation 

of vasopressin is adaptive in an acute hyperosmotic state, our results suggest that 

chronic hyperosmolality may result in a pathologic sequence of neurotoxic events which 

ultimately lead to neuronal loss.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

PATTERNED ELECTRICAL ACTIVITY MODULATES SODIUM

CHANNEL EXPRESSION IN SENSORY NEURONS

4.1 SUMMARY

Peripheral nerve injury induces changes in the level of gene expression for 

sodium channels Nav1.3, Nav1.8, and Nav1.9 within dorsal root ganglion (DRG) 

neurons, which may contribute to the development of hyperexcitability, ectopic neuronal 

discharge, and neuropathic pain. The mechanism for this change in sodium channel 

expression is unclear. Decreased availability of neurotrophic factors following axotomy 

contributes to these changes in gene transcription, but the question of whether changes 

in intrinsic neuronal activity levels alone can trigger changes in the expression of these 

sodium channels has not been addressed. To examine this question, I carried out 

experiments in which the effect of electrical stimulation on the expression of Navi.3, 

Navi.8, and N avi.9 was examined using cultured embryonic mouse sensory neurons 

under conditions in which NGF was not limiting. Expression of Navi .3 was not 

significantly changed following stimulation. In contrast, we observed activity-dependent 

down-regulation of Navi .8 and Navi .9 mRNA and protein levels following stimulation, as 

demonstrated by quantitative PCR and immunocytochemistry. These results show that a 

change in neuronal activity can alter the expression of sodium channel genes in a 

subtype-specific manner, via a mechanism independent from NGF withdrawal.
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4.2 INTRODUCTION

Action potential generation within neurons is dependent on the activity of voltage- 

gated sodium channels (VGSCs). At least nine VGSC genes are expressed throughout 

the nervous system, each with different expression patterns and functional 

characteristics (Catterall, 2000; Goldin et al., 2000). The precise combination of 

channels in a neuronal membrane influences its excitability, and injury-induced 

alterations in the expression of VGSCs can lead to ectopic or spontaneous firing, 

thereby contributing to hyperalgesia and allodynia (Cummins and Waxman, 1997; 

Waxman et al., 2000). Because of the importance of sodium channels in action potential 

generation, and the injury-induced changes in axonal firing, it is difficult to determine 

whether changes in sodium channel expression are triggered by the abnormal axonal 

firing patterns, or rather depend entirely on activity-independent means of regulation, 

such as a response to changing growth factor levels.

Dorsal root ganglia (DRG) sensory neurons express multiple VGSC genes (Black 

et al., 1996; Caffrey et al., 1992; Sleeper et al., 2000). In addition to tetrodotoxin (TTX)- 

sensitive sodium channels, DRG neurons produce two unique TTX-resistant channels, 

N av i.8 (SNS/PN3) and Navi.9 (NaN), which are preferentially expressed in small 

nociceptive sensory neurons (Akopian et al., 1996; Dib-Hajj et al., 1998a; Dib-Hajj et al., 

1999a; Sangameswaran et al., 1996).

The maintenance of expression of N avi.8 and N avi.9, and of TTX-sensitive 

sodium channel N avi.3, in DRG neurons is dependent on the presence of neurotrophic 

growth factors, in vitro and in vivo studies have demonstrated a down-regulation of 

N av i.8 and N avi.9 and an up-regulation of N avi.3 following withdrawal of NGF and 

GDNF (Black et al., 1999a; Boucher et al., 2000; Cummins et al., 2001; Fjell et al., 

1999b) and axotomy (Dib-Hajj et al., 1998a; Sleeper et al., 2000; Waxman et al., 1994). 

Exogenous administration of specific growth factors can rescue the expression of
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Nav1.8 and Nav1.9 within axotomized DRG neurons (Boucher et a!., 2000; Cummins et 

al., 2001; Dib-Hajj et a!., 1998b; Fjeil et al., 1999a; Leffler et al., 2002).

While changes in neurotrophic growth factor availability can alter sodium channel 

expression, neurons can also adjust their gain and excitability by modulating sodium 

channel expression to adapt to, or react to, new input environments or new functional 

requirements. Evidence from a number of laboratories suggests that neurons can adjust 

their responsiveness by altering the number or kinetics of sodium channels In their 

membranes in order to electrically encode the changing range of stimulation to which 

they are exposed (Desal et al., 1999; Tanaka et al., 1999). It Is not known whether 

Impulse activity can regulate sodium channel expression in DRG neurons, although 

electrical stimulation has been shown to regulate the expression of voltage-gated 

calcium channels in DRG neurons (Li et al., 1996) and TTX-sensltlve sodium channels in 

skeletal myocytes (Brodle et al., 1989; Offord and Catterall, 1989; Sherman and 

Catterall, 1984).

In this study, we asked whether the expression of sodium channels N avi.3, 

N avi.8 and N av i.9 changes In cultured mouse sensory neurons as a result of patterned 

electrical stimulation. Because growth factors can affect sodium channel expression 

(Cummins et al., 2001; Dib-Hajj et al., 1998b; Fjell et al., 1999a) and stimulation can 

trigger release of growth factors (Balkowlec and Katz, 2000, 2002), we attempted to 

isolate the effect of activity on sodium channel expression independent of growth factor 

effects by supplying non-limiting amounts of NGF (50 ng/mL). Immunocytochemistry and 

quantitative PCR were used to identify changes in expression of mRNA and protein for 

N avi.3, Navi.8 and N av i.9.
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4.3 MATERIALS AND METHODS

Cell Culture. DRG neurons from E13.5 day fetal mice were dissociated in 0.125% 

trypsin and placed into culture media containing 5% horse serum and 50 ng/m l NGF as 

previously described (Fields et al., 1997). Provision of 50 ng/mL NGF to both stimulated 

and non-stimulated cultures insured that all neurons were exposed to a high level of 

NGF. For control experiments demonstrating the effect of NGF withdrawal on the 

expression of Navi .3, Navi .8 and Navi .9, media without NGF was used during the 5- 

day period of testing. DRG neurons (125,000 cells per side compartment) were plated in 

the two side compartments of a 3-multicompartment culture chamber (Campenot, 1977; 

Fields et al., 1990) and incubated in humidified 10% CO2  at 37 °C. Shallow parallel 

scratches (20-25 per plate) in the collagen-coated plastic culture dish helped direct 

neurite outgrowth from the side compartments into the central compartment. Mitosis of 

non-neuronal cells was inhibited by adding 13 pM FUDR applied one day after plating. 

Half of the volume of culture medium was changed every two days. All experimental 

manipulations were carried out in accordance with NIH guidelines for the care and use of 

laboratory animals, and all animal protocols were approved by the NIH Institutional 

Animal Care and Use Committee.

In Vitro Electrical Stimulation. DRG neurons were maintained in culture for 3 weeks 

prior to electrical stimulation. Culture chambers were randomly assigned to a control 

(non-stimulated) group and a stimulated group. Extracellular stimulation applied across 

the barrier between the side compartments and central compartment, which was 

sufficient to initiate action potentials in the neurons (Fields et al., 1992), was delivered by 

field electrodes using 5 V, 200 ps biphasic pulses. The stimulation pattern used was as 

follows: 10 Hz pulses lasting 0.5 s every 8 seconds, 12 hours per day for 5 days. This
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stimulation pattern results in increased neuronal firing frequency and activation 

compared to non-stimulated neurons, and has been previously shown to alter calcium 

currents (Li et al., 1996). In initial studies, a stimulation pattern of 10 Hz pulses lasting

0.5 s every 2 seconds, 12 hours per day for 40 hours, induced a significant down- 

regulation of Navi .8 and Navi .9 mRNA, but no change in protein. Since the half-life of a 

sodium channel is estimated to be approximately 1-2 days (Monjaraz et al., 2000; 

Ritchie, 1988; Schmidt and Catterall, 1986; Waechter et al., 1983), we decided to 

increase the stimulation time to 5 days in order to allow sufficient time for stimulation- 

dependent changes in protein levels to be detected.

Immunocytochemistry. Cultures were washed in PBS and fixed for 10 minutes in 2% 

paraformaldehyde solution. After additional washes with PBS, neurons were incubated 

in blocking solution (5% normal goat serum and 1% BSA in PBS) containing 0.1% Triton 

X-100 and 0.02% sodium azide at room temperature for 30 min, then incubated with 

isoform-specific polyclonal antibodies to Na'" channel a-subunits N avi.3 (residues 511- 

524, 1.19 pg/mL (Mains et al., 2002)), Navi .8 (residues 1041-1062, 1.80 pg/mL (Black et 

al., 1999b)), and N avi.9 (residues 1748-1765, 2.00 pg/mL (Fjell et al., 2000)), overnight 

at 4 °C. Neurons were washed in PBS and incubated with goat anti-rabbit lgG-Cy3 

(1:2000, Amersham Biosciences, Piscataway, NJ) in blocking solution for 3 hours, then 

washed again in PBS and mounted with Aqua Poly/Mount (Polysciences, Warrington, 

PA). Incubation without primary or secondary antibodies yielded only background levels 

of signal (data not shown).

RNA extraction and cDNA synthesis. Total RNA from cultured DRG neurons was 

extracted using RNeasy mini-columns (Qiagen). The purified RNA was treated with
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RNase-free DNase-1 (Roche) and re-purified using an RNeasy mini-column (Qiagen). 

RNA was then eluted in 50 |jl of water. First-strand cDNA was reverse transcribed in a 

finai volume of 50 pi using 5 p! purified total RNA, 1 mM random hexamer primer 

(Roche), 40 U Superscript II reverse transcriptase (Life Technologies), and 40 U of 

RNase inhibitor (Roche). The buffer consisted of (in mM); 50 Tris-HCI (pH 8.3), 75 KCI, 3 

MgCI2, 10 DTT, and 5 dNTP. The reaction proceeded at 37 °C for 90 min and 42 °C for 

30 min, and was then terminated by heating to 95 °C for 5 min. A parallel reaction with 

identical reagents except for the reverse transcriptase enzyme was performed as a 

negative control to demonstrate the absence of contaminating genomic DMA (data not 

shown).

Quantitative PCR. The relative standard curve method was used to quantify and 

compare RNA extracted from the cultured DRG neurons. An 188 rRNA primer-probe set 

(Applied Biosystems, Foster City, CA) was used as an endogenous control to normalize 

the expression level of the sodium channels. Standard curves for 188 rRNA and each 

sodium channel primer/probe set were constructed using serial dilutions of adult mouse 

DRG cDNA. One cDNA preparation was used to establish the standard curve for all 

experiments. Standards and unknowns were amplified in quadruplets. The standard 

curves for the sodium channel primer/probe sets and endogenous control (rRNA) were 

constructed from their respective mean critical threshold (Cx) values, and the equation 

describing the curve was derived using Sequence Detector software v1.6.3 (Applied 

Biosystems).

Primers and probes for the sodium channel targets were designed using Primer 

Express software (Applied Biosystems) according to the specifications of the TaqMan 

protocol (Winer et al., 1999). Sequences are as follows;
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Nav1.8 forward 5’-TCAACTTCGACAACGTCGCTAT-3’,

reverse 5’-ATACATAATGTCCATCCAGCCTTTG-3’, 

probe FAM-TACCTCGCGCTTCTCCAGGTGGC-TAMRA;

N avi.9 forward 5’-CACCATCTGCATCATCGTCAAT-3’,

reverse 5’-AGGGTCTAGCGCAATGATCTTG-3’, 

probe FAM-AACTGGGTTTTCACTGGAATTTTCATAGCGG-TAMRA.

Target specificity was confirmed by nucleotide BLAST search. Probes for sodium 

channels were synthesized and purified by Applied Biosystems. Primers for the sodium 

channels and 183 rRNA were used at a final concentration of 900 and 50 nM, 

respectively, whereas the probes were used at a final concentration of 200 nM. The 

primer-probe combinations were not limiting at these concentrations. Amplification was 

done in a 25 pi final volume, under the following cycling conditions: 10 min at 50 °C, and 

then 40 cycles of 95 °C for 15 s followed by 60 °C for 1 min. An AS I Prism 7700 (Applied 

Biosystems) was used to run the PCR reaction and data was recorded using Sequence 

Detector v1.6.3 (Applied Biosystems). Sodium channels and IBS rRNA templates were 

amplified in separate wells.

Data Analysis. A Nikon Eclipse E800 light microscope was used for sample 

observation, and quantitative microdensitometry of fluorescent immunostaining signals 

was obtained using IPLab v3.0 Image Processing software (Scanalytics Inc., Fairfax, 

Virginia). Signal intensities were determined by outlining individual neurons, and IPLab 

integrated densitometry functions were used to calculate mean signal intensities for the 

selected areas. Data from eight side compartments each for the control group and the 

stimulated group were used to obtain data. Experiments were processed in parallel and 

differences were assessed by non-paired f-tests. Neuron counts per area (Fig. 1) were

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



quantified by averaging multiple counts (/?=6 per group) of neurons within the side 

compartments of the culture chamber. For the quantitative PCR experiments, differences 

in mRNA expression between the control and stimulated groups were analyzed using 

the non-paired t-test (r? = 4 control, 4 stimulated). All data are presented as mean ± SE.

4.4 RESULTS

Effect o f electrical stimulation on neuron survival. Prior to analyzing the effect of

stimulation on sodium channel expression in cultured DRG neurons, we performed 

several control experiments to distinguish stimulation-dependent changes in channel 

expression from possible effects on cell survival. Morphometric analyses (Fig. 4.1 A) and 

counts of cultured neurons (Fig. 4.IB ) revealed no significant difference in neuron size 

distribution (n=865 neurons) or density (n=511 neurons) after electrical stimulation. The 

majority of neurons in culture were within the 25-40 pm diameter range.

As an additional control, we used immunocytochemistry with subtype-specific 

antibodies and demonstrated the effect of withdrawing NGF from the culture media for 5 

days on the expression of Navi .3, Navi .8 and Navi .9. In cultures deprived of NGF, 

there was a tendency toward an increase in Navi .3 protein, but this did not reach 

statistical significance. In contrast, NGF deprivation resulted in significantly reduced 

levels of Navi .8 and Navi .9 protein compared to cultures containing 50 ng/mL NGF 

(Fig. 4.1C). At the transcript level, withdrawal of NGF induced an 83.3% decrease in 

Navi .8 mRNA and a 57.6% decrease in Navi .9 mRNA as detected by quantitative PCR.

Sodium channel protein is down-regulated by electrical stimulation. Subtype- 

specific antibodies to N av i.3, Navi.8, and N av i.9 were used to determine the quantity 

of sodium channel protein in the cultured DRG neurons after stimulation. Fig. 4.2 shows
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optical intensity quantification of the resuits. Stimulated cultures show a significant 

(p<0.05) down-reguiation of Nav1.8 and Nav1.9 protein compared to non-stimulated 

cultures. Protein expression for Nav1.3 was not statistically different from non-stimulated 

cultures.

Sodium channel mRNA is down-regulated by electrical stimulation. Having 

demonstrated a significant change in Nav1.8 and Nav1.9 protein expression, we further 

examined the expression of these two genes by quantitative PCR analysis of mRNA 

levels. Stimulation caused a significant (p<0.05) down-regulation of Nav1.8 (to 48.9% of 

control level) and Navi .9 (to 63.4% of control level) mRNA (Fig. 4.3).
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Fig. 4.1. Electrical stimulation does not influence neuronal survival or size distribution. A. 

Morphological measurements of cultured neurons do not show significant differences 

between any of the experimental conditions. The majority of neurons were within the 25- 

40 pm diameter range. B. Counts of cultured neurons in the stimulated and non- 

stimulated groups showed no significant change in ceil number. C. The effect of NGF 

withdrawal on Nav1.3, Nav1.8, and Nav1.9 protein levels is demonstrated by 

immunocytochemistry. Optical intensity quantification of individual neurons shows a 

significant down-regulation of Nav1.8 and Nav1.9 protein in cultures without NGF (*) 

compared to cultures with NGF (no *). Nav1.3 protein levels were not significantly 

different between +NGF and -NGF cultures. Data are plotted as mean ± SE; * = p<0.05.
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Fig, 4.2. A-F. Representative Images demonstrating fluorescent immunoreactivity for 

Nav1.3, Nav1.8, and N avi.9. Images were converted to grayscale and digitally contrast- 

enhanced using identical parameters to qualitatively illustrate the changes in protein

expression. A. N av i.3, control (non-stimulated); B. N av i.3, stimulated; C. Navl.8
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control; D. Nav1.8, stimulated; E. Nav1.9, control; F. Nav1.9, stimulated; G. Optica! 

intensity quantification from unenhanced images of individual neurons shows a 

significant down-regulation of Nav1.8 and Nav1.9 protein in stimulated cultures (*) 

compared to non-stimulated cultures (no *). Nav1.3 protein levels were not significantly 

different between control and stimulated cultures. Scale bar = 50 pm; data are plotted as 

mean ± SE; * = p<0.05.
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Fig. 4.3. Results of quantitative PCR for N av i.8 and N av i.9. Navl.8 and N avi.9 

mRNAs were both down-regulated in stimulated cultures (*) compared to non-stimulated 

cultures. Data are plotted as mean ± SE; * = p<0.05.
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4.5 DISCUSSION

In the present study, we examined the effect of electrica! stimulation on the 

expression of sodium channels N avl3 , N avi.8 and N avi.9 in cultured embryoniG 

mouse DRG neurons. We demonstrated that the expression by DRG neurons of Navl.8 

and N av i.9, but not of Navi.3, is regulated by patterned electrica! stimulation. There are 

several mechanisms that may allow a neuron to adapt to changes in the range of 

afferent or electrical input that it experiences. Calcium-dependent signaling pathways 

involving CaM kinase II and the MAP kinase cascade have been shown to play an 

important role in the regulation of CREB-mediated gene transcription (Buonanno and 

Fields, 1999; Ji and Woolf, 2001; Kornhauser et al., 2002; West et al., 2001; West et al., 

2002), and these pathways can be regulated by neuronal firing (Fields et al., 2001). 

Growth factors, neurotransmitters, and hormones can also exert calcium-independent 

effects on CREB-mediated transcription.

The intracellular level of calcium and its activity-dependent rate of influx can 

influence the expression of TTX-sensitive sodium channels (Brodie et al., 1989). Chronic 

blockade of electrical activity in cultured cardiac myocytes triggers an up-regulation of 

transcription of sodium channel Navi .4 (Offord and Catterall, 1989; Sherman and 

Catterall, 1984). Calcium-mediated down-regulation of sodium channel expression has 

been demonstrated by increasing electrica! stimulation (Chiamvimonvat et al,, 1995). 

Calcium channel activity-dependent regulation of sodium channel expression has also 

been demonstrated in cultured pituitary GH3 cells (Monjaraz et al., 2000). In this study, 

calcium channel agonists (Bay K 8644) led to increased peak sodium currents, while 

antagonists (nimodipine) lowered sodium currents. The regulatory mechanisms linking 

calcium levels to modulation of sodium channel mRNA transcription and expression 

remain unknown.
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Pain following nerve injury is associated with abnormal bursting activity and 

increased sensitivity of DRG neurons whose axons have been transected; alterations in 

VGSC expression are believed to contribute to this phenomenon (Waxman, 1999b; 

Woolf and Salter, 2000). The number and mix of TTX-sensitive and TTX-resistant 

sodium channels in the membrane of a neuron may be a determinant of neuronal 

hyperexcitability; changes in the level of expression of slowly inactivating Navi .8 sodium 

currents can result in altered threshold for action potential generation and an increased 

tendency to fire repetitively (Elliott, 1997; Renganathan et al., 2001; Schild and Kunze,

1997). Moreover, Navi .9 has a strong effect on membrane potential (Cummins et al., 

1999; Herzog et al., 2001) and threshold (Baker et al., 2003) and altered levels of 

Navi.9 should thus have important effects on excitability.

Studies that have examined changes in sodium channel expression following 

inflammation (Djouhri and Lawson, 1999; Tanaka et al., 1998), nerve compression (Dib- 

Hajj et al., 1999b) and transection (Dib-Hajj et al., 1998a; Okuse et al., 1997) have been 

limited by the fact that the mechanism of modulation of expression may involve growth 

factor effects or activity-dependent effects. We have shown here that a change in 

neuronal activity level is sufficient to modulate the expression of two sodium channels. 

Navi .8 and Navi .9. The down-regulation occurred under cell culture conditions in which 

NGF was not a limiting factor (50 ng/ml). Because Navi .3 did not demonstrate an 

activity-dependent change in expression, it is unlikely that stimulation caused a 

generalized down-regulation of all sodium channel gene transcripts. Rather, a selective 

and specific retuning of the electrogenic membrane, which may regulate neuronal gain, 

occurred in response to changes in input.

We suggest that an activity-dependent down-regulation of Navl.8 and N avi.9 

proceeds via a molecular mechanism distinct from the mechanism that mediates growth- 

factor-triggered changes in expression of these channels. If this hypothesis is correct, it
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implies the possibility of new therapeutic approaches that might regulate axonal channel 

expression, and thus excitability, via a previously unstudied activity-dependent pathway.
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CHAPTER 5

DYSREGULATION OF SODIUM CHANNEL EXPRESSION

IN CORTICAL NEURONS IN A RODENT MODEL OF 

ABSENCE EPILEPSY

5.1 SUMMARY

Due to the involvement of cortical neurons in spike-wave discharge (SWD) 

initiation, and the contribution of voltage-gated sodium channels (VGSCs) to neuronal 

firing, we examined alterations in the expression of VGSC mRNA and protein in cortical 

neurons in the WAG/Rij absence epileptic rat. WAG/Rij rats were compared to age- 

matched Wistar control rats at 2, 4, and 6 months. Continuous EEG data was recorded, 

and percent time in SWD was determined. Tissue from different cortical locations from 

WAG/Rij and Wistar rats was analyzed for VGSC mRNA (by quantitative PCR) and 

protein (by immunocytochemistry). SWDs increased with age in WAG/Rij rats. mRNA 

levels for sodium channels Nav1.1 and Nav1.6, but not Nav1.2, were up-regulated in the 

facial somatosensory cortex (at AP+0.0, ML+6.0 mm). This region of cortex 

approximately matches the electrophysiologically determined region of seizure onset. 

Protein levels for Nav1.1 and Nav1.6 were up-regulated in layer ll-IV cortical neurons in 

this region of cortex. No significant changes were seen in adjacent regions or other brain 

areas, including the pre-frontal and occipital cortex. Changes in the expression of 

Nav1.1 and Nav1.6 parallel age-dependent increases in seizure frequency and duration.
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5.2 INTRODUCTION

Neuronal excitability is dependent on the activity of voltage-gated sodium 

channels (VGSCs). Nine VGSC genes are expressed within the nervous system, each 

with different tissue distribution and functional characteristics (Catterall, 2000; Goldin et 

al., 2000). The combination of VGSCs present in a neuronal membrane contributes to its 

electrogenic properties and firing pattern. VGSC expression is a dynamic process, and 

alterations in physiological state as well as injury induce changes in VGSC expression, 

which can alter neuronal behavior (Waxman et al., 2000).

Certain types of epilepsy can result from direct (sodium channel gene mutations) 

or indirect (changes in genes that affect sodium channel expression) pathways (Aronica 

et al., 2001; Bartolomei et al., 1997; Gastaldi et al., 1998; Meisler et al., 2001; Noebeis, 

2002). VGSCs contribute to neuronal bursting (Parri and Crunelli, 1998) and some 

anticonvulsant drugs act via blockade of specific currents produced by sodium channeis 

(Crunelli and Leresche, 2002; Leresche et al., 1998; Spadoni et al., 2002; Taverna et al.,

1998). Alterations in the expression or function of VGSCs that predispose neurons 

toward repetitive firing and network hyperexcitability may be associated with increased 

seizure activity (Scharfman, 2002).

Absence seizures have historically been defined as a generalized non-convulsive 

epilepsy consisting of a sudden arrest of ongoing behavior and impairment of 

consciousness associated with a rhythmic spike-wave discharge (SWD) firing pattern of 

thalamic and cortical neurons. The characteristic biiateraily-synchronous spike-wave 

oscillation, as seen on EEG, results from reverbatory loops of excitation between the 

cortex and thalamus (Avoli and Gloor, 1982; Blumenfeld and McCormick, 2000; 

Destexhe et al., 1999). Ablation studies in rodent and feline models of absence epilepsy 

have demonstrated that an intact cortex and thalamus are necessary for the
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electrophysiological transition to SWD firing (Avoli et al., 1983; Avoli et a!., 1990; 

Danober et al., 1998; Vergnes and Marescaux, 1992).

Although SWD is considered a “generalized” seizure discharge, the anatomical 

region of seizure onset in WAG/Rij (Wistar Albino Glaxo from Rijswijk) rats (a genetic 

model of absence epilepsy (Coenen et a!., 1992)) was recently localized to the facial 

region of the somatosensory cortex, which lies on the lateral cortex near the coronal 

plane of bregma (Meeren et al., 2002). SWDs appear to arise from an increase in burst 

firing in cortical neurons, which causes a large synchronized increase in neuronal firing 

in thalamocortical networks (Bal et al., 2000; Blumenfeld and McCormick, 2000). SWDs 

occur most dramatically in the frontal and parietal neocortical regions and corresponding 

thalamic nuclei with a relative sparing of the limbic and more posterior thalamocortical 

networks (Blumenfeld and McCormick, 2001; Nersesyan et al., 2002; Vergnes et al., 

1990). The underlying molecular and electrophysiological basis of this phenomenon 

remains unidentified.

Because the cortex has been implicated as a focus for initiation of SWD firing, 

and because VGSCs can underlie neuronal bursting, we asked whether there are 

differences in the expression of sodium channel mRNA and protein in the WAG/Rij 

epileptic cortex compared to non-epileptic controls. We attempted to localize the. altered 

sodium channel expression to a specific region of cortex, and furthermore to a specific 

population of neurons within the cortical mantle. This data was correlated to EEG 

recordings in order to establish an age-dependent association between SWD frequency 

and duration and extent of sodium channel dysregulation.

5.3 MATERIALS AND METHODS

Animals. Adult rats of the WAG/Rij (epileptic) strain were compared to age-matched 

Wistar rats (control). The WAG/Rij rat colony at our institution originated from the
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Radiobiological Institute TIMO, in Rijswijk (Reinhold, 1966), and Wistar rats were from 

Charles River Laboratories (Wilmington, MA). WAG/Rij rats exhibit spontaneous 

electrographic seizures characterized by bilaterally synchronous and symmetric SWDs. 

SWDs in these animals occur at a frequency of 7-11 Hz and seizure duration is typically 

2-8 seconds. In this study, animals were individually housed and kept on a 12-hour 

light/dark cycle with unlimited access to food and water, in accordance with NIH 

guidelines for the care and use of laboratory animals; animal protocols were approved 

by the Yale University institutional Animal Care and Use Committee. In total, 25 animals 

were used: 18 (9 epileptic, 9 control) for quantitative PCR analysis and 7 (4 epileptic, 3 

control) for immunocytochemistry. Animals were grouped by age: 2 month (2 epileptic, 2 

control), 4 month (3 epileptic, 3 control), and 6 month (4 epileptic, 4 control) rats were 

used for the PCR experiments, and 4 month rats were used for immunocytochemistry. 

All animals had electrodes implanted for electrophysiological recording.

EEG recordings and analysis. For EEG recordings, tripolar electrodes (Plastics One 

Inc., Roanoke, VA) were fixed to the skull. Animals were deeply anesthetized 

intramuscularly with ketamine (100 mg/kg), xylazine (5.2 mg/kg), and acepromazine (1.0 

mg/kg) and placed in a stereotactic frame (David Kopf Instruments, Tujunga, CA). Level 

of anesthesia was monitored by respiration, heart rate, glabrous skin perfusion, and 

response to foot pinch. Small burr holes were made in the skull without disturbing the 

dura and electrodes were secured to the skull using 1.60 mm stainless steel screws 

(Plastics One). EEG recording electrodes were placed at AP +2.0, ML +2.0 mm, and AP 

-6.0, ML +2.0 mm and a ground electrode was placed in the midline over the cerebellum. 

Dental acrylic (Lang Dental Mfg. Co., Wheeling, IL) was used to fix the electrode unit in 

place. Following a one-week recovery period, continuous EEG data was recorded from 

awake-behaving rats for two hours per day (between 10:00am and 4:00pm) over a
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three-day period for each animal. EEG signals were amplified with a Grass CP 511 unit 

(Grass-Telefactor, Astro Med, Inc., West Warwick, Rl), with band pass filter settings of 1 

Hz to 100 Hz. Signals were digitized with a CED Power 1401, and stored and analyzed 

using Spike 2 software (Cambridge Electronic Design, Cambridge, UK). SWDs were 

defined as large-amplitude (>400 pV peak-to-peak) rhythmic 7-11 Hz discharges with 

typical spike-wave morphology lasting >0.5 s. Start and end times for all SWDs were 

marked, and percent time in SWD firing pattern was then calculated as (sum of SWD 

interval durations / total recording time) x 100%, for all WAG/Rij (epileptic) and Wistar 

(control) rats.

RNA extraction and cDNA synthesis. Rats were deeply anaesthetized with CO2 , 

decapitated, and brains were quickly removed. Twelve plugs of tissue, each measuring 

approximately 1 mm^ were dissected from the left and right cortex of each rat using 

iridectomy scissors. For each hemisphere, three plugs at AP +3,0,-6 and ML +6 mm, 

and three plugs at AP +3,0,-6 and ML +2 mm were taken (see Fig. 2). Tissue plugs 

included all six layers of cortex but did not extend into subcortical tissue. Tissue was 

immediately frozen in dry ice and stored at -80  °C until use.

Total RNA from brain tissue was extracted using RNeasy mini columns (Qiagen). 

The purified RNA was treated with RNase-free DNase-1 (Roche) and re-purified using an 

RNeasy mini-column (Qiagen). RNA was then eluted in 50 pi of water. First-strand cDNA 

was reverse transcribed in a final volume of 50 pi using 5 pi purified total RNA, 1 mM 

random hexamer primer (Roche), 40 U Superscript II reverse transcriptase (Life 

Technologies), and 40 U of RNase inhibitor (Roche). The buffer consisted of (in mM): 50 

Tris-HCI (pH 8.3), 75 KCI, 3 MgCI2, 10 DTT, and 5 dNTP. The reaction proceeded at 37 

°C for 90 min and 42 °C for 30 min, and was then terminated by heating to 95 °C for 5 

min. A parallel reaction was performed as a negative control to demonstrate the absence
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of contaminating genomic DNA (data not shown) by using all identica! reagents except 

for the reverse transcriptase enzyme.

Quantitative real-time PCR. The relative standard curve method was used to quantify 

and compare RNA extracted from different regions of cortex in epileptic (WAG/Rij) and 

control (Wistar) rats. An 18S rRNA primer-probe set (Applied Biosystems) was used as 

an endogenous control to normalize the expression level of the sodium channels. 

Standard curves for 188 rRNA and each sodium channel primer/probe set were 

constructed using serial dilutions of control brain cDNA. Standards and unknowns were 

amplified in quadruplets. Standard curves for the sodium channel primer/probe sets and 

endogenous control (rRNA) were constructed from respective mean critical threshold 

(C t )  values; the equation describing the curve was derived using Sequence Detector 

software v1.6.3 (Applied Biosystems).

Primers and probes for the sodium channel targets were designed using Primer 

Express software (Applied Biosystems) according to the specifications of the TaqMan 

protocol (Winer et al,, 1999). Sequences are as follows:

Nav1.1 forward 5’-TCCTGGAGGGTGTTTTAGATGC-3’,

reverse 5’-AAAGATTTTCCCAG/W\GTCCTGAG-3’,

probe FAM-CTGGGCATTTCTGTCCCTGTTTCGACT-TAMRA;

Nav1.2 forward 5’-CATCAAGTCCCTCCGAACGTTA-3’,

reverse 5’-GGCAGACCAGAAGTACGTTCATT-3’, 

probe FAM-CCTTATCCCGATTTGAAGGAATGAGGGTTG-TAMRA;

Navi .6 forward 5’- AGTAACCCTCCAGAATGGTCCAA-3’,

reverse 5’-GTCTAACCAGTTCCACGGGTCT-3’, 

probe FAM-AATCATCGCAAGAGGTTTCTGCATAGACGG-TAMRA.
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Target specificity was confirmed by nucleotide BLAST search. Primers and probes for 

sodium channels were synthesized and purified by Applied Biosystems. Primers for the 

sodium channels and 18S rRNA were used at a final concentration of 900 and 50 nM, 

respectively, whereas the probes were used at a final concentration of 200 nM. The 

primer-probe combinations were not limiting at these concentrations. Amplification was 

done in a 25 pi final volume, under the following cycling conditions: 10 min at 50 °C and 

then 40 cycles of 95 °C, 15 sec, followed by 60 °C, 1 min. An AS I Prism 7700 (Applied 

Biosystems) was used to run the PCR reaction and data was recorded using Sequence 

Detector v1.6.3. Sodium channels and 18S rRNA templates were amplified in separate 

wells. The amount of mRNA in different regions of cortex was reported as the ratio of 

mRNA in the epileptic rats divided by mRNA in the control rats.

Immunocytochemistry. Rats were anesthetized with ketamine/xylazine (80/5 mg/kg

i.p.) and then underwent intracardiac perfusion with 0.01 M PBS followed by a 4% 

solution of cold buffered paraformaldehyde. Brains from 4 month WAG/Rij and Wistar 

rats were postfixed and cryoprotected in 30% sucrose in 1 M phosphate buffer solution 

(PBS), and coronal sections (10 pm) of the cerebral hemispheres, including all regions 

studied by quantitative PCR, were cut. Slices were mounted onto slides and incubated in 

blocking solution (5% normal goat serum and 1% BSA in PBS) containing 0.1% Triton X- 

100 and 0.02% sodium azide at room temperature for 30 min., then incubated with 

subtype-specific antibodies to Na'*' channel a-subunits Navl.1 (residues 465-481, 1:100 

dilution, Alomone, Jerusalem), Navi .2 (residues 467-485, 1:100 dilution, Alomone), 

Navi .6 (residues 1042-1061, 1:100, Alomone), and a phospho-CREB antibody (1:50, 

Cell Signaling Technology, Inc., Beverly, MA) overnight at 4 °C. Sections were washed
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in PBS and incubated with biotinylated goat anti-rabbit serum (1:1000, Sigma) in 

blocking solution for 3 hours, then washed in PBS and incubated in avidin-HRP (1:1000, 

Sigma) in blocking solution for 3 hours. Sections were washed in PBS and exposed to 

heavy metal enhanced 3,3’-diaminobenzidine^4HCi in IX  peroxide substrate buffer 

(Pierce, Rockford, Illinois) for 7 min.

Data Analysis. A Nikon Eclipse E800 light microscope was used for sample 

observation, and quantitative microdensitometry of immunostaining signals was obtained 

using IPLab vS.O Image Processing software (Scanalytics Inc., Fairfax, VA). Signal 

intensities were determined by outlining individual cortical neurons, and IPLab integrated 

densitometry functions were used to calculate mean signal intensities for the selected 

areas. Results from identical regions and layers of cortex in WAG/Rij (epileptic) rats 

were compared to Wistar (control) rats processed in parallel and differences were 

assessed by non-paired f-tests. Immunopositivity was quantified by averaging multiple 

counts within a defined area (1.9x10Vm^) within layers II-IV. For counts of 

immunopositive neurons, cells that displayed a signal of >50% above background were 

scored as positive.

For the EEG data in Fig. IF  and the quantitative PCR data in Fig. 2, differences 

were analyzed using AN OVA with post-hoc Fisher’s least significant difference analysis 

with Bonferroni adjustment. An alpha level of 0.05 was used as a threshold for statistical 

significance.

5.4 RESULTS

Seizure frequency and duration Increase w ith age in the WAG/Rij model of 

absence epilepsy. SWDs begin to be seen at approximately 3 months of age in 

WAG/Rij rats (Coenen and Van Luijtelaar, 1987; Coenen et al., 1992). in the animals we
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studied, EEG recordings from WAG/Rij rats showed an age-related increase in the 

number of seizures per unit time, and in the mean duration of each seizure. Age- 

matched control Wistar rats did not show SWD activity (Fig. 5.1 A). Examples of typical 

recordings from WAG/Rij rats at different ages are shown in Fig. 5.1B-D. SWDs, 

consisting of high voltage 7-11 Hz rhythmic spike-wave activity, are shown on an 

expanded timescale in Fig. 5.1 E. To correlate the molecular changes with SWD activity 

at different ages, we calculated the percentage of time in SWD (Fig. 5.1 F). Percent time 

in SWD depends on both the number of SWDs per minute and the duration of each 

SWD. Mean seizure durations were 2.8 ± 1.17 s (mean ± SD) at 2 months, 2.6 ± 1.67 s 

at 4 months, and 3.1 ± 1.83 s at 6 months. Mean SWDs per minute were 0.02 ± 0.017 at 

2 months, 0.19 ± 0.080 at 4 months, and 0.14 ± 0.061 at 6 months. Percent time in SWD 

was 0.11± 0.070 (mean ± SE) at 2 months, 0.51±0.141 at 4 months, and 0.74±0.188 at 6 

months (n=23 animals). The difference between 2 month and 4 month, and 2 month and 

6 month percent time in SWD was statistically significant. (*=p<0.05, Fig. 5.1 F). Although 

the 6 month WAG/Rij rats had a greater percent time in SWD compared to 4 months, the 

difference did not reach statistical significance.

Nav1.1 and Nav1.6 mRNAs are up-regulated in epileptic cortex. Sodium channels 

N a v l.i, N av i.2, and N av i.6 were found to be expressed in the cortices of both control 

and epileptic animals. N avi.3 was expressed at very low levels in both control and 

epileptic animals, and Navi .8, which has been shown to be expressed in CNS tissue in 

some pathologic conditions (Black et al., 2000) was not detected. Tissue plugs were 

taken from 6 month old WAG/Rij (epileptic) and age-matched Wistar (control) rat cortex. 

Quantitative PCR experiments showed a significant up-regulation of Navi.1 and N avi.6 

mRNA selectively at ML+6 mm in the transverse plane at bregma (n=8 animals, 

*=p<0.05. Fig. 5.2). This region of cortex approximately matches the
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electrophysioiogically determined region of seizure onset, as reported by Meeren et a!., 

within the peri-oral area of the somatosensory cortex (Meeren et a!., 2002). PCR results 

for primer/probe sets yielded statistically insignificant differences between matched left 

and right hemispheric tissue sections; therefore data from bilaterally equivalent tissue 

sections were combined. Nav1.2 did not show a significant change between WAG/Rij 

and Wistar rats in any region of cortex tested (Fig. 5.2).

N avl.i and Nav1.6 proteins are up-regulated in layer II-IV cortical neurons. Having 

demonstrated a region-specific up-regulation of Navl.1 and Nav1.6 mRNA, we next 

asked whether these changes occurred within a specific population of neurons within the 

cortex. Immunocytochemical experiments using subtype-specific antibodies for Nav1.1 

and Nav1.6 on 4 month WAG/Rij and Wistar rats showed up-regulation of these 

channels in layer II-IV cortical neurons of WAG/Rij rats. Layer II-IV neurons were 

identified by their neuronal morphological characteristics and by their proximity to the 

pial surface superficially. Fig. 5.3A-C shows coronal sections of cortex at bregma and +6 

in the transverse plane, demonstrating the significant change in sodium channel 

expression (for Navl.1 and N avi.6, but not N av i.2) in layers II-IV in epileptic rats. Fig. 

5.3D shows cortical staining with phospho-CREB antibody, a marker of transcription 

activation. The up-regulation of sodium channels N av l.i and N av i.6 is paralleled by an 

increase in neuronal phospho-CREB immunoreactivity in epileptic cortex layers II-IV 

(Fig. 5.3D). Fig. 5.3E,F represent a quantification of the sodium channel data (n=4 

epileptic, 3 control, and 668 total neurons, *=p<0.05). Immunocytochemical experiments 

done in the absence of primary antibody yielded only non-specific background levels of 

signal (data not shown). Sodium channel protein expression and pGREB expression in 

adjacent regions and in other areas of cortex and thalamus did not show a significant 

difference between epileptic and non-epileptic animals (data not shown).
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Age-dependent dysregufation o f sodium channel expression In WAG/Rij rats. To 

further assess the connection between altered sodium channel expression and seizure 

activity, we examined age-dependent changes in sodium channel mRNA expression. 

Fig. 5.4 shows the variation in Nav1.1, Nav1.2, and Nav1.6 mRNA levels at AP+0.0, 

ML+6.0 mm (anatomical location E on Fig. 5.2) with respect to age in the WAG/Rij model 

compared to Wistar animals. Navl.1 and N av i.6 mRNA levels increase progressively 

over the three time points studied in the WAG/Rij rats.
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Fig. 5.1. Spike-wave discharges increase with age in WAG/Rij rats. A, Typical recording 

from a Wistar control rat at 7 months of age showing normal EEG activity with no SWDs. 

B-D, Typical examples of EEG recordings from WAG/Rij rats showing SWDs of 

increasing duration and frequency of occurrence with age (8 = 2 month WAG/Rij, C = 4 

month WAG/Rij, D = 6 month WAG/Rij). Section expanded in E is indicated by horizontal 

bars. E, Segment of data from D shown at expanded time scale to demonstrate typical 

morphology of SWDs. F, Control Wistar rats aged 2-6 months exhibited no SWDs 

(n=10). Percent time spent in SWD firing pattern is shown for WAG/Rij rats at 2 months 

(n=2), 4 months (n=6), and 6 months (n=5). Each rat was recorded for sessions lasting 2 

hours each on 3 consecutive days (6 hours total) just before performing the molecular 

studies. Data is plotted as mean ± SE, * = p<0.05 (4 and 6 month each compared to 2 

month, AN OVA with post-hoc Fisher’s least significant difference analysis with 

Bonferroni adjustment).
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Fig. 5.2. Sodium channel mRNA In WAG/Rij and Wistar cortex. Anatomical locations of 

tissue plugs used for quantitative PCR analysis are indicated on inset drawing of rat 

brain. The histogram shows the ratio of sodium channel mRNA levels in the neocortex of 

6 month old WAG/Rij (epileptic) rats compared to age-matched Wistar (control) rats. At 

anatomical location “E”, there is a statistically significant increase in Nav1.1 (□ ) and 

Nav1.6 mRNA (■), but not Nav1,2 mRNA (H), in the epileptic animals compared to 

control animals. Data is plotted as mean ± SE; n = 8 animals, * = p<0.05, ANOVA with 

post-hoc Fisher’s least significant difference analysis with Bonferroni adjustment.
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Fig. 5.3. Sodium channel protein in layers II-IV neurons of WAG/Rij and Wistar rat 

cortex. A-D, Coronal sections of cortex at bregma and +6 in the transverse plane 

(location E in Fig. 2) showing layers of cortical mantle. Immunostaining in control rats (no 

*) versus WAG/Rij rats (*) for Nav1.1 (A), Navi .2 (B), Navi .6 (0), and phopho-GREB (D) 

antibodies are shown. Pial surface is at the top of image, wm = white matter, scale bar = 

100pm. The control and epileptic images were digitally contrast-enhanced using identical 

parameters to qualitatively illustrate the up-regulation of transcripts. E, Optical intensity 

quantification from unenhanced images of individual neurons in layers II-IV shows 

increased staining with N av l.i and Navi.6 antibodies in the epileptic animals (■ ) 

compared to controls (□ ), indicating up-regulated sodium channel protein. Layer V-V! 

pyramidal neurons and neurons in other regions of cortex did not show a significant
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change in sodium channel expression between epileptic and control animals (data not 

shown). F, Quantification of immunopositive neurons for each sodium channel antibody 

in layers II-IV. Epileptic animals (■ ) showed increased numbers of Nav1.1 and Nav1.6 

immunopositive neurons compared to control animals (□). Data is plotted as mean ± 

SD; n = 7 animals, * = p<0.05, student’s t-test.
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Fig. 5.4. Dysregulated sodium channel expression in layer II-IV cortical neurons parallels 

age-dependent increase in seizure frequency in WAG/Rij rats. The ratio of expression of 

sodium channel mRNA levels between epileptic and control rats for Nav1.1 (□ )  and 

Nav1.6 (■ ) mRNA, but not Nav1.2 mRNA (H), increases from 2 months to 6 months. 

Data is plotted as mean ± SE.
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5.5. DISCUSSION

This study demonstrates for the first time that there is dysregulated expression of 

voltage-gated sodium channels in cortical neurons in a rodent model of absence 

epilepsy. We focused on the cortex due to the possible role of the facial somatosensory 

cortex In initiating seizures, based on previous studies (Meeren et a!., 2002). We used 

quantitative PCR to identify a specific region of cortex where sodium channel mRNA 

expression was different in epileptic (WAG/Rij) and non-epileptic (Wistar) rats. We then 

used immunocytochemistry to localize the change in sodium channel expression to a 

specific population of neurons in the cortex. Our data show that mRNA levels for sodium 

channel genes Nav1.1 and Navi .6 are increased in the lateral aspect of the cortex in the 

plane of bregma and that layer II-IV cortical neurons in this region contain elevated 

N av l.i and N av i.6, but not N av i.2, protein. Interestingly, this region of cortex 

corresponds anatomically to the electrophysiologically-determined region of seizure 

onset, as reported by Meeren et al., within the facial region of the somatosensory cortex 

(Meeren et al., 2002). Increased phospho-CREB immunoreactivity in these cortical 

neurons reflects increased transcription activation and neuronal activity (Buonanno and 

Fields, 1999) in the epileptic vs. control animals, which may be associated with the 

observed changes in N avl.i and N avi.6 expression. Although we did not detect 

qualitative changes in sodium channel expression in subcortical regions such as the 

thalamus or cerebellum, future quantitative studies of sodium channel expression in 

subcortical structures will be necessary to determine whether or not changes occur there 

as well.

Layer II-IV neurons, and the intracortical currents they produce, are a major 

factor in the generation of SWDs (Kandel and Buzsaki, 1997). Since the rhythmic 

oscillations of SWDs depend on cortico-thalamic circuits arising in deeper layers of 

cortex (layers V-VI), it is interesting that the initiation of this pathological firing pattern
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correlates to abnormal sodium channel expression in other more superficial layers 

(layers II-IV) of cortex.

Navl.1 and N avi.6, in particular, are thought to be capable of producing a 

persistent current (Maurice et a!., 2001; Raman et al., 1997; Smith et a!., 1998) 

associated with neuronal bursting and hyperexcitability (Parri and Crunelli, 1998; Tanaka 

et al., 1999). This current could generate bursting In neurons, which could potentially 

contribute to an epileptic phenotype. The anti-convulsant drugs valproate and 

lamotrigine reduce the persistent current in cortical neurons (Spadoni et al., 2002; 

Taverna et al., 1998) and ethosuximide reduces persistent sodium current in thalamic 

and cortical neurons (Crunelli and Leresche, 2002; Leresche et al., 1998). In addition, 

Navi .6 sodium channels populate the neuronal axon hillock and therefore increased 

channel density at this site could lower the threshold for action potential generation 

(Jenkins and Bennett, 2001). The developmental and regulatory processes that control 

the transcription, cellular expression, and plasticity of sodium channel genes in the 

cortex are unknown, and therefore we cannot conclude whether the changes observed 

here are a cause or result of the increased neuronal activity.

Burst firing appears to be essential for the generation of SWDs (Bal et al., 2000; 

Blumenfeld and McCormick, 2000). Dysregulated expression of VGSCs can play a 

crucial role in enhanced burst firing of cortical and other neurons (Brumberg et al., 2000; 

Waxman, 2001). In fact, it has been proposed that enhanced burst firing resulting from 

VGSC-mediated action potentials may constitute a final pathway of electrical 

hyperexcitability in interictal and ictal activities in epilepsy (Bartolomei et a!., 1997; Titan 

et al., 1995).

At the genetic and molecular level, most forms of epilepsy result from neuronal 

migrational abnormalities, metabolic defects, or accumulation of inappropriate material 

that alters neuronal function (Segal, 2002). The WAG/Rij model of absence epilepsy has
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an undetermined genetic basis (Coenen et al., 1992; Peelers et a!., 1992). Currently, no 

single sodium channel mutation has been linked or attributed to this model. Because we 

have demonstrated a change in the expression of two sodium channel genes, it is 

possible that the molecular defect in WAG/Rij rats occurs upstream of single gene 

transcription. Altered availability of neurotrophic transcription factors, which can regulate 

the developmental expression of multiple genes and gene families, may be responsible 

for the dysregulation of sodium channel expression in this model (Noebels, 2002),

Absence seizures have traditionally been classified as a type of generalized 

epilepsy (ILAE Classification, 1981). There may, however, be crucial nodes within the 

brain that are most important for generating these seizures (Blumenfeld, 2003; 

Blumenfeld et al., 2003). The focal dysregulated expression of Navl.1 and N avi.6 

reported here Is associated with an age-dependent increase in seizures and roughly 

corresponds to the electrophysiologically-determlned region of seizure onset (Meeren et 

al., 2002). Therefore, although absence seizures cause an impairment of consciousness 

and involve widespread brain regions, they may in fact initiate as focal 

electrophysiological events which secondarily generalize. Improved detection methods 

and more time-sensitive physiological measurements will continue to Improve our 

understanding of this process.

In the WAG/Rij model, we report that an age-related Increase in percent time in 

SWD firing (Fig. 5.1) is associated with a progressive increase in expression of Navl.1 

and Navi.6 transcripts in layer II-IV cortical neurons in specific regions of cortex (Fig.

5.4). The critical question of whether the changes in sodium channel expression that we 

observed are a cause or effect of increasing seizure activity remains unanswered by this 

study. Future experiments examining the effect of either subtype-specific sodium 

channel blockers, or targeted knock-down of specific sodium channel transcripts, on 

SWD firing, will be necessary In order to discern whether the changes in expression of
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Nav1.1 and Nav1.6 are a primary or secondary effect, and whether these changes have 

any functional significance.

Understanding the molecular basis for changes in neuronal activity during spike- 

wave seizures may help direct the development of new treatments for this disorder. Our 

results raise the possibility that altered expression of Nav1.1 and Navi .6 in cortical 

neurons may play a role in either the generation of, or response to, SWD firing seen in 

absence epilepsy. If the molecular mechanisms of enhanced burst firing can be 

correlated to specific regional alterations in sodium channel expression in human 

epilepsy, gene therapy and other molecular approaches to treating severe generalized 

seizure disorders may be possible.
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CHAPTER 6

CONCLUSIONS

6.1 ACTIVITY-DEPENDENT MODULATION OF VGSC EXPRESSION

The preceding chapters present evidence that changes in neuronal activity 

modulate the expression of VGSCs, which in turn regulate neuronal excitability and 

responsiveness. This effect was demonstrated within several populations of neurons, in 

both physiological and pathological conditions. As discussed below, the consequences 

of these changes are complex; some appear to be adaptive and beneficial, while others 

may over time contribute to neuronal overactivation and injury, and even drive end-organ 

damage.

6.2 MOLECULAR CHANGES WITHIN NEURONS IN THE DIABETIC BRAIN

Type I and type II diabetes both result in downstream complications, including 

renal dysfunction, coronary artery disease, retinopathy, peripheral neuropathy, and 

stroke, which can compromise quality of life or even be life-threatening (Donnelly et al., 

2000). Chronic hyperglycemia, which results from decreased production of insulin in type 

I diabetes, and increased peripheral resistance to insulin in type II diabetes, disrupts 

cellular homeostasis and normal physiology. At least four metabolic pathways involving 

the shunting of excess glucose are known to participate in the generation of 

hyperglycemic end-organ damage (Brownlee, 2001); 1) The polyol pathway is activated 

during hyperglycemia, and leads to consumption of NADPH and depletion of GSM,
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which lower the threshold for intracellular oxidative injury. 2) Increased formation of 

advanced glycosylation end-products (AGEs) damages endothelial cells, thus 

contributing to vascular damage. 3) Diacylglycerol (DAG) activation of protein kinase C 

(PKC) occurs during hyperglycemia and has adverse effects on blood flow and vascular 

permeability. 4) increased shunting of glucose into the hexosamine pathway leads to 

increased proteoglycan and 0-linked glycoprotein synthesis. Over time, the metabolism 

of excess glucose through these alternative metabolic pathways contributes to vascular 

and end-organ injury (Donnelly et al., 2000). Metabolic activity within these pathways 

does not depend on neuronal activity and thus in the aggregate these pathways 

constitute a neurologically "passive” response to hyperglycemia (Fig. 6.1, left).

While the direct effects of glucose overload and pathogenesis involving these 

passive metabolic pathways account for much of the pathology associated with diabetes, 

the results presented in Chapters 2 and 3 suggest that a second neurologically “active” 

pathway, driven by neuronal activity, may contribute to end-organ pathology.

The diabetic state induces alterations in gene transcription within neurons of the 

CNS. Although some of the changes (e.g. up-regulated vasopressin production in the 

diabetic supraoptic nucleus (SON); see Chapter 2) result in altered neuronal function 

which is beneficial in the acute setting, there is evidence that over time, prolonged 

changes in neuronal gene transcription within the diabetic brain may be maladaptive, 

and underlie an “active” response that can drive pathogenesis and end-organ damage 

(Fig. 6.1, right).
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Fig. 6.1. Chronic hyperglycemia induces both neurologically “active” (right) and 

neurologically “passive” (left) cellular responses.

An increase in serum glucose raises serum osmolality at the rate of 1 mOsm/L 

per 18 mg/dL glucose. Hyperosmolality triggers both behavioral (polydipsia) and 

physiological (natriuresis, water retention) responses within the body, which aim to 

maintain solute balance and minimize fluid shifts between intracellular and extracellular 

environments. This adaptive response to hyperosmolality is mediated by MNCs within 

the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei, which increase 

their production and secretion of vasopressin when plasma osmolality rises (see Fig.

2.5) (Dheen et al., 1994b; Serino et al., 1998). MNCs are osmosensitive neurons which 

contain mechanosensitive stretch-inactivated cation channels capable of detecting 

changes in extracellular osmolality (Chakfe and Bourque, 2000; Voisin and Bourque, 

2002). These changes in osmolality are encoded by MNCs as series of action potentials,
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which propagate to the MNC terminals within the neuropituitary and regulate the amount 

of vasopressin released. Action potentials in the MNCs are produced in a characteristic 

bursting pattern (Andrew and Dudek, 1983), and are generated by the opening of 

voitage-gated sodium channels (VGSCs). The contribution of sodium channel activation 

to vasopressin release has been demonstrated by showing that application of the 

sodium channel blocker tetrodotoxin (TJX) to dissociated MNCs strongly reduces 

vasopressin secretion (Sperlagh et al., 1999).

The hyperosmolar state is associated with a chronically elevated demand for 

vasopressin. MNCs adapt to this demand by altering the rate of transcription of the gene 

for vasopressin (Luo et al., 2002). However, the transition from a quiescent to a bursting 

state when MNCs are confronted with an increase in osmotic pressure is not just a 

change in vasopressin synthesis and release -  it is accompanied by an up-regulation of 

activity of VGSC genes and insertion of additional sodium channels in the membranes of 

the MNCs, a change which lowers the threshold for generation of action potentials. 

Sodium channel a-subunits N avi.2 and N avi.6 are the predominant sodium channel 

subtypes expressed in MNCs (Tanaka et al., 1999). When MNCs in healthy rats are 

exposed to oral salt-loading, transcription of the Navi .2 and Navi .6 genes is up- 

regulated and new Navi .2 and Navi .6 channels are produced and inserted into the 

MNC plasma membrane. Increased densities of sodium channels lower the neuronal 

threshold for firing and poise neurons, including the MNCs (Klein et al., 2002), to fire 

spontaneously and in bursts (Criil, 1996; Parri and Crunelli, 1998; Taddese and Bean, 

2002). The elevated levels of functional sodium channels in the diabetic MNCs also 

enable greater membrane depolarizations in response to stimulation. As a result, there is 

greater calcium entry into the neuron which may facilitate vasopressin vesicle fusion and 

secretion of vasopressin (Scroggs and Fox, 1992). Thus there is a molecular remodeling
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of the MNCs that supports the release of vasopressin under hyperosmolar conditions 

(Tanaka et a!., 1999).

The hyperosmolality associated with diabetes has been shown to induce similar 

changes in MNCs, which have been studied in the STZ-induced diabetic rat model. 

Expression of the gene for vasopressin is strongly up-regulated within MNCs in diabetes. 

The transcription of mRNA and synthesis of protein for the Navi .2 and Navi .6 sodium 

channels are also up-regulated in response to the increased osmolality that 

accompanies hyperglycemia (Figs. 2.2, 2.3) (Klein et al., 2002). Electrophysiological 

analysis of acutely dissociated MNCs from diabetic animals shows increases in the 

densities of two distinct sodium currents (transient and persistent), indicating that 

functional VGSCs have been inserted into the cell membranes of the MNCs (Fig. 2.4) 

(Klein et al., 2002). Thus, similar to the hyperosmolar state in the absence of diabetes, 

there is a molecular remodeling of MNCs in untreated diabetes.

The up-regulated expression of VGSCs suggests that the activity level of MNCs 

should be chronically increased in untreated diabetes. Several studies have examined 

the expression of markers of neuronal activity within the SON in STZ-induced diabetes 

and the results support this hypothesis. Expression of c-fos protein (Fos), a marker for 

neurons with high states of activity, is up-regulated in the SON and PVN after four weeks 

of STZ-induced diabetes (Zheng et al., 2002). Likewise, neuronal nitric oxide synthase 

(NOS) mRNA levels are markedly up-regulated in SON and PVN neurons in STZ- 

induced diabetic rats (Luo et al., 2002; Serino et al., 1998). This increase in NOS 

expression can be reversed with normalization of glucose by either insulin treatment or 

dietary restriction (Serino et a!., 1998). Because neuronal NOS is activated by calcium 

influx through NMDA receptors, the expression of the NMDA receptor NMDAR1 has 

been assessed in STZ-induced diabetes and was found to be up-regulated in SON and 

PVN neurons (Luo et al., 2002). In the same study expression of the glutamate receptor
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GluR2/3 subunit, which endows NMDA receptors with calcium selectivity and limits 

calcium influx, was found to be down-regulated within the diabetic SON, which might 

allow further intracellular calcium accumulation (Luo et al., 2002). These findings provide 

additional support for the idea that in diabetes, increased demand for vasopressin leads 

to an ensemble of molecular changes which contribute to a high level of activity within 

vasopressin-producing neurons.

Although short-term rises in vasopressin synthesis and release by MNCs serve 

an important homeostatic role, sustained elevations in vasopressin levels have been 

implicated in the development of renal failure (Ahloulay et al., 1999; Bouby et al., 1999; 

Donnelly et al., 2000), and there is evidence for degeneration of MNCs in the SON which 

have been driven into a chronically active state in diabetes. The link between high levels 

of MNC activity and vasopressin release, and renal injury, appears to involve V2 

vasopressin receptors, located in the basolateral membrane of principal cells in the renal 

medullary collecting duct and cortical arcade (Laycock and Hanoune, 1998), which 

mediate the antidiuretic effect of vasopressin. Activation of the V2 receptor through a G- 

protein-linked signaling cascade ultimately leads to the expression and insertion of the 

water channel aquaporin 2 into the apical membrane surface. By introducing water- 

permeable channels into the renal collecting duct, vasopressin acutely prevents (or 

limits) a rise in serum osmolality (Bankir et al., 2001). However, long-term overactivation 

of V2 receptors by chronically elevated serum vasopressin leads to glomerular 

hyperfiltration, albuminuria, and renal hypertrophy (Bardoux et al., 1999). These 

structural and physiological changes, which result from chronically increased 

vasopressin levels, are characteristic of diabetic nephropathy and can progress to renal 

failure (Fig. 2.5) (Ahloulay et al., 1999; Bouby et al., 1999; Donnelly et al., 2000), 

Normalization of vasopressin levels prevents the development of these changes and, in
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vasopressin-deficient STZ-induced diabetic animals, these changes are not observed 

(Bardoux et al., 1999).

In addition to contributing to end-organ damage, the changes within 

hypothalamic neurons may over time contribute to their loss. While short-term changes 

in MNC activity may be adaptive, more chronic changes, which are associated with 

prolonged alterations in gene transcription, have been found to be associated with 

several structural alterations, suggesting that there is degeneration of hypothalamic 

neurons in the chronically diabetic SON and PVN. These changes were presented in 

Chapter 3. Other studies have confirmed these findings. Using Cresyl Violet (NissI) 

staining, some neurons within the diabetic SON appear hypertrophic and vacuolated, 

while others are shrunken and hyperchromatic (Luo et al., 2002). These changes 

become more pronounced with length of time of STZ-induced diabetes. Vasopressin 

immunoreactivity, while still above control levels, falls off in long term (>2 months) 

diabetic animals (Luo et al., 2002), providing additional indirect evidence that there may 

be neuronal damage and functional insufficiency due to chronic overactivation in 

diabetes. Ultrastructural studies of SON and PVN neurons in prolonged diabetes have 

demonstrated abnormal axonal profiles, abnormal dendritic morphology, and abnormal 

somata; after six months of STZ-induced diabetes, substantial neuronal degeneration is 

present within the SON and PVN (Dheen et al., 1994a).

The molecular changes within hypothalamic MNCs, described above, appear to 

contribute to the degeneration of these neurons. As discussed above, activation of 

MNCs triggers an up-regulation of NOS and NMDAR (Luo et al., 2002). Chronic 

overstimulation of NMDAR can lead to an accumulation of intracellular calcium, which in 

turn drives the production of NO (Coyle and Puttfarcken, 1993; Dawson et al., 1991). 

While elevated levels of NO may be protective against damage caused by the 

accumulation of reactive oxygen species (part of the “passive” response, see Fig. 6.1)
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(Brownlee, 2001), high levels of NO can also mediate glutamate toxicity secondary to 

neuronal overactivation. Chronic diabetes thus may, via the sustained hyperactivity that 

it produces, trigger the death of vasopressin-producing neurons.

Chronic hyperglycemia therefore triggers changes in the rate of transcription of 

specific genes within neurons of the hypothalamus and hippocampus, and possibly in 

other brain regions. It appears that over time these modifications of gene transcription 

evoke changes in neurons, which contribute to the development of secondary 

complications of diabetes.

While dietary and medical management of hyperglycemia are often sufficient to 

delay or prevent the appearance of secondary complications, the changes in neuronal 

gene transcription discussed in this review may also represent an opportunity for 

therapeutic intervention. In the hypothalamus, normalization of sodium channel 

expression or block of abnormal sodium channel activity (Klein et al., 2002; Sperlagh et 

al., 1999) in MNCs would be expected to decrease vasopressin secretion, and might 

therefore attenuate the hyperfiltration, albuminuria, and renal hypertrophy associated 

with increased vasopressin release, thus slowing the onset of diabetic nephropathy 

(Bardoux et al., 1999).

As the changes in neurons that occur in diabetes become better understood, it 

appears that the pathogenesis of end-organ damage in diabetes involves two distinct 

mechanisms: 1) neurologically “passive” shunting of excess glucose through alternative 

cellular metabolic pathways, which causes diffuse vascular injury and oxidative damage; 

and 2) “active” modulation of neuronal gene transcription in response to hyperglycemia, 

which alters neuronal structure and function, and in turn, can lead to physiological 

deficits (Fig. 6.1). Recognition of the active neuronal pathway may open up new 

therapeutic approaches, distinct from the classical therapies that work on the passive 

metabolic pathways, that can slow or prevent end-organ damage in diabetes.
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6.3 STIMULATION-DEPENDENT PLASTICITY OF VGSC EXPRESSION

The results described in Chapter 4 provide evidence that the expression of 

specific sodium channel genes can be modulated by changes in neuronal activity level. 

Following stimulation consisting of 10 Hz pulses lasting 0.5 s every 2 seconds, 12 hours 

per day, for 5 days, expression of N avi.8 and N avi.9 mRNA and protein was down- 

regulated, while Navi .3 was unchanged (Klein et al., 2003a). The differential regulation 

of transcription of sodium channel subtypes suggests that the activity-dependent 

modulation of transcription is gene specific, and not the result of a generalized up- or 

down-regulation of neuronal biosynthetic activity. These results are in concordance with 

studies examining the effect of a sodium channel activator (scorpion a toxin, which 

blocks channel inactivation) on sodium channel expression. In these studies, fetal 

cortical neurons in culture responded to channel activation by decreasing Navl.1, 

Navi .2, and Nav1.3 mRNA levels (Dargent and Couraud, 1990; Giraud et al., 1998; Lara 

et al., 1996).

The modification of gene transcription in the electrical stimulation model may 

represent a neuronal adaptation aimed at matching input (stimulation) with output 

(excitability). Like activity-dependent strengthening of synaptic contacts, remodeling of 

the neuronal electrogenic apparatus by altering either ion channel density or effective 

area of excitable membrane, may serve as a means of optimizing information transfer 

between neurons (Spitzer, 1999; Stemmier and Koch, 1999). Cultured cortical pyramidal 

neurons have been shown to adjust their voltage-dependent conductances (including 

VGSCs) in order to increase sensitivity to changes in current injection. By altering these 

conductances, the neuron maintains a stable firing rate corresponding to changes in 

input (Desai et al., 1999). The activity-dependent feedback mechanism which regulates 

the transcription of VGSCs is unknown, but there is evidence that intracellular levels of
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calcium may play a role (LeMasson et a!., 1993; Liu et al., 1998; Marder et al., 1996; 

Turrigiano et al., 1994; Turrigiano et al., 1995; Turrigiano, 1999; Turrigiano and Nelson, 

2000). It has been proposed that low levels of intracellular calcium, resulting from 

periods of decreased neuronal firing, trigger a compensatory increase in VGSC 

expression, which Increases neuronal excitability and firing frequency, and in turn, 

normalizes intracellular calcium levels. Conversely, high levels of intracellular calcium 

resulting from periods of high activity, trigger a decrease in VGSC expression, which 

decreases neuronal excitability and firing frequency, and in turn, normalizes intracellular 

calcium levels (see Fig. 6.2) (Marder and Prinz, 2002; Turrigiano, 1999).

Several experiments support this hypothesis. In cultured rat skeletal myotubes, 

saxitoxin labeling of sodium channels revealed that blockade of calcium channels by 

verapamil (as well as blockade of sodium channels by TJX) caused an up-regulation of 

sodium channel density (Brodie et al., 1989). A similar experiment demonstrated that 

pharmacological blockade of spontaneous electrical activity in skeletal myotubes caused 

a 38-83% increase in VGSC density (Sherman and Catterall, 1984). Electrical activity 

and/or sustained increases in intracellular calcium levels have been shown to decrease 

the level of VGSC mRNA (Kobayashi et al., 2002; Offord and Catterall, 1989; Shiraishi et 

al., 2001). This change was paralleled by an increase in cAMP levels, suggesting that 

stabilization of sodium channel expression and neuronal activity is dependent on a 

balance between calcium-dependent reduction in cAMP levels (which increases VGSC 

expression) and direct actions of calcium as a second messenger (which decreases 

VGSC expression) (Offord and Catterall, 1989). In addition to cAMP-mediated regulation 

of transcription, other calcium-dependent signaling pathways involving CaM kinase II 

and the MAP kinase cascade have been shown to regulate CREB-mediated gene 

transcription (Buonanno and Fields, 1999; Finkbeiner and Greenberg, 1998; Ji and 

Woolf, 2001; Kornhauser et al., 2002; West et al., 2001; West et al., 2002), and the
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activities of these pathways can be modulated by changes in neuronal firing (Fields et 

al., 2001).
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Fig. 6.2. Neuronal activity leva! (input) regulates expression of VGSCs, which 

determines neuronal sensitivity and firing rate (output) (Stemmier and Koch, 1999). This 

activity-dependent retuning of the neuronal response curve may be dependent on 

intracellular levels of calcium (Desai et al., 1999; Marder and Prinz, 2002; Turrigiano, 

1999). Dotted lines represent range of stimulation or input current; solid lines represent 

output firing rate. Neurons can maintain a consistently wide range of output 

corresponding to changing input distributions through plasticity of VGSC expression.
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These studies, with the results presented in Chapter 4, suggest that VGSC 

expression is a dynamic process that is continuously modulated by a number of “activity- 

sensors”. Changes in intracellular calcium levels indicate changes in neuronal 

stimulation and input, and these changes are translated into alterations in the molecular 

composition of the neuronal electrogenic membrane.

6.4 VGSC EXPRESSION AND EPILEPSY

In Chapter 5, activity-dependent changes in VGSC expression were addressed in 

the context of epilepsy. WAG/Rij rats, which have spontaneous spike-wave discharges 

(SWDs) similar to those seen in human absence epilepsy, demonstrated up-regulated 

expression of Nav1.1 and Nav1.6 mRNA and protein in layer II-IV cortical neurons within 

the facial somatosensory region (Klein et al., 2003c). This area of cortex matches the 

electrophysiologically-determined region of seizure onset in this model (Meeren et al., 

2002). The dysregulated expression of Nav1.1 and Nav1.6 mRNA and protein parallel 

the age-dependent increase in SWD firing time in this model (Klein et al., 2003c).

The SWD rhythm is thought to result from interactions between neurons of the 

GABAergic reticular nucleus and corticopetal thalamic nuclei (Buzsaki et al., 1988; 

Steriade et al., 1985). Field potential measurements using multi-site depth electrodes in 

WAG/Rij rats have provided evidence that the currents associated with SWD generation 

originate through activation of layer II-IV intracortical neuronal networks (Kandel and 

Buzsaki, 1997). Overexpression of N av l.i and N av i.6 within these neurons could lower 

the threshold for action potential firing and increase the peak current density upon 

activation. In addition, Navi .6 is capable of producing a persistent current (Maurice et 

al., 2001; Raman et al., 1997; Smith et al., 1998), which can underlie neuronal bursting 

and hyperexcitability (Parri and Crunelli, 1998; Tanaka et al., 1999).
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In the WAG/Rij model of absence epilepsy, it is unclear whether the changes in 

expression of Nav1.1 and Nav1.6 are a cause or effect of the seizures. In the former 

case, a molecular defect causing up-regulated expression of Nav1.1 and Nav1.6 could 

lead to hyperexcitable and seizure-prone neurons (Fig. 6.3, left). In the latter case, a 

VGSC-independent defect predisposing neurons to SWD firing could trigger an activity- 

dependent reorganization of the electrogenic membrane, in this case resulting in up- 

regulated expression of Nav1.1 and Nav1.6 (Fig. 6.3, right).

molecular defect 
causing up-regulated 

VGSC expression

Nav1.1
Nav1.6

I
increased SWD firing

molecular defect causing 
increased SWD firing

I
activity-dependent 

up-regulation of VGSC 
expression

Nav1.1
N a v ie

Fig. 6.3. The WAG/Rij model of absence epilepsy has an undetermined genetic basis. A 

molecular defect resulting in increased expression of Nav1.1 and Nav1.6 (left) could 

favor hyperexcitabiiity and lead to spike-wave discharge (SWD) initiation. Alternatively, a 

VGSC-independent molecular defect causing increased SWD firing could trigger 

secondary activity-dependent changes in neuronal gene transcription leading to up- 

regulated expression of Nav1.1 and Nav1.6.
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There are several approaches that could help dissect the relationship between 

SWD firing and neuronal VGSC expression in this model. VGSC transcript knock-down 

strategies or subtype-specific channel blockers could, in the future, help determine the 

relationship between VGSC expression and SWD firing In layer ll-IV cortical neurons in 

the WAG/Rlj model of absence epilepsy.

6.5 CLINICAL PERSPECTIVES

Identification of the dynamic interaction between neuronal activity level and 

VGSC expression could potentially lead to the development of novel therapeutic 

strategies for treating diseases and conditions in which sodium channel expression is 

dysregulated. In diabetes, for example, reversing the up-regulation of Nav1.2 and 

Nav1.6 that occurs in the supraoptic nucleus would prevent the chronically elevated 

vasopressin release. This manipulation would be expected to minimize the deleterious 

effects of vasopressin on the renal glomerulus, and therefore prevent the onset of 

diabetic glomerulonephritis and renal failure.

Neuropathic pain may result, in part, from injury-induced changes in neuronal 

sodium channel expression which lead to hyperexcitability and spontaneous firing. In 

Chapter 4, sodium channel expression was modulated by changes in neuronal activity 

level by a mechanism independent of changes in growth factor availability. These results 

suggest that stimulation applied to injured neurons could alter their expression of 

VGSCs. Currently, functional electrical stimulation, used to either augment or reduce 

neuronal activity associated with coordinated muscle contraction, is being tested in 

nerve-injured subjects. It is conceivable that electrical stimulation could be similarly 

applied to injured nerves, with the hope of reducing pain through modulation of VGSC 

expression.
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Dysregulated sodium channel expression within specific neurons in the epileptic 

cortex represents another potential target for clinical intervention. As the causality 

between altered expression of sodium channels and epileptogenesis becomes better 

elucidated, targeted regulation of sodium channel expression within specific neuronal 

populations in the brain, using either anti-sense technology or targeted gene knock

down strategies, may be possible. While these approaches are sophisticated, they have 

the potential to be more specific than current anti-epileptic medications, many of which 

have systemic side effects and incompletely understood mechanisms of action.
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