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RESEARCH Open Access

Changes in the activation and function of the
ankle plantar flexor muscles due to gait retraining
in chronic stroke survivors
Brian A Knarr1,5*, Trisha M Kesar4, Darcy S Reisman1,2, Stuart A Binder-Macleod1,2 and Jill S Higginson1,3

Abstract

Background: A common goal of persons post-stroke is to regain community ambulation. The plantar flexor
muscles play an important role in propulsion generation and swing initiation as previous musculoskeletal
simulations have shown. The purpose of this study was to demonstrate that simulation results quantifying changes
in plantar flexor activation and function in individuals post-stroke were consistent with (1) the purpose of an
intervention designed to enhance plantar flexor function and (2) expected muscle function during gait based on
previous literature.

Methods: Three-dimensional, forward dynamic simulations were created to determine the changes in model
activation and function of the paretic ankle plantar flexor muscles for eight patients post-stroke after a 12-weeks
FastFES gait retraining program.

Results: An median increase of 0.07 (Range [−0.01,0.22]) was seen in simulated activation averaged across all
plantar flexors during the double support phase of gait from pre- to post-intervention. A concurrent increase in
walking speed and plantar flexor induced forward center of mass acceleration by the plantar flexors was seen
post-intervention for seven of the eight subject simulations. Additionally, post-training, the plantar flexors had an
simulated increase in contribution to knee flexion acceleration during double support.

Conclusions: For the first time, muscle-actuated musculoskeletal models were used to simulate the effect of a gait
retraining intervention on post-stroke muscle model predicted activation and function. The simulations showed a
new pattern of simulated activation for the plantar flexor muscles after training, suggesting that the subjects
activated these muscles with more appropriate timing following the intervention. Functionally, simulations
calculated that the plantar flexors provided greater contribution to knee flexion acceleration after training, which is
important for increasing swing phase knee flexion and foot clearance.

Keywords: Gait, Stroke, Musculoskeletal simulation, Plantar flexors, Muscle function

Background
3The degree of locomotor impairment post-stroke can
vary greatly [1], but a majority of individuals post-stroke
have decreased walking speed and abnormal gait kinemat-
ics [2]. These post-stroke gait impairments are a critical
target of rehabilitation. The use of treadmills has gained
popularity as an intervention for gait retraining post-
stroke [3-6]. Recent studies have investigated combining

treadmill walking with more targeted rehabilitation meth-
ods such as functional electrical stimulation (FES) [7].
In particular, impairment of the plantar flexors, typical
of stroke gait, has been the focus of recent rehabilitation
approaches [8,9] because of the importance of both
foot clearance and forward propulsion in post-stroke gait
function [10].
It has been shown that functional electrical stimulation

of the plantar flexors during pre-swing, along with the
paretic ankle dorsiflexors during swing, provided add-
itional gait benefits including increased swing phase
knee flexion, plantar flexion at toe-off, and forward
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propulsion [8]. Furthermore, combining fast treadmill
walking and FES applied to the plantar and dorsiflex-
ors for individuals post-stroke [6] resulted in greater
anterior ground reaction force, trailing limb angle, and
swing phase knee flexion for individuals post-stroke
compared to either fast walking or FES alone. While
these immediate effects of fast walking combined with
FES are encouraging, the mechanisms underlying the
effects are unclear.
Computer simulation studies have previously been

used to demonstrate the function of individual muscles
in healthy [11-13] and post-stroke gait [14]. In particular,
pre-swing has been highlighted as an important phase of
the gait cycle for forward propulsion and swing initiation
in healthy walking [15]. During this phase, it has been
shown that the soleus is the primary contributor to for-
ward propulsion and the gastrocnemius is the primary
contributor to swing initiation in healthy gait [11,12,15].
Most recently, simulation analyses identified decreased
paretic soleus and gastrocnemius contributions to for-
ward propulsion in an individual post-stroke compared
to a healthy control [16] and have suggested that re-
habilitation strategies that increase paretic forward pro-
pulsion and swing initiation in a population post-stroke
have great potential to improve gait performance post-
stroke [16]. Similar results were shown with two simula-
tions representing populations post-stroke with average
walking speeds of 0.55 and 0.92 m/s [17]. Computer
simulations have not been performed on individuals
post-stroke with a wider range of gait impairments. Per-
haps more importantly, changes in muscle function after
a gait retraining intervention have not been investigated
using musculoskeletal modeling.
Due to the role of plantar flexors and leg extension

[18] in generation of propulsion and subsequent main-
tenance of gait speed, as well as knee flexion velocity
which allows for greater swing-phase knee flexion [19],
we developed and tested a novel gait training program
combining fast treadmill walking with plantar and
dorsiflexor FES during gait (FastFES). One goal of the
FastFES gait retraining program was to improve push
off forces during pre-swing and foot clearance during
swing, two common deficits seen in post-stroke gait, by
delivering FES to ankle plantar flexors. The FastFES
intervention produced improvements in a wide variety
of gait-related outcome measures including forward pro-
pulsion, walking speed, walking endurance, and activity
[20]. Using musculoskeletal simulations to identify the
functions of specific muscles in response to an interven-
tion such as FastFES can be a useful method to assess and
enhance gait retraining.
This study used subject-specific musculoskeletal mod-

els to simulate the changes in activation and function of
the ankle plantar flexor muscles in individuals post-

stroke after a FastFES gait retraining program, as well as
to identify relationships between simulation results and
clinical gait variables. We developed forward dynamic
gait simulations using gait data collected before and after
12-weeks of FastFES gait training. The purpose of this
study was to demonstrate that simulation results were
consistent with (1) the purpose of the intervention and
(2) expected muscle function during gait based on previ-
ous literature. Additionally, we evaluated the ability of
the model results to predict intervention outcomes by
demonstrating correlations between our simulation
results and clinically relevant outcome measures.

Methods
Twelve individuals post-stroke (age 63 ± 8.6 years, 3
men, >6 months post-stroke) were recruited to partici-
pate in a 12-week FES gait retraining intervention, in-
volving both plantar and dorsiflexor stimulation [20].
Inclusion criteria were defined as: 6 months after a
stroke involving cerebral cortical regions, able to walk
for 5 minutes at self-selected speed without a brace or
assistive device, passive paretic ankle dorsiflexion range
of motion to reach at least of 5° plantar flexion with the
knee flexed, and presence of deficits in walking function.
Exclusion criteria were defined as: severe aphasia, sub-
stantial cognitive deficits, cerebellar involvement, or pre-
existing conditions affecting walking function [20].

Subject training
Training consisted of four six minute bouts of treadmill
walking at the subjects’ fastest possible speed with FES
delivered to the paretic limb during the first, third, and
fifth minutes of each bout. A fifth bout consisted of
three minutes of treadmill walking with FES followed by
three minutes of overground walking without FES. Dur-
ing the overground walking subjects were instructed to
walk with the same pattern as practiced with the FES.
This fifth bout is designed to help transfer the training
to a more natural overground setting. FES was delivered
to the ankle dorsiflexor muscles during the paretic swing
phase and to the ankle plantar flexor muscles during the
paretic pre-swing phase of gait [8]. Timing of the FES
during the gait cycle was controlled by two compression
closing foot switches (25-mm diameter MA-153, Motion
Lab Systems Inc., Baton Rouge, LA) attached to the sole
of the paretic limb shoe under the fifth metatarsal head
(forefoot switch) and the other under the lateral portion
of the heel (hindfoot switch). The FES system delivered
stimulation to the ankle dorsiflexor muscles during the
paretic swing phase of gait, while the paretic foot was off
the ground. The paretic ankle plantar flexor muscles
were stimulated from heel off to toe off of during paretic
limb pre-swing, as indicated by the hindfoot and forefoot
switches. Subjects walked without a brace or assistive
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device during all training sessions. This training was
done 3x/week for 36 total training sessions. All subjects
signed informed consent forms approved by the Human
Subjects Review Board at the University of Delaware.

Data collection
Kinematic and kinetic gait data were collected using an
8-camera motion capture system (Vicon MX, Los
Angeles, CA; Motion Analysis, Santa Rosa, CA) as sub-
jects walked at their self-selected walking speed on an
instrumented split belt treadmill (AMTI, Watertown,
MA; Bertec, Columbus, OH) pre- and post- interven-
tion. The self-selected walking speed was determined
during over ground walking using the average of three
trials of the 6-meter walk test. Subjects walked without a
brace or assistive device and no FES was delivered dur-
ing these evaluation sessions. Subjects wore an overhead
support harness with no body weight support and held
on to a handrail (if needed) for safety.
Three-dimensional, subject-specific forward dynamic

simulations were created from motion capture walking
trials using OpenSim [21]. The model had 54 actuators,
three degrees of freedom at the pelvis and hip joints,
and one degree of freedom at the knee, ankle and toe
joints, and was scaled to the subject’s size and mass.
This exact model [22] and similar models [21,23] have
previously been used in both healthy and osteoarthritic
populations. Residual reduction analysis was run on the
data to calculate residual forces that account for dynamic
inconsistencies between the kinematic and kinetic data,
such as the use of handrails. The model predicted muscle
activations and forces required to reproduce the experi-
mentally measured gait kinetics and kinematics were
found using the Computed Muscle Control algorithm
[24]. During computed muscle control, a combination of
static optimization and proportional-derivative control is
used to compute the muscle excitation levels necessary to
drive the kinematics of the model towards the experimen-
tally measured coordinates. The optimization function
solved in this step minimizes the sum of two terms: the
sum of the squared actuator controls and the weighted
sum of the errors in desired acceleration.

Data analysis
Based on the muscles targeted by the intervention, the
paretic medial gastrocnemius (MG), soleus (SOL), and
tibialis posterior (TP) muscles were analyzed in this
study. All analysis in this manuscript is focused on the
paretic limb. While the authors acknowledge the import-
ance of all muscles, both ipsilateral and contralateral, in
contributing to the variables of interest in this study, the
plantar flexor muscles are being analyzed here due to
the targeted nature of the intervention. Of the three
plantar flexor muscles, the MG and SOL muscles were

directly stimulated by FES. The TP was also studied, as
changes in the TP would reflect changes in a muscle that
serves a similar function but was not exposed to FES.
For each muscle, the simulated activation ranged from 0
to 1, where 0 indicates no muscle activation and 1 indi-
cates full muscle activation. We calculated the average
simulated activation over a period of time, where 1.0
would be the maximum average activation, for the
complete gait cycle and during double support. Double
support in this study is defined as the period of double
support on the paretic limb during pre-swing. Muscle
force perturbations were used to determine individual
muscle contributions to knee joint and center of mass
(COM) accelerations [25]. For this analysis, an individual
muscle’s force is perturbed by ± 1 N and simulated for-
ward for 0.01 s interval to calculate the changes in the
model’s joint angle and center of mass accelerations
[25]. A foot-ground contact model with linear and tor-
sional springs is used to account for the change in
ground contact forces caused by the force perturbation.
The induced accelerations were averaged over the
double support phase of gait for each muscle. For each
muscle, changes in percent activation post-intervention
were tested for correlation with changes in peak knee
flexion and induced knee flexion acceleration. The rela-
tionship between trailing limb angle and forward COM
acceleration by the plantar flexor (PF) muscles was also
examined. In addition, we examined the relationships
between changes in percent activation of the PF mus-
cles versus changes in peak knee flexion during swing
phase of gait and walking speed and between forward
COM acceleration produced by the PF muscles versus
walking speed.

Statistical analysis
Differences between simulated activation for each muscle
pre- and post- intervention were evaluated using the Wil-
coxon signed-rank test. Non-parametric statistics per per-
formed due to low sample size and high variability between
subjects. Changes in the average knee joint and COM
accelerations from pre- to post-intervention were assessed
on an individual basis. Linear regressions were performed
to assess the following relationships: (1) Changes in simu-
lated activation of the PF muscles versus changes in peak
knee flexion during swing phase of gait and walking speed.
(2) Changes in simulated plantar flexion activation and
trailing limb angle versus changes in knee flexion acceler-
ation. (3) Forward COM acceleration produced by the PF
muscles versus walking speed.

Results
Four subjects were excluded from this study due to in-
accurate force plate data as a result of equipment failure.
A total of 16 simulations were generated, with a pre-
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training and post-training simulation for each of the
eight remaining subjects, built from the gait trials at
self-selected speed at the time of collection. All subjects
improved self-selected walking speed, and the self-
selected speed post-intervention speed was faster (Median
0.2 m/s (Range [0.1, 0.6], P < 0.01)) than pre-intervention
(Table 1).

Muscle activation during gait
A median increase of 0.07 (Range [−0.01,0.22]) was seen
in simulated activation averaged across all plantar flexor
muscles over double support after 12-weeks of gait
training (P = 0.016). Medial gastrocnemius experienced
the largest median change across subjects, at 0.12
(Range [−0.03,0.19] ) (P = 0.04), and a 0.04 (Range [0.01,
0.11]) median increase (P = 0.01) was seen in the tibialis
posterior muscle. Although not significant, the soleus
muscle showed a median increase of 0.05 (Range [−0.07,
0.44]) with training (P = 0.20), with 5 of 8 subjects in-
creasing predicted activation and two subjects showing
no change (< 0.01). No significant change with training
was seen for the average of these muscles over the full
gait cycle (median 0.01 (Range [−0.06, 0.04])) (Figure 1).

Muscle function during gait
Forward COM acceleration
Prior to training, the sum of the PF muscles for seven of
the eight subjects decelerated the COM in the direction of
walking during double support; only one subject’s PF
showed the normal pattern of accelerating the COM for-
ward during double support (Figure 2). Although the
changes in plantar flexor function after training (Median
0.36 m/s2 (Range [−0.72, 4.89])) were not statistically sig-
nificant for the total or individual muscles across subjects,
two additional subjects (3 total) achieved forward COM
acceleration from the PF muscles post-intervention.

Overall, the sum of the PF muscles for seven of the eight
subjects either improved acceleration of the COM or
decelerated the COM less after training.

Knee joint acceleration
Overall, knee flexion acceleration induced by the medial
gastrocnemius during double support increased signifi-
cantly (Median −816.65 m/s2 (Range [−4108.4, 433.37]))
(P = 0.04) post-intervention (Figure 3), with only one
subject showing decreased induced flexion acceleration
post-intervention. Prior to training, the medial gastro-
cnemius for two of the subjects induced extension accel-
eration at the knee during double support. In contrast,
all subjects showed induced knee flexion acceleration
from the medial gastrocnemius post-training.

Table 1 Subject characteristics at the pre-training evaluation

Subject Gender Age Side of Time since Self- selected Fugl-Meyer

Hemiparesis Stroke gait speed (LE) Score

(yrs) (L/R) (months) (m/s) Max = 34

Pre Post

98 M 66 R 19 0.30 0.40 21

108 M 70 L 21 0.50 0.60 13

110 F 65 R 15 0.30 0.90 18

128 F 65 R 18 0.50 0.70 18

129 F 54 R 55 0.50 0.80 17

136 F 58 R 12 0.30 0.50 13

137 M 46 R 8 0.40 0.50 15

142 F 70 L 9 0.30 0.50 22

Self-selected gait speed listed for pre- and post-intervention.

Figure 1 Average activation of the paretic (a) soleus and (b)
medial gastrocnemius, muscle over the full gait cycle pre- and
post-intervention for one representative subject. Y-axis indicates
model activation, where 0 represents no activation and 1 represents
full activation.
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Clinical correlations
Increases from pre- to post-training in model predicted
PF activation during pre-swing showed a significant posi-
tive relationship (p = 0.01, R2 = 0.71) with increases in
peak knee flexion during the swing phase of gait (Figure 4).
A multiple linear regression with change in average simu-
lated plantar flexion activation and trailing limb angle to-
gether showed a significant relationship to change in knee
flexion acceleration induced by the plantar flexors during
double support, explaining ~75% of the variance (p = 0.03,
R2 = 0.75). Neither change in simulated PF activation nor
trailing limb angle alone were significant predictors of
change in knee flexion acceleration induced by the plantar
flexors. Increased simulated plantar flexion activation with
training (p = .002, R2 = .82) was related to increases in self-

selected walking speed. Greater self-selected walking
speed post-intervention exhibited a trend for a relation-
ship with greater forward COM acceleration by the plan-
tar flexors during double support (p = 0.06, R2 = .46).

Discussion
The purpose of this study was to demonstrate that simula-
tion results of plantar flexion activation and function for
individuals pre- and post-intervention were consistent with
(1) the purpose of the intervention and (2) expected
muscle function during gait based on previous litera-
ture. In addition, we identified correlations between
simulation results and clinical measures of walking
function. Sixteen subject-specific models were created
to represent pre- and post-training gait for 8 indivi-
duals post-stroke. To our knowledge, this is the first
study to use musculoskeletal simulations of persons
with chronic hemiparesis to simulate changes in muscle
activation and function before and after participation in
a gait retraining intervention.
Significant increases were seen in simulated plantar

flexor activation during double support with no changes
in total predicted activation over the entire gait cycle,
suggesting selective increases in predicted plantar flexion
activation during the phase of gait targeted by the inter-
vention, i.e. double support. This new simulated activa-
tion pattern post-intervention is consistent with the
timing of PF FES used during the intervention, which
stimulated PF muscles only during pre-swing. This post-
intervention activation pattern also agrees with healthy
PF muscle coordination where the plantar flexors are
activated most during late single leg stance and pre-
swing. Thus, this new simulated pattern of activation for
the plantar flexor muscles suggests that the subjects acti-
vated these muscles with more appropriate timing fol-
lowing the intervention.
The soleus and gastrocnemius play key roles in forward

progression and swing initiation, respectively, primarily
during the double support phase of gait [11]. Post-stroke
muscle weakness of the PF muscles can greatly limit force
generation by these muscles during gait, leading to
decreased walking speed, limited swing phase knee flexion
and poor foot clearance during swing [26,27]. Functional
electrical stimulation during the FastFES intervention tar-
geted the plantar flexor muscles pre-swing with the goal
of enhancing the contribution of these muscles to their re-
spective subtasks and improving gait.
In hemiparetic individuals, enhancing the contribution

of the soleus towards forward COM acceleration has
been identified as an important mechanism for increas-
ing walking speed [16]. Interestingly, our models simu-
lated that for 7 of 8 subjects post-stroke pre-training,
the soleus decelerated the COM during double support,
which is contrary to what is expected for healthy walking

Figure 3 Knee angular acceleration induced by the medial
gastrocnemius during double support pre- and post-
intervention. More negative values represent greater knee
flexion acceleration.

Figure 2 Forward center of mass acceleration induced by the
plantar flexor muscles during double support pre- and post-
intervention. More positive values represent increased contribution
of muscles to forward acceleration.
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[11,28]. This suggests that the subjects’ paretic limb was
in a poor biomechanical position for the soleus to accel-
erate the body forward. Post-training, the simulated PF
muscles decelerated the COM less than pre-training for
seven of eight subjects. In addition, simulations of 3 sub-
jects began to accelerate the COM forward with the PF
muscles post-intervention. Not surprisingly, these three
subjects were three of the four fastest walkers post-train-
ing. Interestingly, the subject who showed the largest
simulated increase in plantar flexor induced forward
COM acceleration with training also showed the largest
increase in self-selected walking speed (0.3 to 0.9 m/s),
and walked at the fastest speed of the eight subjects
post-intervention. It is important to note that the sub-
jects in this study were walking at very slow speeds, ran-
ging from 0.3 to 0.5 m/s pre-intervention, and the
deceleration caused by the PF muscles pre-swing was
likely a limiting factor to walking speed. A similar result
was seen in a recent simulation study on a single indi-
vidual post-stroke walking at a slightly faster speed of
0.6 m/s. [16] Peterson et al. highlighted forward propul-
sion as a limiting factor for walking speed, and also
reported that the gastrocnemius contributes to negative
acceleration of the pelvis during pre-swing [16], similar
to the negative COM acceleration by the medial gastro-
cnemius found in our study.
Neptune and colleagues have shown that the gastro-

cnemius muscle is critical for swing initiation during
pre-swing, increasing swing phase knee flexion and en-
abling foot clearance during swing by accelerating the
knee into flexion [15]. For seven out of eight of our sub-
jects, the simulated medial gastrocnemius exhibited an
increased contribution to knee flexion acceleration post-
intervention. This increase in knee flexion acceleration
is associated with improved trailing limb posture com-
bined with simulated activation of the gastrocnemius
during double support, resulting in a change in muscle

timing relative to joint posture. Additionally, the increase
in simulated knee flexion acceleration was concurrent with
increased walking speed and is consistent with previous
simulation studies [15,29] that suggested that increased
contribution to swing initiation by the gastrocnemius is
required to increase walking speed. However, this is the
first study to actually demonstrate that improved simulated
plantar flexor activation is related to improved simulated
knee flexion acceleration and walking speed, as was pre-
dicted by the previous cross-sectional analysis [15,29].
Moreover, the simulations allowed an analysis of the con-
tribution of changes in plantar flexor activation to changes
in knee flexion acceleration, something that cannot be
examined through experimental data. This serves as an ex-
ample of how muscle-actuated simulations can enhance
our understanding of changes with intervention beyond
what can be ascertained from experimental data alone.
In a previous experimental study investigating imme-

diate effects of FES, peak knee flexion during swing was
hypothesized to increase with greater forward propulsive
forces as a result of increases in simulated PF activation
during pre-swing [8]. In our simulations, PF activation
correlated positively with peak knee flexion. This rela-
tionship was partially explained by gastrocnemius func-
tion (Figure 2), which can achieve increases in knee
flexion directly through the bi-articulation at the ankle
and knee, and by increased trailing limb angle. Leg ex-
tension by the trailing limb has been suggested to be im-
portant for achieving propulsion in persons with stroke
[2,18] and was one goal of the fast treadmill training
intervention used in this study. By using fast walking to
increase the trailing limb angle, the ground reaction
force exerted at push-off was directed in a more hori-
zontal orientation, providing a greater propulsive force
in the forward direction. This greater propulsive force
probably allowed for increased forward acceleration of
the body and limbs and enabled faster walking speeds

Figure 4 Change in PF activation vs. peak knee flexion from pre- to post-intervention (A). Post-training forward center of mass
acceleration by the plantar flexors vs. post-training self-selected walking speed (B). Change in plantar flexor percent activation vs. change in self-
selected walking speed from pre- to post-intervention (C).

Knarr et al. Journal of NeuroEngineering and Rehabilitation 2013, 10:12 Page 6 of 8
http://www.jneuroengrehab.com/content/10/1/12



and greater knee flexion during swing. Also, greater for-
ward COM acceleration simulated by our model was
predictive of greater self-selected walking speed post-
training, a relationship that is consistent with previous
cross-sectional study predictions [16].
This study examined changes in simulated post-stroke

muscle activation and function at self-selected speed
after a gait retraining intervention. Due to the limited
number of subjects and the high variability in individuals
post-stroke, it is not known if the findings of this study
apply to the population of individuals post-stroke as a
whole. Also, all subjects walked at a faster self-selected
walking speed post-intervention. While the use of
greater walking speeds post-intervention may have con-
founding effects on variables such as forward COM ac-
celeration, we believe this analysis is important because
it allows us to determine what changes in model pre-
dicted muscle activation and function were necessary to
achieve the increases seen in walking speed post-inter-
vention, a common goal of gait is retraining. In fact, this
the first study to show concurrent improvements in
speed, propulsion, and predicted PF activation after a
targeted training intervention with individuals post-
stroke. Due to the absence of a control group, it is not
clear if the changes seen from pre- to post-intervention
are a specific result of either FES or fast treadmill walk-
ing. Future work will include groups trained with FES or
at fast walking speeds to assess the individual compo-
nents of the intervention.
The analysis of muscle function is somewhat limited

since activation was simulated without the use of EMG
for this study. However, our modeling does account for
the effect of limb posture on muscle function, which is
not accounted for by EMG. For some of the muscles
included in this model, surface EMG cannot be obtained.
When used longitudinally with an intervention, EMG
magnitude can be insensitive to hypertrophy of muscle,
which makes comparisons difficult over time. Addition-
ally, relying on EMG signal amplitudes can be difficult, as
signal magnitude can vary based on electrode placement
and tissue conductivity [30]. However, EMG can be useful
for constraining timing of muscle activity, and future stud-
ies should consider its use. Additionally, the cost function
used in the model minimizes the sum of the squares of
the muscle activations, and generic muscle properties
were used. Maximum isometric force parameters were not
changed pre- to post-intervention, so it is possible that
some of the increase in model predicted activation was
due to strength increases elicited by the intervention. The
selection of the cost function in particular could have an
impact on the muscle activations predicted, as it is pos-
sible that the use of a different cost function could result
in a different pattern of muscle activations which also re-
produce the experimental kinematics and kinetics.

Subjects were allowed to use handrails during walking
trials for safety purposes. Although the subjects were
instructed to use the handrails with a ‘light touch,’ some
subjects may have applied larger forces to the handrails.
While the forces applied to the handrails were not
accounted for explicitly, residual forces were calculated
during the simulation and applied to the COM to ac-
count for kinetic imbalances due to external forces (i.e.
handrail force). These residual forces were found to
agree closely with the forces applied on the instrumen-
ted handrails during data collection.

Conclusions
For the first time, muscle-actuated simulations were
used to detect the effect of a gait retraining intervention
on post-stroke modeled muscle activation and function.
Improvements predicted by the simulations were con-
sistent with improvements in kinematic measures of gait
performance, demonstrating that musculoskeletal simu-
lations can provide insight into clinically meaningful
results. The simulations showed that a new pattern of
predicted activation for the plantar flexor muscles
emerged after training, suggesting that the subjects acti-
vated these muscles with more appropriate timing fol-
lowing the intervention. Functionally, after training, the
plantar flexors provided greater contribution to knee
flexion acceleration, which is important for increasing
swing phase knee flexion and foot clearance. Improve-
ment in trailing limb angle combined with increased
predicted activation of the plantar flexors was shown to
predict improvements in forward COM acceleration
produced by the plantar flexors pre-swing. Also, greater
contribution to forward COM acceleration by the plan-
tar flexors after training was predictive of greater self-
selected walking speed post-training. The correlations
seen in this study are noteworthy, as they demonstrate a
connection between musculoskeletal model predictions
and clinically relevant gait variables measured pre- and
post- intervention
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