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Abstract

The Splicing of U12-type Introns is a Rate-Limiting Step in Gene Expression

Ablujit A. Patel 

Yale University 

2002

Metazoan genes have recently been found to contain a novel class of introns that 

display non-canonical consensus sequences and are excised by a distinct splicing 

machinery. These introns occur very rarely, and have been called U 12-type introns because 

recognition of their branch point sequences requires the U12 snRNP, which performs an 

analogous function to the U2 snRNP in splicing major-class introns. The persistence of 

two spliceosomes throughout virtually all of metazoan evolution suggests that the two 

spliceosomes play distinct and probably indispensable cellular roles. One enticing 

possibility is that the U 12-type spliceosome functions in post-transcriptional regulation, 

serving as the rate-determining step in the splicing pathway of genes containing U 12-type 

introns. To test this idea I have investigated the timing of U 12-type intron removal relative 

to the removal of major-class introns from pre-mRNAs that contain both intron types. I 

have addressed this question using two different experimental approaches.

One way to evaluate the order of intron removal from a transcript is to document the 

relative amounts of unspliced intron sequences within a steady-state population of partially- 

processed transcripts: if the splicing of U12-type introns is rate limiting and occurs last, 

then their sequences should be more abundant than those of their major-class intron 

neighbors. I have developed an accurate assay based on the technique of quantitative RT- 

PCR to measure the relative abundance of unspliced introns within several genes. Here, I 

present results from the analysis of three human genes showing that in all three cases 

splicing of the U12-type intron proceeds more slowly than splicing of the U2-type introns 

from the same transcript
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The second experimental approach aimed to address the question of whether 

replacement of a naturally occurring U 12-type intron with U2-type intron consensus 

sequences can affect the rate of production of mature mRNA and protein. Constructs were 

created which expressed either cyan or yellow fluorescent proteins only when completely 

spliced. The constructs contained either a U 12-type or a U2-type intron in an arrangement 

which permitted correlation of color with type of splicing. By observing the relative 

intensities of the two fluorescent colors, it was possible to infer the relative efficiencies of 

the two splicing pathways within transfected Drosophila melanogaster tissue culture cells. 

Results of these experiments showed that replacement of a U 12-type intron with canonical 

consensus sequences did indeed dramatically increase expression of the corresponding 

mRNA and protein.

These results provide direct evidence that in vivo gene expression can be altered by 

the presence of a Ul2-type intron and implicate the U12-type spliceosome as a potential 

target in the post-transcriptional regulation of gene expression.
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Chapter I

Introduction

Principles ofPre-mRNA Processing

Most eukaryotic genes are interrupted by non-coding sequences known as introns 

that are spliced from precursor messenger RNA molecules (pre-mRNAs) to produce 

mature mRNAs. Splicing of these pre-mRNAs occurs via two successive 

transesterification reactions mediated by a multicomponent complex called the 

spliceosome (Reviewed in Steitz et al., 1988; Moore et al., 1993; Staley and Guthrie, 

1998). In the first step, cleavage of the S’ exon-intron junction is caused by nucleophilic 

attack on the phosphodiester bond at the junction by the 2’ hydroxyl group of a branch 

point nucleotide. This generates a 3’ hydroxyl group on the S’ exon, and a lariat 

intermediate with a 2’-5’ phosphodiester bond between the S’ end of the intron and the 

branch point nucleotide. In the second step, the 3’ hydroxyl group attacks the 

phosphodiester bond at the 3’ intron-exon junction, displacing a lariat intron and 

producing ligated exons.

The two transesterification reactions occur within a catalytic complex, called the 

spliceosome, that is composed of five small nuclear RNAs (snRNAs) and approximately 

100 proteins. These components exist in eukaryotic cells as RNA-protein complexes 

known as small ribonucleoprotein particles (snRNPs). (A number of non-snRNP protein 

factors are also involved in the splicing reaction.) For the majority of introns, the five 

snRNPs that mediate splicing are Ul, U2, U4/U6, and U5. Assembly of these snRNPs

1
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onto an intron requires recognition of conserved sequences at the S’ splice site (S’ 

AG|GTRAGT 3’) and in the region of the branch site and 3’ splice site (S’ 

YNCTNACT[Y]nNYAG|G) (40>n>17, splice junctions are marked with vertical bars, 

invariant nucleotides are boldfaced, the branch point adenosine is underlined, Y = 

pyrimidine, R=purine) (Mount, 1982; Reed, 1996). Since introns are frequently several 

kilobases in length and the splicing consensus sequences have relatively little information 

content, accurate removal of introns requires remarkable precision in the recognition of 

the splice sites. This is achieved by a number of RNA-RNA, protein-RNA, and protein- 

protein interactions that are precisely orchestrated, both spatially and temporally. In 

addition to the snRNPs, a variety of gene-specific protein factors (many belonging to the 

serine/arginine repeat-containing SR protein family) are involved in splice-site 

recognition and spliceosome assembly (Kenan et al., 1991; Mayeda et al., 1992; Zahler et 

al., 1992). Often, more than one splicing pattern is found for a given gene in vivo, and in 

such cases, splice site choice is regulated by specific protein factors (Smith and 

Valcarcel, 2000; Black, 2000; Grabowski and Black, 2001).

For the majority of introns, the 5’ splice site initially interacts with the U1 snRNP 

via base pairs that are formed between the intron’s consensus sequences and the S' 

terminal sequences of U1 snRNA (Steitz et al., 1988; Staley and Guthrie., 1998). This 

interaction, as well as the association of SR proteins such as SF 1/ASF and U2AF with the 

branch point sequence and polypyrimidine tract, results in the formation of complex E 

(Michaud and Reed, 1991). Subsequently, the U2 snRNP recognizes and binds to the 

branch point sequence via base pairing interactions between the snRNA and intron (Wu 

and Manley, 1989; Nelson and Green, 1989) forming complex A. The U4/U6, U5 tri-

2
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snRNP complex then associates to form complex B. Several rearrangements 

subsequently take place within the spliceosome, leading to formation of a catalytic core 

within which the transesterification reactions take place. These rearrangements include 

disruption of Ul base pairing with the S’ splice site and displacement of Ul from the 

spliceosome (Burge et al., 1999), unwinding of the base pairing interaction between U4 

and U6 (Burge et al., 1999), formation of base pairs between a segment of U6 and the 5’ 

splice site (Wassarman and Steitz, 1992; Moore et al., 1993), and formation of base pairs 

between U2 and U6 giving rise to two helices that are essential for catalysis (Madhani 

and Guthrie, 1992; Hausner et al., 1990; Datta and Weiner, 1991; Wu and Manley, 1991). 

As a result of these rearrangements, elements of the spliceosome are positioned to 

catalyze the first step of splicing, producing complex C which contains a bimolecular 

intermediate. The second transesterification reaction requires reconfiguration of the 

spliceosome to allow nucleophilic attack of the 3’ hydroxyl of the 3’ exon on the 

phosphodiester bond at the 3’ intron-exon junction (Steitz and Steitz, 1993; Moore and 

Sharp, 1993). The U5 snRNP has been shown to base-pair with sequences in the S’ and 

3’ exons, and is believed to facilitate juxtaposition of the two exons for the second step of 

splicing (Sontheimer and Steitz, 1993; Newman, 1997). Following the second step, the 

ligated exons and a lariat intron are released, and the spliceosomal components dissociate 

and are recycled for use in the splicing of additional introns (Burge et al., 1999).

3
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A Novel Class of Noncanonical Introns and a Divergent Spliceosome

A rare, divergent class of introns was identified by Jackson (1991) and Hall and 

Padgett (1994); they noticed a few introns with unusual AU and AC dinucleotides at their 

S’ and 3’ termini, differing from the nearly invariant GU and AG termini of canonical 

introns. These minor-class introns were found to be further distinguishable from major- 

class introns based on highly conserved sequences at their 5’ splice site and branch site, 

as well as by the lack of a polypyrimidine tract (Figure 1) (Hall and Padgett, 1994). 

Sequence complementarity suggested that the S’ splice sites and branch sites of these 

introns might interact with Ul 1 and U12 snRNPs, respectively (Hall and Padgett, 1994). 

It was subsequently shown that the excision of minor-class introns is indeed mediated by 

a distinct low-abundance spliceosome. The U12-type spliceosome contains Ul 1, U12, 

U4atac, and U6atac snRNPs, which are the functional analogues of the major-class Ul, 

U2, U4, and U6 snRNPs, while US snRNP participates in the splicing of both U 12-type 

and the classical (U2-type) intron (Figure 2) (Hall and Padgett, 1996; Tam and Steitz, 

1996a, 1996b). While AU-AC termini were initially considered to be a defining feature 

of minor-class introns, mutation to GU-AG termini does not interfere with splicing via 

the U 12-dependent pathway (Dietrich et al, 1997). In fact, surveys of genomic databases 

have shown that the majority of naturally occurring U 12-type introns have GU-AG 

termini (Sharp and Burge, 1997; Burge et al. 1998).

The splicing of U12-type introns is carried out in a similar manner to that of U2- 

type introns, with subtle, but probably important differences. The minor-class snRNAs 

possess relatively little sequence identity with their major class snRNA analogues, but

4
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Figure 1. Comparison of Splicing Consensus Sequences in U12-type and U2-type 

Introns (adapted from Burge et al., 1999)

Consensus sequences are displayed using a Pictogram program representation, where the 

frequency of occurrence of each base at a particular sequence position is represented by 

the relative height of the corresponding letter, in descending order of frequency. The 

U12-type consensus sequences show greater information content at the S’ splice site and 

branch site, and typically lack a polypyrimidine tract. The typical distance between the 

branch site and 3’ splice site is in the range of 10 to 20 nucleotides for U12-type introns, 

compared to 10 to 50+ for U2-type introns (Sharp and Burge, 1997).

5
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From Burge, Padgett & Sharp (1998) 
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Figure 2. Splicing Pathways of the U12-type and U2-type Spliceosomes (figure 

made by M. Frilander)

Comparison of the analogous pathways of spliceosome assembly and catalysis for both 

classes of introns. The minor-class snRNPs, Ul 1, U12, U4atac, and U6atac are the 

functional analogues of the major class snRNPs, Ul, U2, U4, and U6, respectively. The 

U5 snRNP participates in both splicing pathways. Note that Ul 1 and U12 are pictured as 

entering the spliceosome as a di-snRNP complex. The branch point adenosine is 

indicated, and YY represents the polypyrimidine tract.
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Figure 3. Primary and Secondary Structures of the snRNA Components of Both 

Spliceosomes (from Burge et al., 1999)

Nucleotide positions for each snRNA are indicated in Arabic numerals, whereas Roman 

numerals indicate intrastrand or interstrand RNA helices. Sm protein binding sites are 

shaded, and sites that base-pair with the intron consensus sequences are indicated by dark 

lines. All snRNAs are shown in 5' to 3' orientation with the exception of U4 and U4atac 

which are shown 3’ to 5’.
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display remarkable similarity in their predicted secondary structures (Figure 3) (Tam and 

Steitz, 1997). However, close examination of the sequences reveals that the most highly 

conserved core sequences of U6 are also present in U6atac. The minor class snRNPs are 

known to be approximately 100-fold less abundant than the major-class snRNPs in 

mammalian cell nuclei (Montzka and Steitz, 1988; Tam and Steitz, 1996a). The Ul 1 and 

U12 snRNPs, unlike Ul and U2, are known to interact with each other in HeLa cell 

extracts, forming a di-snRNP complex (Montzka-Wassarman and Steitz, 1992; Frilander 

and Steitz, 1999). In fact, while Ul and U2 interact separately with intron consensus 

sequences, initial recognition of minor-class introns in vitro has been shown to require 

simultaneous Ul I/S’ splice-site and U 12/branchpoint interactions, suggesting that Ul 1 

and U12 are delivered to the intron as a di-snRNP (Frilander and Steitz, 1999). Since 

U 12-type introns do not possess a polypyrimidine tract, it is reasonable to expect U2AF 

not to be involved in U 12-type splicing. However, other SR proteins have been shown to 

activate the splicing of U 12-type introns (Hastings and Krainer, 2001).

A Phylogenetic Examination o f U12-type Introns

Examples of U12-type introns are found in virtually all metazoan taxa, including 

vertebrates, insects, plants, and cnidarians, but are absent from simpler eukaryotes such 

as C.elegans, S. cerevisiae, S. pombe, and protists (Figure 4) (Burge et al, 1998). A total 

of 60 non-redundant U 12-type introns were identified in a search of all available genomic 

sequences in 1998 (Burge et al, 1998), and a more recent search of the human genome 

yielded 404 examples (Levine and Durbin, 2001). Thus, the frequency of occurrence of

11
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Figure 4. The Phylogenetic Distribution of U12-type Introns (from Burge et al., 

1998)

The frequency of occurrence of U 12-type introns in different taxa are shown. The 

number of identified U 12-type introns out of the total number of complete introns 

analyzed is indicated below the name of each taxon. The taxa are organized according to 

evolutionary relationship trees based on 18S rRNA conservation. Eubacteria and Archea 

do not have spliceosomal introns.
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U12-type introns relative to U2-type introns is in the range of 0.15% to 0.34% in 

vertebrates, and lower in other taxa (Burge et al, 1998; Levine and Durbin, 2000). These 

introns can be found at any position, and almost always co-exist with U2-type introns 

within the same gene. In humans, the mean length of U 12-type introns (3600 bp) is 

similar to that of U2-type introns (4130 bp) (Levine and Durbin, 2001), but does not yet 

include introns exceeding 20kb.

By comparing introns at homologous positions (in terms of codon location and 

phase) in homologous genes from different species, Burge et al. (1998) were able to 

conclude that U 12-type introns occurred much more frequently in early evolutionary 

history and were either lost or converted to U2-type introns over time. (Conversion from 

U2-type to U 12-type is considered to be extremely improbable since U 12-type consensus 

sequences are more highly constrained.) Further, they propose a fission/fusion model in 

which the U 12-type and U2-type splicing systems evolved in separate lineages, each 

harboring a single splicing system, which later fused to become a progenitor of higher 

eukaryotes. Merging of the genetic material resulted in a genome containing both intron 

types and both spliceosomes. Evidence for this model is provided by the observation of 

four genes that each harbor two U 12-type introns, out of 56 total U12-type intron- 

containing genes that they identified. They argue that given the extreme rarity of these 

introns, such clustering within certain genes is highly improbable if the introns were 

randomly inserted. Rather, they propose that the early progenitor organism had certain 

genes containing only U12-type introns that were contributed from the U 12-type lineage. 

Over time, the majority of the introns within these genes were either lost or converted to

14
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U2-type introns, but the U 12-type introns that have persisted are found to be clustered 

within this subset of genes that originated from the U 12-type organism.

Despite this tendency for conversion and loss, Burge et al. (1998) have identified 

several remarkable instances of Ul2-type introns that are conserved between homologous 

genes from highly diverged species. One such example is the Huntington’s disease gene 

in which the last intron of sixty-six introns is a U 12-type intron in both pufferfish (Fugu) 

and humans. Another particularly striking example is the second intron of the sodium 

channel a  subunit gene that is conserved between humans and jellyfish, organisms that 

diverged at least 600-800 million years ago (Spafford et al., 1998). Perhaps even more 

surprising is the finding that in spite of the rarity of these introns, several examples were 

noted of U 12-type introns at nonhomologous positions in paralogous genes (Burge et al., 

1998).

Hypothesis: Could the Splicing o f U 12-type Introns be a Rate-Limiting Step in Gene 

Expression?

The conclusions of Burge et al. (1998) led me to wonder whether perhaps the few 

U12-type introns that have resisted conversion or loss, may have been retained over 

evolutionary time because their presence was important in some functional way for the 

genes that harbor them. Have the remaining introns remained because they play an 

indispensable role in the cell? One compelling possibility, I thought, was that the 

splicing of U12-type introns might be important for the regulation of expression of the 

genes that contain them. That is, if U12-type introns are spliced more slowly than

15
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neighboring U2-type introns in the same pre-mRNA, their removal may represent the 

rate-determining step in the splicing pathway of those genes.

Thesis Plan:

This thesis aims to directly test the hypothesis that U 12-type introns are excised 

more slowly from pre-mRNAs than neighboring U2 type introns, and may therefore be a 

point of regulation of expression of the encoded proteins. A number of existing 

observations hinted at the validity of this hypothesis. First, in vitro splicing of U 12-type 

introns was consistently reported to be extremely inefficient by different groups using 

different splicing substrates (Wu and Krainer, 1996; Tam and Steitz, 1996b). Also, the 

snRNPs unique to the minor-class spliceosome are approximated to be 100-fold less 

abundant than their major-class counterparts in mammalian cell nuclei (Montzka and 

Steitz, 1988; Tam and Steitz, 1996a), suggesting that splicing rates might be reduced 

because of the lower concentration of spliceosomal components. Perhaps most 

informative were a series of papers from Irene Bozzoni and colleagues outlining their 

efforts to understand the low efficiency splicing of the “regulated third intron” of the 

Xenopus laevis ribosomal protein Lla gene, an intron that we now know to be of the U12 

type (Bozzoni et al., 1984; Pierandrei-Amaldi et al., 1987; Caffarelli et al., 1987,1992; 

Fragapane et al., 1992). They found that upon microinjection of cloned RPLla genomic 

sequences into Xenopus oocytes, partially spliced pre-mRNAs containing this intron (and 

to a lesser extent, the second intron) accumulated in the nuclei and produced little extra

16
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protein (Bozzoni et al., 1984). They even reported detecting the presence of endogenous 

RPLla pre-mRNAs at low levels in uninjected oocytes (Bozzoni et al., 1984).

In order to establish whether similar observations would be found under 

physiologic conditions, I believed that it was important to examine whether U 12-type 

introns were removed most slowly from endogenous cellular transcripts. Under 

conditions of overexpression, it is possible that the U 12-type splicing machinery could be 

saturated, and thereby hinder the splicing of U 12-type introns. Therefore, a method was 

developed for assessing the splicing rates of introns within endogenous pre-mRNAs in 

vivo. To investigate whether the hypothesis could be generalized, I evaluated the pre- 

mRNAs of several U 12-type intron-containing genes. A quantitative RT-PCR-based 

method was developed to measure the relative amounts of each unspliced intron within a 

steady-state population of pre-mRNAs, since it can be demonstrated that the amount of 

each unspliced intron in a given gene is inversely proportional to its rate of splicing 

(assuming minimal degradation). Quantitative RT-PCR was utilized because of its 

extreme sensitivity, since unspliced introns were expected to be present in very small 

quantities.

I chose three human genes for analysis based on the fact that they had a small 

number of total introns, which simplified the experiments. By measuring and comparing 

the levels of each unspliced intron from these three endogenous human transcripts 

prepared from growing tissue culture cells, I was able to show that the U 12-type introns 

are indeed spliced more slowly in each case. This work is described in Chapter II of this 

thesis.
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While carrying out the above experiments, I realized that the methodology had 

certain important limitations. If it turned out to be true that U 12-type splicing was a rate- 

limiting step in gene expression, one might expect the efficiency of U12-type splicing to 

be modulated within cells. Perhaps the activity of the minor-class spliceosome might be 

modulated during different stages of development or different stages of the cell cycle or 

in a tissue-specific manner. The RT-PCR assay that I developed was not well-suited to 

investigating such changes. Repeating the quantitation for several different RNA 

samples seemed extremely cumbersome, but this would have been necessary to detect 

changes in splicing efficiency within different tissues or at different developmental 

stages. Also, since RNA was prepared from a population of cells, any differences in 

splicing efficiency within that population (such as differences during the cell cycle) might 

be missed because of averaging of the measurements over the heterogeneous population. 

Therefore, I thought it necessary to develop a complementary assay for splicing 

efficiency that could be followed in real-time within individual cells.

I thus employed fluorescent reporter proteins, whose expression was dependent 

upon splicing of a U 12-type versus a U2-type intron, to monitor splicing efficiency.

These fluorescent protein-coding constructs were designed to correlate the production of 

two different colored fluorescent proteins with splicing of the two different intron types. 

Therefore, the ratio of the two different colored fluorescence intensities from each cell 

would reflect the relative efficiency of each type of splicing. Since the proteins were 

destabilized with “PEST’ sequences (yielding a 2-hour half-life), dynamic changes in 

splicing efficiency would be observable within cells. The genomic sequences used in the 

constructs were from a segment of a U 12-type intron-containing Drosophila
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melanogaster gene. A Drosophila gene was chosen because I hoped to exploit the well- 

established P-element-mediated transgene insertion technology to create transgenic flies 

containing these constructs in each of their cells. In this way, I hoped to follow any 

changes in U 12-type splicing activity within different tissues or at different stages of 

Drosophila development by observing fluorescence intensities. However, the transgenic 

flies failed to produce sufficient fluorescent protein to be detected with a fluorescence 

microscope, and after several attempts at troubleshooting, the creation of transgenic flies 

was abandoned. Nevertheless, the constructs were able to produce detectable 

fluorescence when transfected into Drosophila tissue culture cells (probably because of 

an increased copy number of the plasmids within each cell). Analysis of the fluorescence 

from these constructs within the transfected cells demonstrated that conversion of a U 12- 

type intron to a U2-type intron does dramatically increase production of the mature 

mRNA and encoded protein. Chapter III of this thesis describes the experiments with the 

transfected Drosophila cells, and the unsuccessful experiments with the transgenic flies 

are described in Appendix A.
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Chapter II 

U12-type Introns Are Spliced more slowly than U2-type Introns 

from Endogenous Pre-mRNAs in vivo

Summary

In the second chapter, I describe experiments designed to investigate whether 

U12-type introns are excised more slowly from endogenous cellular pre-mRNAs than 

their U2-type intron neighbors. One way to evaluate the order of intron removal from a 

transcript is to document the relative amounts of unspliced intron sequences within a 

steady-state population of partially-processed transcripts: if the splicing of U 12-type 

introns is rate-limiting and occurs last, then their sequences should be more abundant 

than those of their major-class intron neighbors. I have developed an accurate assay that 

employs quantitative RT-PCR to measure the relative abundance of unspliced introns 

within the transcripts of three human genes. This assay requires the use of in vitro 

transcribed RNAs that serve as internal standards to control for variations in RT-PCR 

amplification efficiency. I was able to demonstrate that each internal control was 

amplified with an efficiency that was virtually identical to that of the corresponding 

cellular RNA sequence. Then, co-amplification of known amounts of these control 

RNAs with fixed amounts of total RNA from growing human tissue culture cells revealed 

that unspliced U12-type introns did accumulate to a greater extent than unspliced U2-type 

introns within the transcripts of three human genes. Because U 12-type introns were 

independendy found to be the slowest introns to be spliced from these human genes, I 

contend that the same should hold true for other U12-type intron-containing genes, and

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



that the splicing of U 12-type introns therefore appears to be important for the regulation 

of gene expression.

Results

A quantitative RT-PCR method to assess relative rates o f intron removal

I devised a method for evaluating the relative rates of intron removal from a 

particular transcript by determining the abundance of intron sequences within a steady- 

state population of partially processed cellular pre-mRNAs. If the excision of a U 12-type 

intron occurs more slowly than that of major-class introns in the same pre-mRNA, then 

the amount of unspliced U 12-type sequences should be higher than each of the other 

intron sequences. Indeed, it can be mathematically demonstrated that the amount of each 

unspliced intron within a steady-state pre-mRNA population is inversely proportional to 

the relative rate of removal of that intron, assuming minimal pre-mRNA degradation (see 

Mathematical Scheme 1). Because the cellular levels of unspliced pre-mRNAs were 

expected to be very low, the extreme sensitivity of quantitative RT-PCR was exploited to 

analyze total RNA isolated from growing human tissue culture cells (HeLa or SK Hep).

As schematized in Figure 5, for each intron, reverse transcription was carried out 

using short, sequence-specific primers. PCR was then performed using primer pairs that 

amplify only unspliced sequences: each forward primer was complementary to S’ exon 

sequences and each reverse primer was complementary to downstream intron sequences. 

For each intron, control RNA standards were needed that possessed RT and PCR 

amplification efficiencies closely matched to those of the cellular RNAs being analyzed. 

Therefore, I synthesized RNAs that were identical to the target sequences to be amplified
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Mathematical Scheme 1. Proof that the concentration of an unspliced intron is 

inversely proportional to its splicing rate:

A simplified reaction scheme is shown for the production of mRNA from DNA:

DNA
Transcription

Unspliced pre-mRNA 
[C/5]

lie.
Splicing

-► Spliced mRNA

Where [C/5] represents the concentration of a given unspiiced intron, 
ka represents the rate of transcription of that gene, 
and k,p represents the rate of splicing of that intron.

The following rate law can be written for the above scheme:

d[US]
dt 

d[US]

= ku -k ,p[US]

= - k \  [US]- —  
dt T  KPJ

d [ u s y

[ U S ] -^
» P /

»P

(/In
~dt

[C /S ]-^
K

=  - k

dlnlU S ] -y -
jp

=  - J  kpdt

Integrating both sides, where C represents an integration constant:

In
K

~ p t + c

= e • e
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Since C is an arbitrary constant, we can set C'=ec

[US] =— +C'e~kv'
kq,

Regardless of the value of C\ at steady state when t—»°°:

[US] = Ze-
k,„

Since there are many introns in a transcript, and each intron has the same rate of synthesis (ka), 
only the rates of splicing (k,p) should determine the relative steady-state concentrations of the 
unspliced introns ([£/S]), assuming that there is minimal intron degradation by other pathways.

Therefore, at steady state:

=  [ W w j H t 2 1 .  « k . . .

* j p l  s p 2  s p i

But since ktti=kay=kaj=etc..

Transcription Rate = [USlntmttl]kspl =[USlnlmn2]k,p2=[USlnlruni]ksp3 =etc...

Thus, the relative concentration of a given unspliced intron is inversely pronortional to its relative 
splicing rate.
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Figure 5. Assessing in vivo Splicing Rates by Quantitative RT-PCR

Quantitation of unspliced introns from total cellular RNA containing pre-mRNAs of a 

hypothetical two intron-containing gene is schematized. In viYro-transcribed control 

RNA standards, truncated relative to the cellular RNA sequence by 10 nucleotides, are 

added in equal amounts to separate reaction tubes containing a fixed amount of total 

cellular RNA. Reverse transcription is performed using short primers complementary to 

intronic sequences (1RT or 2RT). cDNAs are then PCR-amplified using primer pairs that 

only amplify unspliced sequences (1F/IR or 2F/2R). The cellular and control RNA 

amplicons are then electrophoretically separated, and the quantity of each unspliced 

intron is inferred from the ratio of the amplicons produced.
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with the exception of an internal 10-nucleotide deletion. Because amplification 

variability can arise at the reverse transcription step due to RNA secondary structure 

impeding the polymerase (Freeman et al., 1999), I designed the RNA standards to mimic 

the local secondary structure of each target by including sequence from most of the 

upstream exon and >195nt of the intron. Co-amplification of the cellular RNA 

population with a known quantity of each RNA standard therefore yielded amplicons 

(105 to 164nt long) that differed in size by 10 nucleotides. By comparing their 

production after separation on a polyacrylamide gel, the amount of the cellular RNA 

sequence present was quantitated.

For each gene studied, the concentration of unspliced U12-type intron within a 

fixed amount of total cellular RNA was determined by titration with varying amounts of 

RNA standard (Figure 6). Then, that amount of RNA standard for each of the gene’s 

introns was added to separate tubes containing identical amounts of total RNA (Figure 5). 

If the U2-type introns are spliced more rapidly than the U 12-type intron, then those 

unspliced sequences will be less abundant than the sequences of the corresponding RNA 

standards, as reflected in the ratio of the co-amplified RT-PCR products generated in 

each tube.
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Figure 6. Quantitation of the Unspliced U12-type Intron of SmE

The concentration of unspliced U 12-type intron within total cellular RNA for each of the 

three human genes was determined by titration with varying amounts of RNA standard. 

As an example, determination of the concentration of the unspliced first intron (U 12- 

type) of SmE is shown. Varying amounts of RNA standard were added to a fixed amount 

of total cellular RNA, and the samples were co-amplified by RT-PCR. PCR reactions 

were carried out to different numbers of cycles depending on the concentration of the 

added RNA standard, to ensure that PCR amplification was stopped in the exponential 

phase.
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The most slowly spliced introns from endogenous human pre-mRNAs in vivo are U12- 

type

The three human U 12-type intron-containing genes chosen for study had a 

relatively small number of total introns, making the analysis less cumbersome. These 

genes were: I) SmE, a member of the core complex of proteins in spliceosomal snRNPs 

(Stanford et al., 1988; Accession: AL356980); 2) E2F2, a transcription factor involved in 

cell cycle regulation (Ivey-Hoyle et al., 1993; Accession: AL021154); and 3) INSIG1, a 

gene of unknown function that may be important in liver regeneration (Peng et al., 1997; 

Accession: U96876). These genes contain four, six, and four total introns, with the U12 

type intron as the first, fourth, and second intron, respectively (Figure 7A).

RT-PCR quantitation of the unspliced introns from these three genes in the 

cellular RNA population is presented in Figure 7B. Each lane shows two bands separated 

by 10 nucleotides. The upper band is the amplicon from the cellular RNA, while the 

lower band is that produced from the added RNA standard. Although the absolute 

intensities of the bands can vary from lane to lane depending on the amplification 

efficiencies of specific primer pairs, the ratio of intensities within any given lane provides 

an accurate measure of initial RNA quantities. Since equal amounts of the RNA 

standards are used in each reaction for a given gene, comparing the ratios across lanes 

provides a direct comparison of the relative amounts of each unspliced intron.

Graphical presentation of these intensity ratios (Figure 7B) shows that the 

unspliced U 12-type intron sequences are more abundant than the neighboring U2-type 

intron sequences for all three pre-mRNAs analyzed. To confirm that the amplification
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Figure 7. The U12-type Intron Is Excised most slowly from Three Endogenous 

Human Pre-mRNAs

(A) The intron-exon structure is depicted for the three human genes, SmE, E2F2, and 

INSIG1. Shaded boxes represent exons, thin lines represent U2-type introns, and thick 

lines represent U 12-type introns, with intron lengths (in kb) indicated above. (B) Above 

are shown the gels from which the ratios of cellular to control (10 nucleotides shorter) 

amplicons were measured. The amounts of each unspliced intron within the pre-mRNA 

population from growing HeLa cells (for SmE and E2F2) or SK Hep cells (for INSIG1) 

are graphed below. Solid bars represent U2-type introns and hatched bars represent U 12- 

type introns, with error bars indicating the standard deviation of two experiments. 

4.56xl019 moles, l.OlxlO'19 moles, and 4.47xl0'18 moles of control RNA standards were 

added per microgram of total cellular RNA for the analysis of introns from SmE, E2F2, 

and INSIG1, respectively.
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efficiencies for each intron and its corresponding 10-nucleotide deleted RNA standard 

were equivalent, equal amounts of in vitro transcribed full-length and truncated RNAs 

corresponding to each intron were co-amplified. The appearance of pairs of amplicons of 

approximately equal intensity in each lane (Figure 8) allows the conclusion that the U 12- 

type introns within the in vivo transcripts of three human genes are indeed spliced more 

slowly than their U2-type neighbors.
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Figure 8. Confirmation that Amplification Efficiencies of Truncated and Full- 

Length RNAs Are Equal

Control co-amplification of equal amounts of in vifro-transcribed full-length and 10- 

nucleotide truncated RNAs shows approximately equal production of amplicons (ratio of 

0.91±0.08). Gels showing band intensities are displayed above graphs depicting the 

intensity ratio of each amplicon pair. 10'19 moles of each RNA species were RT-PCR 

amplified.
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Discussion

The data presented substantiate the hypothesis that U 12-type introns are spliced 

from pre-mRNA transcripts with slower kinetics than canonical introns, and therefore 

represent a probable point of post-transcriptional regulation of gene expression. This 

suggests that the persistence of U 12-type introns within specific genes over large spans of 

evolutionary time could be a consequence of their function as post-transcriptional 

regulators of the genes that harbor them.

Although I analyzed endogenous splicing rates for the transcripts of only three 

human genes, I argue that our results are generalizable. The observed pattern of splicing 

can be extrapolated to other U 12-type intron containing genes if it can be demonstrated 

that coincidental observation of the same pattern within the studied sample is highly 

improbable. The likelihood of finding by random chance that the U 12-type intron is 

spliced most slowly from genes containing 4,4, and 6 total introns is 1/4, 1/4, and 1/6, 

respectively. However, the probability of independently finding this pattern for all three 

genes is the product of the individual probabilities, which is 1/96. Therefore, the 

consistency I observe is unlikely to occur randomly and is thus probably representative of 

other genes containing U 12-type introns.

Indeed, another U 12-type intron containing gene, the ribosomal protein Lla gene 

from Xenopus laevis, was the focus of several papers from Irene Bozzoni and colleagues 

(Bozzoni et al., 1984; Pierandrei-Amaldi et al., 1987; Caffarelli et al., 1987,1992; 

Fragapane et al., 1992). These papers investigated the low efficiency splicing of the 

“regulated third intron” of the RPLla gene, an intron which, unbeknownst to the
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investigators at the time, was of the U 12-type. Not only did partially spliced pre-mRNAs 

containing this intron (and to a lesser extent, the second intron) accumulate and produce 

little extra protein upon microinjection of cloned RPLla genomic sequences into 

Xenopus oocytes, but endogenous partially-spliced RPLla pre-mRNAs were detected at 

low levels in uninjected oocytes (Bozzoni et al., 1984).

These reported findings provided the initial clues to support the validity of my 

hypothesis. Therefore, to confirm these findings using my more sensitive RT-PCR assay, 

I tried to measure the endogenous levels of unspliced introns from the Xenopus laevis 

RPLla gene in total RNA prepared from oocytes. Preliminary experiments did indicate 

that the unspliced U12-type intron was indeed present at higher levels than the other eight 

U2-type introns in the same gene (data not shown). However, these experiments proved 

to be difficult to interpret because of the presence of snoRNAs, which can be removed 

via a pathway that competes with splicing (Cafarelli et al., 1994), within several of the 

RPLla introns (including the U 12-type intron). Additionally, the possibility of 

amplifying sequences from both gene copies in the pseudo-tetraploid genome of Xenopus 

laevis further complicated the interpretation of the quantitative RT-PCR results. Thus, 

human genes were chosen for subsequent analysis.

Among the genes analyzed, no obvious correlation could be discerned between 

intron length and efficiency of splicing (Figure 7). While the U12-type introns within 

these three chosen genes were, on average, shorter than the U2-type introns, in two out of 

three genes they are not the shortest intron. It is therefore unlikely that the slower 

splicing of these U12-type introns is related to their lengths. Also, no length correlation 

was observed among the splicing rates of the U2-type introns within these genes,
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consistent with previously reported findings (Gardner et al., 1988; Gudas et al., 1990; 

Kessler et al., 1993; Wetterberg et al., 1996).

Also, no relationship was discernible between intron position and splicing 

efficiency. Since pre-mRNAs are transcribed in a S' to 3’ direction, and spliceosomes 

have been reported to assemble cotranscriptionally (Beyer and Osheim, 1988; Bauren and 

Wieslander, 1994; Kiseleva et al., 1994), one might expect the splicing of upstream 

introns to precede that of downstream introns. Wetterberg et al. (1996) have reported 

excision of introns from the Balbiani ring 3 (BR3) gene of the dipteran Chironomus 

tentans in an overall S’ to 3’ polarity that was established during transcription, whereas 

individual neighboring introns were removed at very different rates, in a preferred order 

that was not necessarily S’ to 3'. My data show no such pattern, but since my assay 

observes unspliced introns from a steady-state pre-mRNA population, detection of such a 

pattern should not be expected. Even if the upstream introns are spliced more quickly 

within a given transcript, the total RNA population used in my assay also contains 

partially transcribed RNAs that increase the measured quantity of unspliced S’ introns, 

balancing any S’ to 3’ splicing bias.

The limitations of this RT-PCR-based assay became apparent when I began 

thinking about whether the activity of the U 12-type splicing machinery might be 

modulated in a physiologically important manner. I postulated that if the splicing of 

U12-type introns was a rate-limiting step in gene expression, then modulation of the 

efficiency of that rate-limiting step might be a way to up- or down-regulate the 

expression of the encoded proteins. U 12-type splicing activity might be regulated in a 

tissue-specific manner or at different stages of the cell cycle or at different stages of
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embryogenesis. If any of these possibilities were true, my RT-PCR method was not well- 

suited for assessing such changes. Averaging of the quantities of unspliced introns over a 

heterogeneous population of cells might overlook potential changes in splicing efficiency 

during the cell cycle. Also, analyzing RNA from different tissues or from embryos 

developed to different stages would have been difficult using the labor-intensive RT-PCR 

strategy. Moreover, it would be difficult to predict, a priori, which tissue samples or 

which embryonic stages would exhibit differences in U 12-type splicing activity. 

Therefore, I attempted to develop a method to follow U 12-type versus U2-type splicing 

activity in real-time within individual cells or within a whole organism.
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Chapter III 

Conversion of a Native U12-type Intron to a U2-type Intron 

Increases mRNA and Protein Production in vivo

Summary

Described in this chapter are experiments that aim to address the question of 

whether replacement of a naturally occurring U12-type intron with U2-type intron 

consensus sequences can affect the rate of production of mature mRNA and protein. I 

created constructs that express either cyan or yellow fluorescent proteins only when 

completely spliced. The constructs contain either a U12-type or a U2-type intron in an 

arrangement that permits correlation of fluorescent color with type of splicing. By 

observing the relative intensities of the two fluorescent colors, it is possible to infer the 

relative efficiencies of the two splicing pathways within transfected Drosophila 

melanogaster tissue culture cells. Observation of cells by fluorescence microscopy 

showed that replacement of U 12-type consensus sequences with U2-type sequences does 

indeed result in dramatically increased expression of the encoded fluorescent protein. 

FACS analysis of these cells indicated that the slower splicing of the U 12-type introns 

did not result from saturation of the U 12-type splicing machinery, since it was observed 

that the ratio of the two different-colored fluorescent signals remained roughly constant 

within a population of cells producing dramatically different amounts of total 

fluorescence signal. Finally, direct analysis of the RNA transcripts produced from the 

transfected constructs showed that while mature mRNA rapidly accumulates from the 

U2-type construct, mRNA production is much slower from the U12-type construct, and

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



instead, significant degradation as well as accumulation of partially spliced pre-mRNAs 

are apparent.

Results

Minigene constructs that report the relative efficiencies o f U12-type versus U2-type 

splicing in vivo

I next asked whether a U12- versus a U2-type intron in the same genetic context 

would lead to differential expression of the encoded protein. I designed plasmid 

constructs that would permit unambiguous correlation of reporter protein production with 

splicing efficiency. The constructs (Fig 9 A) express either cyan or yellow fluorescent 

protein only when completely spliced, dependent on removal of a U 12-type versus a 112- 

type intron. Since the spliced mRNAs are nearly identical in sequence (see Figure 9B), 

the relative intensity of the two fluorescent signals provides a readout of the relative 

efficiencies of the two splicing pathways within transfected tissue culture cells.

The fifth intron of the Drosophila sodium-hydrogen exchange channel gene, NHE3, was 

chosen for analysis because its adjacent exons and introns are small (see Fig 9A), 

facilitating the creation of small fusion constructs encoding fluorescent reporter proteins. 

Its sequences perfectly match the optimal U 12-type consensus (C. Burge, personal 

communication). Since cooperativity between adjacent introns has been shown to 

influence the rate and fidelity of splicing (Robberson et al, 1990; Wu and Krainer, 1996), 

496 nucleotides of the NHE3 gene, spanning the 3’ portion of the fourth exon to the 5’ 

portion of the sixth exon, were included in the construct. A start codon with Kozak 

consensus (Kozak, 1987) was added to the S' end of the segment, and the segment was
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Figure 9. Plasmids that Report the Efficiency of U12-type versus U2-type Splicing

(A) A segment of the Drosophila melanogaster NHE3 gene including introns 4 (U2-type) 

and S (U 12-type) and their flanking exons was fused, via a linker, to a yellow (Y) or cyan 

(C) fluorescent protein (FP) coding sequence containing destabilizing “PEST” sequences 

to form U12Y or U12C. Intron 6 (U2-type) of NHE3 was inserted into the CFP or YFP 

coding sequences. A Gal4-responsive promoter and a Kozak consensus translation start 

site were directly upstream of the fusion protein. Exon and intron lengths are indicated 

above and below (not drawn to scale). To form U2Y (or U2C), consensus splicing 

sequences of the U 12-type intron were mutated to U2-type sequences derived from an 

adenovirus intron, keeping the intron length constant. (B) The sequences of the protein- 

coding regions of the fusion constructs are shown, with exon sequences in uppercase and 

intron sequences in lowercase, and alternative sequences indicated. Red = U 12-type 

consensus sequences; green = converted U2-type sequences; grey = NHE3 exon 

sequences; brown = linker sequences; orange = PEST sequences. The mutations 

converting cyan to yellow fluorescence are highlighted in cyan and yellow, respectively. 

The mutations introduced to change hydrophobic amino acids in the predicted 

transmembrane domain of exon 5 are boldfaced. (C) A plasmid containing the U2C and 

U12Y constructs in tandem (named U2C-U12Y) was created to ensure equal transfection 

of both constructs. The reciprocal plasmid (U12C-U2Y) with reversed color scheme 

controlled for inherent differences in CFP and YFP fluorescence yield.
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atgtgaatggtaaaatttga^ttaattttt^ttacctcaaagtggcattgaagatgtatatctattccgc

AGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAG
•  • • • • • • a

CGTCTCCGGCGAGGGCGAGgtaagttattttcagcataga.aatacttaaaaaggcgttcccaaacagaaa. 
gttatttttctttttttcacagGGCGATGCCACCTACGGCftAGCTGACCCTGAAGTTCATCTGCACCACC 
GGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCAC C^tj^CT^SCK^TGC AGTGCTTC^:CGCT
ACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCAC
•  • • • • • • •

CATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTG • • • • • • • •

AACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACA
_  _ _  •  _ _  •

a c ta c jw c a g c c a c a a c g tc ta ta tc a B ^ cgacaagcagaagaacggcatcaagc^ a a c t t c a a g a t

CCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGAC 
•  •  •  •  •  •  •  •

GGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGC&flbcAGTCCGCCCTGAGCAAAGACCCCAACGAGA • • • • • • • •
AGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTA 
•  •

CAAGAAGCTTJ

70
140
210
280

350
420
490

560
630
700

770
840
910
980
1050
1120

1190
1260
1330

1400
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fused, via a short linker, upstream of either yellow or cyan fluorescent protein cDNA 

(Miller et al., 1999). The fluorescent protein coding sequences were interrupted by 

insertion of the sixth intron from the NHE3 gene. Therefore, the U 12-type intron in the 

construct was flanked by native exons and U2-type introns on both sides.

The consensus sequences within the U 12-type intron were then mutated to 112- 

type consensus sequences derived from the first intron of the adenovirus major late 

transcription unit, an intron whose splicing has been well-characterized (Solnick, 1985). 

Changes were limited to mutations at the 5’ splice site, branch site, 3' splice site, and the 

insertion of a 3’ polypyrimidine tract (Figure 9A). The overall length of the intron was 

preserved, as were the internal, non-consensus sequences. Consequently, the mRNAs 

produced by splicing of the converted U2-type intron and the original construct 

containing the U 12-type intron were identical, except for the nine codons that differ 

between YFP and CFP (Figure 9B).

Synthesis of pre-mRNA was driven by a Gal4-responsive promoter so that 

expression could be induced by producing Gal4 protein from either a copper-responsive 

metallothionein or a heat shock promoter on a separate, co-transfected plasmid. Versions 

of YFP and CFP containing protein destabilizing “PEST’ sequences, which reduced the 

half-life of the fluorescent proteins from about 24 hours to 2 hours (Clontech product 

literature), were used so that the fluorescence signal would reflect differences in the rate 

of splicing rather than in protein accumulation. Also, the constructs were modified by 

mutating eight hydrophobic amino acids within the predicted transmembrane region 

(exon 5) of NHE3 (Figure 9B) to avoid possible membrane-targeting of the fusion 

protein. Finally, to guarantee that each cell was transfected with equal amounts of each

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fluorescent protein gene, the two constructs were cloned in tandem into a single plasmid 

(Figure 9C). To normalize for inherent differences in the fluorescence intensities of YFP 

and CFP, a reciprocal construct was made with reversed color scheme (Figure 9C).

Replacement o f natural U12-type intron sequences with U2-type consensus sequences 

increases protein expression in vivo

To confirm that the fluorescent signals from YFP and CFP were completely 

distinguishable (Miller et al., 1999), U2Y and U2C constructs (named on the basis of the 

middle intron and the fluorescent color) were co-transfected separately into Drosophila 

S2 cells with a metallothionein-Gal4 plasmid. Expression was induced 24 hours after 

transfection by adding cupric sulfate, and cells were viewed after 12 hours. As expected, 

fluorescence from any single cell was detected with either the cyan or the yellow filter 

set, but never with both (Figures 10A,B,C). Fluorescence from cells transfected with 

either the U2Y or U2C construct was, on average, quite robust, whereas fluorescence 

from cells transfected with the U12Y or U12C construct appeared much weaker (data not 

shown).

Next, the tandem U2C-U12Y plasmid (Figure 9C) was co-transfected with a 

metallothionein-Gal4 plasmid, and gene expression induced and assessed as above.

While different cells within the transfected population exhibited different fluorescence 

intensities, any particular cell consistently showed at least a S-fold higher fluorescent 

signal with the cyan filter than with the yellow filter (based on comparison of integrated 

pixel intensities from CCD-captured digital images) (Figures 10D,E,F). Transfection of
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Figure 10. U2-dependent Splicing Produces Brighter Fluorescence than 1112- 

dependent Splicing in Drosophila S2 Cells

(A-C) CFP and YFP fusion proteins are distinguishable. Drosophila S2 cells were 

separately co-transfected with either U2C or U2Y and metallothionein-Gal4, mixed and 

viewed 12 hours after cupric sulfate induction using a YFP filter (panel A), phase 

contrast (panel B), or a CFP filter (panel C). (D-I) S2 cells co-transfected with U2C- 

U12Y (panels D-F) or U12C-U2Y (panels G-I) and metallothionein-Gal4 were similarly 

induced and viewed using a YFP filter (panels D and G), phase contrast (panels E and H), 

or a CFP filter (panels F and I).
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the reciprocal tandem U12C-U2Y plasmid (Figure 9C) yielded the opposite pattern: each 

transfected cell exhibited at least S-fold more yellow fluorescence than cyan fluorescence 

(Figures 10G,H,I). Because all other differences between the constructs are controlled by 

the use of reciprocal plasmids, the altered expression levels can be ascribed to the identity 

of the middle intron.

To confirm that the fifth intron of the NHE3 gene is in fact spliced by the 1112- 

type splicing machinery, excision of this intron from endogenous pre-mRNA in wild-type 

Drosophila larvae was compared to that in larvae homozygous for a P-element disruption 

of U6atac (characterized by Otake et al., 2002). The U6atac-disrupted larvae die at the 

third instar because of a deficiency in U 12-type splicing. Analysis of total RNA by RT- 

PCR revealed that the U6atac-deficient larvae (at -60 hours post egg-laying) accumulated 

a substantial amount of unspliced intron 5, whereas the control wild-type larvae 

accumulated very little (Figure 11), demonstrating excision of this intron by the U 12-type 

spliceosome.

The 6- to 8-fold difference in fluorescent protein expression is not induced by saturation 

o f the U12-type splicing machinery

The results from fluorescence microscopy, showing a consistent and significant 

difference in the levels of YFP and CFP from the reciprocal constructs containing 1112- 

type and U2-type introns (Figures 10D through I), were extended by fluorescence- 

activated cell sorting (FACS). I first verified that cyan and yellow fluorescence signals 

can be detected independendy by FACS. Compared to mock-transfected cells, which
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Figure 11. U6atac-Disrupted Drosophila Larvae Confirm that the Fifth Intron of 

NHE3 is U12-type

Total RNA prepared from Drosophila larvae (-60 hours post egg-laying) that were either 

heterozygous or homozygous for a P-element disruption of U6atac was analyzed by RT- 

PCR for the presence of endogenous unspliced NHE3 intron 5. Homozygosity was 

assessed by the lack of a green fluorescent protein-producing balancer chromosome in the 

larvae. RT and PCR primers were complementary to exon sequences surrounding the 5th 

intron, so that excision of the intron produced a shorter amplicon. Two sets of sibling 

larvae were analyzed to establish reproducibility, and each set was amplified to either 26 

or 28 PCR cycles to increase the range of detection. (This experiment was performed in 

collaboration with Matthew McCarthy, Yale College ’02.)
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exhibit minimal intensity on each channel (Figure 12A), S2 cells transfected with U2C or 

U2Y (and metallothionein-Gal4, induced as above) showed significant fluorescence on 

the cyan or yellow channel, respectively, and negligible fluorescence on the other channel 

(Figure 12B, C). The large range of fluorescence intensities seen (note the 

logarithmically scaled axes) probably resulted from cells being transfected with different 

numbers of plasmids or in different physiological states.

Cells transfected with the tandem U2C-U12Y or U12C-U2Y plasmid displayed 

the same patterns of fluorescence as previously observed by microscopy: the intensity of 

the protein expressed from the U2-type intron containing gene was always several-fold 

greater than from that containing the U 12-type intron (Figure 12D, E). This pattern 

manifests itself on the FACS plot as a roughly linear set of points through which a best-fit 

line can be drawn. As expected, the slope of the line for the U12C-U2Y transfected cells 

is greater than that for the U2C-U12Y transfected cells, because of increased relative 

expression of the protein from the mRNA generated by U2-dependent splicing only. The 

relative difference in expression can be calculated from the slopes of the two lines, taking 

into account the decreased CFP detection sensitivity and assuming that the nine amino 

acids that change the color of the fluorescent protein do not affect protein expression or 

stability. I conclude that the expression of fluorescent protein increases 6- to 8-fold when 

the U 12-type intron is converted to a U2-type intron.

The linearity of the data points in Figures 12D and 12E also excludes the 

possibility that the observed differences result from saturation of the U 12-type splicing 

machinery by high levels of pre-mRNA expressed from the transfected constructs. 

Because the scale of the axes are logarithmic, the fluorescence emitted by individual cells
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Figure 12. FACS Analysis of Transfected S2 Cells

Density plots of yellow versus cyan fluorescence intensity for S2 cells co-transfected 

with metallothionein-Gal4 and various plasmids, obtained 12 hours after cupric sulfate 

induction. The flow cytometer detection optics are inherently less sensitive for CFP than 

for YFP. 50,000 cells were observed on each plot. (A) Mock transfected S2 cells show 

minimal cyan or yellow fluorescence. (B)U2Y-transfected cells show only yellow 

fluorescence. (C) U2C-transfected cells show only cyan fluorescence. (D) U2C-U12Y- 

transfected cells show greater cyan than yellow fluorescence (correcting for low CFP 

detection sensitivity). (E) U12C-U2Y-transfected cells show greater yellow than cyan 

fluorescence.
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in the population differed by several orders of magnitude. Over this entire range, the 

proportion of yellow to cyan fluorescence was roughly constant. For example, a strongly 

fluorescent cell making 50-fold more U2-type reporter protein also made about 50-fold 

more U 12-type reporter protein compared to a weakly fluorescent cell. This would not 

be the case if the splicing capacity of U 12-type spliceosomes were saturated by 

expression of high levels of pre-mRNA and fluorescent proteins. Likewise, in a 

collaborative experiment with Matthew McCarthy (Yale College, ’02) I found that when 

different amounts of U2C-U12Y or U12C-U2Y were individually transfected into S2 

cells (over a 20-fold range), the ratio of cyan to yellow fluorescence in each cell remained 

approximately constant (within detection limits) despite great differences in the absolute 

fluorescence intensity (data not shown).

Presence o f a U12-type intron hinders production o f mature mRNA

To confirm that the observed differences in fluorescent protein expression were 

caused by differences in the efficiency of U2-type versus U 12-type splicing, the effects of 

intron conversion were examined directly at the RNA level. S2 cells were co-transfected 

with metallothionein-Gal4 and either U2Y or U12Y, expression induced after 24 hours, 

and total RNA at various times after induction analyzed by Northern blot. Cells 

transfected with the U2Y construct showed rapid accumulation of mature mRNA, 

whereas cells transfected with the U12Y construct accumulated mature mRNA more 

slowly (Figure 13). Also, a more slowly migrating species was observed in the U12Y- 

transfected cells. The identity of this species as partially spliced pre-mRNA was
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Figure 13. mRNA Production Is Slowed by Inefficient Splicing of a U12-type Intron

Northern blot of total RNA isolated from S2 cells co-transfected with U2Y (lanes 1-5) or 

U12Y (lanes 6-10) and metallothionein-Gal4 at the indicated times after induction of 

expression. The blot was successively hybridized with random-primed DNA probes 

complementary to the YFP coding sequence (top panel) and to a loading control, 

ribosomal protein 49 (bottom panel). The identity of the slowly migrating band as 

partially-spliced pre-mRNA, was confirmed by hybridization to a probe specific for the 

middle intron (data not shown).

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Hours after 
induction

ia
&
f t

S  a.

U2Y Transfected
0 6 12 18 24

U12Y Transfected
0 6 12 18 24



confirmed using a probe specific for the middle intron (data not shown). Lanes 

corresponding to the U12Y-transfected cells also reproducibly showed a smear below the 

full-length bands (Figure 13), suggesting that the pre-mRNA is prone to degradation if 

not efficiently spliced.

Finally, to examine differences in the splicing rate of the middle intron relative to 

its neighboring introns for both the U2Y and U12Y constructs. Matt McCarthy and I 

carried out quantitative RT-PCR experiments, as described for the endogenous human 

pre-mRNAs (Figure 5). S2 cellular RNA prepared 12 hours after induction of expression 

was RT-PCR amplified in the presence of a single in vitro transcribed RNA standard 

containing three separate 10-nucleotide deletions, allowing quantitation of all three 

introns. The levels of unspliced introns from the U12Y construct indicate that the 

unspliced U 12-type middle intron was more abundant than its U2-type neighbors, 

confirming that it is spliced more slowly (Figure 14A). Conversion of the consensus 

sequences to U2-type dramatically increased the splicing of that intron as evidenced by 

the lower relative abundance of its unspliced form (Figure 14B). Interestingly, 

conversion to U2-type sequences also appeared to increase the splicing rate of the two 

adjacent introns, suggesting cooperativity in the excision of these introns. As before, to 

verify that the amplification efficiencies of the full-length and truncated RNAs were 

equal, equimolar amounts of full-length and truncated in vitro generated transcripts were 

co-amplified and observed to produce amplicons of equal intensity (Figure 14C).
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Figure 14. Splicing Rate of the Middle Intron Increases upon Mutation of U12-type 

to U2-type Consensus Sequences

(A) Quantitative RT-PCR analysis of unspliced introns (similar to Figure 7) from total 

RNA prepared 12 hours after induction of U12Y-transfected cells and amplified in the 

presence of a single in vitro transcribed RNA standard containing three separate 10- 

nucleotide deletions, allowing quantitation of all three introns. 1.33xl017 moles of 

control RNA standard was added per pg of total cellular RNA. Hatched bar = U 12-type 

intron; solid bars = U2 type introns; error bars = standard deviation of two experiments.

(B) Similar analysis of U2Y-transfected cells. Note that 10-fold less control RNA 

standard (1.33xl018 moles per pg of total RNA) was used. (C) Confirmation of equal 

amplification efficiency of in vitro transcribed full-length and 10-nucleotide truncated 

RNAs (amplicon ratio of 1.0210.02) (as in Figure 2C). 10'19 moles of each RNA species 

were RT-PCR amplified. (These experiments were performed in collaboration with 

Matthew McCarthy, Yale College ’02.)
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Discussion

In this chapter of the thesis, I demonstrate that mutation of native U 12-type intron 

consensus sequences to U2-type sequences within a Drosophila melanogaster minigene 

construct results in significantly increased levels of mRNA and protein expression. This 

result complements the previous chapter’s observation that U 12-type introns are spliced 

more slowly than U2-type introns from endogenous transcripts in vivo. The present result 

demonstrates that the slower splicing of U 12-type introns can have a direct effect on 

protein expression.

My Drosophila melanogaster splicing constructs produced mRNAs differing by 

only nine codons for CFP versus YFP. It is possible that these changes affect either the 

efficiency of splicing, polyadenylation, export, or translation. Therefore, the reciprocal 

constructs with reversed color schemes were important to control for differences not only 

in fluorescence yield, but also expression. Use of these constructs confirmed that the 

differences in fluorescent protein expression are attributable to the changed intron type.

Because gene expression from the transfected constructs was driven by Gal4,1 

was able to induce expression at a well-defined time, and then follow accumulation of 

fluorescence over time. In fact, a microscope-mounted perfusion chamber was made to 

constantly replenish fresh growth media to Drosophila S2 cells expressing fluorescent 

proteins. This permitted me to observe and record the accumulation of fluorescent 

proteins within S2 cells over a period of 12 to IS hours (after which the cells began to 

die). I expected that if there were any changes in U 12-type versus U2-type splicing 

efficiency during the cell cycle (which is about 30 hours for S2 cells [Lengyel et al., 

1975]), I might observe this as a change in the intensity ratio of the two fluorescent
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colors. However, I did not detect any significant changes in the fluorescence ratio during 

the time the S2 cells were observed (data not shown). Although I was only able to 

observe viable cells for approximately half of the duration of a division cycle, I should 

have been able to follow cells at all different stages of the cell cycle within the observed 

population. Nevertheless, I cannot exclude the possibility that the cells stopped cycling 

under the non-ideal conditions of the perfusion chamber, causing me to miss changes in 

fluorescence that might otherwise have been observed under ideal growth conditions.

The cooperativity of splicing that was observed in Figure 14 raises some 

interesting questions for further investigation. I noticed that conversion of the middle 

intron from U 12-type to U2-type appeared to increase the splicing rate of not only that 

intron, but also of the two neighboring introns. Would the same cooperativity be 

observed for non-adjacent introns, if the minigene construct had multiple introns? Does 

the presence of one unspliced intron within a gene have a global effect on the splicing of 

all introns within that gene? Alternatively, is the complete assembly of all early splicing 

components required for every intron within a transcript before catalysis can occur? How 

might deletion of the middle intron from the minigene construct affect the splicing rates 

of the neighboring introns, and the overall rate of protein production?

The increased degradation observed for the U12-type intron-containing construct 

(Figure 13) suggests that the transcripts are more prone to degradation if they are not 

properly spliced. This is consistent with previous findings (Bousquet-Antonelli et al., 

2000). It would be informative to investigate the mechanism that mediates this 

degradation. Are the unspliced RNAs degraded by general nucleases within the cell or 

are they degraded via nonsense-mediated decay (the middle intron would have introduced
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a premature in-frame stop codon if it were not excised)? Are the unspliced RNAs 

retained in the nucleus or are they still exported? Does the degradation take place within 

the nucleus or the cytoplasm or both?

My observations also raise the question of what is causing the U 12-type introns to 

be spliced more slowly. In vitro splicing of U 12-type introns has consistently been 

reported to be extremely inefficient by different groups using different splicing substrates 

(Wu and Krainer, 1996; Tam and Steitz, 1996b). This could be attributed to the 

approximately 100-fold lower abundance of the minor-class snRNPs relative to the 

major-class snRNPs in mammalian cell nuclei and nuclear extracts (Montzka and Steitz, 

1988; Tam and Steitz, 1996b). U 12-dependent splicing in these extracts might be stalled 

by the slow assembly of low-concentration splicing components. However, since 

splicing components are thought to be assembled co-transcriptionally in vivo (Misteli and 

Spector, 1999; reviewed in Hirose and Manley, 2000), the effects of snRNP 

concentrations on in vivo splicing rates are less predictable. It is therefore unclear 

whether the slower splicing of U12-type introns in vivo is caused by slower spliceosomal 

assembly or by inherently slower catalysis by the minor-class spliceosome.

Further insight might be gained by investigating whether minor-class splicing 

components are deposited onto nascent pre-mRNAs by RNA Polymerase II in a manner 

analogous to major-class components, or whether they assemble onto pre-mRNAs 

independently of transcription. Given the extreme rarity of U 12-type introns, one might 

expect co-transcriptional deposition of minor-class splicing components to be less 

efficient than deposition of major-class components. Nevertheless, if minor-class 

components are required to be deposited co-transcriptionally, then might their low
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abundance cause RNA polymerase II to stall at U 12-type intron sequences until they are 

deposited?

The existence of a specific group of genes whose expression might be regulated 

by the presence of inefficiently spliced introns hints at a functional commonality among 

these genes. Burge et al. (1998) note that a large proportion of U 12-type intron 

containing genes fall into the category of information processing, including genes 

involved in DNA replication/repair, transcription, RNA processing, and translation, while 

few fall into the category of genes performing operational functions such as energy 

metabolism or biosynthesis. Do these genes share similarities in their patterns of 

expression which might shed light on the specific regulatory role of U 12-type introns? 

Since expression of these genes is probably upregulated in proliferating cells compared to 

non-proliferating cells, perhaps the activity of the U 12-type spliceosome increases during 

proliferation. Perhaps U 12-type splicing activity is modulated in a tissue-specific or a 

developmental-stage specific manner. I further speculate that U 12-type introns may be 

acting as post-transcriptional bottlenecks, preventing overexpression of genes whose 

unchecked expression might be harmful to the organism. The fluorescent protein-coding 

constructs described here provide a means of investigating these questions in the 

developmentally well-studied organism, Drosophila melanogaster. Attempts to create 

transgenic flies in which these constructs were stably integrated into the organism’s 

genome are described in Appendix A. Thus far, however, I have been unsuccessful at 

producing detectable fluorescence in these animals.
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Chapter IV 

Materials and Methods

Preparation of RNA Standards

Segments of genomic sequences from human E2F2, SmE, and INSIG1 were PCR- 

amplified from genomic clones RPCI1-15005 (Sanger Centre), RPCI11-397P13 (Sanger 

Centre), and HP-5 (Peng et al., 1997), respectively. The segments (between 301 and 853 

nucleotides) included most of the upstream exon and >195nt of intronic sequence 

surrounding each 5’ splice site. To create an RNA standard for the Drosophila 

constructs, a single 872-nucleotide segment including all three introns was PCR- 

amplified from the U12Y plasmid (construction of U12Y described below) using primers 

MATTF and MATTR (MATTF: 5-GCG ACT CGA GAT GGT GGC CAT ATT CAA 

CGA TCT TA-3'; MATTR: 5 -GCG ACT GTG CGG CCG CGA AGA AGT CGT GCT 

GCT TCA TGT G-3'). Xhol and Notl restriction sites, introduced by the PCR primers, 

were used to insert the amplified segments into pBluescript SK+ vectors (Stratagene) 

downstream of a T7 promoter. 10-nucleotide deletions were introduced by either PCR 

mutagenesis or using the QuickChange Mutagenesis system (Stratagene). 

Oligonucleotides for PCR cloning and mutagenesis are listed in Tables 1, 2, and 3. RNA 

standards were prepared by in vitro transcription from the T7 promoter essentially as 

described by Tarn and Steitz (1996b), internally trace-labeling with a -32P-UTP. Gel- 

purified transcripts were quantified by liquid scintillation counting and stored at -70°C in 

aqueous solution containing 20pg/mL yeast total carrier RNA.
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Table 1. PCR Primers used to amplify segments of three human genes for insertion into
Xholand Notl sites of pBluescript SK+ (Stratagene)
Gene Intron

Number
Primer
Direction

Primer Sequence (5 ' -»3■)
(Bold and Underlined = Xhol or Notl site) 
(Bold only = added terminal base pairs)

SmE 1 Forward GCQACTCQAOGTGACCTTCACACTTCCGCTTCC
SmE 1 Reverse GCOACTQTOCOQCCOCGCATAGACTCTGCTTCCTGAAACAAC
SmE 2 Forward OCOACTCOAOTGGTGCAGAACCTCATCTTCAGATAC
SmE 2 Reverse QCGACTQTQCOGCCQCGGGTTTTTCTTCCAATGTTTCATCC
SmE 3 Forward QCQACTCQAGTTATTTCAGAGATCGCGGATTCAGG
SmE 3 Reverse GCGACTQTOCQQCCQCGATCCTAGCTACTTGGGAGGCTGAG
SmE 4 Forward OCOACTCGAGTGAACCTTGTATTAGATGATGCAGAAGAG
SmE 4 Reverse OCGACTOTGCaOCCGCTCTACTTGGGTTTTTCCTGCCACTC
E2F2 1 Forward OCOACTCGAGGCTCTGCCCAGCTACTGCTACCTAC
E2F2 1 Reverse GCGACTGTOCaaCCaCACTACACTTTGGGCCCTCTCTGG
E2F2 2 Forward GCGACTCQAGCTCTCTCTCCCCCTTTTCTCCAAG
E2F2 2 Reverse GCQACTOTOCaaCCaCGCTGAGGTGAGAGAGTTGCTTGAAC
E2F2 3 Forward aCOACTCQAOGTGACTGGGTCCCTTTCTTCTTCAG
E2F2 3 Reverse OCOACTOTGCaaCCaCTTTATGCCAAGGGCTATAGGTCAGC
E2F2 4 Forward OCGACTCOAOGAGTTTCACCCACAGACTGACACTG
E2F2 4 Reverse OCOACrOTOCaaCCaCGTGGCAGCTCATCATTCTTTTTCTC
E2F2 5 Forward OCOACTCGAOCACTTTTCTTGACTCTCCTGCCCTAC
E2F2 5 Reverse aCOACTOTOCOOCCaCGAGAATCGCTTCAACCCAGGAG
E2F2 6 Forward OCGACTCGAOAATGACCTGGCTTCTCTTCCTCCTC
E2F2 6 Reverse aCOACTOTOCOOCCOCCTTCCCGAGTAGCTGGACTACAGG
INSIG1 1 Forward GCOACTCGAGAGATTGCACGACCACTTCTGGAG
INSIG1 1 Reverse OCOACTOTOCOGCCOCGTGACGGGTTTGTTTTCAGTTATCC
INSIG1 2 Forward OCGACTCGAQAAATTCTGGAACTTGGAATCTGCTG
INSIG1 2 Reverse OCGACTOTOCOOCCaCAGGATTTGTTGGATGCAGGTTACAG
INSIG1 3 Forward OCOACTCOJUJCTTTTATATCACCAGAAATTGGATTTTGC
INSIG1 3 Reverse OCGACTOTOCGGCCOCCAGTCAATTTCACCTGGCTCAATTC
INSIG1 4 Forward OCQACTCGAOCGTCCCCAGATTTCCTCTATATTCG
INSIG1 4 Reverse QCGACTOTOCaaCCOCCATGTGCCTGTAATCCCAGCTACTC
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Table 2. PCR primers used to create lOnt truncations within control RNA plasmid
constructIs of the three human genes
Gene Intron

Number
Primer
Direction

Primer Sequence (51-»3 ')

SmE 1 Forward TATGGTGCAGCCTACGCAGGATGTCAGGACTAGGAG
SmE 1 Reverse TCCTGCGTAGGCTGCACCATAACCTTCTGCACT
SmE 2 Forward CTTCAGATACTTACAAAATGTCTTGTTTCGTAACTACTTTTTA

AATAAGAGG
SmE 2 Reverse GTAGTTACGAAACAAGACATTTTGTAAGTATCTGAAGATGAGG

TT
SmE 3 Forward GATAGAAGGCTGTATATCCAGGCGATTTCATCTCATAGC
SmE 3 Reverse GAAATCGCCTGGATATACAGCCTTCTATCCGCATATTCACTTG
SmE 4 Forward CAAAGTCAAGAAAACAGATAGAAGTGGTCTTACAGAATTCTAG

AAATATTTT
SmE 4 Reverse GTAAGACCACTTCTATCTGTTTTCTTGACTTTGTTTTAGAATG

AATCTCT
E2F2 1 Forward CTGCCGGCAGGCCGGCGCTGGGGGCCCCCACCGCTT
E2F2 1 Reverse CAGCGCCGGCCTGCCGGCAGGCAT
E2F2 2 Forward CTCCCCAGCCCCAGTGCTGATGGGGCCTCTG
E2F2 2 Reverse ATCAGCACTGGGGCTGGGGAGGCCATCCAC
E2F2 3 Forward GAACAACATCCAGTGCCTGGGCGGCCAGTGGTA
E2F2 3 Reverse CCCAGGCACTGGATGTTGTTCTTGGCCTTCTT
E2F2 4 Forward ACAAGGCCAACCTCCTTGGTTGGGGGAAGGT
E2F2 4 Reverse CAACCAAGGAGGTTGGCCTTGTCCTCAGTCAGG
E2F2 5 Forward CTGGAAGTGCCCGACAGAGAGGGGAAATATTTGGTGGAGAG
E2F2 5 Reverse CCTCTCTGTCGGGCACTTCCAGTCTCG
E2F2 6 Forward CCACAGCATCTCCCTTGTCCAGAGGGACAGGA
E2F2 6 Reverse CTGGACAAGGGAGATGCTGTGGGCTCCATGATG
INSIG1 1 Forward GCGGGACAGCTACCCCTCCTGGTTCTTCTGGAAG
INSIG1 1 Reverse AGGAGGGGTAGCTGTCCCGCAGCAGGGAGGGA
INSIG1 2 Forward CATTAACCACGCCCCTTAATTTTCTGTGCTACGTCCAGAG
INSIG1 2 Reverse CAGAAAATTAAGGGGCGTGGTTAATGCCACCAAA
INSIG1 3 Forward CGTGTATAATGGTGTCCAGTAAGTGTGTGTTTTCAAATATTGG

C
INSIG1 3 Reverse CACACACTTACTGGACACCATTATACACGAGAAACTGCG
INSIG1 4 Forward CATAGGACGACAGTTAGTGAAATGATCATATTATCTTCTAAAA

CTTG
INSIG1 4 Reverse GATAATATGATCATTTCACTAACTGTCGTCCTATGTTCCCCAC
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Table 3. Oligonucleotides used to make lOnt internal deletions in the Drosophila
constructs using the juickChange mutagenesis system (Stratagene):
Intron
Number

Primer
Direction

Oligonucleotide Sequence (5 ' —>3 *)
1 Forward ACGATGCCGTGGCCATAGTCCTTTTTGCTACTTTTTTTTTCGTTGGGAA
1 Reverse TTCCCAACGAAAAAAAAAGTAGCAAAAAGGACTATGGCCACGGCATCGT
2 Forward CGCGGACATGGGATGCTTGACAGCTTTTCAAAGATTAATGATAAAT
2 Reverse ATTTATCATTAATCTTTGAAAAGCTGTCAAGCATCCCATGTCCGCG
3 Forward CAAGTTCAGCGTGTCCGGCGAGGTTATTTTCAGCATAGAAATACTT
3 Reverse AAGTATTTCTATGCTGAAAATAACCTCGCCGGACACGCTGAACTTG
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Quantitative RT-PCR Analysis

RNA for analysis of E2F2 and SmE was prepared, using Trizol (Gibco-BRL) according 

to the manufacturer’s directions, from log-phase HeLa cells grown in suspension in 

RPMI (Gibco-BRL) containing 10% fetal bovine serum (FBS, Gibco-BRL). RNA for 

analysis of INSIG1 was similarly prepared from -70% confluent SK Hep cells grown in 

35mm dishes in DMEM (Gibco-BRL) with 10% FBS. RNA for analysis of U12Y and 

U2Y was isolated from transiently transfected Drosophila S2 cells 12 hours after 

induction of expression as described below. Contaminating genomic DNA was removed 

by treating with RQl DNase (Promega) in 5mM MgCL and 50mM Tris pH 8.0 at 37°C 

for I hour, followed by heat-inactivation at 65°C for 10 minutes. Reverse transcription 

was then performed using Thermoscript RT (Invitrogen) according to manufacturer’s 

directions, with 0.5pM gene-specific primers (Tables 4 and 5), 7.5ng/pL (for SmE, E2F2, 

and INSIG1) or 0.l88ng/pL (for U12Y and U2Y) total cellular RNA, and various 

concentrations (between 3.36xlO"20 and 7.60x10 “  moles/pL) of in vitro transcribed RNA 

standards. RT reactions were incubated at 37°C for 15 minutes, then 55°C for 30 

minutes, then 65°C for 30 minutes, and finally 85°C for 10 minutes. 0 .1 units/pL of E.coli 

RNase H (Invitrogen) were added and the samples incubated at 37°C for 30 minutes.

PCR was then performed using Platinum Taq polymerase (Invitrogen) in the buffer 

supplied with 1.5 mM MgCL, 0.4mM dNTPs, 250nM unlabelled primers (Tables 4 and 

5) doped with 5’-radiolabeled forward primer (to label only one strand of amplicon), and 

10% (by volume) of reverse-transcribed cDNA. Between 24 and 28 cycles of PCR were
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Table 4. Primers used for quantitative RT-PCR of the three human genes:
Gene Intron

Number
Used for 
RT or PCR

Primer
Direction

Primer Sequence (5’-»3 ')

SmE 1 PCR Forward GGGTGTGCTCTTTGTGAAATTCC
SmE 1 PCR Reverse CTCCTAGTCCTGACATCCTGCGTAG
SmE 1 RT Reverse CTCCTAGTCCTGACAT
SmE 2 PCR Forward AACCTCATCTTCAGATACTTACAAAATGT
SmE 2 PCR Reverse TTACCCTCCAATCTCCAGTTACATC
SmE 2 RT Reverse TTACCCTCCAATCTCC
SmE 3 PCR Forward CGGATTCAGGTGTGGCTCTATG
SmE 3 PCR Reverse TTAAGTCTTTTTCTACGACCGAACTGC
SmE 3 RT Reverse TTAAGTCTTTTTCTAC
SmE 4 PCR Forward TGAACCTTGTATTAGATGATGCAGAAGAG
SmE 4 PCR Reverse GCAGGTCACTGAATTCTGCAAGTG
SmE 4 RT Reverse GCAGGTCACTGAATTC
E2F2 1 PCR Forward ACACACCGCTGTACCCGCAGAC
E2F2 1 PCR Reverse ACCTGGAAAAGCATAGGGGGAAG
E2F2 1 RT Reverse ACCTGGAAAAGCATAG
E2F2 2 PCR Forward AAGGGGAAGTGCATCAGAGTGG
E2F2 2 PCR Reverse TGGAAAGTGATCCAAATATGACTACCAG
E2F2 2 RT Reverse TGGAAAGTGATCCAAA
E2F2 3 PCR Forward GACATCACCAACGTGCTGGAAG
E2F2 3 PCR Reverse CCCACAGCACAAGTACCCATTG
E2F2 3 RT Reverse CCCACAGCACAAGTAC
E2F2 4 PCR Forward GGAGCTGAAGGAGCTGATGAACAC
E2F2 4 PCR Reverse GTTCCTGCTCCCTGACACCTTC
E2F2 4 RT Reverse GTTCCTGCTCCCTGAC
E2F2 5 PCR Forward ACTTACCAGGATATCCGTGCTGTTG
E2F2 5 PCR Reverse CTCTCCACCAAATATTTCCCCTCTC
E2F2 5 RT Reverse CTCTCCACCAAATATT
E2F2 6 PCR Forward GAGCCTCTCCCCTCTACCTCCAC
E2F2 6 PCR Reverse AGAGAAAACTAAGGCCGGTCTCTCC
E2F2 6 RT Reverse AGAGAAAACTAAGGCC
INSIG1 1 PCR Forward GATCCAGAGGAATGTCACTCTCTTCC
INSIG1 1 PCR Reverse CCGAAAAGACACCCTTTTTACTTCC
INSIG1 1 RT Reverse CCGAAAAGACACCCTT
INSIG1 2 PCR Forward AGAGAATGGGCCAGTGTCATGC
INSIG1 2 PCR Reverse GAGTCATTTGAGTATATAACAAAACAAAACG
INSIG1 2 RT Reverse GAGTCATTTGAGTATA
INSIG1 3 PCR Forward GTGGACATTTGATCGTTCCAGAAG
INSIG1 3 PCR Reverse GCTTTCCAAAGCCAATATTTGAAAAC
INSIG1 3 RT Reverse GCTTTCCAAAGCCAAT
INSIG1 4 PCR Forward GTATACGTCCCCAGATTTCCTCTAT
INSIG1 4 PCR Reverse TCAAGGTAAAGAGAAGCAAGTTTTAGA
INSIG1 4 RT Reverse TCAAGGTAAAGAGAAG
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Table 5. Primers used in quantitative RT-PCR of U12Y and U2Y:
Intron
Number

Used in RT 
or PCR Step

Primer
Direction

Primer Sequence (5 ' —>3')

1 PCR Forward TCGACGTAAACCTATATGCGCTAGTC
1 PCR Reverse GAAATGATGTCTTACTGATTCCCAACG
1 RT Reverse GAAATGATGTCTTACT
2 PCR Forward GTCGTCTCCAACTCCTCACTATCCA
2 PCR Reverse TTACCATTCACATGTATACTGCCCTTAAA
2 RT Reverse TTACCATTCACATGTA
3 PCR Forward GACGTAAACGGCCACAAGTTCAG
3 PCR Reverse AAGAAAAATAACTTTCTGTTTGGGAACG
3 RT Reverse AAGAAAAATAACTTTC
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performed with 2 minute extension times and annealing temperatures of 62.5°C, 60°C, 

61.5°C, and 61°C for the E2F2, SmE, INSIG1, and U12Y/U2Y samples, respectively 

(based on lowest predicted Tm). Amplicons were separated on a 10% polyacrylamide 

sequencing gel, and quantitated using a Molecular Dynamics phosphorimager.

Construction of Drosophila Splicing Reporter Plasmids

Reporter plasmids contained a Drosophila NHE3 gene segment fused to CFP or YFP 

coding sequences (destabilized with “PEST' sequences) (Clontech) with modifications as 

schematized in Figure 3 (sequences available upon request). The NHE3 segment 

spanning exon 4 through exon 6 was PCR-amplified from genomic clone DS07134 

(Berkeley Drosophila Genome Database) with primers that introduced an upstream 

translation start site, a downstream linker sequence, and mutations to remove 

hydrophobic amino acids from the predicted transmembrane domain (Primer sequences 

included below). Alternative primers were used to mutate U 12-type consensus sequences 

to U2-type sequences. PCR products were inserted between the Bgin and Agel sites of 

pd2-ECFP-Nl and pd2-EYFP-Nl plasmids (Clontech). Synthetic DNA including the 

entire NHE3 intron 6 sequence (see below) was inserted into CFP and YFP coding 

sequences via a Bcgl site. A Gal4-responsive UAS promoter was excised from pUAST 

(Brand and Perrimon, 1993) using BamHI and Bgin sites, and was inserted within a 

BamHI site upstream of the NHE3 gene segment. Finally, tandem constructs were 

created by inserting sequences from one plasmid, cut with Xhol and NgoMIV, into the 

Xhol and Xmal sites of the second plasmid.
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Primers for amplification o f NHE3 gene segment (and adding translation start and 

linker):

Forward: 5-GCA GAC TCA GAT CTC TCG AGA TAC GAG TCC CGG GGG ATC 

CGC CGC CAC CAT GGT GGC CAT ATT CAA CGA TCT TAG GGT CG-3'

Reverse: 5 -GCA GAC TCA CCG GTC CAG CCG ATC CAG CCG ATC CAG CTC 

CGG AAG CTC CGT CTC GAA CCC GAG TAA ATT TGG TC-3'

Primers used to mutate hydrophobic residues in predicted transmembrane region: 

Forward: 5-TCC AAC TCC TCA CTA TCC ATG ATG AGT GGC GCG GAC ATG 

GGA TGC TTG ACA GCA TTG-3’

Reverse: 5-GCC ACT CAT CAT GGA TAG TGA GGA GTT GGA GAC GAC ATC 

GCT CAA CGA GCG TAG AAA AG-3’

Oligonucleotide used to mutate U 12-type intron to U2-type: (forward)

5 -TCC AAC TCC TCA CTA TCC ATG ATG AGT GGC GCG GAC ATG GGA TGC 

TTG ACA GCA TTG GTA AGT GCC TCA AAG ATT AAT GAT AAA TTA TTT 

TAT TTA AGG GCA GTA TAC ATG TGA ATG GTA AAA TTT GAG TTA ATT 

TTT GTT ACC TCA AAG TGG CAT TGA AGA TGT ATA TCT ATT CCG CAT TAA 

TTA GAA AAC ACC TAT GCC TGA CCC TGT CCC TTT TTT TTC CAC AGA TGA 

CCA AAT TTA CTC GGG TTC GAG AC-3'
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Oligonucleotides used to insert NHE3 intron 6 sequence into Bcgl site o f YFP and CFP: 

Forward: 5-GTC CGG CGA GGG CGA GGT AAG TTA TTT TCA GCA TAG AAA 

TAC TTA AAA AGG CGT TCC CAA ACA GAA AGT TAT TTT TCT TTT TTT CAC 

AGG GCG ATG CCA CCT ACG GCA A-3'

Reverse: 5 -TTG CCG TAG GTG GCA TCG CCC TG-3'

Transfection of Drosophila S2 Cells

S2 cells were grown at 25°C in Shields and Sang M3 medium (Sigma) containing 12.5% 

fetal bovine serum (Gibco-BRL) in 35mm dishes and transiently transfected using 25pL 

of Lipofectin reagent (Gibco-BRL) per dish, according to the manufacturer’s directions. 

For most experiments, 0.5pg of reporter plasmids were co-transfected with 1.5|ig of 

either pmt-Gal4 (metallothionein expression, gift of S. Artavanis-Tsakonas) or heat- 

shock-Gal4 plasmid (gift of T. Xu). Experiments to investigate splicing saturation used 

between l|ig and 0.05pg reporter plasmid, supplementing with unrelated plasmid to keep 

the total transfected DNA constant. Expression was induced 24 hours after transfection 

either by adding 0.7mM cupric sulfate (Sigma) or by heat shock at 37°C for 30 minutes.

Fluorescence Microscopy

Cells were visualized 12-24 hours after induction using a Zeiss Axiophot II fluorescence 

microscope with CFP (Ex: D436/20; Em: D480/40; BS: 455dclp) and YFP (Ex: 

HQ500/20; Em: HQ535/30; BS: Q5I51p) Filter sets (Chroma). Images were captured
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using a Quantix CCD camera (Photometries) and analyzed with IP Lab software 

(Scanalytics).

FACS Analysis

Cells were analyzed 12-24 hours after induction with a FACS Vantage dual laser flow 

cytometer (Becton-Dickinson). CFP was excited at 457nm with a Spectra-Physics 2025 

argon laser and the fluorescence emission was collected through a 480/30nm band pass 

filter. YFP was excited at 514nm using a Coherent Innova 70 argon-krypton laser and 

the fluorescence collected through a 550/30 nm band pass filter. 50,000 cells were 

observed for each sample. Statistical analysis was performed using WINMIDI software 

(Joseph Trotter, Scripps Clinic, CA).

Northern Blot Analysis

Growth medium was removed from S2 cells at various times after induction, and cells 

were disrupted in lmL of Trizol (Gibco-BRL) for RNA isolation according to the 

manufacturer. Total RNA (~l0pg) was run per lane on a formaldehyde-agarose gel for 

Northern blotting and was probed with internally 32P-labeled DNA probes covering either 

the entire open reading frame of YFP, or ribosomal protein 49 (gift of L. Cooley), or the 

non-consensus internal sequences (nucleotides 319-436, Figure 3B) of NHE3 intron 5.
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Appendix A 

Creation of Transgenic Drosophila melanogaster Lines to Assess 

Developmental or Tissue-Specific Changes in U12-type Splicing

Summary

In order to monitor any changes in U 12-type splicing activity during 

embryogenesis or in different tissues, I made transgenic flies containing stably integrated 

genomic copies of two of the fluorescent reporter constructs described in Chapter QI. P- 

element-mediated integration was used to create several different fly lines with the 

constructs randomly inserted at different positions within the genome. In each fly, either 

the U2C-U12Y construct or the U12C-U2Y construct was integrated. Placement of both 

transcription units into a single P-element insertion segment was intended to minimize 

any variations of gene expression efficiency that might result from insertion at different 

sites within the genome (Spofford, 1976). I intended to follow the accumulation of cyan 

and yellow fluorescent protein in the entire fly, and to use the ratio of the two signals to 

monitor the activity of each type of spliceosome. The integration of the two constructs 

with reciprocal color schemes into different fly lines was intended to control for 

differences in cyan and yellow fluorescence signal intensities. Several fly lines (each 

with a different P-element integration site) were made to be sure that the fluorescence 

patterns would be reproducible. However, fluorescence was not detectable in these 

transgenic flies. Fluorescent protein production was also undetectable in the flies by 

Western blot, but paradoxically, substantial mRNA production was observed. These
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observations suggested that fluorescent protein accumulation was hindered either because 

of inefficient translation or rapid degradation.

Results

Transgenic Drosophila melanogaster lines made to report U 12-type and U2-type splicing 

efficiency

The fluorescent protein reporter constructs U2C-U12Y and U12C-U2Y described 

in Chapter in (Figure 9) were stably integrated into the genomes of several flies using P- 

element-mediated integration. The two constructs were separately inserted, via Bgin and 

StuI restriction sites, into the compatible BamHI and StuI sites of a pW8 vector (gift of T. 

Xu), which contains a red-eye marker and a multiple cloning site flanked by P-element 

ends. The two resultant plasmids were separately microinjected (injections generously 

performed by Y.-Q. Tan in Carl Hashimoto’s lab), along with a plasmid encoding the P- 

element transposase, into >200 pre-blastoderm Drosophila embryos from a white-eyed 

fly line (within 45 minutes of egg-laying) according to standard procedures (Spradling, 

1986; Ashbumer, 1989). Plasmids were injected into the posterior pole of the embryo to 

maximize the probability of P-element insertion into the DNA of germline progenitor 

cells. Embryos that survived to adulthood were mated in separate vials with white-eyed 

adults. The resultant offspring were screened for the presence of red eyes, indicating 

insertion of the P-element sequences. Four separate fly lines containing the U2C-U12Y 

insertion, and three lines containing the U12C-U2Y insertion were obtained. A standard 

set of crosses was then performed to identify which chromosome contained the transgene
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insertion for each fly line, and lines were created with appropriate balancer chromosomes 

to ensure propagation of the transgenes.

Assessing the production o f fluorescent proteins from the transgenic fly lines

Since transcription from the integrated transgene constructs was driven by Gal4 

responsive promoters, the transgenic flies were mated with various “driver lines” 

expressing Gal4 from different tissue-specific or ubiquitous promoters. Flies expressing 

Gal4 from a heat-shock promoter (gift of T. Xu), a ubiquitous actin SC promoter (gift of 

T. Xu), a neuron-specific Nrv2 promoter (gift of P. Salvaterra [Sun et al., 1999]), or a 

muscle-specific NrvI promoter (gift of P. Salvaterra [Sun et al., 1999]) were used as 

driver lines. These driver lines are known to express Gal4 in great abundance, which was 

confirmed by mating these lines with a UAS-GFP line (gift of T. Xu; UAS is the Gal4 

responsive promoter or “upstream activating sequence”) and observing strong GFP 

fluorescence. However, mating of these driver lines with the U2C-U12Y or U12C-U12Y 

lines produced no detectable fluorescence in any of the resulting offspring. This was 

surprising since abundant fluorescence signal was observed in Drosophila tissue culture 

cells transfected with the identical constructs.

I first assumed that the destabilizing “PEST' sequences may have been 

responsible for the undetectable fluorescent protein levels. Normal GFP protein is known 

to have a half-life of 24 hours (in mammalian cells), whereas the fusion proteins encoded 

by the constructs were destabilized to have two-hour half lives (Clontech product 

literature). Since this would be expected to dramatically diminish the fluorescence 

signal, I decided to create a second set of transgenic flies with the “PEST’ sequences
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removed (between the BsrGI and Notl sites). Thus, new clones were made for U2C- 

U12Y(-PEST) and U12C-U2Y(-PEST) in the pW8 vector and were injected into embryos 

to produce new transgenic lines. This time, four separate insertion lines were obtained 

for each of the two constructs. Unfortunately, mating of any of these new lines with any 

of the Gal4 driver lines mentioned above again produced offspring that showed no 

detectable fluorescence. To verify that the modified constructs were still capable of 

producing fluorescent protein, they were transfected into Drosophila S2 cells and 

expression was induced as before. They produced fluorescence that was 2- to 3-fold 

brighter than the destabilized constructs, but with similar yellow-to-cyan ratios as 

observed before.

Although the protein was undetectable by fluorescence microscopy, I hoped that it 

might be detectable by Western blot. Ry crosses were carried out between female 

virgins carrying an Actin 5C-Gal4 transgene and males carrying the following 

transgenes: 1) UAS-GFP, 2) U2C-U12Y(-PEST), 3) U12C-U2Y(-PEST), or 4) no 

transgene. Offspring from the first mating produced bright, green fluorescence within 24 

hours of egg laying, while the other three matings produced none. Five adult flies were 

homogenized in protein loading buffer, boiled, centrifuged to remove debris, and 1/Sth of 

the supernatant was run on a protein gel. The flies were chosen based on the lack of 

phenotypic markers for the balancer chromosomes to ensure that the Actin 5C-Gal4 and 

the fluorescent protein transgenes were present. A polyclonal rabbit anti-GFP antibody 

(gift of I. Mellman) was used to probe the blot for the presence of GFP, YFP, or CFP 

(rabbit polyclonal anti-GFP has been reported to cross-react well with YFP and CFP on 

Western blots [Clontech product literature]). The blot (Figure IS) showed an extremely
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Figure 15. Fluorescent Protein Production Assessed by Western Blot

Total protein prepared from adult flies was probed with rabbit polyclonal a-GFP 

antibody, which is known to cross-react well with YFP and CFP. Offspring from the 

mating of Actin 5C-Gal4 transgene-containing flies with flies containing either UAS- 

GFP, U2C-U12Y(-PEST), U12C-U2Y(-PEST), or wild-type flies were used (lanes 1, 2, 

3, and 4, respectively). The presence of both transgenes in the offspring was determined 

by choosing flies that lacked the phenotypic markers for balancer chromosomes. Protein 

samples were prepared by homogenizing five adult flies in protein loading buffer, 

boiling, and centrifuging to remove debris. One-fifth of the supernatant was loaded in 

each lane of the protein gel. On the right are schematics of the transgene reporter 

constructs (not drawn to scale) that are present in the fly genomes.
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intense GFP band for the positive control UAS-GFP flies, and no similar band for the 

negative control wild-type flies. Since the U2C-U12Y(-PEST)- and U12C-U2Y(-PEST)- 

containing flies were expected to produce fusion proteins with YFP and CFP, the 

predicted protein product should have migrated more slowly on a gel than GFP alone.

No such bands were observed on the blot, but I cannot exclude the possibility that they 

co-migrated with the slower-migrating nonspecific cross-reactive band that is present in 

all four lanes.

Assessing mRNA production from the transgenic fly lines

Since no fluorescent protein was detectable in the transgenic flies, I next asked 

whether the mRNA was being made in adequate amounts. RNA was isolated from the 

adult offspring of Actin 5C-Gal4 driver flies mated, as before, with flies containing either 

1) UAS-GFP, 2) U2C-U12Y(-PEST), or 3) U12C-U2Y(-PEST). These RNA samples 

were run on a formaldehyde-agarose gel, alongside RNA (for size comparison) isolated 

from S2 cells transfected with either U2Y(-PEST) or the original Clontech YFP construct 

driven by a UAS promoter and with the sixth intron of NHE3 inserted. The blot was 

probed with intemally-radiolabeled random-primed DNA complementary to the entire 

YFP coding sequence. Although I was initially surprised to see (Figure 16, lane 1) that 

the GFP producing flies showed no mRNA band on the Northern blot (since GFP, YFP, 

and CFP differ from each other by only a few codons), I realized that the YFP probes 

were made with humanized codon sequences (from the Clontech construct) whereas the 

UAS-GFP flies carry GFP with the original jellyfish codons. These sequences differ 

enough that cross-hybridization would not be expected. Lanes 2 and 3 showed mRNA
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Figure 16. Fluorescent Protein-Coding mRNA Produced in Transgenic Flies Co- 

migrates with mRNA Produced in Tansfected S2 Cells

Northern blot showing RNA samples isolated from either transgenic flies or transfected 

Drosophila S2 cells hybridized with an internally-labeled random-primed DNA probes 

complementary to the entire yellow fluorescent protein coding sequence (with humanized 

codons). RNA was prepared from adult flies carrying both the Actin 5C-Gal4 transgene 

and either UAS-GFP, U2C-U12Y(-PEST), or U12C-U2Y(-PEST) (lanes 1,2, and 3, 

respectively). Lanes 4 and 5 contain RNA prepared from S2 cells co-transfected with 

metallothionein-Gal4 and either UAS-YFP (with intron 6 of NHE3 inserted) or U2Y(- 

PEST), respectively. RNA was isolated 12 hours after induction with cupric sulfate. The 

lack of hybridization to RNA in lane 1 is due to dramatic differences in humanized codon 

YFP sequences and native jellyfish GFP that are expressed in the fly. The reporter 

constructs expressed in the different lanes are schematized on the right.
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bands produced from the U2C-U12Y(-PEST) and U12C-U2Y(-PEST) flies respectively. 

As expected, they migrated at the same level as the mRNA band in lane 5, which 

corresponds to the spliced U2Y(-PEST) transcript. The YFP mRNA in lane 4, as 

expected, migrated more quickly. The difference in intensity between the mRNA signals 

in lanes 2 and 3 may be the result of differences in gel loading as well as differences in 

transcription levels from constructs inserted at different chromosomal locations.

Having confirmed that the transgenic flies do indeed produce an mRNA species 

of the predicted size, I next wanted to ask whether the amount of the mRNA was 

comparable to that produced by the UAS-GFP flies (which produce ample fluorescent 

protein). To probe for the GFP mRNA in these flies, internally labeled random-primed 

DNA complementary to the native (non-humanized) GFP coding sequence was made. A 

new Northern blot (Figure 17) was performed with RNA samples isolated from similar 

sets of flies as above. Each RNA preparation was made in duplicate from sibling flies to 

ensure reproducibility. The blot was probed simultaneously with equally radioactive 

native GFP and humanized-codon YFP probes. Although the two probe sequences might 

hybridize to their targets with differing affinities, it is reasonable to use the relative 

intensities of the GFP and YFP bands on the Northern blot to estimate the relative mRNA 

abundance. The U2C-U12Y(-PEST) and U12C-U2Y(-PEST) transgenic flies produced 

mRNA bands (lanes 3-8) that were both more and less intense than the GFP mRNA 

bands (lanes 1 and 2) produced by the UAS-GFP flies. Although this blot shows 

variation in mRNA levels among the different fly lines, we can estimate that at least some 

of the lines produce fluorescent protein-coding mRNA in quantities that are comparable 

to that produced by the UAS-GFP flies.
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Figure 17. Similar Levels of Fluorescent Protein-Coding mRNAs Are Produced in 

Non-Fluorescent Transgenic Flies as Compared to Fluorescent GFP-Expressing 

Flies

Northern blot of RNA prepared from various transgenic Drosophila lines simultaneously 

probed with internally-labeled random-primed DNA complementary to humanized-codon 

YFP coding sequences and to native jellyfish GFP coding sequences. Five million CPM 

of each probe were used. RNA was prepared from adult flies with the same genotypes as 

in Figure 16. For the U2C-U12Y(-PEST) transgene, two different lines were used, each 

with the transgene inserted at a different chromosomal position. For each genotype,

RNA was prepared in duplicate from sibling flies to assess reproducibility. The reporter 

transgenes are schematized on the right.
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Discussion

It was perplexing that the transgenic flies produced no detectable fluorescent 

protein even though the mRNA appeared to be produced in adequate quantities. This was 

especially difficult to understand, given that the same constructs did produce ample 

fluorescent protein when transfected into Drosophila tissue culture cells.

I attempted to troubleshoot this problem by first creating a second set of 

transgenic flies with the “PEST’ sequences removed, believing that the instability of the 

fluorescent proteins in the original flies may have been responsible for the reduced 

protein levels. However, this did not provide a sufficient increase in protein levels.

Early on, I also suspected that the production of large quantities of reporter 

protein may have been toxic to the flies, so that no flies would survive embryogenesis if 

they had both the Gal4 driver transgene and the reporter transgene in their genome. 

However, this idea was disproved by following segregation of the transgene-containing 

chromosomes by the absence of balancer chromosome marker traits in the offspring. I 

could thereby demonstrate that flies containing both transgenes were viable to adulthood. 

Furthermore, the fact that these flies produced the expected mRNA was a strong 

indication that both the driver and reporter transgenes were present.

I also suspected that perhaps the tandem arrangement of the two transcription 

units within the transgene may have caused gene silencing, as reported previously for 

other repeated genes in Drosophila (Dorer and Henikoff, 1994,1997; Fanti et al., 1998; 

Birchler et al., 2000). Such silencing is believed to be mediated by association with a 

chromosomal heterochromatin complex, but has not yet been demonstrated to occur for 

fewer than three repeated units. Since the chromosomally integrated transgenes would be
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susceptible to such silencing but transfected plasmids would not, I thought this might 

explain the discrepancy in protein expression between transgenic flies and transfected 

cells. However, the production of mRNA to levels that were comparable with GFP 

mRNA levels in fluorescent flies argued against transcriptional silencing.

The evidence therefore points to either inefficient protein translation or poor 

protein stability within the flies. It is possible that translation might be hindered by 

inefficient codon usage. Since the GFP producing flies carry the original jellyfish 

fluorescent protein codons, while the transgenic flies carry humanized codon versions of 

CFP and YFP, one might expect the translation efficiency to differ between the two types 

of mRNA. But upon closer examination, I found that codon usage frequencies are very 

similar between Drosophila and humans (Nakamura et al., 2000). Therefore, the 

humanized YFP and CFP codons should not hinder translation in Drosophila. It is 

possible, however, that the NHE3 coding sequences in the fusion constructs contain 

inefficient codons. Although the NHE3 gene is endogenously produced in Drosophila, it 

does have several suboptimal codons (Nakamura et al., 2000), perhaps because NHE3 

production in large quantities is not normally required. It is possible that inefficient 

translation might not produce detectable fluorescent protein when the transgene is present 

in one copy per cell in transgenic flies, but might produce much more protein when 

multiple copies are transfected into each tissue culture cell. Unfortunately, testing this 

hypothesis by optimizing all of the inefficient NHE3 codons is not a trivial task.

It is also possible that poorly understood but important differences exist between 

cells in a fly and cells in tissue culture that allow expression of fusion proteins in the
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latter but not in the former. Although the inefficient codon explanation is the best I am 

able to offer, other, less well-understood mechanisms may be involved.
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