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ABSTRACT

LONGITUDINAL stress wave propagation in LONG BORE

Richard F . Pelker 

Yale University 1976

Compressive impact tests were performed on human long bone with the 

aim of accumulating information about the wave propagation characteristic 

of bone for clinical use and to increase nur understanding of osseous 

tissue. Dynamic tests on intact bone were carried out by impacting one 

end of dissected bone speciraens and recording the stress wave pulses by 

means of strain gages and a magnetic velociconeter that was constructed 

for this study using skeletal traction pins. After the initial set of 

studies were completed, serial cuts were made into the bone cortex at in

creasing depths as an attempt to model healing bone fracture. The above 

wave propagation studies were then repeated to measure the transmission 

coefficient through the fracture and any change in wave character due to 

the fracture.
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as a poroelastic hollow cylinder. A computer simulation was devised to 

provide numerical results from the theory and an attempt was made to cor

relate the experimental findings with the model's predictions for various 

porosities.
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Chapter I 

INTRODUCTION

PURPOSE

The investigation of the mechanical properties of bone dates back to 

the time of Galileo, and numerous studies since that time have greatly 

increased our basic understanding of the biomechanics of the musculoskel

etal system. However the vast majority of these tests have been destruc

tive studies and therefore are of limited clinical usefulness. The numer

ous possible applications for a nondestructive technique include the mon

itoring of fracture healing, the quantization of osteoporosis in elderly 

individuals or in patients with metabolic bone disease and the evaluation 

of treatment in such patients.

Possibly the stress wave propagation properties of bone could provide 

the basis for a noninvasive test since these are dependent on its basic 

biomechanical characteristics. Although there have been several recent

- 1-
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studies of the dynamic properties of hard tissue, much more is known 

about its static properties. Therefore, before this type of noninvasive 

test becomes practical, the dynamic response of bone must be better under

stood. This is the major aim of this work.

THEORY - LONGITUDINAL WAVES IN HODS

The elementary theory that approximately describes the propagation 

of longitudinal waves in an elastic rod has been studied extensively and 

is well known (Koisky 1963, Parson 1959, Timoshenko and Goodier 1970).

The wave equation resulting from this theory is the well known formula:

2 2
d o  _ d o
   = c    (1 1 'I, 2  co 2 (1*")3 t 3x

where:

c»x = axial stress along the x direction 

t = time

x = axial coordinate

Cq eiastic wave velocity — r/E/p

E = Young's modulus 

p = mass density

The basic assumptions of this approximation are:

a) each plane cross section of the rod remains coplanar during 

deformation.

b) the distribution of stress, strain and particle velocity are
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uniform over each cross section.

The general solution to this equation can be expressed as 

c = f (x - ct) +  F (x + ct) 

where f and F are arbitrary functions that are determined by the initial 

conditions, the first corresponding to a wave traveling in the positive x 

direction, the latter to a wave traveling in the reverse direction.

For the particular case of an infinitely long rod a solution to equa

tion 1.1 is:

. 2 tt . *
°x = °0 exP-1 T  ^

where X is the wavelength and c is the velocity of the wave. It is to be 

noted that the velocity of the wave in this elementary theory has no de

pendence on the wave length. Therefore, since any wave can be described 

as a Fourier sum of such waves each contributing part will be propagated

at the same velocity, c and thus there will be no distortion of the waveo
form as it is propagated down the bar.

By using more exact theories a more accurate description of the pheno

mena can be obtained. Pochhammer (1876) and Chree (1899) independently 

developed the theory further, including the contribution of the Poisson

effect. They showed that the wave velocity was dependent on the ratio of

the rod radius to wavelength and on Poisson's ratio. Thus in this more 

comprehensive theory the Fourier components of a wave pulse would each 

travel at a different velocity. The pulse would then become distorted as 

it propagated down the rod. Mindlin and Herrmann (1951) included the 

effects of shearing stress and strains on stress wave propagation in a
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bar, However, David (1948) showed that if the ratio of rod radius to 

wavelength is small then the elementary theory rrovides an adequate 

description.

Much work has been done extending these rather basic theories to more 

specific cases by varying the geometries considered. The case of a hollow 

elastic rod has been studies by Gg?iz (1959a,b), Fitch (1963), Chong et ai 

(1969), and Perinea (1973).. The problem has been further perturbed by 

considering the bar as a hollow thin shell by Herrmann and Mirsky (1956) 

and as a multilayered cylinder by Whittier and Jones (1967), Reuter (1968) 

Chou (1968), and Armenakas (1967). Miklovitz (1957) described the propa

gation of a wave in inhomogeneous cylinders. Several authors have consi

dered the case of a noncylindrical rod with varying cross-sections (Tanaka 

and Kurokawa 19-73, Wong, et al. 1966, Lee and Sechler 1975, Handelman and 

Rubenfeld 19 73, and Habberstad 1971).

Besides considering varying geometries many authors (Wu and Sackman 

1974, Bartholomew and Torvik 1972, Benveniste and Lubliner 1972, and Yuan 

and Lianis 1974) have considered the problem where the bar is no longer a 

simple elastic material, but is viscoelastic or nonlinear in its proper

ties. Several years ago Biot developed a theory of stresses in a porous 

material. This has been the focus of several papers since that time (Biot 

1956a,b; Biot and Willis 1957, Biot 1961, Lubinski 1955, Mallik and Ghosh 

1974, Sve 1973, Trofimov, et al. 1968, Jones 1969, Hoffman, et al. 1968, 

Jones 1961, Nowinski and David 1971, and Pelker and Saha 1975).

A few authors have examined the problem of a discontinuity in the
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cross-section on wave propagation. Kenner and Goldsmith (1968) and 

Habberstad and Hoge (1971) have considered the case of a discontinuity 

that is short compared to the wavelength of the pulse, which simplifies 

the problem of computing the transmission and reflection coefficients.

It can be seen from this cursory overview of the field that the area 

of stress wave propagation has been extensively studied. However, it wil] 

also be noted by the presence of recent work that continued interest ex

ists especially with respect to different geometries and nonelastic 

materials.

MECHANICAL PROPERTIES OF BONE 

Static Properties

The mechanical properties of bone has been the subject of investiga

tion for numerous years with the first contribution to the literature 

being attributed to Kertheim (1847). The literature in the area has been 

the subject of several reviews where the pertinent information is collecte 

Among these are Evans (1957) who extensively reviewed the early work in th 

field. Yamada (1970), Currey (1970), Swanson (1971) and Ascenzi and Bell 

(1972) have reviewed much of the literature since then. The modulus of 

elasticity along with the ultimate breaking strength are two of the moie 

widely studied properties. A summary of some of the experimental work may 

be found in Tables l.'l - 1.3. It can be seen from these results that bone 

is approximately twice as strong in compression as in tension. The ulti-
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Table 1.1 

Modulus of Elasticity

Author 

Ascenzi and
1jOiiuul.x \A.yvoj

Ascenzi and 
Bonucci (1967)

Bird, et al. (1968)

Species Bone

Man F emur

Man F emur
Ox F cuiu r

Ox Famur

Currey (1969a) Rabbit Meta
tarsal

Dempster and Man Femur,
Lidaicoat (1952) tibia

Evans and Bang (1967)

Evans and Lebow (1951) 

McElhaney (1966)

McElbanev e*- al.

Man

Man

Ox
Man

Femur
Tibia
Fibula

F emur

Femur 
F smur

Femur

Mather (1967) 

Sedlin (1965 

Sedlin and Hirsch
MO ££\

Smith and Walmskey 
(1959)

Men

Man

Man

Man

s emur 

Femur 

Fernur

Tibia

I from Currey (1970)

E (kg/cm2) 

49,100-94,900

39.600-119,000
54.600-169,000

214.000 Longitudinal
162.000 Circumferential
68,000 Radial

60,000-170,000

88.700 Longitudinal
42.700 Circumferential 
38,400 Radial

145.000 Compression
123.000 Tension

144.000
155.000
169.000

145.000

190.000 Compression
155.000 Compression

209.000 Tension
294.000 Compression

135.000 Bending

158.000 Bending

159.000 Bending
63,000 Tension

108.000 Bending
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Table 1.2

Tensile Strength, 1

Author

Ascenzi and
Bonucci (1967)

Cur” (1959)

Dempster and 
Coleman (1961)

Evans and Bang 
(1967)

Species

Man

ux

Man

Man

Bone

Femur
Femur

Femur

Tibia

Femur
Tibia
Fibula

Value (kg/cm )

906-1,160
1,125-1,204

1,140

970 along bone grain 
100 across bone grain

820
990
950

nil'scn ana 
Evans (1965)

McElhaney, et al. 
(1964)

Melick and Miller 
(1966)

Sedlin a;
(1966)

Man

Ox

Man

nan

Femur

Femur

Tibia

F emur

1,000 0-6 months old

940

1,410 less than 60 y.o. 
1,210 more than 60 y.o.

890

1 from Currey (1970)
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Table 1.3

Compressive Strength

Author

Ascenzi and
Bonucci (1968)
i n /1 r\ r n\sira, ei ax. vx^oo;

Dempster ana
Liadicoat (1952)

Hert, et al. (1965)

McElhaney (1965)

McElhaney, et al. 
(1964)

Species

Man

ux

man

Ox

Tortoise

Rabbit
Man

Man
Ox

Ox

Bone

Femur

Femur

remur, 
Tibia

Femur

Humerus
Femur
Tibia
Femur

Femur
Femur

Femur

Value (kg/cm ) 

900-1,670

i.yjO Longitudinal 
1,550 Circumferential 
1,370 Radial

1,340 Longitudinal 
1,080 Circumferential 
1,200 Radial

1,989 Primary Long. 
2,008 Haversian Lone. 
1,626 Primary Circum. 
1,544 Haversian Circum. 
1,937 Primary Radial 
1,893 Haversian Radial 
2,377 Primary Long

1,772 Primary Long. 
2,284 Haversian Long

1,430
1,800

1,360

1 from Currey (1970)

liz.
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2mate tensile strength being approximately 900 - 1,100 kg/cm and the ul-
2timate compressive strength being 1,400 - 2,000 kg/cm . The median

5 2modulus of elasticity is approximately 1.5 x 10 kg/cm .

Correlation with Microstructurc

The effects of varying histologies on bone mechanics have also been 

widely studied in static tests. Maj and Toajari (1937) investigated the 

correlation between breaking load and collagen fiber orientation. They 

found that a bone cut longitudinally took three and six times as much 

force to break as a bone cut tangentially or radially respectively. They 

concluded that the breaking strength of bone is proportional to the number 

of collagen fibers in the plane of the applied force. They also stated 

that the mechanical anisotropy of bone is dependent upon the distribution 

and direction of collagen fibers.

Maj (1938) studied the effects of porosity on the breaking load. He 

concluded that except for the distal metacarpals the variation in porosity 

was not responsible for the variation in the breaking load between differ

ent parts of the skeletal system. Further, he stated that the variations 

in strength of compact bone were probably due to the variations in density 

and orientation of the collagen fibers. Along similar lines Toajari (1938) 

concluded that the modulus of elasticity and the breaking strength of bone 

were directly proportional and attributable to the orientation and quality 

of collagen fibers.
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Currey (1953) studied compact bone from ox femurs and compared ten

sile strength with histology. He concluded that there was a strong nega

tive correlation between the amount of reconstruction in a bone specimen 

and the number of Haversian systems in it, and its tensile strength. He 

proffered two explanations. One was that the immature Haversian systems 

have large central cavities which reduce the amount of bone substance Der 

unit volume. The other explanation was that the newly formed Haversian 

systems were not fully mineralized and were therefore weaker.

Ascenzi and Bonucci (1964) and Ascenzi, et al. (1966) found that the 

ultimate tensile strength of single osteon systems was maximal in those 

osteons where the majority of the collagen fibers were oriented parallel 

to the long axis of the test specimen.

In a series of papers Evans and Vincentelli (1969, 1974) and 

Vincentelli and Evans (1971) studied the correlation between the mechani

cal properties of human cortical bone and its histology. They found that 

there was a significant positive correlation between the tensile strength 

and tensile strain and the percent of dark osteons in polarized light 

(collagen bundles oriented parallel to the long axis of the osteon) and a 

negative correlation with the percent of light osteons in polarized light 

(collagen fibers oriented perpendicular to the long axis of the osteon). 

They claimed that there was no other significant correlation between the 

modulus of elasticity and the histology. They interpreted their results 

as being due to the predominate direction of the collagen fibers in the 

osteon.
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Recently Saha (1974, 1976) has studied the relationship between the 

microstructure of bone and its dynamic strength. A highly significant 

(P < .001) negative correlation was found between the tensile impact 

strength and the percentage area of secondary osteons. The least squares 

fit of the data led to the equation

rt =  i n  s q  _  059  v~u

where cr̂ is in ksi and X is the percentage area of secondary osteons. A 

similar negative correlation was determined between the impact energy 

absorption capacity and secondary osteon area.

Influence of Bone Mineral Content

Since bone has a 65 percent inorganic mineral content it is reason

able to expect that this mineral night play an important role in deter

mining the mechanical properties of bone. Vose and Kubula (1959) found 

that the modulus of elasticity and bending strength of dry bone increased 

with increasing ash content. In subsequent work Vose (1962) studied the 

breaking load from fourteen human tibias. He found a high degree of cor

relation between the ultimate yield loading and degree of osteoporosis 

(r = - .592, N = 14) and interstitial bone mineralization (r = .857, k = 1*0.

Currey (,1969a) studied the relationship between the ash content of 

rabbit metatarsals and their Young's modulus, static strength, and impact 

strength. He found that the static strength and modulus of elasticity 

increased linearly with ash content. The static and impact energy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



absorption capacity first increased then decreased with increasing ash 

content. In a subsequent paper (Currey 1969b), he proposed to explain 

the rapid rise in Young’s modulus with ash content as being caused by an 

end to end fusion of apatite crystals as the matrix becomes saturated 

with mineral. He sites a personal communication with A. Ascenzi which 

suggests some electron microscopic evidence for the existence of this 

phenomena.

Currey (1975) in a study of bovine bone determined the amount of 

reconstruction and ash content in his specimens. He concluded that the 

variations in the mechanical properties associated with reconstruction of 

bone is a direct result of the varying mineral content of the bone.

Effects of Storage and Fixation

Since some time invariably elapses between the time a specimen of 

bone is obtained and the time its mechanical properties are measured, it 

is important to be aware of any effects that this elapsed period may have 

on the results obtained. One should also be aware of the effects that any 

steps that were taken to preserve the specimen might have on these results.

Frankel (I960) in a study of the breaking strength of femurs noted 

that there was no difference in the strength of femurs that have been 

frozen and those that have not been. Sedlin (1965) tested seventy-four 

fresh human specimens in bending, forty-three of which were tested three 

hours after dissection from the limb. The remaining thirty-one were

-
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frozen at minus twenty degrees centigrade for three to four weeks and 

then thawed and tested. The results showed that there was no significant 

difference in the ultimate stress, Young's modulus, energy absorbed to 

failure or total deflection to failure between the two groups. He con

cluded that freezing to twenty degrees below zero centigrade does not 

alter the physical pronerties of bone.

The effect of drying on the mechanical properties of hard tissue was 

studied quite extensively by Ko (1953) 'who found that as the water con

tent of bone was decreased , Young's modulus and the tensile stress at 

fracture also decreased. Swanson (1971) interpreted these findings as 

being consistent with the picture of water acting as a lubricant on the 

solid matrix. The results of Yokoo (1952) tend to support the above 

findings of Ko. Most of the subsequent work has not quantified the degree 

of ’water content in the specimens tested and are therefore felt to be not 

as valuable as these two earlier works.

In Evans' (1957) classic survey of the literature, he noted that the 

average tensile stress at fracture in embalmed bones was considerably 

lower than the results reported for fresh bones. He cautioned that the 

results were from a wide variety of sources and attempts at cross corre

lations were hazardous. McElhaney, et al. (1964) compared the tensile 

and compressive strengths of wTet beef bone, tested within forty hours 

after death and after at least fifteen hours of immersion in embalming 

fluid. They found that fracture stress in compression was twelve percent 

lower after embalming. No other significant changes with embalming were 

found, although other compressive and tensile properties were slightly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



lower. Sedlin (1965) tested ten samples from a human, bone which were 

studied fresh and after being immersed in ten percent formalin for three 

weeks. The Young's modulus showed no significant change with embalming.

Ko (1953) in his tensile tests on bone specimens stored in physio

logic saline at room temperature reported no significant change in the 

stress-strain curve, the strain at fracture or the tensile stress at 

fracture as compared with fresh specimens. In reviewing this and other 

papers, Swanson (1971) concluded that the freshness of the sample is not 

crucial in mechanical testing of the mechanical properties of bone.

BONE STRUCTURE

Classification of Osseous Tissue

There are some 206 different bones of various sizes and shapes in 

the normal human skeleton. On an anatomical basis bone is usually clas

sified into four main groupings: long bones, short bones, flat bones,

and irregular bones. Under the heading of long bones are femur, tibia, 

fibula, radius, ulna, humerus, clavicle and rib. The short bones are the 

phalanges, metacarpals, and metatarsals. The flat bones are the bones of 

the skull, scapula, and ileum of the pelvis. The vertebrae, carpals, 

tarsals and sesamoids are irregular bones.

Each long bone is divided into several areas of interest. The shaft 

or diaphysis is a thick walled hollow cylinder of predominantly compact
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bone with a central medullary cavity containing bone marrow and some 

substantia spongiosa. The epiphysis is at the end of the shaft and con

sists of primarily spongy bone surrounded by a thin layer of compact bone. 

In the immature, growing individual, the diaphysis and epiphysis are 

separated by an epiphysial plate where growth occurs. The intermediate 

area around the epiphysial plate is called the metaphysis. Except for 

the articulate joint areas and areas of insertion and origin of ligaments 

and tendons, bone is covered with a layer of specialized connective tis

sue called periostium. Similarly the marrow cavity is lined by a layer 

called the endostium. Both of these layers have osteogenic properties.

Histologically there are two classifications of bone tissue, sub

stantial spongiosa or spongy bone and substantia compacta or compact bone. 

The substantial spongiosa consists of a three dimensional array of branchin 

trabeculae or bony spicules. These trabeculae define a series of spaces 

which are occupied by the bene marrow. Substantia compact is grossly a 

solid continuous mass whose spaces can only be observed microscopically.

Histology of Bone

Bloom and Fawcett (1968) give a concise summary of bone microstruc

ture. Compact bone is largely composed of a calcified bone matrix de

posited in layers of lamellae three to seven microns thick. Vithin the 

bone substance are numerous cavities called lacunae, each of which con

tains an osteocyte (bene cell). Radiating from the lacunae are small 

passages called cana.liouli that interconnect the lacunae.

fe
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The lamellae of compact bone can be classified by their architecture 

into several classes. The first are lamellae which are arranged around a 

vascular canal in bone to form a cylindrical unit called a haversian 

system or osteon. Between the haversian systems are irregular lamellae 

which are called the interstitial system a the line of demarcation between 

the two systems being called the cement line. The various haversian 

canals are interconnected by transverse cavities called Volkman's canals.

Composition of Bone

The chemical composition of bone has been the subject of extensive 

investigation by numerous authors. Guyton's (1971) and Bloom and 

Fawcett's (1968) textbooks provide some general concept of the structure 

of bone. However, the literature has been extensively reviewed by 

Herring (1964, 1968) in two articles.

Bone is composed of organic and inorganic phases. The organic phase 

consists of all the cellular structures and the intercellular matrix.

This matrix is composed of ninety-three percent collagen, one percent 

mucopolysaccharide complexes and other assorted proteins. The collagen 

has a crystalline fibroprotein structure and periodicity of 640 angstroms. 

Its chemical makeup is largely amino acids with glycine, proline, and 

hydroxyproline making up approximately sixty percent of its total weight. 

Unmineralized organic matrix is composed of ninety percent water.
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The inorganic phase consists of calcium, phosphate, citrate, carbon

ates, magnesium and hydroxyl groups. The bone crystal is often considered 

as a hydroxyapatite crystal with a chemical makeup of Ca-̂ Q(P0j+)^(0H)o with 

a rod like shape and a sine of 220 angstroms by 65 angstroms (Duthie and 

lioaglund 197*0. Substitution of the fluorine ion for the 031“ in the apa

tite crystal commonly occurs and is known to increase the size of the 

apatite crystals (Posner, et. al. ips3). Ins shape is controversial but 

is believed to be either plate-like or pin-like. Robinson (i960) has 

determined that eight to nine percent of the bone matrix is composed of 

water.

} • ■ T ’ j  / 'JTn t T t ? t  q

Elastic Properties

There have been numerous attempts to explain the physical properties 

of bone in terms of various mechanical models. Various models have been 

pul forth to explain the nature of bone in terms of hydroxyapatite 

crystals imbedded in an organic matrix. The three elementary models of 

such a composite are:

a) Voigt model (upper bound)

E„ = E,V + E0V„ u 1 - k
b) Rc-uss model (lower bound)

E = 1/(V t/E, + V0/lo)

L
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c) Hirsch model

1/ E c = x  VA  +  V2E2

+ n _ (v iv v /e )
' 1' 1 2 2

where V.,, V0 = volume of components one and two

E., , E9 = Young's modulus of component one and two

E = Youngs' modulus of the coracosite c
x = percent of the composite that behaves like a Voigt substance.

Katz (19 71) using the results of ultrasonically determined elastic 

moduli of hydroxyapatite showed that the Voigt model and Reuss model can 

not be used to describe the composite behavior of bone. He also demon

strated that the Hashin model does not yield meaningful bounds on the 

experimental data. The Hashin-Strikman model was also considered by Katz, 

and he pointed out the models ability to establish closer bounds on the 

elastic behavior than the Voigt or Reuss models.

Piekarski (1973) took a similar approach to Katz. In a discursive 

fashion he was more 'willing to attribute the elastic properties exhibited 

by bone to the joint properties of the collagen and hydroxyapatite that

it consists of. He attributed the viscoelastic properties to the flow

of fluids and the viscous deformation of the gels and solutions in the

it.
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(a)

(b)

(c)

figure 1.1 Elementary models of a composite material. (a) Voigt 
model, (b) Reuss model, (c) Hirsch model.
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Viscoelastic Properties of Bone

It has been shown that bone exhibits the phenomena of creep and 

relaxation and therefore should be modeled after one of the viscoelastic 

models. The three important elementary viscoelastic models are the 

Maxwell model, the Voigt model and the standard linear model (see figure 

1.2).

Sedlin (1965) attempted to explain the viscous behavior of bone in 

terms of the viscoelastic properties that he observed experimentally. He 

derived a rather complex model which was a combination of the models shown 

above. He claimed that his model explained most of the observed responses 

of bone to bending.

Lugasy and Korstoff (1969) studied the viscoelastic behavior of bovine 

femoral cortical bone. They concluded that the viscoelastic response of 

cortical bone can be represented by the superposition of collagen and 

hydroxyapatite crystals behaving as two distinct systems. They claimed 

that the collagen behaves mostly visccelactically and the hydroxyapatite 

mostly elastically.

Laird and Kingsbury (1973) determined the complex viscoelastic moduli 

of bovine bone for a frequency range of one to sixteen kilohertz. They 

found that bone was a linear viscoelastic material over the range of 

strains that they considered. It was also felt by these investigators 

that the three elementary viscoelastic models did not adequately describe 

the behavior of bone over the frequencies they tested.

fej
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Porous Models of Bone

As mentioned above, bone tissue has numerous cavities filled with 

bone marrow' and fluids (blood, synovial fluid, etc.) Recently, with the 

development of the Terzaghi-Biot theory of consolidation attempts have 

been made to determine the contribution of bone porosity to its physical 

characteristics.

Nowinski (1970) using Biot's equations derived the stress function 

and governing equations for a circular cylindrical bone element subject 

to external pressure. He considered several examples and concluded that 

the viscoelastic properties of the model were in agreement with the ex

perimental findings of Sedlin (1965).

He used the porous model in another paper, (Nowinski 1971) to consi

der bone articulations as a system of twTo poroelastic bodies in contact. 

He considered two cases, one v:here the point of contact is spherical and 

the other when the spherical part is flat and its material rigid (e.g., a 

metal prosthesis). Agmn he conciuueu that the model, was in agreement 

with the findings of Sedlin.

Nowinski and Davis (1972) treated bone as a two phase poroelastic 

material again using Biot's theory, and solved the problem of bending of 

poroelastic plates by terminal couples, pure bending of poroelastic beams 

of arbitrary cross-section, and pure torsion of poroelastic beams of 

arbitrary cross-section. The solution of the second case shov/ed that the 

behavior of a poroelastic material is analogous to the three element
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viscoelastic model.

In several other papers, Nowinski (1972, 1973) considered other cases 

of the poroelastic behavior of bone such as its effect on stress concen

tration around a cylindrical cavity. He found that under a constant ex

ternal load the bone started to creep. This was in agreement with the 

results of Sedlin.

Martin and Advani (1974) treated bone as a porous material. Using 

Lang's (1969) coefficients along with Pope and Outwater's (1974) data, 

they derived a matrix which closely duplicated the observed anisotropy of 

diaphysial bone.

FRACTURE AND BONE REPAIR

It is well known that bone is not a static mechanical structure but 

responds to the mechanical stresses on it by differential growth to re

sist the applied stress (Justus and Luft 1970). This occurs through the 

selective stimulation of osteoblasts and osteoclasts. Osteoblasts are 

mesenchymal cells which lay down the organic matrix of bone. Osteoclasts 

are multinuclrated cells which are responsible for bone resorption 

(Frost 1963).

When bone is injured or fractured, it undergoes a sequence of events 

to repair itself. Immediately after a bone is broken a hematoma or col

lection of blood forms around the fracture site. This eventually forms 

a fibrin clot around the fracture. The clot organizes itself and is
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invaded by blood vessels. Osteoblasts and chcndroblasts form within this 

tissue and eventually form the fracture callus. The fibrous osteoblasts 

lay down the new trabeculae of a fibrous bone matrix. This mineralizes 

after a period of time. Next, the callus is replaced by lamellar bone 

which is laved down along the lines of mechanical stress and strain 

(Frost 1973).

Various attempts have been made to explain this phenomenon. Bassett 

(1965) argues that areas of bone under compression (which is usually the 

concave side) are usually negatively charged while regions under tension 

(which are usually convex) are usually positively charged. It is well 

known that convex areas are remodeled away by osteoclast activity and 

concave areas are built up by osteoblasts. He argues that, therefore, 

bone remodeling may be due to electric phenomena. Currey (1968) claims 

that this model is capable of predicting the correct remodeling of a bone 

under a bending stress.

Recently Gjelsvik (1973a,b) developed a model that attempts to ex

plain bone remodeling on the basis of piezoelectricity. He bases his 

theory on four postulates: a) The signal for surface remodeling is the

piezoelectric polarization vector normal to the surface, b) The material 

symmetry direction of new bone deposited follows the direction of the bone 

on which it is growing. c) New surface bone is deposited so that no new 

residual stresses result. d) The material symmetry direction tries to 

keep aligned with the time average of the principle stress di rections in 

the bone. He then goes on to justify these postulates from known pro

perties of bone. In the second paper, he compares the predictions of his
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model with clinical observations of the shape of longbones> bone atrophy 

due to disuse, shape of long bone metaphyses during growth and the cor

rection of angular deformities in fractured long bone. He concludes 

that a piezoelectric model can duplicate some of the known patterns of 

bone remodelling.

DYNAMIC STUDIES OF BONE

The dynamic characteristics of stress wave propagation in bone such 

as velocity, reflection and transmission coefficients are all dependent 

on the physical properties of bone such as its density, elastic modulus, 

geometry', porosity and anisotropy. Various techniques have been used to 

determine the dynamic properties of bone. Three of these, namely impact 

testing, ultrasound and resonance studies are considered in the following 

discussion.

Impact Studies

Ciemedson and Jonsson (1961) studied shock waves in bone created by 

high explosives. They showed that strong reflections occur at the bound

aries between air, tissue and bone. However, they failed to quantitate 

the reflection and transmission coefficients. Theoretically these should 

be related to the difference in the acoustical impedance ( = pc) between 

the materials on either side of the reflective surface. Further they did 

not consider fracture sites or attempt to correlate their measurements
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with the bone's physical or histological makeup.

McElhaney and Byars (1965) were the first to study the effect of 

varying velocities of impact on the mechanical response of human and bo

vine bone. They stated that the relationship between the ultimate 

strength of bone and strain rate can be reasonably well represented by 

an exponential curve. They further suggested a stress, strain and strain 

rate surface for the representation of other data. Of particular interest 

is their finding that a critical velocity exists for bone (at a strain 

rate between .1 and 1. per second) where the energy absorption capacity 

and maximum strain to failure are maximized.

Mather (1968) showed that the amount of energy needed to fracture 

the shaft of a femur varied with the rate of application of the load. He 

found that under impact loading, the femur had a mean energy absorbing 

capacity of 31.33 ft. lbs. (o = 13-99) and under static loading conditions 

a capacity of 21.15 ft. lbs. (a = 7.57) with a p $ .005 and t = 4.3.

This is in general agreement with the qualitative conclusions drawn 

by Bird, et al. (1968). These workers, studying impact vs. static loading 

of fresh beef femur, found that there was a significant increase over 

static values in the compression strength of their samples over the 

loading range of 102 psi/sec to 105 psi/sec.

Wood (1971) studied the mechanical properties of over 120 specimens 

of human cranial bone in tension at strain rates from .005 to 150 per 

second. His findings' showed that the modulus of elasticity, breaking 

stress and breaking strain are rate sensitive. The total energy absorbed

fci- -
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to failure was not rate dependent. However, he tempered these conclu

sions with the remark that there was a considerable amount of variation 

in his data that was not strain rate dependent.

Tennyson, et al. (1972) used the split Hopkinson bar technique to 

investigate the dynamic stress-strain characteristics of beef femur as a 

function of elapsed time after death. They considered a range of strain 

rates from ten to forty per second. A linear viscoelastic model was 

derived from the data from which the biomechauical properties at the tine 

of death could be extrapolated back to.

A technique for the measurement of the dynamic properties of viable 

bone was established by Black and Korostoff (1973). The basis for their 

technique includes a rapid, sterile incision procedure which yields 

samples suitable for testing, a portable incubator to maintain the speci

men's viability and a miniature dvnamic tensile testing device with a 

controlled temperature and humidity environment.

Kenner, et ai. (1975) used the Hopkinson bar technique to measure the 

dynamic elastic properties of dry compact bovine bone. They reported 

the velocities and strain ratios which they related to the anisotropy of 

the bone.

The split Hopkinson bar technique was also used by Lewis and Goldsmith 

(1975) to measure the dynamic properties of compact beef bone. They found 

that the prefracture response was viscoelastic in compression and that the 

fracture stress in compression increased with strain rate. They found 

that there was a residual plastic strain after combined torsional and
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coinpressional loading but not with compressive loading along. A relaxa

tion relationship that was derived from their data was given as:

S(t) = (3.61 - .78 (1 - exp - t/13/6)) 10G psi

t = time in microsecond

Po c An on on

Selle and Jurist (1966) measured the resonant frequency of human 

ulnas using an audio generator to drive the bone. They compared these 

results with the degree of osteoporosis in the bone. It was concluded 

that the resonant frequency multiplied by the length of the bone was a 

monotonically increasing function of bone density and that this density 

could be measured within three percent by this technique compared with 

radiologic techniques which cannot detect osteoporosis until at least 

thirty percent deossification occurs (Moldawer 1963).

In a short paper, Bencher and Mubeig (1968) used a 1000 Hz sound 

generator to diagnose the presence of soft tissue interposed between the 

two elements of shaft fractures in the femur and humerus. They claimed 

that their technique would not be useful for monitoring fracture callus 

but failed to elucidate their reasoning on this.

In a series of papers, Jurist (1970a,b) established the relationship 

between the resonant frequency (F0)> length (L) and speed of sound (c)
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for a long bone as:

F L = Kc o

where K is the proportionality constant. He then determined the ulna 

resonant frequency for osteoporotic, diabetic and normal patients. He 

found that women with symptomatic osteoporosis had a value of FL averaging 

forty-four percent less than that of age matched controls, and that the 

diabetic women had values in between the normals and osteoporotic patients. 

The FL values were binodaliy distributed for clinically normal women over 

the age of forty-five years old. However, in a later note (Jurist 1972) 

he point-out that the resonant frequency is critically dependent on the 

positioning of the ulna and apparatus, and he warned that the initial 

results might be due to systematic differences in the population studied.

Campbell and Jurist (1971) reported on the possible use of the mea

surement of mechanical ir.pedence to study the degree of union of femoral 

neck fractures. They found that there were large differences in excised 

femurs that 'were either intact, status post a small wedge resection from 

the neck, status post complete removal of the head and after reattachnent 

of the head. It was felt that this technique held some promise as a 

clinical method on monitoring such fractures.

Three models to explain the resonant frequency of a vibrating ulna 

were reported by Jurist and Kianian (1973). The ulna was considered as 

a homogeneous isotropic cylindrical tube. The first model was attached 

to rigid supports by hinges. In the second model the tube 'was attached 

by springs. The third -was similar to the second except for the addition

k  .
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of a spring mass system. All these models predicted values for the reso

nant frequency that vere within twenty percent of the measured values.

Pugh, et al. (1973) used low audio frequencies to study the dynamic 

mechanical response of fresh human cancellous bone. They found that the 

resonant frequencies have a spectrum defined by:

(h/CmS2 ) n2

•where S is any repetitive geometric length, m is the mass of the atom 

that is resonating, n is any integer and h is Planch's constant. They 

noted that the spectrum was in agreement with a model of momentum wave

Doherty, et al. (197-0 studied human titial response to steady state 

vibration over the range of resonant frequencies. They concluded that 

the resonant frequency was a less sensitive indicator of osteoporotic

ci't*1' r‘v* “o r-1 r c n Q > ’r(1 I " n r l  w  c? cr c; "f" ■” rsr'Q

Garner and Blackhetter (1975) analyzed bene in terms of the steady 

state response of the forearm to harmonic excitation and put forth a 

finite element model of the forearm. They pointed out that Jurist only 

used the pc-ah of the response curve a.nd that more information concerning 

the width of the reor,or.se curve should be pursued.

k  ....
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Uitrasound Studies

Ultrasound has been used in medicine since the 1930's and is now a 

common tool in medical diagnosis in cardiology, gynecology, et al. It 

therefore would be a natural area of investigation of non=invasive tech- 

ni-qucs tc tnccsuirc til-3 luc:cu3.iixc31. pi*op3rLic;s oii oonti.

Anast, et al. (1958) used ultrasound in the 20 KHz range to study 

fracture sites. They concluded that the velocity of sound was definitely 

affected by the presence of a fracture, the degree of union and the matu

rity of the callus. They found that the wave velocity was 3481 m/sec for 

normal bone and 3259 m/sec for osteoporotic bone. Korn and Robinson 

(1965) criticized this work because there was no clear distinction be

tween the sound delay of fresh fracture, a solid united fracture and an 

ununited fracture.

Rich, et al. (1966) used 3 MHz waves to show that the transit time 

across a bone sample was linearly related to the amount of calcium pre

sent in the bone samnle in cortical bone, but not in trabecular bone.

They used this data to compare calcium content of rabbit forelimb bone 

between predicted values from ultrasound measurements and subsequent 

chemical analysis of the bone samples. A very good correlation between 

these two methods was claimed by the authors.

The mechanical properties of healing guinea pig bones were studied 

by Floriar.i, et al. (1967) by means of 100 KHz ultrasound. They found 

that the velocity of ultrasonic waves were significantly decreased with
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controls !:aa a mean velocity of 3133 r./sec, completely healed tones had 

a near, velocity of 23es n/sec, partly healed tones had a r:c-an velocity 

of 2551 m/sec, and nonunions had a velocity of 2117 r./sec. They claimed

the waves : issue. However, the rar.ye of their results with

in each class war. vide and they failed to state whether or not the 

results were statistically significant cr not.

T?eie"i 1 y, '•’"own ard ',r’'"or ' 1 n 7 ■  ̂ —o/ .<1 o .1 —Pfl n 1siren ultrasonic sirnal

transmitted across a fracture site to study canine ulna fractures ar.d a 

trass tube fracture model. They point out that a problem with the pre

vious work that tried to differentiate the different stapes of a healir.,~ 

fracture by meani of velocity char.res was that the maximum delay due to a 

fracture was u.2 microseconds per cm of fracture pap. This small dif-

co1̂' 2. ouL~2.y "L0 c*oZ_i.'t.oi'ct̂eel '• v sZ.'* •""’li't- crs *'* n

lenpth, by sofa tissue chnryes, etc. They studied the ultrasound sipr.al 

output and concluded that early callus formation could be differentiated 

from the later stapes of healing.

Aben-aschen ar.d Hyatt (-972) obtained the elastic modulus of bone by

5 t/Cit) 0 c r:^~ : ~ }'• i. '''■  ̂ 2. ̂  p 2.<n r-* J>Q'~ *ntiT’’;cLr‘ ’r'cTn.u.'y*>c3 o™ c v  7' civ 0 ~

and compared those results from the modulus obtained from ultrasonic

testing. They obtained a relationship between the static modulus (dj

and the dynamic, ’ultrasound determined modulus (h ):u
E = . 13’* + ,75Ch E s u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-33—

They also concluded that the velocity is related to the density of bone 

grid that is linearly related to density.

Fresh and dried bovine bone was studied by Lang (1970) using 2.5 and 

5 MHz ultrasound. In his analysis of the data he assumed that bone could 

be treated as a hexagonal crystal and proceeded to calculate the elastic 

stiffness matrix (c , i,j = 1,5). The stress is related to the stiffness 

matrix by

C . = C . . E ,i ij j

He argued that since bone behaved as a hexagonal crystal, it could be 

described by only five independent stiffness coefficients which he then 

experimentally determined. This was done by measuring the wave propaga

tion velocities along various axes (v̂  ), and then by using the relation-
ij

ship:

2c = p (v ) , etc.
11

he calculated the Young's modulus as a function of the angle from the 

bone axis. This was found to be extremely anisotropic, while the shear 

modului were isotropic.

Grenoble, et a].. (1972) used 35 and 30 MHz ultrasound to determine 

the pressure dependence of Poisson's ratio, Young's modulus, bulk modulus 

and shear modulus in hydroxyapatite, fluorapatite, chlorapatite, human 

bone and other hard tissue. They showed that the mineral portion of the 

hard tissues measured' behaved differently than the hydroxyapatite. Their 

results differ from Lang's. However, their experiments were done at high

If
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pressure on isotropic porous powders vhil obtained at atinos

pheric pressure on porous oriented specimens

Theoretical Studies

Sui:i£ of these are presentee, nere

Nowinski and Davis (13 71), using Biot’s theory of poroelasticity 

treated bone as a porous solid circular cylinder. It should be pointed 

out that long bones have a central marrow cavity. Therefore, their as

sumption of a solid cylinder is not a very realistic model for long bones.

reported by McEihaney and Byars (1967). However, Pelker and Saha (1975a) 

pointed out several errors in their treatment of the problem.

Vayo and Ghista (1971) considered the problem of the two layered 

bone and the special case of compact bone by solving the elastic wave

a model. They then used Lang’s (1970) coefficients to calculate the wave 

velocity for compact bone in the short wavelength limit. They bypassed 

the intermediate wavelength region as being too complex for analytic 

solution. They found three values for the wave velocity 3380 m/sec,

1790 m/sec and 1420 m/sec corresponding to three different wavenumbers, 

q = 1,86, 3.52 and 4.42 cm - respectively.

The wave velocities for bone were calculated to be 3.6 x 103 and 

2.5 x lO'5 n/sec. These results bounded the value of 3.07 x 103 m/sec

equations in terms of Bessel functions using a multilayered cylinder as
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md Pope (1973) constructed a finite element model for a

wave propagation in none. Using the elastic moduli of bone (Pope 197^) 

and moduli for partially healed fractures ana fractures with bony union 

(Aberdschen and Hyatt 1970) they calculated the wave velocity for bone. 

They reported a wave velocity of lOcO ft/sec for intact tone and 1030 

ft/sec for freshly fractured bone. They also measured the in vivo ■'wave 

velocity of a human tibia using a wave generated by a hammer and a tuning 

fork. They' claimed a measured velocity' of approximately 100 ft/sec.

Since this was for a bending wave, it cannot be compared with the results 

of others who measured the longitudinal wave velocity'.

Levis (1975) recently modeled bone fractures as two elastic rods 

joined together by a compliant section between them. He presented the 

resonant frequencies and mode shapes for a range of stiffness coefficients 

of these compliant elements. A comparison of these theoretical prediction 

were made with a series of experiments with epoxy and urethane rubber ele

ments. He noted that any attempts at monitoring fracture healing by ac

celerometer output in a vibrating specimen will be very dependent on the 

ability' to keep the position of the inputs and outputs constant.

Summary

From the survey' of the field presented above, it can readily' be seen 

that the study of the dynamic response of osseous tissue is of active in

terest to many researchers 0 if can ee stucco, uiiau sciie is now' assumed to 

be stronger in the dynamic situation than in the static case. The study 

of the resonant, response of bone has been studied extensively, especially
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by Jurist. However, the problem with this technique rennino its extreme 

sensitivity to the position of the driver and detector. The use of ultra

sound has also gained certain degree of popularity. However, attempts at
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hindered by the small time delay over the callus site. Finally, there is
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tion coefficients in Lone in general and in a healing fracture in specific

w*-.
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Chapter II

LONGITUDINAL WAVE PROPA.GA.TI0N IN BONE

INTRODUCTION

As has Keer. discussed previously, there have been several attempts a 

measuring the dynamic properties of bone. However, very little has been 

done with respect to the measurement of longitudinal stress waves in bone 

The tripart purpose of this set of experiments is to first test various 

techniques of measuring stress waves in bone with the aim of finding 

methods that might be applicable to in vivo studies. Next it is hoped 

that some of the basic characteristics of stress wave propagation in nor

mal bone will be established. Finally, the characteristic changes of a 

stress wave propagating through a simulated fracture were investigated.

It is hoped that once the basic properties of the dynamic response 

of bone is fully understood then this physical property can be used to 

extract useful clinical information about the skeletal system of patients

-36-
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Xn pursuit of this goul coinpr’cssivc ir.ipu.ct tests were performed on trssi1. 

and embalmed, wet and dry human long bones. The stress wave characteris

tics were monitored by means of strain gages and a magnetic velocitometer 

developed for this work. When these tests were finished, a series of 

simulated fractures were produced in the test specimens and the tests 

repeated to observe any changes in the characteristics of the transmitted 

wave.

MATERIAL AND METHODS 

Bone Specimens

All bone specimens were obtained from human cadavers obtained from 

the Anntouv hcocrincui of the Yule Univ^rsi£y School of Medicine The 

test material consisted of twelve human long bones (tibias, femurs and 

humeri)^ six fresh and six embalmed. All soft tissue (muscle, tendon, 

etc.) was carefully dissected away from the specimens and the bones dis

articulated. There was no known history of bone disease in any of the 

cadavers from which the bones were obtained.

All specimens were kept frozen al m inus twenty degrees centigrade
ii**.*--;! ^  i - ^  a a- ---- - ---- ----- - x-t_________ j  j _________ -------------- --UtiLlJ. t i C i.KJi. l_c.3 L.JLii.5 . n.L. m<2L L1JUC LUC)' WCJ.C LliciVVCU LU 1UUIU LCLUpClc

ture. Previous investigators have shoTvn that this freezing and subse- 

quent thawing docs not significantly altcp the inocriunicai piropsptias of 

bone (Sedlin 1S65).
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While being thawed, all bones were kept moist. This was accomplished

by wrapping the specimens in gauze and saturating the gauze with a solution

of Ringer's lactate solution (this consists of water with 103 MEq/L NaCl,

27 Meq/L Na lactate, 4 MEq/L KC1, and 4 MEq/L (’•sCio). Ko (1953) has shown

that specimens stored at room temperature in physiologic saline undergo no 

change in their stress strain curve. The gauze and bone were then wrapped 

in plastic to insure a constant moisture environment.

Measurement Techniques - Strain Gages

The use of strain gages to measure the biomechanical properties of 

bone have been described by several authors (Roberts 1965, Lanvon 1871, 

1973, Cochran 1972, 1974, Hobbobl 1972, Barnes and Finder 1974, 1975 and 

Salmons 1975). For the studies done here it was decided after several 

preliminary tests, to use semiconductor strain gages instead of the con

ventional wire resistance strain gages. The high gage factor of the semi

conductor provided a signal approximately one order of magnitude greater 

than the signal from wire resistance gages. This provided a maximum 

signal to noise ratio. BLH SR-4 semiconductor strain gages were chosen 

for this purpose. The gages were bonded to the bone in the standard 

fashion using "Eastman 910" adhesive. Gages were mounted on the proximal 

and distal segments of each bone specimen. The gages and all electrical 

leads to the gages were coated with a layer of "BLH gagecoat waterproofing" 

to allow testing of the specimens in the wet condition. A set of Wheat

stone bridges was constructed for balancing the strain gages. The output
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from the bridge circuit was fed into a set of Tektror.ics oscilloscope 

amplifiers. The output from these was fed into a Tektronics dual trace 

storage oscilloscope from which the measurements were recorded (see 

Fig. 2.1).

Ripperger and Yeaklev (1963) developed a technique (described below) 

for measuring the particle velocities in a rod. This was used by Effron 

and Malvern (1969 to study plastic waves in aluminum bars. The method 

described here is a adaptation of their technique which consisted of 

measuring the voltage generated in a loop of wire coiled around the speci

men and placed in a magnetic field. The voltage generated was a result 

of an impact at one end of the specimen causing the wire to move.

The technique is based on Faraday's principle that a moving wire in 

a magnetic field will generate a voltage across the ends of the wire, 

which is proportional to the magnetic field, the length of the wire in 

the magnetic field and the velocity of the wire. This can be simplv 

expressed as:
-V -> ->E = B • L x V

where E = the voltage across the wire

B = the magnetic field vector 
-vL = the length vector of the wire

V = the velocity of the wire

•• - ~ • __
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However, in this work a threaded skeletal traction pin was used in place 

of the wire ceil that was used by previous experimenters. This nonmag

netic, electrically conducting pin was placed through the bone at a site

corresponding to the distal strain gage station. The bone with the pin

in it wTas then placed in the magnetic field provided by two permanent
m  r> o n  f- o  o‘* ■" - — ‘

A Kneedal alignment rig was designed to ensure the constant and re

producible placement oi the pin in the center of the magnetic field. 

Another rig was constructed to enable one to align the lead wires so that 

they were perpendicular co the magnetic field. This is important since 

if the wires were not perpendicular to the field then the B • L ( = |B[ jhj

cos 6) contribution to the output from the lead wires would not be zero.

Therefore, any slight movement of these lead wires would contribute to 

the measured output from the skeletal traction pins.

As in the strain gage measurements, the lead wires were connected tc 

Tektronics oscilloscope amplifiers and the amplified signal was stored on 

a. Tektrorrics Hnal trace storage oscilloscope from which the measurements 

were recorded (see Fig. 2.1). Fig. 2.2 shows a typical output from this 

technique and the strain gage technique.

Impulse Production

luG compressive stress jju_lse was geiioralbq oy cnc mipacu or a. -v incii 

diameter steel ball bearing on the proximal end of the test specimen from
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Figure 2.2 Typical output for strain gage at station two (bottom 
curve) and skeletal traction pin detector (top curve). The horizontal 
scale is 20ysec per major division.

jgg,l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-43-

3 constant li6i§tit ox xi.ft68n. cip.s Tbs size ox tbG bsil bssring nnd the 

height of the impact were determined by a compromise of several factors 

to optimize the pulse width, maximize the signal to noise ratio and to 

ensure minimal damage to the test specimen. By varying the height of the 

impact and thus varying the energy of the impact, the measured wave energy 

was shown to correlate linearly with the energy of the impact for the 

range of impact energies considered here.

Oscilloscope Triggering

A triggering circuit was constructed to establish the time of the 

initial impact. The oscilloscope used to record the strain gage and 

pin outputs was triggered by the closing of an electric circuit upon the 

contact of the ball bearing used for the impact with the bone. The 

timing of this triggering pulse could be varied by means of a delaying 

circuit. This allowed one to optimally position the trace of the pulse 

on the oscilloscope screen.

Calibration of Amplifiers

The output from the amplifiers were measured for a series of known 

input voltages surrounding the expected output from the strain gages and 

the pin detector. Both oscilloscope amplifiers were found to be linear 

in the region that they wTere to be used. Each one provided a voltage 

amplification of 228.
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Calibration of Strain Gages

Each Wheatstone bridge was calibrated prior to each series of tests.

This was accomplished by means of a series of shunt resistances across

each strain gage. This simulated the change in resistance of the gage 

that would occur with an actual strain. As long as the shunt resistance

(R ) is much smaller than the gage resistance (R ), i.e. one is operatings §
in the linear region of the bridge circuit, then the simulated shunt

stram (e . ) can be expressed as: sim

e . = R /(R F)sin g s

where F = the gage factor.

Then the actual experimental stress can be expressed in terms of the 

measured voltage.

E Rexp g 1 „£ =  £   — —2. --------------------exp sim E . F R E . expsim s sim

where ^exp = vo-*-ta§e output during actual testing

^sim = voltaSe outPut during calibration shunting

l  h u  s ,

£ = E aexp exp

where a = R /(F R E . )g s sim

A number of values for R were used to obtain a series of values fors
F F - The mean of these values was then taken to give a final values sim

•HET....it -
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of a that was used to calculate the strains. This calibration procedure 

was carried out on each of the strain gages used.

Fracture Techniques

After studying the wave propagau-Lon C u a i i c i c i i b lot intact d o i g} 

simulated partial fractures were pruuuceu in tne bone samples. l’his vas 

done by carefully making serial circular cuts into the bone cortex. A 

narrow file was used for this purpose in order to minimize any destruc

tive temperature changes that might be produced by high speed power equip

ment. The width of the cut was approximately 2 mm. The depth of the 

simulated fracture was carefully measured with a machinist's depth gage. 

The compressive impulse tests were then repeated and then a deeper cut 

was made. This was done at approximately .075 cm intervals until the 

bone was completely fractured.

roru^ity

Since attempts are being made by several authors (Nowinski and Davis 

1971 and Pelker and Saha 1975) to establish a model of bone that encom

passes the porosity of bone, it would be useful to correlate the findings 

of this work with the specimens’ porosity. The standard technique for 

measuring bone porosity was described by Evans (1953) and Evans and Bang 

(1966). It consists of taking photomicrographs of cut sections of bone.

—
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From these photographs the areas of the pores and the area of the solid 

bone are measured.

In this study a sample of bone was taken from the area surrounding 

the site where the specimen was fractured. This specimen was then embedded 

in an epoxy resin (DTA activator added to epcn 815). The specimen was then 

polished, coated with India ink and then repolished. This allowed for max

imal contrast between the pores and hone sample. A combination of trans

mitted and reflected light photomicrographs were taken of these samples.

The areas corresponding to the pores (haversian canals, vessels, etc.) 

were maximally stained using this system (see Fig. 2.3). The ratio of the 

pore area to the total specimen area gives a measure of the porosity of 

the bone specimen.

Porosity = A^/A^

whctc A = tCt5.1 SucCIuicu 5T63O
= area of specimen stained with India ink

This measurement was accomplished using an Amtech Inc. Image Analy- 

ser which functions as an electronic planimeter by intensity analyzing the 

light transmitted through the photographic negative. A grid was made with 

an area corresponding to a pore area of 20 percent ( = porosity). The 

area as measured by the electronic planimeter was 20.1 percent. Thus, it 

can be seen chat this method is quire accurate for porosity measurements. 

Further it is much less time consuming than the conventional method for 

measuring porosity described above.
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Figure 2.3 Typical photomicrograph of bone specimen used to make 
porosity measurements, stained as specified in text.
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Bone Mineral Content

An approximate measurement of the bone mineral density by means of 

radiologic techniques has been described by Keane, et aL (1959), Meema, 

et al. (1964) and Doyle (1968). Roentgenographs of each bone specimen 

were made along with an aluminum wedge with steps from 1 mm to 1.5 cm.

The radiographs were taken at 100 milliamps, 4S kilovolts for 1/30 second 

at a distance of 40 inches (see Fig. 2.4). Each radiograph was scanned 

five times with a Macbeth TD 102 photodensitometer whose output was re

corded on a chart recorder. The scanning window was approximately 1 mm.

The first scan was of the aluminum step wedge. Then the x-ray of the bon

was scanned at four different sites, two on each side of the fracture 

site. Thus, the radiographic bone density could be directly compared to 

the aluminum calibration wedge on each Roentgenograph. Doyle stated in 

the above article that 1 mm of aluminum corresponds to 155 ngm/cm^ of

bone ash. Thus, the nineral content of each bo:: '• ro^nimen vas

estimated. A typical aluminum wedge calibration curve is show, in

RESULTS

Intact Wet Bone

The strains in a whole femur due to a longitudinal impact of a ^ 

inch diameter steel ball falling from a height of fifteen cm were of the
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Figure 2.4 Typical radiograph of intact bons specimen and aluminum 
calibration wedge.
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order of 5 x 10~J. Figure 2.6 shows a typical strain output. The initial 

compressive pulse is shown as the positive portion of the curve, and the 

tensile pulse due to reflection off the distal end of the bone is shown 

as the trailing negative portion.

The viscoelastic damping coefficient was calculated for the fresh, 

wet and drv c^^cimens bv usint:..................... - ~ j  — ^ ^  J  k.# j. i ^  •

e = exp (- ax) Kolsky (1963)

n =  — 1 / v  (■J-!X (in £/E )

where = the strain measured at the proximal strain gage station

e = the strain measured at the distal strain gage station

x = the path length between the strain gages

The results of this calculation are given below for the twelve specimens.

Table 2.1

Experimental Damping Coefficients (2)

cm- ̂

fresh bone .023 + .030

embalmed wet none .058 ir .035

The velocities of stress wave propagation were determined by mea- 

su. ing the time elapsed between the arrival of the pulse peak between the 

two strain gage stations. This value was then divided into the distance 

between the two stations to give the velocity, i.e.

is. .
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Figure 2.6 Typical output of strain gage. The positive portion of 
t-he curve represents tne initial compressive wave. The trailing negative 
portion represents the rerlection of this wave off the distal boundary of 
the bone. The horizontal scale is 50 ysec per major division, the verti
cal scale is approximately 1.2 x 10  ̂per major division.
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V = £/t

where v = velocity of the pulse

& = distance between strain gage stations 

t = measured time elapsed between arrival or pulse peak

di c a u u  i> tctLiull.

The velocities determined for fresh, wet and dry bone are listed below 

for the twelve bone specimens.

Table 2.2 

Experimental Velocity Measurements

velocity (m/sec) 

fresh bene 3377 ± 370

embalmed wet bone 3228 ± 11C

The broadening of the wave pulse was determined by measuring the 

pulse width at half maximum at both strain gage stations. The "broad

ening factor" was simply taken to be the ratio of the distal width to 

the proximal width, i.e.

Broadening = (t, ). / (t, )-2 X 'z J.

where (v, ) = pulse width at half maximum at the proximal strain
'2 1

gag£ 3 lSl!on

(x, ) = pulse width at half maximum at the distal strain
-'2 Z

.gage station.
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below for the twelve bone specimens.

Experimental Broadening Coefficient

tresh bone 1.0/ ir .12

embalmed wet bone .96 dr . 07

The effects of drying were studied on a subset of embalmed bones

which were allowed to air dry for a minimum of two weeks before remea

suring. The results from this set of measurements on four specimens 

are reported below.

Table 2.4 

Effects of Drying on Embalmed Bone

Damping Coefficient .083 ± .013 .069 ± .009

Velocity 3232 ± 131 3246 + 233

Broadening Coefficient .99 ± .03 1.0 + .05

Simulated Fracture Healing

After the above intact tests were completed, serial cuts were made 

into the bone samples to simulate a fracture at a stage of healing re

lated to the remaining thickness of cortex. Figure 2.7 shows typical
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pulses for a series of progressively deeper cuts into the bone cortex 

(i.e. corresponding to an early stage of healing).

All of the fracture plots described below were plotted against a

normalized cross sectional area. This normalized area was taken as the

ratio of the cross sectional area left after a fracture cut (A) to the

original cross sectional area (A ). The hone was treated as a hollowo
circular cylinder whose inner and outer radii (b and a resoectivelv) 

were taken as an average of their values along the major and minor axis 

of the cross section. The areas computed from these values were found 

to be within o percent of the areas obtained by planimeter measurement 

of a random sampling of bone specimens. Table 2.5 shows this in detail 

and gives geometric and physical data on each specimen. Further, each 

curve shown below was arrived at by means of a least squares fit of the 

data points to either the parabolic function y = A + Bx + C x2 or the 

linear function y = A + Bx, using a HP9305A calculator. The coeffi

cient of determination (r2) and the significance level -were also 

determined.

The transmission coefficients were calculated for the original in

tact specimens by taking the ratios of the strains at station one and 

two, i.e.

T1 = „ / _■L c. n /  Co 2 1

where T = the original transmission coefficient 

e1 = strain at station 1
a.

= strain at station 2

M...
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Table 2.5

Geometric and Physical Properties of Specimens

A. = tt 7 a 2 _U ~ '
A  =  i r ( x 2 -  b ^ )

Equiv. Poro- 
Densitv sity

Specimen (cm) (cm) (cm) (cm ) (g/cc) (%)
1 1.44 .96 .48 3.62 1.02 11

2 1.86 1.11 .75 7.00 1.25 14

3 1. 55 .95 . 60 /, 71
-T  •  i

1 O O  
-1_ •

O  /
J  .  H

4 1.95 1.43 .52 5.52 1.10 4.3

5 2.70 2.06 .64 9.57 1.10 9.3

6 1. 78 1.11 .67 6.08 1.06 6.7

7 1.37 .85 .52 3.63 .99 25.7
Oo 1.35 . 83 .52 3.56 1.04 14.2

9 .87 .55 .32 1.43 1.30 4.3

10 .91 .47 = 44 1. 91 1.57 1 *5 T -1__ > •

11 1.07 .63 .44 2.35 .97 14.1

12 1.13 .77 .36 2.15 1.33 6.9

fes?-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Al'-p, the uncorrected transmission coefficients for each fracture depth 

were calculated by taking the ratios of the strain at the two stations, 

i.e.

Tfx “ W f x

where T^ ~ the uncorreuLed transmission coefficient

Finally, by taking the ratio of these two coefficients the transmission 

coefficient corrected for the viscoelastic damping in each specimen is 

arrived at.

T = T, /T fx o

Thus, we have the transmission coefficient due to the fracture alone. 

The results of the calculations are plotted against the normalized area 

in Figure 2.8. The solid curve is the least squares fit of the data 

(with the end points of a normalized area of 0 and 1 excluded) below a 

normalized area of .6 and the dash-dot curve below .8. The resultant 

linear regression curves are respectively

T = .46 + .95 A/Ao (r2 = .4296, S = .001)

T = .52 + .66 A/A (r2 = .2662, 3 = .001)o ’

A fit of all data points to a parabolic function resulted in the regres

sion relation

T = .17 + 2.55 A/A - 1.75 (A/A )2 (r2 = .78, S = .001)

Similar to the above manipulations a ratio of the broadening coeffi

cients was calculated to give an estimate of the dispersion caused by the
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fracture. This can be summarized as:

D = B /B f x o

where B = the "dispersion coefficient"

B^ = broadening due to the fracture 

- original, broadening coefficient

However since B = 1.0 we haveQ

D = B, f x

This set of data for dispersion coefficients was plotted in Figure 2.9 

against a normalized area. The solid curve is the least squares fit of 

the data (with the end points of a normalized area of 0 and 1 excluded) 

below a normalized area of .6 and the dash dot curve below .8. The re

sultant linear regression curves are respectively

D = 1.30 - .54 A/A (r2 = .3333, S = .001)

D = 1.29 - .49 A/Aq (r2 = .3847, S = .001)

A fit of all data points to a parabolic function resulted in the regres

sion relation

D = 1.35 - .98 A / A q  + .64 (A/Aq)2 (r2 = .49, S = .001)

The time delay of the arrival of the compression pulse due to the 

presence of the increasing fracture depth was calculated. This was done

by subtracting the transit time for the pulse to travel between the two

strain gage stations for the simulated healing (partially fractured) bone
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from the original transit time tor unfractured bone.

where A = transit time in unfractured boneo
A,. = transit time in fractured bonefx

These results were plotted in Figure 2.10 against the normalised area.

The solid curve is the least squares fit; of the data (with the end points 

of a normalized area of 0 and 1 excluded) below a normalized area of .6 

and the dash dot curve below .8. The resultant linear regression curves 

are respectively

A = 40.24 - 75.94 A/Ao
A = 37.12 - 60.81 A/Ao

A fit of all data points to a parabolic function resulted in the regres

sion relation

A = 45.12 - 124.38 A/A + 79.62 (A/A ) (r2 = .71, S = .001)o o

(r2 = .5301, S = .001) 

(r2 = .5456, S = .001)

Skeletal Traction Pin Detector

The results from the skeletal traction pin detector were recalculated 

as a ratio of the pulse height after a given fracture to the original 

pulse height before fracture. This gives a transmission coefficient 

for the pin detector due to the fracture and corrected for any damping.

fry*. •
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T . = P . /P .nxn p m  p m   ̂ o

where P . = pulse height of the pin detector before fracturep m  ro
= pulse height of the pin detector after fracture

The results of this calculation are plotted in Figure 2.11. The solid 

curve is the least squares fit of the data (with the end points of a nor

malized area of 0 and 1 excluded) below a normalized area of .6 and the 

dash-dot curve below .8. The resultant linear regression curves are 

respectively

T . = .65 + .66 A/A (r2 = .3310, S = .001)p m  o
T . = .33 + 1.32 A/A (r2 = .5459, S = .001)pin o

A fit of all data points to a parabolic function resulted in the regres

sion relation

T . = .25 + 2.64 A/A - 1.94 (A/A )2 (r2 = .70, S = .001)pin o o

Table 2.6 lists the coefficients of determination for the linear and 

parabolic cross correlations of the experimental variables.

DISCUSSION 

Intact Bone

It can be seen from Table 2.1 that the measured viscoelastic damping 

coefficients do not appear to be affected to any statistically significant
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Aooree. bv embalming, however there is a wide statistical variation within 
* —  -

the samples. Drying decreases this value by approximately 20 percent, as 

can be seen in Table 2.4. This points to the conclusion that the water 

content of bone adds significantly to its viscoelastic properties. This 

is in agreement with the previous work reported by Laird and Kingsbury 

(1973) who found that bone specimens become more rigid as they lost their 

moisture content and the dynamic loss moduli increased approximately 

thirty percent over the wet condition. Bonfield and Li (1967) claimed 

that the initial inelastic flow oecured in the collagen of bone. Since 

the bone mineral, hvdroxyapatite, is a crystalline substance and not 

affected by room drying, it is reasonable to assume that the collagen of 

bone is the substance that is primarily affected by changes in moisture 

content. Therefore, the change in properties due to drying are attri

butable to the changes in collagen. Hence, it is not surprising to find 

that this damping coefficient is affected by moisture content.

It has been reported by numerous authors (Ko 1953, and Yokoo 1952) 

that the Young's modulus is increased when bone is dried. From the ele

mentary theory the velocity should equal /e /p". Therefore, the velocity 

should increase as the bone is dried. However, the data in Table 2.2 and 

2.4 shows that no statistically significant variation of wave velocity with 

moisture or embalming was observed. The reported changes by the above 

authors claim an increase in the elastic modulus of only twenty co thirty 

percent. This should give rise to an increase in velocity of nine to 

fourteen percent. It is conceivable that such a change was masked by the 

experimental error in the velocities measured here. However, it should

bi .
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be noted that there is probably changes in the mass density that are not 

accounted for. There is also the possibility that complexities of wave 

propagation in wet bone cannot be adequately explained by the elementary 

theory.

Finally', it should be noted that the pulse width at half maximum 

underwent no significant broadening either in the fresh, wet or dry con

ditions, i.e. there was minimal dispersion of the pulse. It should be 

pointed out that the wave forms produced by' the impact of the steel balls 

can be approximated by a sine squared curve, as can be seen from Figure 

2.6. N owt, noting that

sin2x = h(l - cos 2x)

it can be se°n that this pulse has only' one Fourier component. Recalling 

that the reason that a traveling pulse becomes dispersed is because its 

different Fourier components all travel at different velocities. There

fore, since the pulses used here have only one component there should be 

no dispersion of the wave form.

Table 2.6 points out several interesting cross correlations of the 

data. The significant relationships obtained for a least squares fit of 

the data is given in Table 2.7. Of particular interest is the linear 

correlation between the damping coefficient (a) and the cross sectional 

area of the specimen (A ).

A = .746 + 94.3 a o
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Table 2.6

Matrix of Correlations Coefficients of Experimental Parameters 

N = 12, r2/S

F A  6 v ao

Porosity (F)
lincciir - . 0 1 . 1 0 . 1 2 . 1 8 0 4 . 0 7 7 7
s = - NS NS MS VOHO vn

LtO

parabolic . 0 2 . 1 0 . 4 1 . 3 3 7 7 . 2 4 0 3
S = — NS VTC11 A C r\ r  . V-> NS

Area (A )
linear . 0 1 - Hen i

• UOJ.X . 0 6 1 5 . 5 1 9 2 . 1 1 5 2
S = NS - NS NS . 0 1 NS

parabolic . 0 2 - . 1 8 9 0 . 1 7 6 3 . 5 8 6 9 . 1 5 8 5
S = NS - NS NS . 0 0 5 NS

X-ray Den. (6)
linear . 1 0 . 0 8 1 1 - . 0 3 1 2 . 0 4 9 2 . 1 9 0 9

S = NS NS - NS NS NS
parabolic . 4 3 . 2 2 6 7 - . 2 3 9 3 . 2 2 4 3 . 4 4 7 7

S = . 0 5 NS - NS NS . 0 2

Velocity (v)
liuQtir 1 O r\ S  1 r. U010 . 0 3 1 2 - . 2 6 2 7 . 6 4 6 6
s = NS NS NS - NS . 0 0 2

parabolic . 1 3 . 1 2 5 0 . 0 3 5 0 - . 2 8 6 4 . 7 8 1 5
S = NS NS NS - NS . 0 0 1

Damp. Coef. (a)
linear . 1 8 0 4 . 5 1 9 2 n/. n ̂ n c  o-7 

. 1 - . 2 1 2 8
S = NS . 0 1 NS NS - NS

parabolic . 2 8 9 9 . 5 9 1 5 . 0 5 6 6 . 5 4 6 1 - . 4 5 6 5
S = NS . 0 0 5 NS . 0 1 - . 0 2

Disper Coef. (v)
linear . 0 7 7 7 . 1 9 0 9 . 6 4 6 6 . 2 1 2 8 —

S = NS NS .002. NS —

parabolie i n /. o
. -1 U A. . 1 9 0 9 . 8 0 1 6 . 2 2 1 5 -

C — NS NS . 0 0 1 NS -

MS = not significant
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Table 2,7

Significant Cross Correlation Relationships

y A  +  B x . „ 9f  CX-, JN = 12

x ■vr 433' ' : - 2 4 4 “7 r e  i • . 4 1 . 05

p 17 i  m m  m—•O l U l A  A  A  n r .
. u u u ^ o . 3 3 7 7 . 05

F a - . 0 0 8 4 . 0 1 0 6 . 5 1 9 2 . 0 1

A
0

a - . 0 4 0 1 . 0 2 6 3 - . 0 0 1 5 . 5 8 6 9 . 0 0 5

1 8 6 . 4 9 - 2 7 9 6 9 1 0 8 1 7 . 4 3 . 0 5

6 F 3 . 7 7 - 4 . 2 8 1 . 6 2 . 4 4 7 7 . 0 2

6 Y 1 . 4 4 - . 0 0 1 2 . 6 4 6 6 . 0 0 2

V T 2 . 1 7 - . 0 0 0 5 . 0 0 0 0 0 . 7 8 1 5 . 0 0 1

. 7 4 6 9 4 . 3 . 5 1 9 2 . 0 1

a Ao 1 . 5 7 1 3 5 - 9 0 8 . 5 9 1 5 . 0 0 5

2 4 8 1 5 9 5 7 3 - 5 2 1 1 4 4 . 5 4 6 1 . 0 1

a V 1 . 1 5 - 8 . 4 3 7 4 . 1 . 4 5 6 5 . 0 2

a y 1 2 0 0 0 - 8 3 5 0 . 6 5 6 6 . 0 0 2

y V 2 5 1 9 9 - 3 5 7 5 6 1 3 9 7 2 . 8 0 1 6 . 0 0 1

§L- -
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This implies that the damping of the stress wave is related to the cross 

sectional area of the bone, This suggests a possible means of measuring 

the thinning of the bone cortex by determining the damping coefficient 

of the wave through a length of bone. However, the relatively small 

number of samples and large statistical variation of a between bone spec

imens would indicate the. need for further tests with a much larger number 

of spociiuons.

Also of possible clinical interest is the correlation between the 

porosity (F) and the damping coefficient (ct).

a + .102 - .010F+ .00028 F2

which implies that from a knowledge of the damping of a stress wave one 

could estimate the porosity of a bone. However, this too is subject to 

the warning voiced in the previous paragraph.

Simulated Fracture Healing

The results for the fracture experiments are shown in the figures 

above. It can be seen from them that the dispersion due to partial 

fracture and the transit time delay due to partial fracture rise rapidly 

as the point of complete fracture is approached. As this point of com

plete transsection is reached, there is also a rapid fall off in the 

transmission coefficient through the fracture site. However, it remains 

relatively flat up to this point. To understand this behavior consider 

tne propagation of a stress wave across a short discontinuity as shown in
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figure 2.12. Kenner end Goldsmith. (1968) give the transmission and re

flection coefficients for this case as

T 1 2  = ( 2  A1P7c?/ ( A np1c1 + A9p9c0)) , etc.

R121 = ((A2P2C2 " V l Cl)/(AlplCl + A2P2C2}) ’ etC’

  jr. ______*----------------------------■ _ ».u ̂  _ «. i  i_ _ .. x. •  c  . ______________ j- _ ___________________
i ' l U l V ,  X  L  i .  C 5 ± U 1 1  L . V V U  X O  l _ l i X i l  L l i t d i i  C i i C :  L L a i i S I U  L J . U C  L U L  CL w a v e  L . U  L i d V C L t j C

the region may be neglected. The wavelength of our pulses is approxi- 

mately ten centimeters, which is significantly larger than the width of 

the simulated fractures which were approximately two ran wide. There

fore, the assumption that the transit time for the pulse to cross the 

fracture is small is valid in our case. With this assumption, the above 

coefficients may be applied repeatedly to give an overall transmission 

coefficient through the discontinuity of

T 1 3  = T 12  T ? 3  ( 1 / ( 1  "  R 2 3 2  R 2 1 2 } )  [ 2 - 1 ]

Now for the case being considered here region two is just the region of 

the bone under the cut in the cortex. Also all three regions are made 

of the same material, hence all the mass densities and velocities are 

equal. Further, since the cut was narrow the cross sectional area of 

regions one and three are equal. With these values for wave velocity,

mass density and area the coefficients given by the authors mentioned

above simplify to:
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Region 1 Region 2 Region 3

Al,rV cl A3’P3>C3
I-------- 1

are the cross sectional areas of regions 1, 
2 and 3.

are the mass densities of regions 1, 2 and 
3.

are the wave velocities in regions 1, 2 and 
3.

Figure 2.12 Wave propagation through a short discontinuity

Al’ A2’ A3

pl* p2’ P3

V  V  C3
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arrivea at:

T13 = ^  ^  + + ^  A0 ^) J = 1

Thus the results of this work are in agreement with this approximate 

theory in the region of small fractures. For larger fractures approach

ing the breaking point the simplified theory breaks down and is incap

able of describing the observed results. This could be due to the 

approximations made in the theory or due to the anisotropy or inhomo- 

genities in the bone itself. The experimental curve of the data fitted 

to an exponential function for the transmission coefficients is compared 

to the theoretical one in Figure 2.13.

The high degree of significance of these curves (all P <<.001) 

suggests the possibility of using these parameters to monitor the healing 

of a fractured bone. However, these measurements were only determined bv 

the geometry of the simulated fracture. The logical extension is to de

termine the effects of the healing tissue or callus interposed between 

the geometric fracture.
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Skeletal Traction Pin Detector

The results from the fracture experiments were also measured with 

the skeletal traction pin detector. From the plot of these results in
o I T  -? *- /-> ~  *-U ̂ -- - J-t    -----_. -* JJ. i g u i c  a. • _1__U J-u v_cxtl LJ O t - c a  L 1 1 G  t  L H C  -L X t L C U  U U t  V C  C A l l l L H t a  L U C  £>CUUC L d p l U

£«11 *- 4-"U ^    . . . - • t - ;i, CA-i- -l ^  -i- -»- o»»_ k,iu u i  e a  a u  u  j. w u v _ u u . o  <1. c. J- w  c  11a  u  > v a o  U C O L . 1  X U C U  t t u o v o

for the strain gaga maasuramants • Xridaad5 by conparmg tliis plot wiLli 

Figure 2.8 it can be seen that the dependence on the cross sectional 

area is almost identical for the two techniques used here. It has also 

been demonstrated that the pin detector technique is a feasible method 

for measuring the stress wave characteristics for a traveling wave in 

bone and gives results similar to those obtained from conventional strain 

gage techniques.

'y~
E7J. • ras .
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Chapter III

INTRODUCTION

A knowledge of wave propagation characteristics in bone is important 

for our understanding of the dynamic response of the skeletal system due 

to an impact load. In light of this, the burgeoning amount of experimen

tal data and the paucity of good theoretical explanations of the results^ 

it would be advantageous to have a mathematical model of bone that en

compassed the actual histology and geometry of bone.

Osseous tissue is not a uniform solid substance, but contains num

erous cavities filled with bone marrow and various fluids (blood, syno

vial fluid, etc.). Therefore, it is not surprising that the early mathe

matical models of bone from a strength of materials approach have proved 

unsatisfactory. As pointed out in Chapter I, Nowinski and Davis have 

suggested that bone be treated as a poroelastic substance rather than a 

purely elastic one. The histology of osseous tissue indicates that this

■n /"- / o-

IBB— —
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view is a reasonable one. However, they modeled bone as a solid cylin

der which made the analysis simpler but is not a realistic model of long 

bone.

In this study bone is modeled as a hollow circular cylinder corn- 

nosed of a poroelastic material and permeated with a perfect fluid. 

Biot's theory of poroelastirity is used to describe the material and 

Nowinski and Davis' (1971) approach is modified and extended. The re

sultant coupled differential equations are uncoupled and solved using 

Frobenius1 method. Numerical results are obtained empirically and are 

compared with experimental findings.

All notation is explained in Table 3.1. Einstein's contraction 

notation is used throughout.

BACKGROUND - WAVES IN A POROUS MEDIUM

In his two papers on wave propagation, Biot (1956a,b) extended his 

theory of poroelasticity to the dynamic situation. Making the assumption 

that:

1. the concentration of pores per unit volume (porosity) is uniform

2. the solid is linearly and perfectly elastic; i.e. obeying
U _ 1 _ _ • - -»_uuur.c b j.aw

3. the solid undergoes small deformations

4. the liquid phase is considered a perfect fluid, i.e. its

viscoelasticity is neglected

M  .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.1

1X.T_

Notation

(x,t) = = displacement vector in the solid - 1 
= r X1 + a

X*1 (x ,
2t) = X = displacement vector in the fluid = r X 2 +  8

-1

r , s, o are unit vectors
... A.  ̂ J  ^  „ T .* Ac. o u i a i t i  -Lit bu.'.iu

e2 = strain in fluid
p - mass density of solids
0- ■ r = mass density of fluid

p£ = mass density of fluid per unit volume of aggregate

P11 = ps + p£
P12 : = mass coupling parameter

P22 = "  P£

f = porosity
K = inverse of bulk modulus under constant pore pressure
C = coefficient of unjacketed conpressability
e = coefficient of fluid content
X = T - 0 2  Lame constant = A -  -r-X\.
V = Lame constant
Q = (1 - -  C/K)/a + P -  C2/K)
R = 2 / a  + p -  p2/k )

p = A + 2p
s = Q a 1 + R
*
pl = P11 P2 " p 12 P2/P?2 " Uy2
p2 = Oil p2 - pf, p2/P22
w* r i"d ~ /~ n\.i.l i fr\ _ /-

lvi ~ h'i2/H22 '<jv w  ~ P12/iJ22 V
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5. the pores are interconnected;

6. the stress in the bulk is uniformly divided between the solid 

and liquid phase.

Biot obtained the following wave equations for a poroelastic 

material

U X{ .. + ffA + u) e1 + Q£2] = J 2__ + x2}
-t’"  2 3 + 2 11 J 12 1

j = 1,2 [3.1]
[Q e1 + R e2], = _ j £ _  (p xj + p X2)

3 3 +  2 - 2 J 22  j

where

eJ = ^  j = 1,2 [3.2]±y ±

By applying the divergence operator} dilational waves can be separated 

out to give

[P c1 + Q e2],.. = —  (p t1 + p e2)
11 3 + 2 11 12

j = 1,2 [3.3]

[Q +  R ] > , • •  =  —— —  ( p 10 a 1 +  P . .  a 2 )
3 + 2 zz

Similarly the curl operator can be applied to give the rotational waves 

if desired.
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POROELASTIC WAVES IN BONE

Formulation

We will consider bone to be a hollow7 circular cylinder composed 

a poroeiastic material with inner radius = b and outer radius = a. 

Assuming a sinusoidal wave of frequency = p and wave number = y prop 

gating down the cylindrical axis we have:

Xn = “i exp + Pc^

where n,j = 1,2 [3

"n = rac*ial dependence of solution

Using this and equation 3.2 in equation 3.3 we find that

e 1 +  e , + (B.p2 - Y 2) e 1 +  8 p 2e 2 = 0
9 ̂  L j A i 2

e!ll + r S i  + (33p2 “ y2)£2 + % P 2£2 = 0 

where

Q p 12 " R p i 1 ^ P 22 ~ R p 12
1 a 2 a

fA + 2 In — On (s -f- 9-j'jo _ On"-22 i 2 K

a = Q2 - R(A + 2y)

Now matters can be simplified by letting
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vJ i TrJ , , j
Al,l 'r r Al T K Y 3 j = 1,2 [3.5]

We then get the coupled differential equations

1 1 1  1 2 2 t ,, + 7  V n + Yl^ + B,P = 0> -11 L 1 1 ^

2 , i
*,11 + 7  *;1 + V  + BuP ^ == 0

wnere

2 2 
Y1 = B1P “ Y

« 2 2 
Y2 = B3P ~ Y

[3.6]

Equations 3.5 and 3.6 can then be combined to uncouple the two differen

tial equations to give:

r 3 + 2 r 2 iJj1,.. + [(y d-Y.’lr3 - r ]ib1
J U U  9 JL J. Jl 1 X ,11

+ [ (Yj + Y2)r2 d- 1]-^ + (.y1y2 - p ^ p ^ r  ti1 = o

Solution

Kowinski and Davis 'nave shown that this iourth order differential 

equation possesses a fundamental set of solutions which are regularly 

behaved at the origin. We will therefore proceed to solve this equa

tion using Frobenius' method of power series. Assuming a power series 

expansion of the form

v1 (r) = C nrn^
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We obtain an inuicial formula from which the general solution is found 

to be

(r) = A rn + B r11 in r/a n n

where the recurrence relationship gives us

3c■nc -V -— n > 2n n 3 6

B = -c £n a N > 2n n

_Cn-2 (Y1 + Y2} (5 + n"2)? ' Cn-4 (Y1Y? " S? A p4)4| 5 = 0

c = 0n

Where A , A0 , are determined by the boundary conditions.

The boundary conditions, i.e. that the surfaces are free from exter

nal traction and permeable to the fluid are

a = a = s = 0 r = a,b
1 1 1 3

which can be expressed as

2y x! . + A i!)1 + Qi'2 = 0
l,.i

i Y X* + X~ = 0  r = a , b1 3 ,

tThis differs from Nowinski and Davis result and they have concurred 
that these are the correct formulae (Davis - private communication).

■ Wr- •
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We can combine two of these equations to eliminate the displacement 

terms to give as two remaining boundary conditions dependent only on 

and 'I12

+ (2p^y2/(p“ - py2) + 2y) E + Ap* ijj1 + Qp iji2 = 0■1 9 1 1 1 1
r = a b

^ 1 . r, , 9x ijj" T is, - U

We have four eauatinns anri four nnlmax.mc (A , A , B and B 'i and the" O 2 o 2
problem is thus theoretically soluble. Now making the approximation that 

only terms of order r2 need be considered for a first estimate we obtain

li1 ~ A + A r2 + B in r/a + B.r2 in r/a 0 2 0 2

In order for a nontrivial solution to a set of homogenous equations to 

exist the determinant of the coefficient matrix must vanish.

e... A, . A A,., = 0 [3.7]ljk lj 2j 3k

(See Table 3.2 for the values of A...)ij

The resultant expression thus gives us a relationship between the 

variables of the theory and the wave velocity.

RESULTS 

Elastic Limit

To test the validity of the above expression the limiting case of a 

solid cylinder as the material approaches a perfectly elastic condition
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Table 3.2 

Elements of Coefficient Matrix

A
‘ 1 1

=  A n — F  -v/
“  K 1 “ 2 ' 2

A
•“ 1 2

— T7 /O-,  _
" l v H 1

17 O N  j
* 3  1J '

4*
» r * -  ? r l  a  - F 2 (4 + Y l a 2 )

A , .
u

=  F , (-q,/a +  F„Yl/a2)
J. J. O X A, .

m
=  F ^ C .  - F„r-4/a

O '
+ 3y^al) - AF 

' 2

A 21
=  A  p *  -  F2Yl A22 =  F 1 ( 2 q 1 - 2 Y j F j ) +  A  p *  b2 -  F2(4 +  Ylb2)

A 23
=  (-q1/b2 +  F3Yl/b2) +  A P * in b/a -

F 2 Y 1  2,11 b / , a

A 24
= F ^ ( 2 q 3  in b/a + 3 q ^ - f3 [-4 ’d 2 + 2 y ^ in b/a + 3Y;Lb] )

+ A p* b2 in b/a - F2(4 ?-n b/a + 4 + y^b2 in b/a)

A31 Q - RY]L/S2p 2 A32 = Qa2 - r /b2p 2 (4 + yr

A33 = 0 A34 = -4 R/iS2?2

A41 A31 a42 - Qb2 - r /b2p 2 (4 + Yr

A43 = Q in b/a - R/$2p2 y^ in b/a
II<*
< Q b2 in b/a - R/B^P2 (r in b/a + 4 + y,b2_L in b/a)

where

^  = 2u2y2/ (p* - py2) + 2p F2 = ^ P1 /'^2p2^

F3 = q2̂  ̂ 2 p2^
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is considered. In this situation

pi2 = p22 = 0 pn = p = mass density
Q = 3 2 =  0 p =  o /  ( A  +  2 y )

With this in mind the dispersion relationship becomes

p * * ( ~ 4 u  p +  p +  ^ 2 ^ i ^  ~  <̂ p 2y i+ q 2 =  o

which simplifies to (where v = p/y = velocity)

u 1* -  u 2 ( y  +  3 p ) / p  +  p (  y  +  2 p ) p 2 =  0

this gives us

u i  =  +  / p / p

u 2 =  ±  >/ ( y  +  2 p ) / p

That is we have two waves traveling along the z axis in the positive 

direction with wave velocities and v and two waves traveling along 

the z axis in the negative direction with wave velocities v^ and v^ .

It should be noted that v and v a r e  exactly the expressions obtained 

for the dilational and distortional wave velocities.

Dissipative Forces

If dissipative forces are introduced into the consideration Biot’s 

wave equations become
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"\r 3 2y Aj,kk + [(A + y)el + Q £2],j = (pn xj + p12 x5}

+  b ^  « * ]  -  * 1  > j  = 1 , 2

[« ^  +  *  = 2 ) >:i =■ 7 T ?  (cii 2  x]  + p22 XP  - b w  <x ]  -  x j>

where

b = vf2/k

k = Darcey's coefficient of permeability 

v = fluid viscosity

f = porosity

Now assuming a sinusoidal wave as in equation 3.4 above we obtain the new 

relationships

,r2 . < • ✓ . .  \  1 . _  0 -    /  - - -  - 1
" * 3 , 1 1  T  ' « *  f  » « *  X = 3 +  2 ' P „  X ,  +  p 12 X j )

[Q e3 + R £2]_ .  = y y r  (pJ2 x ]  + p22 x p  3 -  1,2

where

P^ = P,, - bi/p11 I x

1
p 1 2 = P 12 +  b i / p

P22 = P22 " °1/P

It should be noticed that this is the same expression as equation 3.1

with p!. substituted for p... k) ij

1  .
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Numericai Results

Equation 3.7 yields an intricate formula for the wave number which 

is dependent on several variables such as the wave frequency, the inner 

and outer radii of the cylinder and the porosity as well as the physical 

constants of the material the cylinder is composed of. This formula was 

manipulated to make it suitable for programming into an IBM 370 computer 

The numerical results reported below were obtained from this program and 

are plotted as a function of several dimensional variables.

For simplicity of presentation, we define the following quantities, 

a dimensionless velocity (V):

V = u /u o

where n = /E!qo

a dimensionless ratio of radii (b/a)

b/a = inner radius/outer radius 

a dimensionless frequency (v) 

v = p/?o

\.tV» nrci v* = ■» s v
ro O O

7 = 1  cm-1o

With all other variables held constant the porosity was varied over
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the range from 0 to 45 percent. The resultant solutions are shown in 

figure 3.1 for several values of b/a. It can be seen that in general 

there are two solutions for each value of b/a. This is in agreement 

with Biot (1955a) who found that there were two dilational waves in a 

porous material, one of which is highly attenuated, and with Nowinski 

and Davis (1971) who also found two solutions.

Similarly, with all other variables held constant the wave numbers 

were varied to find their frequency dependence. The solutions for sev

eral values of b/a are shown in figure 3.2 as a function of the dimen

sionless frequency (v). It should be noted that each set of solutions 

corresponding to a value, of b/a has a solution in which the wave number 

is linearly related to the frequency. For these solutions the theory 

predicts no dispersion of the waves. There is also a set of solutions 

where the relationship is nonlinear. For these solutions a dispersion 

is predicted.

Figure 3.3 depicts the relationship of the theoretical wave velo

cities as a function of radius for several values of b/a.

Figure 3.4 shows the results of experimentally measured wave velo

cities versus measured porosity. By comparing this plot with figure 3.1

it can be seen that the experimental results are consistent with the
Tvelocities predicted by the theory . Further, the experimental work of 

fIt is reasonable to assume that we are measuring the dilational wave 
velocity and not the distortional or Rayleigh wave velocities. This is 
true because the experimental velocities cluster around the value predic
ted for dilational waves by the Pochammer theory (u ) while the distortional 
and Raleigh wave velocities would be much less than this value (.63 uQ and

..Ik::..-:.-
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Figure 3.1 Theoretical velocity vs. porosity.
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Figure 3.3 Theoretical wave velocity vs. outer radius of bone.
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Figure 3.4 Experimental wave velocity vs. measured porosity,
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others nave found the wave velocities to be in this range. However, the 

fine variations in velocity that the theory predicts for changes in poro

sity cannot be thoroughly evaluated by this set of data due to its limited 

size, the possible effects that variations in the Young's modulus and mass 

density between bone specimens, and non-cylindrical geometry play in 

changing the expected velocity.

We have examined a model of bone which has the advantage of being 

able to encompass the porous nature of bone. Although other models, an 

empiric viscoelastic one for example, might be able to predict the dynamic 

behavior of bone equally well, this model takes into account the porosity 

directly. Thus, the effects cf a clinically interesting and important 

property can be uniquely examined. However, in modeling bone as has been 

done above several assumptions have been made. Although these are rea

sonable approximations, they do not entirely describe the complex system 

that osseous tissue truely is. A partial ennumeration of the areas of 

discrepancy between the model and physical reality would include the fact 

that bone is not a hollow cylinder, but is irregularly structured with 

varying substances in its inner core. Also no account was taken of the 

composite nature of bone or its microstructure other than its porous 

nature. Further, not all the pores are interconnected and bone is defin

itely anisotropic not isotropic as assumed in the theory. It can be seen 

that there are many areas for further modification of the theory to more 

closely approximate the actual specimen. However, the present model does 

provide a useful tool for understanding the effects of bone porosity.

h  .
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CONCLUSIONS AND FUTURE RESEARCH

In summary, experiments were performed on intact human long bone 

using dynamic compressions! waves induced by small amplitude impacts to 

determine the elastic wave propagation characteristics of bone. The vis

coelastic damping was measured and found to be comparable for fresh and 

wet embalmed bone, but decreased for dry embalmed bone. This value is 

important since techniques that attempt to make use of the wave damping 

characteristics for clinical purposes, such as measuring the transmission 

coefficient through a fracture site to monitor healing, must take into 

account this natural damping that occurs in normal bone. The results 

would also seen to indicate that wet embalmed bone may be used in place 

of fresh bone for some dynamic tests. However, more specimens of wet 

embalmed and fresh bone need to be tested before this can be verified. 

Velocity and dispersion measurements were also made which should also 

prove to be useful for future clinical applications.

A first approximation model of bone fractures by serial cuts into

_Ol;_
is
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the cortex were also performed. These provided some basic information on 

the effects of a short discontinuity on the transmission coefficient, 

dispersion and transit time delay of a wave pulse. This demonstrated the 

feasibility of using this technique for obtaining clinical information 

as well as providing some basic data that would be necessary' for the 

application of such a technique.

A new technique for measuring stress wave propagation was also in

vestigated. This method made use of Faraday's principle that a moving 

wire in a magnetic field will generate a voltage difference across the 

wire. In place of a wire a skeletal traction pin, such as is used in 

some cases of bone fracture was used. The results shows the feasibility 

of the method in giving data comparable to that obtainable from conven

tional strain gage methods. Thus, it may be possible to use this tech-

r\". m o  q c * o n in vivo method of measuring stress wave characteristics.

The problem of incorporating bone's porosity into a theory of wave 

propagation was approached using Blot's theory of pcrcclasticity. A 

first order approximation was solved and found to be consistent with the 

experimental findings of this work and the findings of othe rs s However, 

the fine structure variations predicted by the theory are beyond the level 

of resolution of this project. It is also felt that the general theory 

for a hollow cylinder leads to an exceedingly cumbersome set of formulae. 

However, the simplified solution for a solid cylinder was workable and 

should be investigated further for the effects of higher order terms and 

for dissipative materials. This will prove to be useful if it becomes 

practical to use wave propagation as a diagnostic test of osteoporosis.
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Work is also being done on developing techniques that would be cap

able of measuring stress wave characteristics in the in vivo situation. 

This includes the investigation of the practicality of the magnetic 

traction pin detector in in vivo tests by performing measurements on 

rabbits with fractured tibias using this method. These tests suggested 

several modifications that should be made for in vivo testing. Also, 

others are testing techniques that will provide a shorter pulse width 

and make use of the piezoelectric effect to measure the traveling wave 

pulse. Preliminary results from a series of measurements similar to 

those described above but using a PCB accelerometer have demonstrated 

results similar to those described above.

Future research in this area could prove to be extremely fertile.

The most immediate need for work lies in several areas. A more accurate 

model for bone fracture that takes into account the diff ©r̂ Tic? in m0 cliHn— 

ical impedence between the fracture callus and normal bone as well as 

the geometric discontinuity needs to be considered. A logical next ap

proximation is to experimentally fracture animal bones and at set time 

intervals sacrifice the animal. In this way specimens of fresh bone with 

fractures at various stages of healing can be obtained. By repealing 
the tests bone in this work on wave velocity, transmission coefficient, 

dispersion and transit delay the effects of the difference in the mechan

ical impedence of the callus could be measured as desired. Once this is 

completed, the experimentation could be extended to in vivo testing in 

animal and human tests. This could be done using one of the techniques 

described above.
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Thus, some of the ground work has been laid for the establishment 

of a new diagnostic technique using the stress wave propagation proper

ties of bones. It is felt that with the data accumulated here and in 

future research a feasible method could be derived that would prove use

ful to the researcher and clinician. However, further work especially 

in vivo animal experimentation is necessary to gain confidence in this 

technique before this method can be used clinically to evaluate fracture 

healing.
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APPENDIX 

Common Symbols

a stress 

e strain 

t time

E Young's modulus 

p mass density

r2 coefficient of determination

5 significance level 

F porosity

c,v wave velocity

B magnetic field

a damping coefficient

A/Aq normalized area of partially fractured bone specimen

T transmission coefficient

D broadening ratio of wave pulse

A transit time delay of wave pulse

T . transmission coefficient (as measured by Din detector)p m  J - J

6 radiographicaiiy determined mineral density

Y relative pulse width or broadening in intact bone

h _
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