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ABSTRACT

NORADRENERGIC MODULATION OF LATERAL GENICULATE NEURONS: 

PHYSIOLOGICAL AND PHARMACOLOGICAL STUDIES 

Michael Andrew Rogawski 

Yale University, 1980

The physiological actions of norepinephrine (NE) were examined in 

the rat dorsal lateral geniculate nucleus (LGNd) using extracellular 

single cell recording and microiontophoresis. Prolonged, low current 

iontophoretic applications of NE consistently e lic ited  an increase in 

the firing  rate of LGNd neurons which was delayed in onset and prolonged 

after cessation of the ejection. Sympathomimetic amines other than NE 

also activated LGNd neurons with varying degrees of effectiveness. On 

the basis of the relative potencies of a series of these agonists and 

the a b ility  of iontophoretically or systemically administered a-antagon- 

ists to selectively block the fa c ilita to ry  action of NE, i t  is concluded 

that NE acts via an o q -  ("postsynaptic") adrenoceptor. In contrast to 

NE, serotonin (5-HT) produced a suppression of the fir in g  of LGNd neurons.

To examine the effects of NE on evoked a c tiv ity , identified geniculo- 

cortical relay neurons (P-cells) were driven by electrical stimulation 

of the afferent visual pathway at the level of the optic chiasm. NE caused 

a marked fa c ilita tio n  of both the short latency (2-4 msec) and the delayed 

(70-230 msec) responses to such stimulation. The a-adrenoceptor antagonist 

phentolamine, which by its e lf  had no consistent effect on evoked ac tiv ity , 

strongly diminished the response to NE. 5-HT was a powerful depressant of 

e lec trica lly  evoked a c tiv ity , neither phentolamine nor the 5-HT antagonist
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methysergide antagonized this response. Firing of LNGd units evoked by 

flashes of light was also fa c ilita te d  by NE and depressed by 5-HT.

When afferent excitation from the retina was eliminated by 

enucleation of the eyes, many LGNd neurons ceased fir in g  spontaneously. 

Silent neurons in enucleated animals generally did not respond to NE 

although the excitatory amino acid glutamate was s t i l l  highly active.

Under these conditions, NE enhanced the excitation produced by glutamate, 

suggesting that NE increases the general exc itab ility  of these neurons 

and that i t  acts in a "neuromodulatory" fashion. The y-aminobutyric acid 

(GABA) antagonist picrotoxin, unlike NE, did not fa c ilita te  the activ ity  

of glutamate, indicating that the action of NE is not mediated by suppres­

sion of adjacent GABAergic interneurons.

Electrical stimulation of the locus coeruleus (LC), which contributes 

a dense noradrenergic innervation to the LGNd, mimicked the activating 

effect produced by locally  applied NE. The onset of the response to 

10 Hz trains was delayed by up to 20 sec and the increased rate persisted 

after the stimulation period (up to 20 sec). This effect was blocked by 

iontophoretic or intravenous administration of WB-4101. Silent cells in 

enucleated animals were not activated by LC stimulation, but, as with 

iontophoretic NE, LC stimulation did fa c ilita te  the excitatory action of 

glutamate. WB-4101 blocked both the fa c ilita to ry  actions of LC stimulation 

and of iontophoretic NE.

I t  is concluded that NE, acting via an -adrenoceptor, fac ilita tes  

the exc itab ility  of LGNd relay neurons to afferent stimulation. The close 

sim ilarity  between the effects of locally applied NE and stimulation of 

the LC provide evidence that NE is a transmitter in the coeruleogeniculate
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pathway. This pathway may serve to modulate the transmission of vi 

information from the retina to the striate cortex.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TO CAROL 

. . .  for her encouragement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

I wish to thank my advisor, Dr. George K. Aghajanian, for his 

enthusiastic guidance and support during the course of this project. In 

addition, I would like  to acknowledge the contributions of Drs. Robert

H. Roth, Michael Davis, Benjamin S. Bunney and Gordon M. Shepherd. The 

technical assistance of Nancy Margiotta and Annette Zimnewicz is 

gratefully appreciated. I would like  to extend special thanks to the 

members of the Department of Psychiatry Electronics Shop, Vaino Lipponen 

and Gerhard T. Weiss, who gave generously of their time and expertise.

I acknowledge the friendship and support of my colleagues Jay M. Baraban,

Claude de Montigny, Rex Y. Wang, Patrice Guyenet, Robert B. McCall, David

B. Menkes, Cam VanderMaelen and Rodrigo Andrade. Grace Billings  

assisted with the typing of this dissertation. F inally , I express the

deepest gratitude to my parents.

This research was funded by the U.S. Public Health Service and the

State of Connecticut. The support of the Medical Scientist Training

Program, Yale University School of Medicine under the direction of Dr.

James D. Jamieson is gratefully acknowledged.

- i i i -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .................................................................................. i i i

LIST OF FIGURES ...................................................................................... v i i i

LIST OF TABLES......................................................................................  xi

ABBREVIATIONS ......................................................................................  x ii

PREFACE ..........................................................................................................  1

PART I:  INTRODUCTION............................................................................... 5

A. THE LATERAL GENICULATE NUCLEUS: ANATOMY ..................................  5

1. Gross Structure 5

2. Input-Output Relations: Classical Pathways 5

3. Input-Output Relations: Brainstem Afferents 6

4. Cell Types 7

5. Local C ircuitry 9

B. THE LATERAL GENICULATE NUCLEUS: PHYSIOLOGY ...................  10

1. The Multi neuron Response 10

2. Single Unit Recording 10

3. Physiological Classification of Units 11

C. THE COERULEOGENICULATE NORADRENERGIC PROJECTION . . . .  13

1. Biochemical Determination of Catecholamines
Within the LGN 13

2. Origin of the Noradrenergic Nerve Terminals
Within the LGN 13

3. The Trajectory of Axons in the Coeruleogeniculate
Pathway 14

4. The Noradrenergic Terminal Field Within the LGN 15

- iv -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- V -

Page

D. PHYSIOLOGICAL CHARACTERIZATION OF ADRENOCEPTORS ON
CENTRAL NEURONS..........................................   18

1. The Technique of Microiontophoresis 18

2. Microiontophoretic Studies of NE in the Spinal
Cord and Brain 20

3. Spinal Cord 21

4. Brainstem Reticular Formation 21

5. Dorsal Raphe Nucleus 22

6. Locus Coeruleus 22

7. Brainstem Motoneurons 23

8. Vestibular Nuclei 23

9. Cerebellar Cortex 23

10. Hypothalamus 24

11. Thalamus 24

12. Hippocampus 24

13. Septal Nuclei 25

14. Olfactory Bulb 25

15. Neocortex 25

16. Summary 25

E. SUSPECTED TRANSMITTER AGENTS IN THE LATERAL GENICULATE
NUCLEUS...................................... ...............................................  26

1. Serotonin 26

2. Norepinephrine 28

3. Glutamate 29

4. Acetylcholine 29

5. y-Aminobutyric Acid 30

F. NOREPINEPHRINE AS A NEUROMODULATOR .................................... 31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- v i-

Page

1. The Concept of Neuromodulation 31

2. Neuromodulation in Invertebrates 32

3. Neuromodulation in Vertebrates 33

PART I I :  METHODS AND MATERIALS.......................................................  35

A. METHODS...........................................................................................  35

1. Preparation of Animals 35

2. Extracellular Recording and Microiontophoresis 36

3. Amplification and Data Analysis 39

4. Brain Stimulation 39

5. Histological Verification of Recording or
Stimulation Sites 40

6. Determination of Agonist Potencies 42

B. MATERIALS....................................................................................... 43

PART I I I :  EXPERIMENTAL STUDIES.......................................................  45

A. CHARACTERIZATION OF THE ADRENOCEPTOR ON LGNd NEURONS . 45

1. General Characteristics of Units Studies 45

2. Response to Norepinephrine 47

3. Response to Sympathomimetic Amines 50

4. Effects of Adrenoceptor Antagonists 53

5. Effects of Systemically Administered WB-4101 55

6. Effects of Clonidine 55

7. Responses in Unanesthetized Animals 60

8. Discussion 60

B. EFFECTS OF NOREPINEPHRINE ON EVOKED ACTIVITY;
COMPARISON WITH SEROTONIN ...................................................  65

1. Identification of Geniculocortical Relay Neurons 65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- v i i -

Page

2. Comparison of the Response of Spontaneously Active
LGNd Neurons to Norepinephrine and Serotonin 66

3. Effects of Acetylcholine and Carbachol 70

4. Comparison of the Effects of Norepinephrine and
Serotonin on E lectrically  Evoked A ctivity  70

5. Effects of Phentolamine and Methysergide 78

6. Comparison of Norepinephrine and Serotonin Effects
on Light Evoked Activity 82

7. Discussion 84

C. FACILITATORY EFFECTS OF NOREPINEPHRINE UNDER CONDITIONS
OF SUPPRESSED SPONTANEOUS ACTIVITY ............................... 86

1. Facilita tion  of Glutamate Excitation 86

2. Effects of Picrotoxin 90

3. Discussion 94

D. LOCUS COERULEUS STIMULATION .................................................. 95

1. Effects on Evoked and Spontaneous Activity 95

2. Placement of Stimulating Electrodes 98

3. Comparison with Response to Iontophoretic
Norepinephrine 100

4. Effects in Enucleated Animals 103

5. Discussion 108

PART IV: SUMMARY AND CONCLUSIONS..................................................  113

APPENDIX..................................................................................................  122

BIBLIOGRAPHY ..........................................................................................  123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure Page

1. Schematic illu s tra tio n  of dopamine-6-hydroxylase
containing axonal processes in a frontal section 
through the LGNd as determined by the immunofluoresc­
ence te c h n iq u e ........................................................................... 17

2. Photomicrograph of a 6-barrel micropipette assembly 
used for simultaneous extracellu lar recording and
drug e je c t io n ............................................................................... 38

3. Histological section through the dorsal lateral gen­
iculate nucleus (LGNd) showing typical recording elec­
trode placement........................................................................... 41

4. Storage osci11iscope tracing of a spontaneous extra­
ce llu la r action potential from a geniculocortical 
relay neuron. Action potential evoked by an optic 
chiasm shock ............................................................................... 46

5. Activation of LGNd neurons by microiontophoretic
application of norepinephrine (NE) ...................................  48

6. Response of LGNd neurons to adrenergic agonists . . .  52

7. Antagonism of norepinephrine (NE) induced activation
of LGNd neurons by the a-adrenolytic drugs phentolamine 
(A), piperoxane (B) and WB-4101 ( C ) ...................................  54

8. Comparison of the effects of various adrenergic antag­
onists on the activation of LGNd neurons by NE . . . 56

9. Antagonism of iontophoretically applied norepinephrine
(NE) by intraperitoneal (A) or intravenous (B) WB-4101 57

10. Antagonism of norepinephrine (NE) induced activation
of LGNd neurons by low iontophoretic currents of 
c lo n id in e ....................................................................................... 59

11. Comparison between a ff in it ie s  of sympathomimetic 
amines for brain a-adrenoceptors and a b ility  of drugs
to activate LGNd n e u ro n s .......................................................  64

12. Response of an antidromically identified LGNd relay
neuron to iontophoretically applied norepinephrine (NE) 
and serotonin (5-HT)   67

13. Comparison between the effects of iontophoretically 
applied norepinephrine (NE), serotonin (5-HT) and

- v i i i -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- i x -

Figure Page

carbachol (CARB) on a spontaneously active LGNd neur­
on. Dose dependent depression of another cell by 5-HT 69

14. Norepinephrine (NE) fa c ilita tio n  of unitary action 
potentials (A,B,C) and fie ld  response (D) evoked by 
optic chiasm stimulation ...................................................  72

15. Effect of norepinephrine (NE) on the response of two
LGNd neurons to optic chiasm stimulation .................... 74

16. Effect of serotonin (5-HT) on the response of two
LGNd neurons to optic chiasm stimulation .................... 76

17. Comparison of the effects of norepinephrine (NE) and 
serotonin (5-HT) on the response to optic chiasm stim­
ulation ......................................................    79

18. Effect of phentolamine (PHENT) on the modification of 
poststimulus responses by norepinephrine (NE) and 
serotonin (5-HT)   80

19. Comparison of the effects of norepinephrine (NE) and 
serotonin (5-HT) on the response to visual stimulation 83

20. Norepinephrin (NE) fa c ilita tio n  of glutamate (G)-in- 
duced excitation under conditions of suppressed spon­
taneous a c t i v i t y ................................................................... 88

21. Norepinephrine (NE) fa c ilita tio n  of glutamate (G) 
excitation with spontaneous ac tiv ity  suppressed by
Mg2 + ..........................................................................................  91

22. Effect of conditioning locus coeruleus (LC) stimulat­
ion on the response of a LGNd neuron to optic chiasm
(OX) s t im u la t io n ................................................................... 97

23. Storage osciH i scope record demonstrating the effects 
of locus coeruleus (LC) stimulation on the spontaneous 
fir in g  of a LGNd neuron.......................................................  99

24. Schematic representation of LC stimulating electrode 
placem ents................................................................................... 101

25. E lectrolytic lesion produced at t ip  of stimulating 
electrode indicating typical placement in LC . . . .  102

26. Blockade by intravenous WB-4101 of the activation of
a LGNd neuron by locus coeruleus (LC) stimulation . . 104

27. Blockade by iontophoretic WB-4101 (WB) of the activ­
ation of a LGNd neuron by locus coeruelus (LC) stim-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- X -

Figure Page

u la t io n ..................................................................................... 105

28. Blockade by iontophoretic WB-4101 (WB) of the activ­
ation of a LGNd neuron by norepinephrine (NE) and by 
locus coeruleus (LC) s t im u la t io n ................................... 106

29. Comparison between the effects of locus coeruleus (LC) 
stimulation and iontophoretic norepinephrine (NE) 
under conditions of suppressed spontaneous ac tiv ity
due to b ilateral e n u c le a tio n ..............................................107

30. Blockade by WB-4101 (WB) of the fac ilita to ry  action 
of norepinephrine (NE) (A,B) and locus coeruleus (LC) 
stimulation ( C ) ................................... ... ...............................109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Table Page

I. Relative Potencies of Adrenergic Agonists in
Activating Lateral Geniculate Neurons ............................ 51

I I .  C riteria  for Transmitter Identification ........................ 114

-xi -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABBREVIATIONS

ACh ...................................  Acetylcholine

CARB................................... Carbachol

cAMP ...................................  Cyclic Adenosine Monophosphate

C L O ................................... Clonidine HC1

E P I ................................... Epinephrine

G .......................................  L-glutamic acid (glutamate)

GABA................................... y-Aminobutyric acid

ISO ...................................  Isoproterenol

LC .......................................  Locus coeruleus

LGN ...................................  Lateral geniculate nucleus

LGNd ...................................  Dorsal la tera l geniculate nucleus

LSD ...................................  D-Lysergic acid diethylamide

NE .......................................  Norepinephrine

OX .......................................  Optic chiasm

PGR ...................................  Perigeniculate part of nucleus reticu laris

PHE ...................................  Phenylephrine

PHENT ...............................  Phentolamine mesylate

P I C ................................... Picrotoxin

PSTH ...................................  Poststimulus time histogram

R E M ................................... Rapid eye movement

VC .......................................  Visual cortex

WB....................................... WB-4101

4V ....................................... Fourth ventricle

5-HT ...................................  Serotonin (5-hydroxytryptamine)

-x i i -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PREFACE

The dorsal la tera l geniculate nucleus (LGNd) is a major component 

of the mammalian visual system whose principal function is to relay 

information between the retina and the s tria te  cortex. Since the work 

of Hernandez-Peon and his co-workers in 1956, i t  has been recognized 

that there are extraretinal influences on the LGNd which regulate its  

responsiveness to optic stim uli. One pathway which is presumed to serve 

such a function consists of norepinephrine (NE)-containing neurons 

originating in the nucleus locus coeruleus (LC) of the pons. These 

neurons contribute a dense network of noradrenergic axons and terminals 

to the LGNd.

In 1974, two Japanese investigators, Yoshihisa Nakai and Shuji 

Takaori, demonstrated that e lectrical stimulation of the LC could 

' fa c ilita te  the responsiveness of geniculocortical relay neurons to optic 

pathway stimulation. This finding was unexpected for two reasons. F irs t, 

previous studies of the effects of LC stimulation on neurons in various 

other target areas had indicated that LC neurons exert a predominantly 

inhibitory action postsynaptically (Siggins et a l . ,  1971; Segal and 

Bloom, 1974a; Sasa and Takaori, 1973). Second, local administration of 

NE using the technique of microiontophoresis had been reported by two 

research groups to depress the fir in g  of LGNd neurons (Curtis and Davis, 

1962; P h illis  et a l . ,  1967a).

However, one investigator, in direct conflict with these studies, 

reported that iontophoretic NE caused a fa c ilita tio n  of the activ ity  of
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geniculocortical relay neurons (Satinsky, 1967). This claim was 

supported by a recent careful reevaluation of.the work of P h illis  et a l. 

(1967) in which one of the original authors noted that clear depressant 

effects could be obtained only with very large iontophoretic doses of NE 

and, in fact, that many geniculate neurons were excited by NE (Tebecis 

and DiMaria, 1972). Therefore, under appropriate circumstances NE could 

fa c ilita te  the fir in g  of geniculate neurons and thus there appeared to 

be some correspondence between the effects of activation of the noradren­

ergic pathway to the geniculate, on the one hand, and iontophoretically 

applied NE, on the other. These observations raised a number of questions, 

all related to the central issue of establishing a transmitter role for 

NE in the coeruleogeniculate pathway:

1. Under what specific conditions does iontophoretic NE fa c ilita te  

the firin g  of LGNd neurons?

2. Is the fa c ilita to ry  effect receptor mediated and, i f  so, what 

are the pharmacological characteristics of the receptor?

3. Does iontophoretic NE act upon relay neurons d irectly  or is the 

effectmediated by adjacent neurons ( i . e . ,  inhibitory interneurons)?

4. How is the fa c ilita to ry  effect of LC stimulation related to 

the activation of spontaneous ac tiv ity  produced by iontophoretic NE?

Are the effects mediated by pharmacologically identical receptors as must 

be the case i f  NE is a transmitter in the pathway?

5. Does NE act as a conventional excitatory neurotransmitter or 

does i t  interact specifically with other afferents to geniculate neurons 

in a modulatory fashion?

; In this dissertation, I present the results of experiments designed

I to answer these questions. The LGNd was chosen as an area for study

j.
F

h
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because of the observation that geniculate relay neurons exhibit novel 

fa c ilita to ry  responses to NE. However, the LGNd has a number of 

characteristics which make i t  a particularly useful model system for 

exploring the effects of NE in a target area for LC noradrenergic neurons:

1. The input-output relations and local c ircuitry of the LGNd are 

re la tive ly  simple and well defined.

2. In the ra t, the LGNd consists of a v irtua lly  homogenous cell 

population; geniculocortical relay cells constitute 94% of the neurons 

within the nucleus. Moreover, the remaining neuronal class, I-c e lls ,  

are distinguishable from relay neurons on the basis of their responses 

to orthodromic or antidromic stimulation.

3. The afferent and efferent pathways of the LGNd are readily 

accessible to stimulation. In addition, the input pathway can be easily 

activated physiologically by visual stimuli.

4. The noradrenergic innervation of the LGNd derives exclusively 

from the LC which, even in the ra t, is a sufficient distance from the 

LGNd so that stimulation of the LC does not interfere with recording in 

the LGNd.

These considerations allowed a detailed physiological characterization 

of the action of NE in the geniculate. In the majority of the studies 

reported in this dissertation, I used the technique of microiontophoresis 

for local drug application in conjunction with single cell recording and 

brain stimulation. In it ia l ly ,  I found that iontophoretic application of 

NE, at low doses and for re la tive ly  prolonged periods, caused an increase 

in the spontaneous rate of v irtu a lly  a ll geniculocortical relay neurons.

| This response to NE was characterized pharmacologically and the information

obtained was used (1) to examine the way in which NE interacts with
i .

r
j;
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afferent excitation converging upon geniculate relay neurons; and (2) to 

provide evidence for a transmitter role of NE in the coeruleogeniculate 

pathway.
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PART I:  INTRODUCTION

A. THE LATERAL GENICULATE NUCLEUS: ANATOMY

1. Gross Structure

The lateral geniculate nucleus (LGN) is a discrete mass of cells 

located superficially at the caudal end of the diencephalon. In lower 

mammals, such as the ra t, the nucleus consists of a th ick, gently curved 

sheet of grey matter which is divided into dorsal (LGNd) and ventral 

(LGNv) zones by a bundle of horizontally oriented fibers. The LGN is 

bounded by the zona incerta (inferom edially), the ventral nucleus of the 

thalamus (medially) and the lateral posterior nucleus (superiormedially).

2. Input-Output Relations: Classical Pathways

The axons of retinal ganglion cells constitute the major afferent 

pathway to the LGN. Unlike the LGN of higher mammals, no laminations 

representing the separation of contralateral and ip s ila tera l retinal 

projections are present histologically in the rodent LGN. In fac t, the 

bulk of the rat LGN is innervated by crossed retinal fibers. However, 

Hayhow et a l . (1962) have described minor zones of uncrossed retinal 

input, leading to the concept of "concealed" laminations which are present 

functionally but are not evident anatomically.

The efferent projection of the LGNd to the visual area of the rat 

cerebral cortex was orig inally  described by Clark (1932), Waller (1934) 

and Lashley (1941). On the basis of retrograde degeneration studies,

i.
i

-5 -
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i

these workers demonstrated that the LGNd projected to the stria te  cortex 

and that its  f ie ld  of termination was limited to this area. In addition, 

they showed that the neurons of the LGNv did not innervate the cortex,

and thus provided the basis for a functional subdivision of the dorsal

; and ventral portions of the nucleus. In the following discussion,

attention w ill be directed where possible to the LGNd which is the subject 

of the experimental studies presented in this dissertation.

Using modern anatomical methods, Ribak and Peters (1975) confirmed 

these early findings and were able to specify more precisely that the 

! projection of the LGNd was primarily to area 17 [according to Krieg (1946)],

with slight extension to the zones of transition between areas 17, 18 

and 18a.

In addition to the efferent geniculocortical pathway, projections 

from the cortex to the LGNd have long been known to exist. The main 

source of these corticogeniculate fibers appears to be the primary visual 

area (Montero and Guillery, 1968).

3. Input-Output Relations: Brainstem Afferents

The anatomical basis for the brainstem influence upon LGNd ac tiv ity  

has been elucidated only re la tive ly  recently with the introduction of 

retrograde tracing techniques and biochemical or histochemical approaches 

to studying neurochemically defined pathways. Using the horseradish 

peroxidase technique, i t  has been possible to demonstrate afferents to 

the LGNd from a number of brainstem areas. A complete study u tiliz in g  

this method has not yet been carried out in the ra t, so in the following 

I discussion I w ill draw upon the data of Leger et a l . (1975) and Gilbert

and Kelly (1975) which were obtained in the cat, in addition to a 

| preliminary report of V il la r  et a l. (1979) in the ra t.
i-
t
iI.

i
k
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Major projections to the LGNd originate in the raphe nuclei, 

especially in the n. raphe linearis and n. raphe dorsalis; in the 

"parabrachial area," i . e . ,  in and around the brachium conjunctivum; and 

in the locus coeruleus (LC). The LC projection w ill be discussed in 

detail in a la te r section. I t  is of interest to note that the neuro­

chemical identity of each of these pathways can be specified, although 

only with certainty in the case of the coeruleogeniculate pathway. Thus, 

the raphe projection is most lik e ly  serotonergic (Geyer et a l . ,  1976;

Kuhar et a l . ,  1972; Moore et a l . ,  1978); the "parabrachial" projection 

is probably cholinergic (Hoover and Jacobowitz, 1979); and the LC 

projection has been demonstrated to be noradrenergic (see Section C).

In addition to these pathways, Gilbert and Kelly (1975) found 

labeled cells in the mesencephalic re ticu lar formation and in the 

periaqueductal grey after placement of peroxidase in the LGN.

4. Cell Types

A description of the morphology and organization of neurons in 

the rodent LGN on the basis of the Golgi impregnation technique was 

orig inally provided by Cajal (1911). More recent studies by Grossman et 

a l. (1973) and Kriebel (1975) have verified and extended Cajal1s basic 

description.

The neurons of the LGNd have generally been classified into two or 

three catagories based on th e ir location and dendritic morphology. Follow­

ing the most recent account of Kriebel, Type 1 neurons have multipolar 

perikaria (mean diameter 25 ym) which give o ff four to eight primary 

dendrites. These branch into secondary and te rtia ry  dendrites, forming 

a "tufted dendritic pattern" noted by Ramon-Moliner (1968) to be 

characteristic of most thalamocortical relay neurons. The dendritic
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processes extend in a rad ia l fashion 108 to 120 pm in to  the neuropil.

Type 1 neurons have short-stalked appendages with large terminal swellings 

on the ir dendrites which are believed to be the major s ite of retinal 

axon termination. These neurons are the most plentiful type and are 

distributed throughout the LGNd.

Type 2 neurons, on the other hand, are found only in the superficial 

zone of the middle third (anterior-posterior) of the LGNd. These neurons 

have a more limited dendritic f ie ld  than do Type 1 neurons in addition to 

other subtle morphological differences. Both Type 1 and Type 2 neurons 

are believed to be geniculocortical relay neurons, although this point 

has not been demonstrated conclusively as their axons cannot be traced in 

the Golgi material.

Type 3 neurons have smaller perikarya (mean diameter 14 pm) than 

either Type 1 or Type 2 neurons and a less branched dendritic tree. The 

dendrites have a tortuous course throughout the neuropil with no apparent 

orientation to retinal or cortical afferents. The most characteristic 

feature of these neurons are bizarre multi-lobed dendritic appendages and 

short axons that ramify in the v ic in ity  of the perikarya of origin. These 

features are typical of Golgi type I I  cells in other thalamic nuclei and, 

therefore, this cell is believed to be an in trinsic interneuron.

The actual percentage of interneurons within the LGNd has been a 

matter of some controversy (see LeVay and Furster, 1979). Comprehensive 

examination of this issue by LeVay and Ferster (1977, 1979) using the 

horseradish peroxidase technique suggests that about 25% of neurons 

within the cat LGNd do not project to the visual cortex. In the ra t, the 

number is probably much smaller. Werner and Kruger (1973) found that 

I-c e lls  constituted about 1% of neurons in Nissle-stained sections and
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this was confirmed in physiological studies by Sumitomo and Iwama (1977) 

who found that 6.5% of neurons encountered had characteristics of I-cells  

(see Section B).

5. Local Circuitry

Numerous electron microscopic studies of the LGNd in various 

mammalian species have allowed the ultrastructural identification of the 

relay and intrinsic neuron processes, and the axon terminals of retinal 

and cortical origin. In addition, i t  has been possible to specify the 

precise synaptic arrangements in which these elements participate. A 

complete consideration of these findings is beyond the scope of the 

present discussion. Nevertheless, i t  is worth pointing out some of the 

characteristic features of the local circuitry in the LGNd.

Synapses within the geniculate are established either in the 

general neuropil or in so-called"synaptic glomeruli." The glomeruli are 

glial ensheathed zones containing a complex synaptic arrangement consisting 

of retinal and cortical axon terminals and interneuron processes 

(Guillery, 1969). A recurring unit, found within the glomerulus and, in 

some species, also in the surrounding neuropil is the synaptic "triad."  

These consist of a retinal axon terminal which is presynaptic to a relay 

cell p ro fi le , and has therefore been termed a "presynaptic" dendrite 

(for a consideration of these ultrastructural features in the ra t,  see 

Lieberman, 1973). The triad is presumed to be the anatomic substrate for 

"feed-forward" inhibition. Dendro-dendritic interactions may mediate 

all or most of the local inhibition within the LGNd, and i t  has even been 

suggested that the in trinsic  interneurons may be anaxonal (Lieberman, 1973).
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j B. THE LATERAL GENICULATE NUCLEUS: PHYSIOLOGY
i

| 1. The Multi neuron Response

The f i r s t  investigations of impulse transmission through the LGN 

I were performed fay recording multi unit responses to electrical stimula-

| tion of the optic tract. In the ra t, as in other vertebrates, the

typical f ie ld  response to a weak contralateral optic nerve stimulus 

i consists of a small diphasic wave of about 0.8 msec duration ( t i )  followed

by a larger negative wave of up to 1.5 msec duration ( r i )  (see Fig. 14) 

(Sefton and Swinburn, 1964). As the stimulus intensity is increased, 

a third wave (r2 ) of slightly longer latency is seen. The exact la -  

! tency of the f ie ld  response depends upon the site of stimulation. With

stimulation of the optic nerve at a point just behind the eyeball,

I Sefton and Swinburn (1964) observed a latency of 1.8-2.0 msec to t i .

However, with stimulation at the optic chiasm (OX), a more proximal 

site , Fukada (1973) found a mean latency of 0.7 msec.

The earliest response, t i ,  is assumed to represent electrical 

I ac tiv ity  in the lowest threshold, fastest conducting optic tract

fibers; whereas ri and r2 reflect postsynaptic activity. In a careful
i

! study comparing the fie ld  response with unit activ ity , Fukuda provided
i

strong evidence that r x and r2 represent the mass activ ity  of two 

j populations of relay neurons innervated by fast-conducting and slow

conducting optic nerve fibers, respectively. The presynaptic component 

for a r2 is rarely seen as i t  occurs during ri .

2. Single Unit Recording 

I Single neuron spike activ ity  can be recorded extracellularly in

the LGN either under resting conditions ( i . e . ,  spontaneous activ ity ) or

S
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with orthodromic or antidromic activation. The spike record consists of 

a positive-negative (sometimes positive-negative-positive) waveform in 

which the negative phase is often larger than the positive phase. Ortho­

dromic responses can be fractionated into three components: the S-poten- 

t i a l ,  the A-potential and the B-potential (Fig. 4). The S-potential, a 

small monophasic wave of relatively  slow time course, corresponds to the 

excitatory postsynaptic potential. The A-potential, usually a positive 

wave, is considered to be the in i t ia l  segment response and the B- 

potential, a positive-negative wave, is the soma-dendritic response.

3. Physiological Classification of Units 

I Burke and Sefton (1966) provided the f i r s t  classification of LGNd

units based upon their responses to orthodromic and antidromic stimula­

tion. Two distinct groups of cells were described. P-cells, the most 

predominant neuronal type, respond to single shock stimulation of the 

| optic pathway with a short-latency in i t ia l  spike followed by grouped

| discharges of 2-5 spikes (with an interspike interval of 5 msec)

occurring 160 msec or more after the in i t ia l  response. The late bursts 

j are repeated at regular intervals up to 5 or more times. These cells
i ■

have been demonstrated to be geniculocortical relay neurons.

Burke and Sefton also reported a second class of cells which they

| believed to be intrinsic interneurons and were therefore called I-ce lls .

These cells responded to orthodromic stimulation with bursts of about 

10 spikes at a short latency; the bursts were then repeated at a constant 

interval.
i '

| In a careful reevaluation of Burke and Sefton1s findings, Sumitomo

and co-workers (1976) observed that the supposed I-ce lls  were clustered,
r
i :

i .

u
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not in the LGNd, but in the adjacent thalamic peri geniculate reticular 

nucleus. These peri geniculate reticular (PGR) cells did, in fact, 

inhibit P-cells and Sumitomo et a l. provided evidence that they were 

responsible for the postexcitation inhibition P-cells characteristically  

exhibit.

In a later study, Sumitomo and Iwama (1977) were successful in 

recording from what were believed to be the true geniculate in ter­

neurons. These cells were fired once by single shock stimulation of 

the optic tract and never showed a late response. They were evenly 

distributed throughout the fu l l  extent of the LGNd and the frequency 

with which they were encountered corresponded well with the fraction of 

interneurons observed in anatomical studies: about 6% of the total 

neuronal population. Although their function is presently unknown,

Dubin and Cleland (1977) have suggested that the intrageniculate in ter­

neurons are involved in precise, spatially organized inhibition, but 

that they do not participate in the post excitation inhibition of 

relay neurons, as do PGR cells.

Both the PGR and the intrinsic interneurons may u t i l iz e  y- 

aminobutyric acid (GABA) as their neurotransmitter. Curtis and 

Tebecis (1972) have found that bicuculline, a specific GABA antagonist, 

blocks the postexcitation inhibition of relay neurons which, as noted 

above, is presumably mediated by PGR neurons. Bicuculline also has 

effects on specific inhibition produced by light stimulation within 

selective regions of the receptive f ie ld  (Morgan et a l . ,  1975), a 

function presumably mediated by intrinsic interneurons. Recent u ltra-  

structural studies based upon the specific labeling of GABAergic nerve
3 3

terminals with H-GABA or H-diaminobutyric acid have provided additional
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evidence that the intrinsic interneurons are GABAergic (Sterling and 

Davis, 1980).

C. THE COERULEOGENICULATE NORADRENERGIC PROJECTION

1. Biochemical Determination of Catecholamines Within the LGN

Of the three types of catecholamine-containing neurons that are

present in the rat lects to the LGN. This
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tegmental system (Ungerstedt, 1971; Lindvall and Bjorklund, 1974; Swanson 

and Hartman, 1975). These neurons project widely throughout the fore­

brain, brainstem and spinal cord. Some brain regions, such as the hypo­

thalamus, receive afferents from both noradrenergic systems (Lindvall and 

Bjorklund, 1974). However, the thalamus, with the exception of the para­

ventricular nucleus, appears to receive its  noradrenergic innervation
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evidence that the in trins ic  interneurons are GABAergic (Sterling and 

Davis, 1980).

C. THE COERULEOGENICULATE NORADRENERGIC PROJECTION

1. Biochemical Determination of Catecholamines Within the LGN

Of the three types of catecholamine-containing neurons that are 

present in the rat brain, only the NE system projects to the LGN. This 

conclusion is based, in part, upon biochemical determinations which 

demonstrate a moderate concentration of NE in the LGN (356 ± 20 ng/g); 

whereas the concentration of dopamine is very low (64 ± 7 ng/g) (Kromer 

and Moore, 1980). The ratio of NE to dopamine is thus about 6 to 1 and 

is within the range expected for regions which contain only noradrenergic 

cells or axons. In these areas any dopamine present is believed to 

serve as a precurser in the biosynthesis of NE (Costa et a l . ,  1972; 

Brownstein and Axelrod, 1974). With the exception of the paraventricular 

nucleus, epinephrine has not been described in the thalamus (Moore and 

Bloom, 1979).

2. Origin of the Noradrenergic Nerve Terminals Within the LGN

The catecholamine-containing neurons located in the pons and medulla 

are separated into two major groups: the LC system and the lateral 

tegmental system (Ungerstedt, 1971; Lindvall and Bjorklund, 1974; Swanson 

and Hartman, 1975). These neurons project widely throughout the fore­

brain, brainstem and spinal cord. Some brain regions, such as the hypo­

thalamus, receive afferents from both noradrenergic systems (Lindvall and 

Bjorklund, 1974). However, the thalamus, with the exception of the para­

ventricular nucleus, appears to receive its  noradrenergic innervation
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exclusively from the LC (Lindvall et a l . ,  1974; Kromer and Moore, 1980). 

Thus, when separate NE-containing cell groups located at various brain 

stem levels are ablated or their axonal projections destroyed, only 

lesions in the LC produce a significant decrease in the NE content of 

the lateral geniculate nuclei (Kromer and Moore, 1980). In correlative 

studies, injections of horseradish peroxidase restricted to the LGN 

resulted in the labelling only of the noradrenergic neurons located in 

the LC. Labelled neurons were found throughout the rostrocaudal and 

dorsoventral extends of both locus coerulei. However, the ipsilateral 

LC had a somewhat higher percentage of labelled cells (60%) than did 

the contralateral LC (40%). Both fusiform and multipolar neurons, which 

have been identified with Golgi methods (Swanson, 1976; Shimizu et a l . ,

1978), were labelled indicating that the coeruleogeniculate projection 

arises from two morphological types of LC neurons (Kromer and Moore, 

1980).

3. The Trajectory of Axons in the Coeruleogeniculate Pathway

Autoradiographic and fluorescence histochemical studies demonstrate 

that the ascending axons from the LC reach the LGN via the ipsilateral 

dorsal tegmental catecholamine bundle and the medial forebrain bundle 

(Ungerstedt, 1971; Lindvall and Bjorklund, 1974; Lindvall et a l . ,  1974; 

Swanson and Hartman, 1975; Kromer and Moore, 1980). A small contralateral 

projection decussates in the pontine grey, the posterior commissure and 

the supraoptic decussation and joins the ipsilateral projections to the 

LGN. These fibers enter the dorsal lateral geniculate nucleus from the 

superior thalamic radiation, the thalamic reticular nucleus, and the 

lateral posterior nucleus.
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Two major zones of entry have been distinguished. The majority 

of LC axons enter the rostral t ip  of the dorsal LGN by travelling along 

the lateral thalamus in the region immediately dorsal to the reticular  

nucleus. These fibers form a projection that parallels the longitudinal 

fiber system of the corticogeniculate axons (Montero and Guillery, 1968). 

In addition, long collaterals of these axons project at right angles to 

the parent axons and join the transverse corticogeniculate fiber bundles. 

A second group of fibers enter the medial dorsal LGN from the lateral 

posterior thalamic nucleus. These fibers send branches within both the 

longitudinal and transverse fib er  systems where they intertwine with 

the axons that entered rostrally (Kromer and Moore, 1980).

4. The Noradrenergic Terminal Field Within the LGN

Using the Falck-Hillarp histofluorescence technique, early workers 

were able to demonstrate the existence of catecholamine-containing axons 

and terminals within the thalamus and LGN (Anden et a l . ,  1966; Ungerstedt, 

1971; Maeda and Shimizu, 1972; Maeda et a l . ,  1973). However, i t  was not 

until the introduction of the more sensitive glyoxilic acid fluorescence 

method (Axelsson et a l . ,  1973) that the abundance of the thalamic NE 

innervation was fu lly  recognized (Lindvall et a l . ,  1974). In fact, on 

the basis of studies using this new method, Lindvall and his co-workers 

(1974) concluded that "the thalamus stands out as one of the major 

projection areas of the locus coeruleus."

Even on the basis of the Falck-Hillarp formaldehyde method, i t  had 

been known that, within the thalamus, the anteroventral, paraventricular 

and dorsal lateral geniculate nuclei received a substantial catecholamine 

innervation (Fuxe, 1965). With the glyoxilic acid method, the complete
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pattern of the thalamic noradrenergic projection could be specified, and 

i t  was found that v irtually  the entire dorsal thalamus is innervated 

(Lindvall et a l . ,  1974; Moore and Bloom, 1979). The anteroventral nucleus 

was confirmed as having the greatest density of innervation within the 

dorsal thalamus followed by the anteromedial nucleus and the dorsal la t ­

eral geniculate nucleus which were regarded as having a "dense" innerva­

tion. The paraventricular nucleus, which is of different embyronic 

origin, is innervated by catecholamine fibers arising outside of the LC, 

some of which may be epinephrine containing (Moore and Bloom, 1979). The 

observations based upon histochemical fluorescence methods have been 

confirmed with an immunochemical technique u ti liz ing  an antiserum 

directed against dopamine-6-hydroxylase, an enzymatic marker for nor­

adrenergic neurons (Swanson and Hartman, 1975) (Fig. 1).

The LC innervation of the LGN is comprised of a highly branched 

network of varicose axons. The projection does not appear to be 

topographically organized; instead, a single fiber may have collateral 

axons that arborize throughout large areas of the nucleus (Kromer and 

Moore, 1980).

The NE axons in the LGN are of the fine varicose type (Lindvall 

et a l . ,  1974). Kromer and Moore (1980) distinguished two subpopulations 

of fibers. The f i r s t  type are preterminal axons (approximately 0.5 pm in 

diameter) which enter the LGN from the myelinated fiber bundles of the 

superior thalamic radiation and zona incerta. These possess regularly 

spaced fusiform varicosities (0.5-1 pm in diameter). The second type of 

fiber is the predominant constituent of the terminal plexus within the 

dorsal LGN. These have varicosities which are larger (1-4 pm), more 

closely and irregularly spaced along the axon and more intensely
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Fig. 1: Schematic illustration of dopamine-8-hydroxylase containing

axonal processes in a frontal section through the LGNd as 

determined by the immunofluorescence technique. Note the 

high density of stained fibers in the LGNd. From Swanson and 

Hartman (1975); see this reference for key to abbreviations.
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fluorescent than the fusiform varicosities of the preterminal axons.

The entire LGNd contains a dense network of short terminal segments of 

these fibers in a highly branched pattern. On the basis of the glyoxilic  

acid fluorescence method, Kromer and Moore (1980) concluded that both 

geniculocortical relay neurons and intrinsic neurons may receive a 

noradrenergic input since varicose axons were observed to be closely 

apposed to the somata and dendritic profiles of a ll neurons within the 

nucleus. Moreover, the anatomical observations indicate that relay neurons 

may receive a particularly strong innervation as the branching patterns 

of many LC fibers located in the neuropil were observed to closely follow 

the dendritic arborizations of relay neurons as described in Golgi 

material (Grossman et a l . ,  1972; Kriebel, 1975).

D. PHYSIOLOGICAL CHARACTERIZATION OF ADRENOCEPTORS ON CENTRAL NEURONS

1. The Technique of Microiontophoresis

The major physiological approach to studying pharmacological 

receptors for NE in the central nervous system has been with the technique 

of microiontophoresis. With this procedure the amine, its  analogs 

or pharmacological antagonists can be applied in minute quantities 

directly  into the immediate microenvironment of single neurons while 

their electrical ac tiv ity  is monitered. The technique has the following 

advantages over other modes of drug application. F irs t, compounds, such 

as NE, which normally would not gain entry to the brain because of 

diffusional barriers or enzymatic degradation, are provided access to 

neuronal receptors. Second, the action of the drug is limited to 

neurons in the immediate vic in ity  of the delivery pipette, greatly
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simplifying the interpretation of the response (although major interpret­

ive d if f icu lt ies  s t i l l  arise; see Bloom, 1974).

In iontophoresis, an electric current is used to expel drug 

molecules from a micropipette which is situated close to the neuron 

whose electrical activ ity  is being recorded. The technique depends

upon Faraday's law of electrolysis: M = it I I  , where M is the
ZF

number of moles of a given ion which will be released by passage of I 

amperes of charge of the same polarity as the drug molecule during each 

sec of ejection time, T . The number of ions delivered depends upon 

the valence of the charged ion, Z , and the Faraday constant, F .

The exact relationship between the passage of charge ions depends on the 

complex factor n , known as the transport number, which varies for 

individual compounds due to differences in solubility , dissociation and 

polarity. The transport number of NE has been estimated to be approx­

imately 0.29 (Bevan et a l . ,  1979).

For drugs of low solubility  or neutral charge, electro-osmosis may 

be the mode of drug delivery. In electro-osmosis, current carries the 

drug molecules passively within their hydration shells so that the drug 

is ejected with the bluk flow of small volumes of the solute from the 

pipette (Curtis, 1964).

Conventional glass electrodes can be used for iontophoresis 

providing their impedance when f i l le d  with the appropriate drug solution 

is low enough to allow passage of the drug ions without undue shunting 

of current. Typically, multibarrel microelectrode arrays are used so 

that more than one drug can be tested on an individual cell or the
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interaction between two or more drugs can be examined. Between periods 

of drug ejection, a retaining current opposite in polarity to the eject­

ing current is usually applied to the drug barrels. This prevents 

unwanted diffusion of drug molecules from the pipette between tests.

One barrel in the pipette array is reserved for an electrolyte 

solution through which a balancing current is continuously passed. This 

current is equal in magnitude but of opposite polarity to the sum of the 

currents flowing through the other electrode channels and serves 

to prevent polarization of the tip  and associated direct current 

artifacts.

In the central nervous system where visual identification of 

neurons is impossible, an electrode for detecting bioelectric potentials 

(usually extracellular action potentials) is fixed in close proximity to 

the iontophoresis pipettes. The recording electrode may be one barrel 

of the multibarrel array (generally the lower impedance center barrel) 

or another electrode cemented in parallel to the iontophoresis pipettes 

(see Fig. 2).

2. Microiontophoretic Studies of NE in the Spinal Cord and Brain

Neurons in v irtua lly  every part of the central nervous system 

have been found to respond to iontophoretically applied NE. The 

presence of receptors for NE on neurons in so many brain regions is not 

surprising as central noradrenergic projections innervate most parts of 

the neuraxis. Nevertheless, because responses even within a specific 

nucleus have been variable and often not reproducible, the usefulness 

of the iontophoretic technique for characterizing adrenoceptors on central 

neurons has been questioned. Possible technical reasons for these 

d ifficu lt ies  are discussed in reviews by Bloom (1974) and Szabadi (1979).
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In general, however, experiments on identified homogenous cell 

populations have yielded more consistent findings which often corres­

pond closely with the response to noradrenergic pathway stimulation. In 

the following discussion, I summarize the results of iontophoretic ex­

periments in various central nervous system areas which are postsynaptic 

to noradrenergic neurons and indicate the degree to which the responses 

have been characterized pharmacologically.

3. Spinal Cord

NE was originally reported to hyperpolarize motoneurons in the 

anterior horn of the spinal cord (Engberg and Marshall, 1971). More 

recently, however, Engberg et a l . (1976) concluded that this hyper­

polarization was probably not mediated via specific adrenoceptors since 

a wide range of different agents (adrenergic agonists, antagonists and 

neuroleptics) had very similar effects. Moreover, Barasi and Roberts 

(1977) reported that NE increased the amplitude of antidromically evoked 

fie ld potentials representing the activ ity  of motoneurons, and concluded 

that the excitab ility  of these cells was increased by NE. This hypothesis 

was confirmed in single cell recording studies by White and Neuman (1980).

In some early studies, spinal interneurons and Renshaw cells were 

also reported to be depressed by NE (Engberg and Ryall, 1966; Curtis 

et a l . ,  1971). However, other workers found both excitatory and de­

pressant effects (Weight and Salmoiraghi, 1966; Headley and Lodge, 1976).

4. Brainstem Reticular Formation

Unidentified neurons in the reticular formation have generally 

demonstrated both fac ilita tory  and depressant responses to NE (Bradley 

and Wolstencroft, 1962; Holsi et a l . ,  1971). Bradley et a l . (1966)
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reported that the excitatory responses could be blocked by chloro- 

promazine, a neuroleptic with potent a-adrenoceptor blocking activ ity  

(Peroutka et a l . ,  1977); whereas the depressant responses have been 

variously antagonized by mescaline (Gonzalez-Vegas, 1971) or other 

chemically related and unrelated compounds (Gonzalez-Vegas, 1971; 

Gonzalez-Vegas and Wolstencroft, 1971a,b).

5. Dorsal Raphe Nucleus

A number of studies have reported variable effects of NE on 

5-HT-containing neurons in the dorsal raphe (Couch, 1970; Aghajanian 

et a l . ,  1972; Haigler and Aghajanian, 1973; Svensson et a l . ,  1975; 

Gallager and Aghajanian, 1976). Recently, however, Baraban and 

Aghajanian (1980) have found that uniform activation of fir ing  is 

obtained with very low iontophoretic doses and that with higher doses 

an increasing proportion of depressant responses are obtained. The 

fac ilita tory  effect of NE appears to be mediated via an a-adrenoceptor.

6. Locus Coeruleus

Noradrenergic neurons in the LC are uniformly depressed by 

iontophoretic NE (Svensson et a l . ,  1975; Cedarbaum and Aghajanian,

1976). This effect is mimicked by clonidine, an a2 -adrenoceptor 

agonist, and other sympathomimetic amines with a-agonist activ ity .

The a-blocker piperoxane is an effective antagonist of the response to 

NE but sotalol is not, suggesting that NE acts via an a-adrenoceptor.

The rank order of agonist potencies resembles that of a2- ("presynaptic") 

receptors on peripheral sympathetic neurons and other peripheral 

tissues (see Berthe!sen and Pettinger, 1977).
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7. Brainstem Motoneurons

NE fac il i ta tes  the excitab ility  of motoneurons in the facial 

nucleus (McCall and Aghajanian, 1979) and other brainstem motor nuclei 

(McCall and Aghajanian, personal communication). This effect is antag­

onized by piperoxane suggesting that i t  is mediated by an a-adrenoceptor.

8. Vestibular Nuclei

In the lateral vestibular nucleus, Yamamoto (1967) described a 

uniform excitatory action of NE. This observation has recently been 

confirmed by Kirsten and Sharma (1976). Yamamoto originally reported 

that the excitatory responses were insensitive to the a-adrenoceptor 

antagonist phentolamine, but could be blocked by the 3 -blocking drug 

dichloroisoproterenol. However, Kirsten and Sharma found that the 

excitatory responses were, in fact, abolished by phentolamine, while the 

3-adrenoceptor blocking agents sotalol and propranolol were without 

effect. The reason for this discrepancy is not apparent.

In contrast to the lateral vestibular nucleus, neurons in the 

medial vestibular nucleus are depressed by NE and this effect was not 

modified by phentolamine, sotalol or propranolol (Kirsten and Sharma, 

1976).

9. Cerebellar Cortex

The spontaneous fir ing  of Purkinje cells in the cerebellar cortex 

is uniformly depressed by NE (Hoffer et a l . ,  1971). This response is 

mediated by a receptor with some characteristics of a s-adrenoceptor 

as i t  is antagonized by sotalol (Hoffer et a l .,  1S71; Woodward et a l . ,  

1974) or dichloroisoproterenol (Freedman et a l . ,  1975). However, the
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neuroleptics fluphenazine and a-flupenthixol (Freedman and Hoffer, 1975) 

are also effective antagonists indicating that the receptor cannot be 

classified as s tr ic t ly  " 3 "  by rigorous cr ite r ia .

Neurons in the cerebellar flocculus show mixed response? to NE 

(Yamamoto, 1957).

10. Hypothalamus

Neurosecretory and non-neurosecretory cells in the supraoptic 

nucleus of the hypothalamus exhibit uniform depressant responses to NE 

which are antagonized by sotalol (Barker et a l . ,  1971; Sakai et a l . ,  1974).

Neurons in the tuberal nuclei (consisting of the arcuate nucleus 

and median eminence) demonstrate mixed responses to NE although depressant 

effects predominate (Geller, 1976); sotalol blocks these depressant 

effects (Geller and Hoffer, 1977). Other hypothalamic nuclei have also 

been studied but specific antagonists have not been tested (see Szabadi, 

1979).

11. Thalamus

Phillis  and Tebecis ( 1976a,b) reported both excitatory and 

depressant responses to NE in the ventrobasal nuclear complex of the 

thalamus.

Medial geniculate neurons were found to have mixed responses with 

0 predominance of depressant effects (Tebecis, 1967; 1970). A summary 

of previous studies in the lateral geniculate nucleus is presented in 

Section E.

12. Hippocampus

Hippocampal pyramidal cells are uniformly depressed by NE, an 

effect which is reportedly antagonized by sotalol (Stefanis, 1964;
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Biscoe and Straughan, 1966; Segal and Bloom, 1974a).

13. Septal Nuclei

Only depressant responses to NE have been reported in th is  area, 

but no antagonists were tested (rierz and Gogolak, 1965; Segal, 1974).

14. Olfactory 3u1_b

M itra l c e l ls  in  the o l fa c to ry  bulb are depressed by NE (Baumgarten 

e t  a l . ,  1963; Bloom et a l . ,  1964; Mclennan, 1971); whereas granule c e l ls  

are exc ited (McLennan, 1971). The e f fe c t  o f  NE on m itra l c e l ls  was 

blocked by the a-antagonisc dibenamine but not by d ich lo ro isopro tereno l 

(Salmoiraghi e t  a l . ,  1964).

15. Neocortex

C ort ica l neurons have generally been found to  show mixed responses 

to  NE (K rn jev ic  and P h i l l i s ,  1953; Johnson e t a l . ,  1969; Bevan et a l . ,

1974; Fredrickson et a l . ,  1971; Stone, 1973a; Bevan et a l . ,  1978) although 

some authors have reported only depressant e f fe c ts  (Lake et a l . ,  1972;

Jordan et a l . ,  1972). Szabadi and his co-workers have suggested th a t  the 

e x c i ta to ry  and depressant responses are mediated by o .-  and 6-adrenoceptors, 

respec t ive ly .  Although there is  some evidence in c o n f l i c t  w ith  th is  view, 

in general, studies w ith  various adrenoceptor agonists and antagonists 

support the concept. With regard to agonist drugs, Bevan e t a l .  (1977) 

found tha t the a-agonists phenylephrine and methoxamine were exc lus ive ly  

ex c i ta to ry  wh ile  the 8 -s tim u lan t salbutamol evoked only depressant responses. 

Isoproterenol caused depression at low doses and e x c i ta t io n  a t  higher 

doses which the authors suggested was consistent w ith  i t s  strong 8-agonist 

and weaker a-agonist a c t i v i t i e s .

The e x c i ta to ry  responses to adrenergic agonists were s e le c t iv e ly

L>
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and reversibly antagonized by both a-adrenoceptor blocking agents 

(phentolamine, phenoxybenzamine) and e-adrenoceptor blocking agents 

(propranolol, sotalol). However, the doses of the e-agonists required 

were beyond those necessary for selective 6-adrenoceptor blockade, and 

i t  was suggested that the antagonism might reflect the expression of 

a-blocking activ ity  by the drugs. In previous studies, both a- and e- 

antagonists had been found to antagonize the excitatory effects of NE 

but doses were not controlled in these studies (Johnson et a l . ,  1969; 

Bevan et a l . ,  1974; Fredrickson et a l . ,  1972).

The depressant response to NE is mimicked by isoproterenol (Bevan 

et a l . ,  1977) and, in some studies, was antagonized by 6-antagonists 

(Kostopoulos and Yarbrough, 1975; Stone, 1973b; Bevan et a l . ,  1977).

16. Summary

This overview indicates that NE can have dual effects on the 

fir ing  of central neurons depending upon the specific brain region and 

neuronal type involved. Although some conflicting data exists, the 

evidence is generally consistent with the idea that fac ili ta to ry  effects 

of NE are mediated by a-type adrenoceptors whereas the depressant 

response most closely resemble a 6-mediated effect.

E. SUSPECTED TRANSMITTER AGENTS IN THE LATERAL GENICULATE NUCLEUS

1. Serotonin

The earliest investigations of the response of LGNd neurons to 

microiontophoretically applied drugs was carried out by Curtis and 

Davis (1962). In an attempt to explain the observation of Evarts et 

a l . (1955) that intracarotid injection of lysergic acid diethylamide 

(LSD) or bufotenine specifically depressed the response of LGNd neurons
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to optic pathway stimulation, these workers used the newly developed 

technique of iontophoresis to test serotonin and a wide range of related 

indoles on f ie ld  responses and evoked unit activity in the cat LGNd. They 

concluded that serotonin is a potent depressant of the synaptic f ir ing  

of LGNd neurons but is much less active against activity evoked with the 

excitatory amino acid glutamate. Peripheral serotonin antagonists 

(methysergide, 2-bromo-LSD) or catecholamine antagonists (phentolamine, 

dibenamine) did not a lte r  the response to 5-HT. Phillis et a l . (1967a) 

observed similar effects of 5-HT in the geniculate but reported that 

glutamate and synaptically activated fir ing  were depressed equally well.

In a careful reevaluation of the findings of Phillis  et a l . ,  Tebecis 

and DiMaria (1972) concluded that the in i t ia l  observations of Curtis and 

Davis were essentially correct: glutamate activated fir ing was less 

sensitive than spontaneous or evoked activ ity .

Satinsky (1967) examined the effect of 5-HT on spontaneously active 

LGNd neurons. The discharge rate of most cells was slowed by 5-HT, 

although a few were excited. However, all physiologically identified  

geniculocortical relay neurons were depressed by the amine. Haigler 

and Aghajanian (1974a)and Aghajanian (1976) also observed depressant 

effects of 5-HT in the LGNd. Moreover, these authors found that 5-HT 

had a similar action in the LGNv. A recent study conducted by Torda (1978) 

has confirmed that 5-HT has a powerful depressant effect on spontaneous 

or evoked activ ity  but is comparably weak against glutamate activated 

fir ing . The mechanism underlying the selective activ ity  of 5-HT is not 

known (see also Tebecis, 1973).
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2. Norepinephrine

In their original study of indole compounds, Curtis and Davis (1962) 

reported incidentally that NE and various phenyl ethyl amine derivatives 

had a weak depressant effect on orthodromic f ie ld  potentials in the LGN. 

Dopamine was the most active of the phenylethylamine compounds, but was 

only slightly more potent than NE. The potency of NE was rated 1 on a 

1 to 12 scale where the potency of 5-HT was a rb itra r i ly  designated 12.

In contrast to the observations of Curtis and Davis (1962), Phillis  

et a l . (1967) reported that NE and dopamine had "potent depressant effects 

on many LGN neurons." However, again in a reevaluation of this work, 

Tebecis and DiMaria (1972) confirmed the findings of Curtis and Davis.

They reported that NE was a weak depressant of slightly over one-half of 

the neurons tested and that the remainder "were either excited (slow 

time course) or in i t ia l ly  depressed and then excited." Moreover, i t  was 

found that a clear depression of fir ing could only be obtained with high 

(80 nA or greater) ejection currents. Again, dopamine was found to be 

more potent than NE. In another study, Satinsky (1967) found a pre­

dominant fa c il i ta to ry  effect of NE on spontaneously active cells.  In 

particular, all antidromically identified relay neurons were activated 

by NE. Torda (1978) has also reported fac il i ta to ry  effects of NE on LGN 

neurons.

The significance of these fac ilita tory  effects of NE was strengthened 

by the observation of Nakai and Takaori (1974). These workers found that 

conditioning stimulation of the LC enhanced the amplitude of the ortho­

dromic f ie ld  potential in the cat LGN. There was a significant effect 

when the stimulation (trains of four 1 msec duration pulses at 200 Hz) 

was applied from 25-300 msec prior to the orthodromic shock and occurred
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only when the stimulating electrode was actually within the LC. Evoked 

unit activity was also fac ilita ted  by prior LC stimulation and this 

effect was blocked by the catecholamine depleting agent reserpine or 

by the dopamine-B-hydroxylase inhibitor fusaric acid. The effect of 

reserpine could be reversed by L-dopa or by intraventricular injection 

of NE. These pharmacological observations suggested that the fac ilita tory  

effect was produced by the release of NE from LC neurons. One additional 

finding in this study was that certain "interneurons" (probably PGR 

cells; see Section B) were suppressed by LC stimulation. This led Nakai 

and Takaori to speculate that relay neurons were fac ilita ted  indirectly, 

due to suppression of inhibitory elements synapsing upon them.

3. Glutamate

Many investigators have found that L-glutamate produces an excit­

ation of LGNd neurons (Curtis and Davis, 1962; Phi l l is et a l . ,  1967a,b; 

Tebecis and DiMaria, 1971; Torda, 1978). Although the functional 

significance of this is not known, there is some evidence that the 

corticogeniculate pathway uses either glutamate or aspartate as its  

neurotransmitter (Lund Karl sen, 1978), whereas the retinogeniculate fibers 

probably do not (Tebecis, 1973; Lund Karlsen, 1978).

4. Acetylcholine

Because of the probable existence of a cholinergic pathway from the 

brainstem to the geniculate (Shute and Lewis, 1967; more recent studies: 

Brownstein et a l . ,  1975; Hoover and Jacobowitz, 1979), a number of 

investigators have examined the effects of acetylcholine (ACh) and 

cholinergic drugs on geniculate neurons. In general, ACh excites these 

cells (Phillis et a l . ,  1967a,b; Satinsky, 1967; Torda, 1978). Various
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cholinergic agonists mimic this effect, carbachol being the most 

potent. The action of cholinergic agonists is antagonized predominantly 

by muscarinic blockers such as atropine or scopolamine (Phillis  et a l . ,  

1967; Matsuoka and Domino, 1972).

Facilitatory effects of stimulation in the mesencephalic reticular 

formation are also blocked by either local (Phillis  et a l . ,  1967) or 

systemic (Matsuoka and Domino, 1972) administration of cholinergic 

antagonists, suggesting that a cholinergic pathway terminating in the 

LGNd is responsible for the effects of such stimulation. On the basis 

of their studies in the cat, Matsuoka and Domino (1972) concluded that 

the cholinergic system acts as a "fac ilita tory  modulator" (see Section F) 

of lateral geniculate activ ity . This view is consistent with the findings 

of Curtis and Davis (1973) who noted in phenobarbitone anesthetised cats 

that the "excitation [due to ACh] was only apparent as a fac ilita t ion  of 

the responses to synaptic stimulation or L-glutamate application. ACh 

was never observed to activate neurons in the absence of other, 

simultaneously applied, excitatory influences (Phi l l is et a l . ,  1967b)."

5. y-Aminobutyric Acid

Tebecis and DiMaria (1972) found that Y-aminobutyric acid (GABA) 

depressed spontaneous or evoked activ ity  in the LGNd. Interestingly, the 

effect was qualitatively different from that observed with 5-HT in that 

GABA was more effective against amino acid induced excitation; whereas 

5-HT was usually a more potent depressant of spontaneous or synaptically 

evoked activ ity  (see above).
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F. NOREPINEPHRINE AS A NEUROMODULATOR

1. The Concept of Neuromodulation

Largely on the basis of anatomical considerations, i t  has long been 

speculated that brain noradrenergic systems might exert postsynaptic 

actions with functional characteristics which are different from 

conventional ("mediating") pathways which transmit highly specified 

information with millisecond resolution. These proposed actions, termed 

"neurohormonal" or "neuromodulatory," were suggested by the fact that 

single noradrenergic neurons send axons to widely separated and functionally 

distinct central nervous system areas. Moreover, within each nucleus, 

the axons are highly collateralized and nerve terminals are distributed 

in a more or less uniform fashion without topographic specific ity . Finally, 

there was a question as to the prevelance of specialized junctional zones 

between the terminal membrane of NE-containing neurons and their target 

cells, which encouraged speculation that released transmitter might 

have a generalized influence within the target nucleus. All of these 

considerations suggested to some investigators that noradrenergic neurons 

might be better suited for regulating the level of responsiveness of 

target neurons in a leisurly fashion than for mediating specific sensory 

or motor functions (Dismukes, 1977).

The f i r s t  physiological explorations of this concept in the 

vertebrate nervous system were carried out by Foote et a l . (1975) and 

Freedman et a l . (1976, 1977) and la ter by Woodward and his collaborators 

(1979). These workers found that in certain cortical areas, NE exerted 

a differential influence on activ ity  evoked by afferent synaptic inputs 

when compared with its  effect on background activ ity . In generalj 

background fir ing  was depressed by NE more than was evoked ac tiv ity ,
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resulting in an increase in the "signal-to-noise" ratio . These data 

were interpreted as indicating that NE improved the efficacy of 

synaptic inputs. The phenomenon was termed "modulatory" in a purely 

descriptive sense as its neuronal basis was unexplained (Woodward et a l . ,

1979).

Studies with monoamines in invertebrates allowed the formulation 

of a more precise definition of the concept of modulation. This 

definition was based upon the distinction that Florey (1967) made 

between the nature of transmitter action and that of a hormone or 

"modulator substance." He proposed that "modulator substances can affect 

presynaptic neurons, and they can a lter the tendency to spontaneous 

discharge." Although Florey was referring to blood born substances 

interacting with neuronal systems, Kupferman (1979) extended the 

definition to include neuronally released transmitter agents. In 

addition, he proposed a more rigorous distinction between conventional 

neurotransmitters which produce direct excitation or inhibition (by 

altering voltage-insensitive ionic conductances) and neuromodulators 

which have l i t t l e  effect on cellular activ ity  in themselves, but instead 

alter a cel l 's responsiveness to synaptic events mediated by conventional 

transmitters. Kupferman suggested that neuromodulators may act via a 

wide range of cellu lar mechanisms, however, in the following discussion,

I w ill consider only those cases where monoamines act to alter the 

excitab ility  of postsynaptic cells.

2. Neuromodulation in Invertebrates

There are a number of examples where such modulatory effects have 

been demonstrated in invertebrates. In many cases, the target cell is 

muscle rather than nerve, and the transmitter is a monoamine other than
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NE. Nevertheless, these examples provide a useful precedent for studies 

in vertebrates.

The original description of neuromodulation by a monoamine was in 

the anterior byssus retractor muscle of Mytilus. In this preparation, 

serotonin (5-HT) does not a lter the membrane potential, but i t  does 

markedly decrease the threshold for spike generation, thus enabling the 

motor neurons which supply the muscle to cause a contraction (Hidaka et 

a l . ,  1967).

5-HT produces a similar effect on the buccal musculature in 

Aplysia. I t  has been demonstrated that 5-HT can potentiate the excitation 

produced by stimulation of individual cholinergic motor neurons which 

project to the muscle. Moreover, stimulation of the serotonergic 

metacerebral cell which also innervates the muscle, results in similar 

modulatory effects,  trad itionally  known as "heterosynaptic fac ilita tion"  

(Weiss et a l . ,  1978). Analagous observations were made in Planorbis by 

Berry and Pentreath (1976).

Monoamines other than 5-HT can also have modulatory actions in 

invertebrates. For example, neuromuscular contraction is enhanced by 

octopamine in the lobster (Evans et a l . ,  1976) and locust (Evans and 

O'Shea, 1977) and by dopamine (Swann et a l . ,  1978) in Aplysia.

3. Neuromodulation in Vertebrates

The membrane mechanisms underlying neuromodulatory actions produced 

by monoamines have been examined in several vertebrate systems as well.

For example, myenteric neurons in the guinea pig small intestine respond 

to 5-HT with enhanced electrical excitab ility . This phenomenon is 

associated with a slow depolarization and an increase in input resistance 

(Wood and Mayer, 1979). All of these effects can be mimicked by
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stimulation of fib er tracts within the plexus which are presumed to 

contain serotonergic axons.

A sim ilar effect of serotonin has been observed on motoneurons 

in the ra t facial nucleus (VanderMaelen and Aghajanian, personal 

communication). Iontophoretic 5-HT (or NE) cause a marked fa c ilita tio n  

of the e lectrical exc itab ility  of these cells with membrane changes 

analagous to those observed in myenteric neurons. Although i t  has not 

been possible to d irectly  activate the serotonergic pathway to these 

neurons, pharmacological agents, such as p-chloroamphetamine, which 

release 5-HT from serotonergic nerve terminals, mimic the fa c ilita tio n  

of e x c ita b ility , suggesting that ac tiv ity  in serotonergic neurons 

synapsing on the motoneurons can produce these modulatory effects.

Finally, in the rabbit superior cervical ganglion, dopamine causes 

an enduring fa c ilita tio n  of the slow depolarizing effect produced by 

ACh (in addition to a hyperpolarization due to an independent mechanism) 

(Libet, 1979). This modulatory action is somewhat unusual in that the 

response to a specific transmitter agent (ACh) is affected and this 

persists for an extended period of time.

In many cases where the modulatory effects of monoamines on post- 

synaptic muscle or nerve cells have been examined, the overall response 

is a fa c ilita tio n  of excitation. This general theme appears to hold for 

a wide spectrum of monoamine neurotransmitters. Except in the facial 

nucleus, NE has not previously been demonstrate to produce such 

excitab ility  changes, although, as indicated at the beginning of this 

section, i t  has been shown to cause a relative enhancement of convergent 

inputs in a number of cortical areas.

E
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PART I I :  METHODS AND MATERIALS

A. METHODS

1. Preparation of Animals

ATI experiments were carried out in male Sprague-Dawley rats 

(Charles River Laboratories, Wilmington, MA) weighing 230-340 g.

Most animals were anesthetized with an intraperitoneal injection of 

chloral hydrate solution (350-400 mg/kg). Additional anesthetic 

injections (100 mg/kg) were given as necessary during the course of 

each experiment, however, the injections were spaced so as to keep 

the level of anesthesia re la tive ly  lig h t. Under these conditions, 

there was an absence of spontaneous movement, although a withdrawal 

response could be e lic ited  upon compression of the hind paw.

The animals were mounted in a stereotaxic apparatus (David Kopf 

Instruments, Tujunga, CA), a burr hole was d rilled  in the skull over- 

lying the dorsal lateral geniculate, and the dura was carefully removed 

with a hooked needle. In some experiments, additional burr holes were 

drilled  for placement of stimulating electrodes as described below.

Core temperature was monitered with a rectal thermistor probe and 

maintained at 37 ± 1°C with a heating pad. All experiments were

i carried out under low level room lig h t.
i

For systemic administration of drug solutions, a la tera l ta i l

! vein was cannulated with a 25-gauge hypodermic needle (5/8 in ) . This
1i ■

j remained in place throughout the experimental session and, when required,
j
j solutions were injected through the needle with a 1 ml tuberculin syringe.

i
f ;
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! To control for the effects of anesthesia, a small series of un-

| anesthetized, decerebrate preparations were studied. In these animals,

! a pretrigeminal transection was made with a retractable wire knife
i

j (Sclafani and Grossman, 1969). This device consisted of a stainless
i

steel wire "blade" housed in a 24-gauge stainless steel tube with a 

30° bend at its  lower end. The wire could be extended approximately 

I  cm in a nearly perpendicular fashion from the housing. To perform 

the transection, animals were temporarily anesthetized with halothane. 

The head was placed firm ly in a stereotaxic instrument; and after

exposing the skull, a small e llip tic a l burr hole was d rilled  just

posterior and at the lateral border of the lambdoidal suture. The 

knife was lowered through the burr hole with the wire blade retracted. 

The blade was then extended, and the device was advanced slowly to the 

base of the skull. In the process, the brain was transected at a level 

just posterior to the in ferio r c o lli cuius and anterior to the trigeminal 

nerve. The cut generally le f t  some of the pyramidal tract fibers in ­

tact. The blade was then retracted, the knife was removed and a local 

anesthetic (mepivicaine HCl,2%)was injected at a ll pressure points.

2. Extracellular Recording and Microiontophoresis

In some cases, extracellu lar action potentials were monitored with 

conventional 5-barrel micropipettes. These consisted of a central 

pipette for recording, surrounded by four peripheral barrels for drug 

or electro lyte solutions. The electrode was prepared in a Narashigi 

pipette puller adjusted to give a re la tive ly  blunt tip  with a wide tip  

angle. The tip  was broken back under microscopic control so that the
j

| center (recording) barrel, when subsequently f i l le d  with 2 M NaCl-2%

i,

t :

B
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pontamine sky blue solution, gave an in vitro  impedance of 2.8-4.5 Mfi.

The tip  diameter was typically  4-6 pm.

In other experiments, hybrid 6-barrel microelectrode assemblies 

were used. These consisted of a blunt (10-20 pm diameter) 5-barrel 

pipette to which a fine (1 pm) single barrel recording electrode was 

affixed with dental acrylic (see Wang and Aghajanian, 1977). The 

recording electrode extended 20-40 pm beyond the iontophoresis barrels 

(Fig. 2). This pipette assembly has the advantage of providing superior 

unit discrimination and uniformly large extracellu lar action potentials. 

The recording barrel, f i l le d  with the electrolyte-dye solution, typically  

had an impedance of 6-12 Mn.

In both cases, the electrode barrels were f i l le d  with a few strands 

of fiberglass before pulling. This allowed the tips of the pipettes to 

f i l l  rapidly by capillary action. Three of the iontophoresis barrels 

were loaded with drug solutions and the remaining barrel was always 

f ille d  with 4 M NaCl. This was used to continuously pass a "balanc­

ing" current equal in magnitude but opposite in polarity to the sum of 

the currents in the other three channels. A retaining current of -10 nA 

was applied to the drug barrels between ejection periods except when 

glutamate was used, in which case the backing current was +10 nA.

The electrode assembly was positioned 4.0 mm anterior to lambda 

and 4.0 mm lateral to the midline and lowered vertica lly  with a hydraulic 

microdrive (David Kopf Instruments) approximately 4.0 mm from the pi al 

surfact until ce llu la r responses to movement of a lig h t beam across 

the visual fie ld  could be detected.

r.
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Fig. 2: Photomicrograph of a 6-barrel micropipette assembly used for

simultaneous extracellular recording and drug ejection. The 

tip  of the recording electrode extends 20 ym ahead of a multi - 

barrel array which carries drug and electrolyte solutions for 

i microiontophoresis.
fj
ii
(■.;r,Li
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3. Amplification and Data Analysis

Electrode signals were led through a high-input impedance preampli­

f ie r  (W-P Instruments Model 725) and displayed on a storage oscilloscope. 

The stored spike records were continuously monitored to assure counting 

of single units and to confirm that drug applications produced no 

diminution in spike amplitude suggestive of local anesthetic effects. 

Units were isolated and stimulation artifacts  were excluded with the 

voltage window feature (Fig. 4) of a window discriminator (designed 

and constructed by V. Lipponen). The pulse output of the window 

discriminator triggered a rate counter with a period of 10 sec. By 

plotting the analog output of the rate counter with a graphic recorder 

(Gould Brush Model 220), a continuous average rate record was produced. 

The filte re d  output of the oscilloscope also drove an audio monitor.

For experiments employing brain stimulation, poststimulus time 

histograms (PSTH) were produced with a Nicolet 1072 Signal Averager. 

Actual spike a c tiv ity  was recorded either with a mercury vapor lamp 

oscillograph or by photographing the screen of the storage o s c il li-  

scope.

4. Brain Stimulation

In some experiments, stimulating electrodes (Rhodes Medical In­

struments) were placed in the optic chiasm (OX), visual cortex (Model 

SNE-100) or locus coeruleus (Model NE-100). The electrodes consisted 

of a stainless steel wire surrounded, except at the t ip , by tubing of 

the same material. The inner contact and an uninsulated portion of 

the outer tubing formed the two poles of a "concentric" bipolar 

electrode.
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| For placement in the OX, the electrode was positioned at bregma

‘ and lowered ve rtica lly  until its  tip  was just, above the base of the

skull; i t  was then cemented with dental acrylic to three small machine 

; screws embedded in the frontal and parietal bones. In a few animals,

a stimulating electrode was positioned in the occipital cortex (area 17)

! or optic radiation with a micromanipulator. The stereotaxic coordinates

were roughly 1.5 mm anterior to lambda and 3.5 mm lateral to the mid­

line (ip s ila te ra l to the recording electrode) [based on the atlas of 

Krieg (1946)]; however, the exact position and depth was determined 

empirically by maximizing the antidromic fie ld  potential in the LGNd.

LC stimulating electrodes were placed 1.1 mm lateral and 1.0 mm 

posterior to the lambdoidal suture and lowered 6.0 mm from the pi al 

surface. These were also cemented in place to machine screws.

5. Histological Verification of Recording or Stimulating Sites

At the conclusion of each experiment, the recording s ite  was

marked by passing a 20 yA negative current through the recording barrel 

I for 20-60 min. This resulted in the deposition of a discrete spot of

; dye at the s ite  of the electrode tip  (Fig. 3).

To verify  the position of the stimulating electrodes, lesions were

made by passing a current of 20 pA for 20 sec (anodal for inner contact).

The animals were deeply anesthetized and perfused through the heart 

with 10% buffered formalin solution. Brains were then removed and 50 pm- 

| frozen sections were cut, stined with Cresyl V io let and counterstained

with Neutral Red. In some cases, sections through the stimulating 

electrode sites were stained with Cresyl V iolet alone.
r1!
} '

i
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Fig. 3: Histological section through the dorsal lateral geniculate

nucleus (LGNd) showing typical recording electrode placement. 

The dark spot (arrow) marking the site of the electrode tip  

was produced by iontophoretically ejecting Pontamine Sky Blue 

dye. The electrode tract is visib le passing through the 

hippocampus just dorsal to the LGNd.

i
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j 6. Determination of Agonist Potencies
i

| In order to determine the relative potencies of adrenergic agonists

| in activating LGN neurons, each drug was compared with NE as a standard.

I t  was not possible to u t iliz e  the latency to 50% activation (T5o) as a

measure of agonist potency since ejections of sufficient duration to 

produce a plateau at maximal activation in some cases generated a 

response of such long duration that comparisons between drugs was 

impractical. Therefore, agonists were compared on the basis of the 

! iontophoretic currents necessary to produce an equal activation. Upon

encountering a c e ll, the response to a one min iontophoretic pulse of 

NE was determined. I f  necessary, the current was adjusted to give a 

robust activation. The cell was then tested with one min pulses of the 

agonist drug. Successive pulses of increasing current were applied to 

the cell until the response equalled or exceeded that produced by NE.

The degree of activation was defined as the maximum rate obtained per 

10 sec epoch during the 90 sec period following the onset of the ejec­

tion. The maximum rate usually occurred at the end of or immediately 

following the pulse of drug. The response produced by the agonist and 

that produced by the test dose of NE were compared graphically. For 

each c e ll, a log dose-response curve was constructed where the dose was 

taken to be the iontophoretic current of the one min drug pulse. The 

agonist current producing an activation equal to that of the test dose of

NE was estimated from the graph. Care was taken to u tiliz e  only the 

linear portion of the "S"-shaped curve. The ratio was t *ien

| calculated where I ^  was the current of NE applied to the cell and

j  1̂  was the current of the agonist estimated to produce an equivalent
i.
i

f
i . -
J .

I'.,-

i
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i  degree of activation. This ratio provides an indication of the relative

I potencies of the agonist drugs under the assumption of similar transport
i

I numbers. This assumption was not verified experimentally, although two of
j

i the compounds (NE and dopamine) showing very different potencies have been

reported to share similar transport numbers (Bevan et a l . ,  1978).

B. MATERIALS

Drugs used for iontophoresis and intravenous or intraperitoneal 

administration were a ll of the highest purity obtainable from the sources 

noted.

For iontophoresis, solutions were prepared in d is tilled  water and 

adjusted to their final pH with either HC1 or NaOH. The following 

I solutions were used, a ll 0.1 M and pH 4.0 , unless otherwise indicated:

j  acetylcholine chloride (Calbiochem, La Jolla , CA); carbamylcholine
I
■ chloride (carbachol; Aldrich Chemical Co., Milwaukee, WI); clonidine HC1

| (Boehringer-Ingelheim, Ltd., Elmford, NY); dopamine HC1 (Calbiochem,

| La Jolla, CA); L-epinephrine D-bitartrate (Regis Chemical Co., Morton

: Grove, IL); L-glutamic acid, monosodium sa lt, 0.5 M, pH 8.0 (Sigma Chemical

I Co., St Louis, MO); L-isoproterenol D-bitartrate (Regis); methysergide

j maleate, 0.01 M, pH 4.4 (Sandoz Pharmaceuticals, East Hanover, NJ);

j  magnesium chloride, 1 M; L-a-methyl norepinephrine (Winthrop, Rensselear,

| NY); norepinephrine b itartra te  (Regis); L-phenylephrine HC1 (Sigma);

! picrotoxin, saturated solution (Sigma); piperoxane HC1 (Rhone-Poulenc,

j  Paris); phentolamine mesylate, 20 mg/ml (Ciba Pharmaceuticals, Summit,

j NJ); serotonin creatining sulfate monohydrate, 0.04 M (Regis); WB-4101

j (2 -[(2 ‘ ,6'-dimethoxy)phenoxyethylamine] methylbenzodioxane; WB Pharmaceuticals,
I
! Ltd., Backnell, Berkshire, UK).

[
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For systemic administration, drug solutions were prepared in
I •
! 0.9% sodium chloride.I ■I
! All solutions were prepared fresh or stored frozen (in a irtig h t
j
| tuberculin syringes) at -30° C.
I. '

If
j
i[

I
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j PART I I I :  EXPERIMENTAL STUDIES
|
I
j The experimental results presented in this dissertation are

I oragnized into four major sections. The f i r s t  section deals with the

characterization of the adrenoceptor on LGNd neurons based upon the 

; ab ility  of NE and other sympathomimetic amines to increase the spontaneous

firin g  rate of these neurons. The second section considers the interaction 

between NE and the major synaptic input to the LGNd by exploring the 

, effects of NE on a c tiv ity  evoked by electrical stimulation or by lig h t. In

this section a comparison is made between NE and serotonin (5-HT), another

; monoamine present within axons which innervate the geniculate. The third
j

section presents studies demonstrating that NE acts as a "neuromodulator" 

rather than as a conventional excitatory transmitter. Data is also provided 

which indicates that NE can fa c ili ta te  the ex c itab ility  of relay neurons 

by a postsynaptic mechanism and that the effect is not mediated by adjacent 

interneurons. In the fourth section, a comparison is made beteen the

I effects of iontophoretically applied NE and electrical stimulation of the

I locus coeruleus.

i  A. CHARACTERIZATION OF THE ADRENOCEPTOR ON LGNd NEURONS

1. General Characteristics of Units Studied

j Most LGNd units exhibited extracellu lar action potentials having a

I positive-negative wave shape of approximately 1.5 msec duration (Fig. 4A).
i

| The spontaneous fir in g  rate varied among units and some had an erratic or

!

! -45-
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Fig. 4: A, Storage oscilliscope tracing of a spontaneous extracellular

action potential from a geniculocortical relay neuron. The 

in it ia l segment (B) and soma-dendritic components (A) are 

indicated. MA-B" marks the inflection point. B, Action 

poential evoked by an optic chiasm shock. The spike amplitude 

fa lls  within the boundaries of the window discriminator. The 

oscilliscope beam is chopped electronically to produce three 

traces.
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oscillatory f ir in g  pattern even under conditions of constant illumination. 

Action potentials occurred singly or in bursts of up to 4 or 5 spikes.

| All cells responded with a change in fir in g  pattern to movement of a light 

beam across the visual f ie ld .

j
| 2. Response to Norepinephrine
1
| Microiontophoretic application of NE with conventional 5-barrel pipettes

produced a powerful activation of the majority of LGNd neurons studied.

| In a representative sample of 191 spontaneously active cells, 175 responded

I to 1-30 nA, one min pulses with at least a two-fold increase in spont­

aneous fir in g  rate. The remainder were unresponsive or showed less than 

this degree o f activation. Most cells were maximally activated with cur­

rents of NE in the 5-15 nA range. There was a variable latency to the 

onset of the response, usually 20-50 sec, and the activation persisted for 

i 20-60 sec following the pulse of NE. No pure depressant responses to NE

i  were observed although frequently with supramaximal ejection currents
I

1 a transient depression (<40 sec) occurred prior to the fac ilita tio n  in

; rate. In other cases, with excessive ejection currents, there was a

period of depression (or simply a loss of responsiveness) following an 

i in it ia l activation. Glutamate was able to produce an excitatory response

when ejected during this period of depression (4 ce lls ).

The degree of activation was related to the magnitude of the ejection

' current in a dose dependent fashion within a re la tive ly  narrow range ofI
currents (Fig. 5A). Higher currents tended to decrease the latency to 

j fu ll activation and prolong the period of enhanced rate but generally

| produced no further increase in maximum rate. Fig. 5B shows an oscillo­

graphic record of the spike discharges of an LGNd unit before and during

!
%
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Fig. 5: Activation of LGNd neurons by microiontophoretic application

of norepinephrine (NE). A, Varying the iontophoretic current 

of NE produces a dose-dependent increase in the magnitude 

of the activation. Cellular activ ity  is expressed as an 

integrated rate histogram with a period of 10 sec. In this 

and subsequent figures, periods of drug ejection are indicated 

by bars above each record; numbers refer to the iontophoretic 

current in nanoamperes. B, Extracellular action potentials of 

a single unit before (upper) and during (lower) the iontophoretic 

application of NE (10 nA). Reproduced d irectly  from an 

oscillographic record. Negativity is upward.

I
j
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the iontophoretic ejection of NE. Note that the extracellu lar spike 

amplitude is constant and that the pre-drug bursting pattern is maintained 

| although the overall rate is markedly increased by NE.

| Deepening the level of chloral hydrate anesthesia tended to decrease

! the spontaneous f ir in g  rate of LGNd neurons. There was a corresponding

' reduction in the responsiveness of the cells to NE and, in some cases of

■ particularly deep anesthesia, the effect was completely abolished. For

| this reason a ll  experiments were conducted in lig h tly  anesthetized
i

animals.
I
i
j  3. Responses to Sympathomimetic Amines
II
I A series of sympathomimetic amines were compared with NE for the ir

a b ility  to activate LGNd neurons (Table I ) .  Several agonists mimicked 

j NE but the ir potencies varied. Epinephrine was the most potent agonist

| tested. In the majority of ce lls , epinephrine gave a somewhat greater

J  degree of activation than that produced by equal current pulses of NE

(13 of 15 ce lls ; Fig. 6A). 

j  The a-agonist phenylephrine was as effective as NE or epinephrine

I in activating LGNd neurons but i t  was less potent and the responses tended

to be more prolonged (9 cells; Figs. 6B,C). a-methylnorepinephrine was 

similar in potency to phenylephrine; the duration of the responses were 

comparable to that produced by NE (9 cells) Dopamine was less potent than 

j  the other agonists and in some cases i t  was not possible to achieve

j  degrees of activation equivalent to that produced by NE even with currents
! .

up to 50 nA (5 c e lls ) .

Eleven cells  in chloral hydrate anesthetised animals were tested with 

isoproterenol at currents ranging from 3-50 nA. None of the cells responded 

with activation or depression (Fig. 6A).

to*
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TABLE I

Relative Potencies of Adrenergic Agonists In 

Activating Lateral Geniculate Neurons

Agonist
Number of 

Cells Tested
Potency
Ratio*

Epinephrine 8 1.9 ± 0.2

Norepinephrine 1

Phenylephrine 6 0.38 ± 0.06

a-Methylnorepinehrine 8 0.34 ± 0.08

Dopamine 5 0.21 ± 0.04

Clonidine 12 t

Isoproterenol 22 < 0.09 ± 0.02§

I
i ■i
! *Ratio between magnitude of control NE current and current of agonist
I
I producing equivalent activation. For details of test procedure and

calculations, see Methods and Materials. Data expressed as mean ±

S.E.M.

tWeak activation (see Fig. 6) was obtained in 6 ce lls , others were 

unresponsiveness.

§Mean of data from 7 cells where activation was obtained (a ll in 

cerveau isole animals), other cells were unresponsiveness.

iL
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Fig. 6: Response of LGNd neurons to adrenergic agonists. A, Comparison

of equal iontophoretic currents of isoproterenol (ISO), 

norepinephrine (NE) and epinephrine (EPI). B, Dose-dependent 

activation produced by phenylephrine (PHE). PHE has equal 

efficacy but less potency than NE. Note the prolonged nature 

of the response to PHE. C, Comparison of the weak activation 

produced by high currents of clonidine (CLO) with the response 

to NE and PHE.

i s .
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4. Effects of Adrenoceptor Antagonists

Phentolamine, piperoxane and WB-4101 re liab ly  blocked the response 

of LGNd neurons to NE (Fig. 7). With each drug, the effect was dose 

related and reversible. In addition, the blockade was selective in that 

low currents of the antagonists fa iled  to attenuate glutamate excitations. 

The benzodioxane WB-4101 was the most potent of the antagonists studied.

In 16 ce lls , WB-4101 applied with currents of 0-5 nA for 2 min or more 

produced a 79-100% reduction in the response to NE. ("0 nA" refers to 

the removal of the retaining current only without application of an 

ejecting current.) In most cases the activation was completely blocked 

but in one-half of the cells tested with currents of WB-4101 within the 

2-5 nA range, there was some reduction in baseline fir in g  rate.

Phentolamine was tested on 5 cells with currents of 5-10 nA. The 

response to NE was reduced 73-100% with ejections of 2 min or more. There 

was no decrease in baseline fir in g  rate in any of the cells tested.

Piperoxane produced a 63-91% reduction in NE activations when 

currents of 5-10 nA were applied for 2 min or more (8 ce lls ). Piperoxane 

also had a tendency to reduce the baseline fir in g  rate of 50% of the ce lls .

Sotalol had variable effects on 15 cells with 5-25 nA ejections. 

Currents within the 5-10 nA range occasionally attenuated the response to 

NE but the effects were not consistent for repeated ejections on the same 

cell. In most cases, only a weak blockade was produced by these currents 

of sotalol and in 6 cells there was a potentiation of the response to NE.

At higher currents (20-25 nA), sotalol did produce a consistent blockade 

of the response to NE (3 ce lls ). In most cases sotalol did not a lte r the 

baseline fir in g  rate significantly although 3 cells showed a s light

ti
Li
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: Antagonism of norepinephrine (NE) induced activation of LGNd

neurons by the a-adrenolytic drugs phentolamine (A), piperoxane 

(B) and WB-4101 (C). In A, the a b ility  of these antagonists to 

selectively block the response to NE but not to glutamate (G) 

is illustra ted .
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j  increase in spontaneous a c tiv ity .

! The potencies of the antagonists were compared by determining the

| degree of inhibition of the response to NE attained at various times

following the in it ia tio n  of a continuous 5 nA ejection of the antagonist. 

These data are expressed graphically in Fig. 8. The rank ordering of

■ potencies of the antagonists as determined by this procedure is WB-4101 >
I
| phentol amine >. piperoxane > sotalol.

! 5. Effects of Systemically Administered WB-4101
I
j  To confirm that the a b ility  of a-adrenoceptor antagonists to
1

attenuate the response to NE is not due to an a rtifa c t of the iontophoretic 

technique, in some experiments, WB-4101 was administered systemically.

i Doses within the 1-5 mg/kg range generally produced a selective blockade

of the response to NE. In some cells, these doses of WB-4101 caused a 

depression of the baseline rate whereas in others no change in spontaneous 

firing  was observed. An example of the selective blockade is given in 

Fig. 9B. Note that the effect of NE is markedly diminished a fter repeated 

intravenous injections of WB-4101 but that the responses to glutamate 

and acetylcholine are for the most part preserved. Fig, 9A demonstrates 

the effect of an intraperitoneal injection of a higher dose of WB-4101.

5. Effects of Clonidine

At low ejection currents, iontophoretic clonidine did not a lte r  the 

spontaneous fir in g  rate of LGNd neurons, whereas higher currents (20-35 

nA) tended to produce a s light activation of fir in g  (8 of 12 cells)

(Fig. 6). The activations with clonidine usually occurred a fte r the 

cessation of current ejection and were prolonged, lasting 4-12 min. The 

response to test doses of NE was occasionally attenuated following clonidine.

ft
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-56-

O 40
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▼ Piperoxane 
8  Phentolomine 
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j
| Fig. 8: Comparison of the effects of various adrenergic antagonists on

the activation of LGNd neurons by NE. Each cell was tested with

i  one min pulses of NE before (control) and at various times

after the onset of a continuous ejection of the antagonist at

I 5 nA. The percent inhibition of the response to NE (ordinate)

I was calculated according to the formula [(A0 - At ) * (A0 - S)]

x 100 where A0 is the maximum rate per 10 sec epoch

i produced by the control NE pulse, A+ is the maximum rate
1

produced by a pulse of NE in itia ted  at time t  during the 

antagonist ejection and S is the baseline spontaneous rate 

of the c e ll. The abcissa refers to the time during the 

antagonist ejection at which the NE test pulse began. Each point 

represents the mean ± S.E.M. of data from 5-8 cells.

i
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Fig. 9: Antagonism of iontophoretically applied norepinephrine (NE)

by intraperitoneal (A) or intravenous (B) WB-4101 (WB). In 

B, the response to glutamate (G) and acetylcholine (ACh) is 

re la tive ly  less affected than is the response to NE.

iI

I
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Fig. 10: Antagonism of norepinephrine (NE) induced activation of LGNd

neurons by low iontophoretic currents of clonidine. A, Typical 

effect of clonidine. B, Pooled data from 6 cells expressed 

as described in the caption of Fig. 8. Clonidine was applied 

at currents of 5-10 nA.
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Furthermore, continuous low current ejections of clonidine (5-10 nA) 

effectively blocked the activation produced by pulses of NE (Figs. 10A,B).

7. Responses in Unanesthetized Animals

; In order to determine i f  general anesthesia alters the pattern of

pharmacological sensitiv ity  of LGNd neurons experiments were carried out 

in 5 unanesthetized, cerveau isole animals. Twenty-five of 27 cells tested 

in the transected rats showed at least a two-fold increase in rate with 

1-10 nA, one min pulses of NE. The response pattern was qualitatively
j

; identical to that observed in anesthetized animals, although the cells

appeared to be somewhat more sensitive to NE.

As in chloral hydrate anesthetized animals, many cells in the 

unanesthetized preparation were not activated by any current of isoprot- 

| erenol which could be passed. However, some cells which were particularly

sensitive to NE, did show a weak response to high currents of isoproterenol 

(7 ce lls ). In no case was i t  possible to achieve fu ll activation with 

isoproterenol; in fa c t, increasing the current beyond that giving maximal 

i activation tended to reduce the magnitude of the response.

Phentolamine, when applied at currents of 5-10 nA for 2 min or 

more, was as effective an antagonist of the response to NE in unanesthe­

tized animals (6 ce lls ) as i t  was in the anesthetized preparation.

8. Discussion

Microiontophoresis of NE and other sympathomimetic amines caused an 

increase in the fir in g  rate of most of the spontaneously active LGNd

j neurons which were examined. This response was reproducibly e lic ited  only
i
j when low iontophoretic currents were applied for re la tive ly  prolonged
i
! periods. Increasing the ejection current strength within a limited range
i

I

i-I-
c
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usually shortened the latency and enhanced the magnitude and duration 

of the responses. However, currents in excess Of this range often 

produced biphasic effects in which the fa c ilita tio n  was followed by 

normal or diminished a c tiv ity . The loss of responsiveness observed with 

high currents could be due to overdepolarization, to a direct or indirect 

action of the drug on inhibitory receptors or to tachyphylaxis. Since 

glutamate had an excitatory action during this depression in the cases 

where i t  was tested, the effect cannot be attributed to overdepolarization 

in a ll instances. Nevertheless, some cells did show signs of overde­

polarization (widening and decrease in amplitude of the extracellular 

action potential) when tested with supramaximal agonist currents.

As out’ ined in Part I ,  previous investigators have reported variable 

effects of iontophoretic NE in the LGNd. I attribute the discrepancy 

between the present findings and these earlie r studies to the fact that 

iontophoretic dose was not systematically controlled in the previous 

investigations. Rather than characterizing the response of a particular 

cell on the basis of a single ejection current, in the present study most 

cells were tested with a range of currents. In this way i t  was possible 

to adjust for variations in electrode properties and differences in the 

local environment of the electrode tip . I t  was possible to produce 

depressant responses to NE quite easily by using supramaximal ejection 

currents, suggesting that use of excessive doses was responsible for the 

variable effects observed in previous studies.

Since most cells demonstrated a uniform activation with adrenergic 

agonists under the present experimental conditions, i t  was possible to 

systematically determine the pharmacological characteristics of the 

response. In peripheral tissues, two procedures are used to classify
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responses mediated by adrenergic receptors. In the f ir s t  procedure, the 

relative potencies of a series of adrenergic agonists are compared; in 

the second, a determination is made of the potencies of antagonists for

inhibiting the response to an agonist.

According to the definition proposed by Furchgott (1972), a response 

mediated by an adrenergic receptor of the a-type is pharmacologically 

characterized by: (1) a relative potency series in which epinephrine >

NE > phenylephrine > isoproterenol and (2) a susceptibility to specific 

blockade by low doses of phentolamine and other a-adrenergic antagonists. 

The activation of LGNd neurons by sympathomimetic amines satisfys both of 

these c r ite r ia . The rank ordering of the potency ratios of the agonists 

f its  the appropriate sequence. Furthermore, phentolamine and other a- 

blockers were potent and specific antagonists of the response to NE. 

6-adrenergic drugs exhibited weak or no ac tiv ity . A similar pattern of 

pharmacological sensitivity has been observed in other brain areas where 

NE has apparent excitatory actions, although systematic comparisons between 

agonists and antagonists have not been carried out in most cases (Bevan 

et a l . ,  1977; Boakes et a l . ,  1971; Bradley et a l . ,  1966; Kirsten and

Sharma, 1976; Yamamoto, 1967; also see Part I ) .

The pharmacological profile  of the activation of LGNd neurons 

corresponds closely with that of adrenergic responses of the a-type 

present in peripheral tissues. Thus, for example, sympathomimetic agents 

causing constriction of smooth muscle in the aorta (Besse and Furchgott, 

1976; Sheys and Green, 1972), pulmonary artery (Starke et a l . ,  1975), 

spleen (Sheys and Green, 1972), vas deferens or intestine (Van Rossum,

1965) show a relative potency series: epinephrine > NE > phenylephrine > 

a-methylnorepinephrine > dopamine. Phentolamine is a potent antagonist
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of these responses and in the vas deferens, as in the LGNd, the potencies 

of antagonists have the following rank ordering: WB-4101 > phentolamine > 

piperoxane (Mottram and Kapur, 1975; Van Rossum, 1965). a-receptors 

demonstrating this pattern of sensitiv ity  have been termed "postsynaptic" 

or ai-adrenergic receptors to distinguish them from the receptors regul­

ating the release of NE from sympathetic neurons which, although s tr ic t ly  

of the a-type, do show certain pharmacological differences from classical 

a-receptors. These neuronal receptors have been referred to as "presynaptic" 

or ct2-adrenergic receptors (Langer, 1974; Berthelsen and Pettinger, 1977).

The ai-adrenoceptors in the LGNd exhibit certain striking pharm­

acological differences from other adrenergic receptors in the central 

nervous system. For example, catecholamine receptors mediating depression 

of noradrenergic neurons in the locus coeruleus have been classified as 

a2 based upon th e ir equal sensitiv ity  to NE, epinephrine and dopamine, 

slightly  greater sensitiv ity  to a-methylnorepinephrine, and marked sensit­

iv ity  to clonidine (Cedarbaum and Aghajanian, 1977). Receptors on neurons 

in other brain regions such as the cerebellum (Hoffer et a l . ,  1971) and 

hippocampus (Segal, 1974) which show a predominantly depressant response 

to NE have characteristics resembling those of peripheral g-adrenoceptors 

(see Part I ) .

Using the radioligand 3H-WB-4101, i t  has recently become possible 

to specifically label a population of receptors in brain and peripheral 

tissues which show drug spec ific ities  characteristic of a^adrenoceptors 

(U1Prichard and Snyder, 1979). With one major exception, there is an 

excellent correspondence (r=0.997) between the a ff in it ie s  of agonists for 

brain Ol-receptors determined by th e ir potencies as displacers of 3H-WB-4101 

binding and the ir a b ility  to activate LGNd neurons (Fig. 11). However,
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Fig. 11: Comparison between a ffin it ie s  of sympathomimetic amines for

brain a-adrenoceptors and a b ility  of drugs to activate LGNd 

neurons. Data concerning the potencies of drugs in displacing 

specific 3H-WB-4101 binding to rat brain membranes are taken 

from U'Prichard and Snyder (1979) and U1 Prichard et a l . (1977) 

A ffin ities  (ordinate) are expressed as the reciprocol of the 

K.. Iontophoretic potency rations (abcissa) are from Table I .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-65-

clonidine, a ligand with extremely high a ffin ity  for brain -receptors, 

is only weakly active as an agonist in the LGNd.. This discrepancy may be 

explained by noting that, unlike the other a-agonists, clonidine did 

not appear to exhibit fu ll efficacy even at high ejection currents, 

indicating that i t  may be a partial agonist with weak in trins ic  a c tiv ity . 

Clonidine was also able to block the response to NE at currents at which 

i t  produced no activation. These observations suggest that clonidine acts 

as a mixed agonist-antagonist at central postsynaptic a-receptor sites.

This conclusion is consistent with other physiological (Boissier et a l . ,  

1968; Hodge and Robinson, 1972; Schuman and Endoh, 1976; Stone and Taylor, 

1978) and biochemical (Davis and Maury, 1978; Skolnick and Daly, 1975; 

Vetulani et a l . ,  1977) evidence indicating that clonidine can act as an 

adrenergic antagonist. However, i t  would appear that the dose of clonidine 

required to block LGNd cq-receptors is significantly higher than that 

necessary to depress locus coeruleus neurons (Svensson, 1975). Therefore, 

low doses of clonidine would be expected to act primarily at pre- rather 

than postsynaptic a-adrenergic sites.

B. EFFECTS OF NOREPINEPHRINE ON EVOKED ACTIVITY;

COMPARISON WITH SEROTONIN

1. Identification of Geniculocortical Relay Neurons

In subsequent studies, most LGNd units were identified using 

orthodromic activation according to the c rite ria  of Burke and Sefton (1966) 

and Sumitomo and Iwama (1977). Only "P-type" units were studied. As 

indicated ea rlie r, these units f i r s t  respond to e lectrical stimulation 

of the afferent visual pathway with a single short latency spike and then, 

following a s ilen t period of variable duration (typ ica lly  70-230 msec),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 6 6 -

discharge groups of up to 4 spikes at regular intervals. No attempt was 

made to further classify the P-type units.

In some cases, antidromic activation of the visual cortex was used 

to confirm that the cell exhibiting the P-type response was indeed a 

geniculocortical relay neuron. The c r ite ria  used for identifying  

antidromically-evoked action potentials were: (1) constant latency of the 

in it ia l response, (2) a b ility  to follow paired shocks at a high frequency 

and (3) collision with spontaneous action potentials occurring immediately 

prior to the stimulus (Figs. 12B-D).

2. Comparison of the Response of Spontaneously Active LGNd Neurons 

to Norepinephrine and Serotonin 

In a ll subsequent experiments, 6-barrel electrodes were used which 

consisted of a fine single glass micropipette glued to a conventional 

5-barrel array (see Methods and M aterials). These pipettes allowed 

superior unit discrimination because extracellular action potentials 

tended to be of greater amplitude. In it ia l ly ,  I examined the response 

of spontaneously fir in g  relay neurons to NE delivered with 6-barrel 

electrodes and compared the effect with that produced by 5-HT. Units 

were selected which demonstrated a stable rate of fir in g  under conditions 

of constant low level illum ination. As was found with conventional 

5-barrel pipettes, these cells responded to low microiontophoretic currents 

of NE (1-20 nA) with a delayed increase in firin g  frequency. The latency 

to the onset of the response was typically 30-120 sec. (The delay was, 

in general, greater in the present series of experiments presumably 

because of the separation between the recording and iontophoretic barrels.)

In contrast to NE, 5-HT, at similar iontophoretic currents, 

depressed the fir in g  of a ll of the LGNd units tested (Figs. 12A; 13A,B).
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Fig. 12: Response of an antidromically identified LGNd relay neuron

to iontophoretically applied norepinephrine (NE) and serotonin 

(5-HT). A, The spontaneous fir in g  rate of the cell was 

fa c ilita te d  by NE and depressed by 5-HT. B, Antidromic 

activation of the cell by stimulation in the region of the 

visual cortex (VC). Stimuli (arrowhead) produced an a ll - 

or-none response of constant latency. Five superimposed 

sweeps. C, A bility  of cell to follow high frequency paired 

shocks. At the interstimulus interval shown (2 msec), the 

cell followed the second shock without fa ilu re . Slightly  

shorter intervals resulted in fa ilu re  of the second spike.

D, Collision between spontaneous and antidromic action 

potentials. The spontaneous spike (dot) triggered the 

osci11iscope sweep and, at a predetermined delay, a VC stimulus. 

When the VC stimulus followed the spontaneous spike by 2.4 msec 

(upper trace) no collision occurred and an antidromic spike 

(asterisk) is observed. With a 1.7 msec delay ( lower trace),  

collision occurred as indicated by fa ilu re  of the antidromic 

spike. Stimulation parameters: 0.2 msec, 1.25 mA, biphasic. 

Filtering: low frequency cutoff, 100 Hz; high frequency cutoff,

2 kHz.
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CARB
10

3MIN

Fig. 13: A, Comparison between the effects of iontophoretically

applied norepinephrine (NE), serotonin (5-HT) and carbachol 

(CARB) on a spontaneously active LGNd neuron. B, Dose 

dependent depression of another cell by 5-HT.

k
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The onset of the response to 5-HT, typically  10-20 sec, was somewhat 

more rapid than the onset of the response to NE. In paired comparisons 

on 25 ce lls , an opposite effect of the two amines on the spontaneous 

firin g  rate was invariably observed (Figs. 12A & 13A). For these cells ,

NE (2.5-20 nA, mean 8.4 nA) produced a 272 ± 175% increase in rate 

whereas 5-HT (5-20 nA, mean 10.2 nA) caused a 93 + 10% fa ll in ac tiv ity .

In 10 c e lls , identical currents of NE and 5-HT produced a greater than 

100% increase or a 90-100% fa ll in rate, respectively. Two cells showed 

rebound activations following cessation of the 5-HT ejections. Five cells 

were positively identified as geniculocortical relay (P-type) neurons by 

satisfying the c r ite ria  for antidromic activation given above (Figs. 12B-D). 

Most of the other cells were catagorized as P-type on the basis of their 

response to optic chiasm (OX) stimulation.

3. Effects of Acetylcholine and Carbachol

Relay neurons were also activated by acetylcholine (ACh) (Fig. 9B) 

and by the nonhydrolyzable cholinergic agonist carbamylcholine (carbachol) 

(Fig. 13A). The effect with ACh was variable andoccasionally even high 

iontophoretic currents were ineffective. However, uniform responses were 

obtained with carbachol.

4. Comparison of the Effects of Norepinephrine and

Serotonin on E lectrically  Evoked Activity  

To examine the interaction of NE and 5-HT with the major synaptic 

input to the LGNd, relay neurons were orthodromically driven by stimulation 

of the afferent visual pathway at the level of the OX. Poststimulus time 

histograms (PSTHs) (100 sweeps) were generated during the application 

of constant current, rectangular pulses (150 usee duration) to the OX at
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1 Hz. The histograms were prepared immediately before and during the 

iontophoresis of NE and 5-HT. Since responses,to the amines tended to be 

delayed, collection of the histograms was begun up to 120 sec following

the onset of the ejections.

Iontophoresis of NE (5-10 nA) caused a marked fa c ilita tio n  of the 

early response to subthreshold OX stimulation. This was manifested by an 

increased probability of spike generation during the short latency 

response (11 cells) (Fig. 14). Facilitation of this component was 

apparent whether the stimuli produced a low (Fig. 15A) or moderate (Fig. 

15B) percentage of short latency spikes under control conditions. In 

addition, there was a tendency for more spikes to occur immediately 

following the inhibitory period in what is referred to as the "post- 

inhibitory-pause rebound" in ac tiv ity .

Occasionally, i t  was possible to adjust the stimulus intensity so 

that approximately 20% of the stimuli produced in it ia l spikes. Under 

these conditions, iontophoresis of NE resulted in a 255% increase in the 

frequency of spike generation (Figs. 14A,B).

NE also enhanced the amplitude of the postsynaptic (r) component 

of the fie ld  response to optic chiasm stimulation which is believed to 

represent the mass ac tiv ity  of LGNd principal cells (see Part I)  (Fig. 

14D). During NE iontophoresis (5-30 nA), there was a 72 ± 19% (mean ± 

S.E.M.; 5 animals) increase in the peak-to-peak amplitude of this 

component.

5-HT (5-15 nA) had depressant and essentially opposite effects from 

NE on the PSTH (7 cells) (Fig. 16A,B). The short latency component of the 

response appeared to be especially sensitive to 5-HT but la te r activ ity  

was also depressed. In many cases ce llu lar activ ity  was completely
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Fig. 14: Norepinephrine (NE) fa c ilita tio n  of unitary action potentials

(A,B,C) and fie ld  response (D) evoked by optic chiasm stim­

ulation. In A, subthreshold shocks were applied to the optic 

chiasm at a frequency of 1 Hz. The stimulus strength was 

adjusted so that approximately 1 out of 5 stimuli produced a 

short latency spike discharge (upper trace). For the cell 

shown, 0.5 mA, 0.1 msec duration biphasic rectangular pulses 

satisfied this condition. The position of the stimulus a rtifa c t  

is indicated on the storage osciH i scope record by an arrow­

head. Shock artifacts  were electronically blanked in these 

traces. During NE iontophoresis (10 nA, 60 sec), 4 out of 5 

stimuli now produce spikes under identical stimulation condit­

ions ( lower trace). Five superimposed sweeps. Calibration:

2 msec, 1 mV. Positivity is upward. B, Summary of data from 

5 cells in 4 animals. The experimental procedure was as in A 

except that each unit was tested with 100 shocks before and 

during the iontophoresis of NE at 5-20 nA for 2-5 min and this 

was repeated 2-8 time per ce ll. Data are the mean ± S.E.M. of 

averages for each c e ll. C, Poststimulus time histogram demon­

strating the effect of NE on the early and late responses to 

optic chiasm stimulation. In addition to a fa c ilita tio n  of the 

in it ia l spike response (vertical line at le f t  of each histogram), 

NE (5 nA, 50 sec) causes a sh ift in the late ac tiv ity  to a peak 

of high probability fir in g  immediately following the inhibitory 

pause (upper histogram). Each histogram represents the summed 

responses to 100 stimuli delivered at 1 Hz. Stimulation para-
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meters: 1 mA, 0.15 msec. Bin width: 2 msec. D, Field response 

before ( l e f t ) and during (r ig h t) NE iontophoresis (5 nA). 

Stimulation parameters: 1 Hz, 1 mA, 0.25 msec. Five super­

imposed sweeps. Time Calibration: 2 msec.
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Fig. 15: Effect of norepinephrine (NE) on the response of two LGNd

neurons to optic chiasm stimulation. In A, under control 

conditions ( lower histogram), the stimulus intensity is sub­

threshold for production of an in it ia l spike response but late  

activ ity  does occur. In the presence of NE (upper histogram) , 

short latency spikes are now frequent and a clear la te  peak 

("post-inhibitory-pause rebound") is v is ib le . Collection of 

the upper histograms was in itia te d  120 sec following the onset 

of the NE ejection. There was l i t t l e  change in the overall 

fir in g  rate of the cell during NE. In this and subsequent 

figures, each PSTH represents the summated responses to 100 

stimuli delivered at 1 Hz. The bin width is 2 msec. Numbers 

to the right of drug abbreviations refer to the iontophoretic 

currents in nanoamperes. Stimulation intensity: 1.5 mA. In 

B, under control conditions ( lower histogram) , one-half of 

the stimuli produced short latency spikes. A small late peak 

is also seen. NE ( upper histogram) causes an enhancement of 

the in it ia l  and late peaks. Collection of this histogram was 

begun 60 sec a fter the onset of the NE ejection. There was a 

180% increase in the total ac tiv ity  of the cell during NE 

iontophoresis. Stimulation intensity: 0.18mA.
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Fig. 16: Effect of serotonin (5-HT) on the response of two LGNd

neurons to optic chiasm stimulation. A, Dose-dependent 

depression of poststimulus ac tiv ity . Both early and late  

f ir in g  is reduced. Histograms were begun 72 sec following 

in itia tio n  of the 5-HT ejection. Recovery histogram was 

begun 85 sec after cessation of 5-HT ejection. Stimulation 

intensity: 3.75 mA. B, Response of second cell showing 

preferential sensitiv ity  of early response to 5-HT. Begun 

48 sec following 5-HT ejection. Stimulation intensity: 4.0 mA.
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suppressed by 5-HT. In paired comparisons (12 c e lls ), identical ionto­

phoretic currents of NE and 5-HT applied to the same cell could be shown 

to have reciprocal effects on the response to OX stimulation (Fig. 17).

In a few ce lls , the effect of 5-HT on glutamate activated fir in g  

was examined. In confirmation of previous observation in the cat (Curtis 

and Davis, 1962; Tebecis and DiMaria, 1972), excitation by the amino acid 

was less sensitive to 5-HT than was spontaneous or synaptically evoked 

activ ity . Iontophoretic currents of 5-HT between 40 and 60 nA were 

generally required to produce clear depression of the response to glutamate.

5. Effects of Phentolamine and Methysergide

Since a-adrenoceptor antagonists were able to selectively antagonize 

the activation of spontaneous fir in g  produced by NE, i t  was of interest to 

examine whether the fa c ilita to ry  action of NE on evoked a c tiv ity  could be 

blocked in a similar fashion. PSTHs to OX stimulation were generated 

before and during the application of NE at 5 or 10 nA. The OX stimuli 

were applied with a current intensity just above threshold for the short- 

latency response. Recording of the histograms was begun 36 to 114 sec 

after the onset of the NE ejection. The sequence of two histograms (control 

and during NE) was then repeated during the continuous application of 

phentolamine at 10 nA. Results from a typical cell are shown in Figs.

18A-D. Note that phentolamine markedly diminishes the NE-induced f a c i l i t ­

ation of the short latency response, although the enhancement of the 

delayed response is also reduced. Six units were held su ffic ien tly  long 

to collect a ll histograms. On the average, NE caused a 1754% increase in 

the in it ia l spike response of these units. In the presence of phentolamine, 

this increase was reduced to 424%, a 76% diminution in the effect of NE.

By its e lf ,  phentolamine had no consistent effect on the PSTH: in two cells
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Fig. 17: Comparison of the effects of norepinephrine (NE) and

serotonin (5-HT) on the response to optic chiasm stimulation. 

A, Short latency spikes were produced by 46% of stim uli. B, 

NE causes a 52% increase in the number of spikes in the 

early peak. C, The control response pattern in regained 

following cessation of the NE ejection. D, 5-HT causes a 

83% reduction in the number of spikes in the early peak. 

Histograms were begun 30 sec following in itia tio n  of the 

drug ejections. Stimulation intensity: 0.25 mA.
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Fig. 18: Effect of phentolamine (PHENT) on the modification of post­

stimulus responses by norepinephrine (NE) and serotonin (5-HT).

A, Under control conditions, the stimulus intensity is just 

subthreshold for production of the short latency spike response.

B, NE increases the frequency of in it ia l  spike generation from 

3» to 95%; a prominent late peak is also seen. C, PHENT alone 

produces a slight depression of the poststimulus response. In

comparison with A, the total number of spikes is reduced by

20%. (PHENT had no consistent effect on the PSTH; see te x t.)

D, In the presence of PHENT, the e ffect of NE is markedly 

attenuated. The total number of spikes in the in it ia l and 

late peaks are reduced by 71% and 56%, respectively. E, At 

slightly  higher stimulation intensities an in it ia l spike 

response is now present under control conditions. F, 5-HT 

depresses the early and late ac tiv ity . G, PHENT has l i t t l e

effect on the control ac tiv ity  and, H, does not a lte r the res­

ponse to 5-HT. Collection of the histograms was begun 60 sec 

after the onset of the NE and 5-HT ejections. PHENT was ejected 

for at least 3 min prior to recording of histograms. Stimulation 

intensity: 2 mA.
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there was a slight decrease in ac tiv ity , in three cells a slight increase 

and in one cell there was no change. On average, there was a 13% 

increase in the in it ia l peak during phentolamine. In three ce lls , the 

response to 5-HT was also tested before and during phentolamine. In 

none of these cells did phentolamine antagonize the depressant effect 

of 5-HT (Figs. 18E-H).

The peripheral 5-HT antagonist methysergide has recently been 

demonstrated to block the fa c ilita tio n  of motoneuron excitation by 5-HT 

(McCall and Aghajanian, 1979). Therefore, I tested its  a b ility  to 

antagonize the depression of evoked activ ity  produced by 5-HT. In three 

of four ce lls , methysergide (10-20 nA) did not block the depression of 

the in it ia l spike produced by 5-HT. In fact there was a tendency for the 

response to 5-HT to be prolonged during methysergide. In a fourth c e ll, 

there appeared to be a partial blockade of the response to 5-HT but no 

recovery occurred following cessation of the methysergide ejection.

6. Comparison of Norepinephrine and Serotonin Effects 

on Light Evoked Activity  

As a complement to studies on e lec trica lly  evoked, I also examined 

the effect of NE and 5-HT on LGNd cells which were activated by bright 

flashes of lig h t. In general, relay neurons respond to such stimuli 

with a burst of fir in g  (up to 10-30 msec in duration) beginning 30-80 msec 

following the flash. There is then a period of reduced ac tiv ity , 

typically 30-150 msec, followed by one or more peaks of enhanced fir in g .

In 12 ce lls , iontophoretic application of NE (2-10 nA) produced an 

increase in both the in it ia l and the f ir s t  post-inhibitory pause rebound 

peak (Fig. 19). The mean increase in the total number of spikes in the 

in it ia l peak was 43 ± 54%. 5-HT (5-10 nA) uniformly depressed light

I
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Fig. 19: Comparison of the effects of norepinephrine (NE) and serotonin

(5-HT) on the response to visual stimulation. Light flashes 

were delivered to the animal's eyes at 1 Hz (arrowheads) . NE 

iontophoresis produces a marked fa c ilita tio n  of the early peak 

in the PSTH and a moderate increase in the late response. The 

histogram was begun 25 sec following the onset of the NE ejection. 

5-HT depresses the early peak; late activ ity  is re la tive ly  less 

affected. 5-HT histograms were begun 25 and 135 sec following 

onset of the ejection. Each histogram represents the response 

to 100 flashes. Bin width: 1 msec.
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activated fir in g  and at appropriate currents completely suppressed 

cellu lar ac tiv ity  (3 c e lls ).

7. Discussion

In the present section, i t  is demonstrated that NE causes a 

fa c ilita tio n  of relay neuron spontaneous fir in g  when applied with 6- 

barrel microelectrodes, confirming the observations obtained with 5- 

barrel pipettes described in the previous section. In contrast to NE,

5-HT is a powerful depressant of the spontaneous a c tiv ity  of these cells .

A number of anatomical regions in the central nervous system are 

innervated by both noradrenergic and serotonergic fibers as is the LGNd.

In those areas where the response of identified  neurons to the two 

amines have been studied, NE and 5-HT usually have sim ilar net effects on 

neuronal activ ity  although the responses tend to be mediated by 

pharmacologically distinct receptors. Thus, hippocampal pyramidal cells  

(Biscoe and Straughn, 1966; Segal, 1975; Segal and Bloom, 1974), olfactory 

bulb mitral cells (Bloom et a l . ,  1974) and neurosecretory cells in the 

hypothalamic supraoptic nucleus (Barker et a l . ,  1971) are uniformly 

depressed by both NE and 5-HT. The two monoamines also have similar 

effects on motoneurons in the brainstem (McCall and Aghajanian, 1979) or 

spinal cord (White and Neuman, 1980) except in these areas fa c ilita tio n  

of excitation rather than depression is seen. LGNd relay neurons are 

therefore unique in that they invariably respond in an opposite fashion 

to NE and 5-HT.

The two amines modified evoked ac tiv ity  in a manner consistent 

with their effects on spontaneous f ir in g . Thus, NE markedly fa c ilita te d  

the early (monosynaptic) spike response to OX stimulation. In addition, 

a complex alteration in the pattern of late poststimulus ac tiv ity  was
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noted. In PSTHs prepared during NE iontophoresis, there was a 

selective enhancement of peaks of high probability f ir in g  re lative to 

between-peak ac tiv ity  (Figs. 15A,B). One can speculate that this repre­

sents a gain in the "signal-to-noise" ratio for the transmission of

specific signals through the LGNd.

The fa c ilita tio n  of poststimulus fir in g  by NE was antagonized by 

phentolamine at doses which did not a lte r the control response pattern. 

This indicates that NE acts to fa c ilita te  evoked ac tiv ity  via a receptor 

with at least some pharmacological characteristics in common with that 

mediating the effects of NE on spontaneous fir in g .

5-HT, at low doses, consistently depressed the response to OX 

stimulation, as would be predicted on the basis of its  action on spont­

aneously f ir in g  ce lls . The depressant response to 5-HT was neither 

antagonized by phentolamine, nor by the "peripheral" 5-HT antagonist 

methysergide. Under sim ilar conditions, methysergide is highly effective  

as an antagonist of 5-HT-induced fa c ilita tio n  of fir in g  in the reticu lar 

formation (Boakes et a l . ,  1970; Haigler and Aghajanian, 1974b), cerebral 

cortex (Roberts and Straughn, 1967) or facial nucleus (McCall and 

Aghajanian, 1979; 1980), suggesting that there are significant pharm­

acological differences between the receptors mediating the depressant and 

fa c ilita to ry  actions of 5-HT. Because of the lack, at present, of an 

effective antagonist for the depressant response to 5-HT i t  is not 

possible to show pharmacological identity between the effects of 5-HT 

on spontaneous and evoked a c tiv ity , as has been done for NE.

Since glutamate activated fir in g  is re latively insensitive to 5-HT, 

i t  appears that 5-HT does not reduce excitab ility  in the same fashion as 

conventional inhibitory agents such as y-aminobutyric acid (GABA). In
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an earlie r study, Tebecis and DiMaria (1972) demonstrated that GABA is 

more effective than 5-HT as a depressant of amino acid-induced excitation, 

whereas 5-HT is better against spontaneous or synaptically-evoked activ ity . 

A number of mechanisms could account for this finding. F irst, low currents 

of 5-HT could have a predominantly presynaptic site of action, i .e . ,  

block the release of transmitter from retinal terminals (Curtis and Davis, 

1962; Tebecis and DiMaria, 1972). Second, 5-HT could selectively reduce 

the responsiveness of relay neurons to the transmitter of the retinal 

ganglion ce lls , which, as yet, has not been identified. Third, 5-HT's 

effectiveness could be dependent upon the localization of the excitatory 

input, so that strong excitation produced at the soma by locally applied 

amino acids would be re la tive ly  less affected than synaptic excitation 

arising at more dispersed loci. F inally, 5-HT could be acting as a 

neuromodulator which selectively fa c ilita te s  synaptic inhibition. On the 

basis of the presently available data, i t  is not possible to distinguish 

among these possib ilities.

C. FACILITATORY EFFECTS OF NOREPINEPHRINE UNDER CONDITIONS 

OF SUPPRESSED SPONTANEOUS ACTIVITY

1. Fac ilita tio n  of Glutamate Excitation

The results presented in the previous section indicate that NE 

can fa c ilita te  the responsiveness of LGNd relay neurons to retinal 

ganglion cell excitation and, thus, presumably enhance signal transfer 

from retina to visual cortex. The question examined in the present section 

is whether this effect is due to a direct excitatory action of NE or to 

an interaction of the amine with afferent synaptic activation in a manner 

more appropriately termed "neuromodulatory."
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One approach to answering this question is to suppress the ongoing 

tonic excitation of relay neurons so that the effects of NE can be examined 

in isolation. Relay neurons receive tonic synaptic excitation under 

conditions of either ligh t or darkness. This excitation is believed to 

arise primarily from the retina and is the cause of the spontaneous act­

iv ity  exhibited by relay neurons (Freund, 1973). Acute enucleation of the 

eyes temporarily eliminates the spontaneous ac tiv ity  of 63% of relay neurons 

(Bishop et a l . ,  1962a), presumably by removing the major source of the 

ongoing tonic excitation. Thus, in the enucleated preparation i t  is 

possible to examine the effects of NE on relay neurons without the 

complicating presence of significant extrinsic excitatory drive.

In enucleated animals, NE failed to produce an excitation of silent 

LGNd units although cells could be activated easily by iontophoretic 

application of the excitatory amino acid glutamate. Thus, NE, in contrast 

to glutamate, did not appear to be a direct excitant. However, low currents 

of NE (2-15 nA) were able to dramatically fa c ilita te  the excitatory action 

of the amino acid. Iontophoresis of glutamate at currents which produced 

l i t t le  or no excitation prior to the application o f NE, resulted, with 

concurrent ejection of NE, in marked activation of fir in g  (22 cells in 

14 rats) (Fig. 20A). The effect of NE required 30 to 90 sec to develop 

and lasted up to 6 min following cessation of the ejection.

Iontophoretic ejection of Mg2+ (30-90 nA) was found to produce a 

rapid suppression of the spontaneous fir in g  of most LGNd neurons. The 

exact mechanism of this effect is unclear, but i t  could be due to any of 

the following known actions of Mg2+: (1) inhibition of excitatory 

transmitter release from presynaptic terminals (del Castillo and Engback, 

1954; Potashner, 1978), (2) blockade of the postsynaptic receptor for the
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Fig. 20: Norepinephrine (NE) fa c ilita tio n  of glutamate (G)-induced

excitation under conditions of suppressed spontaneous 

a c tiv ity . A, Constant current, 30-sec pulses of G were 

applied to a s ilen t neuron in an acutely enucleated ra t. NE 

causes a reversible potentiation of the response to subthresh­

old G. In this and subsequent examples, s ilen t neurons were 

identified  by optic chiasm stimulation or iontophoresis of G. 

B, Response of another cell demonstrating that NE but not 

picrotoxin (PIC) fa c ilita te s  the action of G (20-sec pulses). 

Note that the response to NE is s ligh tly  diminished during the 

PIC ejection. Ordinate represents spikes per 10 sec epoch.
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excitatory transmitter (Evans et a l . ,  1977; Davies and Watkins, 1977) 

or (3) increase in the threshold for excitation (Kato and Somjen, 1969; 

Kelly et a l . ,  1969).

Whatever the mechanism, Mg2+ was used as an alternate to acute 

enucleation for reducing the spontaneous ac tiv ity  of relay neurons.

During the continuous iontophoretic application of Mg2+, most s ilen t cells 

fa iled  to respond to NE. In a few cases, even silent cells were excited 

by NE but this could be prevented by increasing the Mg2+ ejection current. 

As was the case in acutely enucleated animals, however, low currents of 

NE were able to markedly fa c ilita te  the excitatory action of glutamate 

on cells which were silenced by Mg2+ (16 cells in 10 rats) (Fig. 21).

These observations suggest that the receptivity or exc itab ility  of the 

cells had not been markedly impaired by Mg2+. ( I t  did appear, however, 

that glutamate was antagonized to a certain extent since higher ejection 

currents were required to excite cells in the presence of Mg2+.)  These 

results indicate that enucleation is not the only maneuver which allows 

the demonstration of the a b ility  of NE to fa c ilita te  relay neuron 

excitab ility  in the absence of any direct excitatory effect of its  own.

In fact, s ilen t cells which were occasionally encountered in normal 

animals (especially under conditions of deep chloral hydrate anesthesia) 

responded in a similar fashion.

2. Effects of Picrotoxin

The a b ility  of NE to produce an enhanced responsiveness to glutamate 

suggested that NE could fa c ilita te  the general exc itab ility  of relay 

neurons, presumably through a postsynaptic mechanism. This mechanism 

may account fo r the a b ility  of NE to mimic the fa c ilita tio n  of sub­

threshold excitation and the potentiation of the fie ld  response to optic
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Fig. 21: Norepinephrine (NE) fa c ilita tio n  of glutamate (G)

excitation with spontaneous activ ity  suppressed by Mg2+.

Upon cessation of Mg2+ ejection there is rebound excitation 

followed by a return to normal spontaneous fir in g . Ordinate 

represents spikes per 10 sec epoch.
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chiasm stimulation which Nakai and Takaori (1974) observed following 

conditioning stimulation of the LC (see Part I ) .  However, on the basis 

of the apparent depressant effects of LC stimulation on certain supposed 

I-c e lls , the la tte r  authors speculated that NE may fa c ilita te  relay neurons 

indirectly by suppressing inhibitory interneurons.

As discussed in Part I ,  two populations of local inhibitory elements 

are believed to synapse upon P-cells (relay neurons). The f i r s t  group, 

orig inally considered to be in trinsic  interneurons by Burke and Sefton 

(1966), are now recognized as residing in the thalamic reticu lar nucleus 

which is adjacent to the LGNd, but separate from i t .  These neurons, known 

as perigeniculate reticu lar (PGR) ce lls , probably mediate the post­

excitation inhibition of relay cells (Sumitomo et a l . ,  1976). Three 

considerations argue against the participation of PGR neurons in the 

fa c ilita to ry  action of iontophoretic NE. F irs t, NE generally produces 

only a small decrease in the postexcitation inhibitory period yet the 

responsiveness, especially of the short latency spike, is markedly f a c i l i t ­

ated. Second, PGR neurons are s ilen t in enucleated animals (Waring, 1979), 

although NE can readily fa c ilita te  glutamate under these conditions.

Finally, the ac tiv ity  of NE is independent of the proximity of the ionto­

phoretic pipette to the reticular nucleus which is situated rostral to the 

geniculate, as much as 1.5 mm anterior to the caudal extent of the LGNd 

(Sumitomo et a l . ,  1976).

I-c e lls  in trins ic  to the LGNd proper, the second class of neurons 

providing inhibition to relay ce lls , have been described only recently 

(Sumitomo and Iwama, 1977). Although sparse in number (approximately 6% 

of the total neuronal population in the rat LGNd; see Part I ) ,  these true 

interneurons could conceivably mediate the action of NE. Recent evidence
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indicates that GABA is the neurotransmitter u tilized  by these cells  

(Sterling and Davis, 1980). Therefore, i f  the fa c ilita to ry  action of 

NE on relay neurons were mediated by depression of these interneurons 

or suppression of GABA release from presynaptic dendrites, blockade of 

GABA-mediated transmission should produce sim ilar effects. This 

hypothesis was tested with the GABA antagonist picrotoxin. In 

preliminary experiments, I found that picrotoxin was able to block 

GABA-induced depression of spontaneously active LGNd neurons when 

applied with currents of 15-20 nA for 1-5 min. (Doses of GABA producing 

90-100% suppression of spontaneous activ ity  were a rb itra rily  used in 

these t r ia ls . )  Picrotoxin was then applied to s ilen t neurons in 

enucleated animals. Even with prolonged administration (up to 25 min), 

the GABA antagonist (15-50 nA) did not produce a fa c ilita tio n  of the 

response to glutamate (5 ce lls ). In fac t, during the iontophoresis of 

picrotoxin, the a b ility  of NE to fa c ilita te  the action of glutamate was 

unaffected or occasionally s lightly  deptessed (Fig. 20B), rather than 

enhanced as would be predicted i f  GABAergic I-c e lls  provided tonic 

inhibition to relay neurons. These observations suggest that the fa c il­

itatory action of NE is not mediated transynaptically via inhibition of 

adjacent interneurons or blockade of GABA release from presynaptic 

dendrites, although an interaction between NE and either class of 

inhibitory neurons could play a role in the overall physiological action 

of the coeruleogeniculate pathway. I t  is of interest to note that the 

fa c ilita to ry  action of iontophoretic NE on LGNd neurons is sim ilar in 

many respects to that described in a previous study of motoneuron 

exc itab ility  in the ra t facial nucleus where in trins ic  neurons are 

absent (McCall and Aghajanian, 1979).
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3. Discussion

The major findings presented in this section are that NE can 

fa c ilita te  the e x c itab ility  of relay neurons to glutamate without having 

a direct excitatory effect i ts e lf .  To demonstrate this phenomenon, i t  

was necessary to eliminate the ongoing tonic excitation these cells 

normally receive from the retina. In addition, i t  was probably 

advantageous that the experiments were carried out in chloral hydrate 

anesthesized rats so that other excitatory inputs to the nucleus ( i . e . ,  

cerebral cortex) were suppressed. On the basis of the observations 

presented in this section, i t  can be concluded that NE satisfys the 

defin ition of a "neuromodulator" outlined in Part I .  Moreover, the 

longlasting character of the response to NE is consistent with the 

general characteristics of monoamine (and also non-monoamine, i . e . ,  

peptide) modulators in other systems.

I t  is , of course, possible that the effects of glutamate and 

NE are simply additive and that NE is , in fac t, acting as a conventional 

excitatory transmitter. Although this possibility cannot be excluded 

with certainty using extracellu lar recording techniques, i t  would appear 

unlikely since even with high currents NE generally did not excite 

silent cells in enucleated animals.

The fact that NE acts as a modulator suggests that the fa c ilita tio n  

of spontaneous a c tiv ity  i t  produces under control conditions is a 

manifestation of its  capacity to enhance the exc itab ility  of relay 

neurons to ongoing synaptic activation rather than to excite these cells 

directly . This presumably accounts for the prolonged nature of the 

activating effect which is strik ingly d ifferent from the time course 

of the response to , for example, glutamate.
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Finally, the observation that NE can act as a neuromodulator 

might explain the unique patterns of responsiveness to NE observed in 

brain regions other than the LGNd where the local c ircu itry  and the 

configuration of synaptic inputs (or endogenous pacemaker a c tiv ities ) 

are d ifferent. Thus, much of the inconsistency observed in iontophoretic 

studies may be a reflection of the v a riab ility  among brain regions with 

respect to synaptic architecture rather than in trinsic responsiveness

to NE.

Variations in experimental technique, especially with respect to 

anesthesia, may also be important. For example, experiments conducted 

under deep barbituate anesthesia often give different results from 

those carried out under ligh t or no anesthesia. This is readily 

explainable i f  the substance being tested is a neuromodulator since 

under conditions of deep anesthesia the excitatory drive to the target 

cell might be suppressed. Since the action of a neuromodulator is 

dependent upon this excitation, variations in responsiveness with 

anesthesia level would be predicted.

D. LOCUS COERULEUS STIMULATION

1 . Effects on Evoked and Spontaneous Activity

To provide additional evidence that NE is the transmitter substance 

in the coeruleogeniculate pathway, experiments were conducted in which 

trains of electrical stimuli were applied directly to the LC. The 

response of LGNd neurons to LC activation was then compared with the

effects of iontophoretic NE on the same neurons.

In these experiments, concentric bipolar (coaxial) stimulating 

electrodes were implanted in or near the ipsilateral LC. Single shocks
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applied to the LC did not drive LGNd neurons nor was a fie ld  potential 

ever observed in the LGNd even at high stimulation intensities. In 

order to obtain effects in the LGNd, i t  was necessary to apply trains of 

stimuli to the LC, as has been the case in previous studies in other 

target areas (Hoffer et a l . ,  1973; Segal and Bloom, 1974b; Sasa et a l . ,  

1974; P h illis  and Kostopoulos, 1977; D ill ie r  et a l . ,  1978).

Two stimulation protocols were used. In the f ir s t ,  a conditioning 

train was applied to the LC at predetermined intervals prior to an OX 

shock. In this way the interaction between LC activation and the 

response to an afferent volley in the optic pathway could be examined. 

Generally, the stimulus train consisted of four 1 msec duration 

rectangular pulses at a frequency of 200 Hz.

In the second stimulation protocol, continuous trains were 

applied to the LC for periods of 10-60 sec. During the stimulus, 

average rate ac tiv ity  was recorded in a conventional manner except 

that counting was electronically blanked for a few milliseconds on either 

side of each pulse. In this way an accurate representation of the rate 

was obtained even during periods of stimulation. The trains consisted 

of 1 msec duration pulses at 10 Hz.

Fig. 22 demonstrates the effect of a conditioning train applied to 

the LC on the response to a subthreshold OX shock. The OX stimulus was 

adjusted so that under control conditions approximately 20% of the shocks 

produced short latency spikes. In the presence of a train to the LC, the 

probability of spike generation in the early component of the response is 

markedly fa c ilita te d . In addition, the slow sweep storage oscilliscope 

records and the PSTHs demonstrate that there is a fac ilita tio n  of late  

fir in g . Integration of the PSTH for the experiment shown indicated that
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Fig. 22: Effect of conditioning locus coeruleus (LC) stimulation on

the response of a LGNd neuron to optic chiasm (OX) stimulation. 

The intensity of the OX stimulus was adjusted so that under 

control conditions approximately 1 out of 5 stimuli gave 

short latency spikes. The records on the le f t  show the 

response to OX stimulation alone; the records on the right 

are after a train of four 1 msec shocks to the LC at 200 Hz 

(4 mA). The interval between the LC and OX stimuli was 

50 msec. Stimulation parameters: 0.15 msec, 1 mA.
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there was a 241% increase in the total number of spikes with conditioning 

stimulation of the LC. Note that the pattern of late ac tiv ity  seen with 

LC stimulation is somewhat different from that produced by iontophoretic 

NE (see Figs. 14C & 15). With LC stimulation, the duration of the post­

excitation pause is shortened and a large post-inhibitory-pause rebound 

peak is not usually observed. This may be due to the fact that LC 

stimulation suppresses the activ ity  of PGR cells (Nakai and Takaori,

1974) which are believed to mediate the post-excitation inhibitory period 

(Sumitomo et a l . ,  1976). As spikes move to earlie r times due to the 

fa c ilita to ry  effects of LC stimulation, suppression of the PGR cells 

allows them to fa ll within the inhibitory period and prevents a peak of 

ac tiv ity  from occurring at the end of the inhibitory pause. Intervals 

of 40 or 50 msec between the conditioning LC train and the OX shock 

produced optimal effects on the short latency spike. However, intervals 

between 20 and 100 msec were generally effective.

In subsequent experiments, continuous trains at 10 HZ were applied 

to the LC. Spontaneously active cells in normal animals invariably 

responded to these trains with a dramatic increase in fir in g  rate. Stim­

ulation intensities of 0.3 to 0.8 mA were used; the threshold current 

required appeared to depend upon the electrode placement. The degree of 

activation was roughly correlated with the stimulation intensity (Fig. 23) 

although in some cases i t  appeared as i f  the effect was "all-or-none."

As with iontophoretically applied NE, the effect of LC stimulation was 

delayed in onset (requiring 1-30 sec to attain a peak response) and 

sustained beyond the duration of the stimulus train (up to 20 sec).

2. Placement of Stimulating Electrodes

Optimal effects of LC stimulation were obtained when the electrode
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Fig. 23: A, Storage o sc iH i scope record demonstrating the effects of

locus coeruleus (LC) stimulation on the spontaneous fir in g  

of a LGNd neuron. Stimulation parameters: 10 Hz, 1 msec,

0.3 mA. B, Rate histogram of another cell comparing LC 

stimulation with iontophoretically applied norepinephrine (NE).
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tip  was either within the ipsilateral LC or just anterior to the LC, 

presumably in the dorsal NE axon bundle. Uniform activating effects 

were also obtained with the electrode just alongside the LC in the 

mesencephalic nucleus of the trigeminal nerve. Fig. 24 illustrates  the 

electrode placements in 12 rats. Since coaxial bipolar electrodes were 

used, the actual current path is from the points shown on the diagram 

(representing the position of the electrode tip ) to a location approx­

imately 1 mm dorsal. Most of the electrode placements produced uniform 

activating effects in the LGNd; an example of such a placement is shown 

in Fig. 25. However, in two cases, the electrode was positioned somewhat 

below the LC. In these animals, variable effects of stimulation were 

obtained: some cells were activated, others were depressed and many were 

unaffected. This is consistent with previous studies on the effects of 

reticular formation stimulation on ce llu lar ac tiv ity  in the LGNd (P h illis  

et a l . ,  1967b; Matsuoka and Domino, 1972; Foote et a l . ,  1974). In one 

animal, the electrode was placed in the contralateral LC. Many cells  

were activated by stimulation at this s ite , but the responses were weak 

even with high stimulation intensities.

3. Comparison with Response to Iontophoretic 

Norepinephrine

Paired comparisons were carried out between iontophoretic NE and 

LC stimulation on 23 cells in 10 animals. In a ll cases, when the 

stimulating electrode was verified to be in or near the LC, both trea t­

ments gave a comparable fa c ilita tio n  of the spontaneous fir in g  rate 

(Fig. 23B).

WB-4101 was tested for its  a b ility  to antagonize the response to
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Fig. 24: Schematic representation of LC stimulating electrode place­

ments. Electrode position is marked by producing a lesion 

at the tip . Sites from a ll frontal plane levels are mapped 

onto this representative section through the anterior LC.

Most of the actual electrode sites were close to this frontal 

plane level. Two electrodes were placed anterior to the LC 

and are not marked. • =  uniform activation of spontaneously 

active cells; ■ =  variable effects; 0=  contralateral side.
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Fig. 25: E lectrolytic lesion produced at tip  of stimulating electrode 

indicating typical placement in LC. Cresyl Violet stained, 

50-pm thick coronal section o f formalin fixed tissue. Position 

of electrode tract is marked with an arrow. The lesion was 

produced by passing a current of 20 viA for 20 sec. The 

arrowhead points to the contralateral LC. 4V = fourth 

ventricle. Calibration bar = 1 mm.
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LC stimulation. Intravenous administration of WB-4101 (100 ug/kg) caused 

a transient suppression of the activating effect in 3 animals (Fig. 26).

At the low doses used, no depression of the baseline fir in g  rate was 

observed, although with higher intravenous doses the baseline rate is 

reduced. Iontophoretic WB-4101 (15-30 nA) also blocked the response to 

LC stimulation as demonstrated in Fig. 27. Again the baseline rate is 

not significantly affected by the antagonists at the doses used. (Some­

what higher ejection currents of WB-4101 are required with 6-barrel 

electrodes to obtain blockade of the response to NE. However, with 

these pipettes less depression of the baseline rate is observed even at 

higher ejection currents than with 5-barrel pipettes. This may be due 

to the a b ility  of 6-barrel pipettes to disperse the antagonist through­

out a larger area of the c e ll's  dendritic f ie ld  without obtaining high 

concentrations at the soma which could conceivably cause non-specific 

depressant e ffects .)

In a few cells i t  was possible to demonstrate parallel blockade of 

the response to iontophoretic NE and LC stimulation (Fig. 28). In 

general, the effect of iontophoretic NE was more easily antagonized by 

WB-4101 than was the response to LC stimulation. In the example shown 

in Fig. 28, WB-4101 completely eliminated the response to NE while the 

effect of LC stimulation was markedly reduced but not entire ly  suppressed.

4. Effects in Enucleated Animals

In contrast to the effects on spontaneously active ce lls , s ilent 

cells in enucleated animals were generally not activated by LC stimulation. 

However, as with iontophoretic NE, LC stimulation markedly enhanced the 

excitatory action of glutamate (5 cells) (Fig. 29).

To provide further evidence that LC stimulation and iontophoretic
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Fig. 26: Blockade by intravenous WB-4101 of the activation of a LGNd 

neuron by locus coeruleus (LC) stimulation. Stimulation 

parameters: 10 Hz, 1 msec, 0.6 mA.
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Fig. 27: Blockade by iontophoretic WB-4101 (WB) of the activation

of a LGNd neuron by locus coeruleus (LC) stimulation. Stim­

ulation parameters: 10 Hz, 1 msec, 0.4 mA.
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Fig. 28: Blockade by iontophoretic WB-4101 (WB) of the activation of

a LGNd neuron by norepinephrine (NE) and by locus coeruleus 

(LC) stimulation. Stimulation parameters: 10 Hz, 1 msec, 

0.8 mA.
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Fig. 29: Comparison between the effects of locus coeruleus (LC)

stimulation and iontophoretic norepinephrine (NE) under

conditions of suppressed spontaneous ac tiv ity  due to

bilateral enucleation. Both LC stimulation and iontophoretic

NE fa c ilita te  the excitatory ac tiv ity  of glutamate (G) but

neither d irectly  excites the c e ll. Stimulation parameters:

10 Hz, 1 msec, 1.0 mA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NE evoke identical postsynaptic actions, I examined whether the enhanced 

excitab ility  each produced was sensitive to WB-4101. In 4 ce lls , WB-4101 

at currents of 15-30 nA produced a blockade of the fa c ilita to ry  action 

of NE (5 nA) (Figs. 30A,B). Spike amplitude was unaffected by WB-4101 

(Fig. 30A) suggesting that local anesthetic effects do not occur at the 

doses used. Similar iontophoretic currents also markedly attenuated 

the fa c ilita to ry  action of LC stimulation (3 cells) (Fig. 30C).

5. Discussion

Conditioning stimulation of the LC fac ilita ted  the in it ia l spike 

response to an afferent volley along the optic pathway. This finding 

confirms the observations of Nakai and Takaori (1974) in the cat. In 

the present study, the effect of LC stimulation on late ac tiv ity  was 

also examined. In general, there appeared to be a fa c ilita tio n  of 

longer latency ac tiv ity  as well as of the early response.

Continuous stimulation of the LC activated spontaneously active 

LGNd neurons in a manner sim ilar to that produced by iontophoretically 

applied NE. The onset of the response was delayed and the effect 

persisted after the cessation of the stimulus tra in . The time course of 

the effect was sim ilar to that observed in other LC target sites such 

as the cerebellar cortex (Hoffer et a l . ,  1973) and hippocampus (Segal 

and Bloom, 1974b). In these areas, the depression of spontaneous a c tiv ity  

produced by LC stimulation may outlast the period of stimulation by up 

to 2 min.

I t  is unlikely that peripheral effects of LC stimulation are 

responsible for the activation of LGNd neurons since stimulation of the 

contralateral LC produced weak responses. Moreover, Hoffer et a l . (1973) 

demonstrated that a rte ria l blood pressure does not change under stimulation
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Fig. 30: Blockade by WB-4101 (WB) of the fa c ilita to ry  action of

norepinephrine (NE) (A,B) and locus coeruleus (LC) stimulation 

(C). A, Storage oscilliscope tracings of the extracellular 

spike records of a "silent" cell in an acutely enucleated rat. 

The unit was activated by glutamate (G) ( le f t  panel) and this 

response was enhanced by NE (middle panel). WB applied for 

16 min antagonized the effect of NE (right panel). Note that 

the spike amplitude is unaltered during prolonged application 

of WB. Calibration: 0.5 sec, 0.5 mV. B, Rate histogram 

demonstrating the effect of WB on another c e ll. C, Blockade 

by WB of LC-stimulation-induced fa c ilita tio n  of G in a third  

c e ll. LC stimulation does not activate the cell in the absence 

of G. Stimulation parameters: 10 Hz, 1 msec, 0.5 mA.

a
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conditions s im ila r to those used in  the present study.

WB-4101 was an effective antagonist of both the responses to 

iontophoretic NE and to LC stimulation. Certain discrepancies were 

observed, however, with respect to dose. On the one hand, the response 

to iontophoretic NE was antagonized by somewhat lower iontophoretic 

currents of WB-4101 than was the stimulation effect. Similar discrepancies 

have been observed in other systems and i t  has been suggested that this 

may be due to differences in the locus of action of synaptically and 

iontophoretically released transmitter agents (see Tebecis, 1973). With 

stimulation, release of transmitter presumably occurs over a large area 

of the dendritic fie ld  of the target neuron whereas with iontophoretic 

application the effect is limited to the v ic in ity  of the pipette. The 

iontophoretically ejected antagonist has access to approximately the 

same local region of membrane as the iontophoretically released agonist 

and therefore i t  is reasonable that iontophoretically applied NE is 

more easily antagonized thaiis activation of the pathway.

On the other hand, i t  was found that LC stimulation was highly 

sensitive to systemically administered WB-4101 while iontophoretic NE 

was less strongly affected. Again the discrepancy may be related to 

geometric considerations. Therefore, although the present findings do 

not prove that physiologically released NE mediates the effects of LC 

stimulation, the evidence is highly suggestive. Moreover, i t  appears 

that both responses are mediated by an a-adrenoceptor.

The depressant response to LC stimulation reported by previous 

investigators appears to have a d ifferent pharmacological specificity  

from the activating effect. A number of studies have found that the 

depressant effects of LC stimulation are antagonized by 6-antagonists
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such as sotalol (Hoffer et a l . ,  1973; Segal and Bloom, 1974; Phillis  

and Kostopoulos, 1977; D ill ie r  et a l . ,  1978). In the spinal trigeminal 

nucleus, intraventricular administration of the e-blockers sotalol and 

propranolol selectively reduced the inhibition produced by LC stimulation 

while the a-blockers phenoxybenzamine and phentolamine were inactive 

(Sasa et a l . ,  1976). Thus, the fa c ilita to ry  effect of LC stimulation 

appears to be mediated by an a-receptor; whereas the depressant response

more closely resembles a 6-mediated effect.

In addition to the more readily apparent s im ilarities  between the 

effects of LC stimulation and iontophoretic NE (in particular, the time 

course of action), i t  was found that both treatments are inactive in 

the setting of reduced afferent excitation. In a manner similar to 

that produced by locally  applied NE, LC stimulation was able to fa c ilita te  

the excitatory action of glutamate under these conditions and this 

effect was antagonized by WB-4101. Thus, receptor mediated modulatory 

effects of pathway stimulation can be demonstrated under appropriate 

circumstances. A similar (modulatory) fa c ilita tio n  of excitab ility  

appears to occur with mesencephalic re ticu lar formation stimulation due 

to activation of the cholinergic pathway to the LGNd (P h illis  et a l . ,  

1967b).
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PART IV: SUMMARY AND CONCLUSIONS

The studies presented in this dissertation provide a physiological 

characterization of the pharmacological actions o f norepinephrine in a 

model postsynaptic area, the dorsal lateral geniculate nucleus. The aim 

of these experiments is to provide evidence for a transmitter role of 

NE in the coeruelogeniculate pathway and to further the understanding 

of central noradrenergic systems.

A number of traditional c r ite ria  must be satisfied  before a 

substance can be accepted as a chemical transmitter agent in a specific 

neuronal pathway. Although several authors have proposed c r ite r ia , those 

given by Paton (1961) and P h illis  (1966) are reasonable and concise.

These c rite ria  are summarized in Table I I .  In the following discussion,

I indicate the degree to which these c rite ria  have been met for NE in 

the coeruleogeniculate pathway and point out areas fo r further invest­

igation.

C riteria  1.-  Biochemical and histofluorescence evidence indicate 

that NE is present within axons which innervate the LGNd (Kromer and 

Moore, 1980; Fuxe, 1965; Lindvall et a l . ,  1974). The c r itic a l enzymes 

in the biosynthesis of NE, tyrosine hydroxylase and dopamine-B-hydroxylase, 

have also been localized to these fibers by immunocytochemical methods 

(Hokfelt et a l . ,  1978; Swanson and Hartman, 1975).

C riteria  2. -  With presently available methods, i t  is not possible 

to detect the release of NE from a single nerve terminal, e ither in the 

peripheral or in the central nervous system. I t  is feasib le, however,
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TABLE I I

C riteria  for Transmitter Identification

1. The presynaptic neuron should contain the suspected transmitter 

substance and be able to synthesize i t .

2. The substance should be released on stimulation of the pre­

synaptic neuron.

3. Application of the substance to the postsynaptic cell should 

reproduce the effects of the synaptically released transmitter.

4. The action of the substance on the postsynaptic cell should be

affected by blocking agents in the same way that synaptic 

transmission is ("identity  o f action").

5. There may be a system for the inactivation of the transmitter.

After Paton (1961) and P h illis  (1966).
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to stimulate a noradrenergic cell group and measure the change in NE 

turnover in its  target nuclei. Although this has not yet been carried 

out specifically  for the coeruleogeniculate pathway, data is available 

for other LC projection areas (Korf et a l . ,  1973; Arbuthnott et a l . ,

1970; Walter and Eccleston, 1973). In general, stimulation of the LC 

(in a manner similar to that used in the physiological studies reported 

here) produces a decrease in the concentration of NE and a large increase 

in the levels of 3-methoxy-4-hydroxyphenylglycol sulfate, the major 

metabolite of NE in the brain. This indicates that the turnover of "IE 

is accelerated by LC stimulation and suggests that NE is released upon 

stimulation, although the exact s ite  of this release is not known.

C riteria  3 .-  The present study (see Part I I I ,  Section D) demon­

strates that iontophoretic application of NE and stimulation of the LC 

have similar effects on the ac tiv ity  of LGNd neurons. However, experim­

ents u tiliz in g  in trace llu lar recording techniques w ill be required to 

confirm that both treatments produce identical changes in membrane 

electrical properties.

C riteria  4 .-  The a-adrenoceptor antagonist WB-4101 blocks the actions 

of both locally applied NE and LC stimulation providing evidence for 

"identity of action." Further studies with additional adrenergic antag­

onists could be carried out to strengthen this point since no receptor 

blocker is entire ly  specific. Nevertheless, WB-4101 at the doses used 

was selective for NE when compared with glutamate or acetylcholine, the 

only two substances currently considered as possible excitatory trans­

mitters in the LGNd.

C riteria  5. -  I t  is widely believed that the synaptic actions of 

NE are terminated via a specific h igh-a ffin ity  uptake mechanism. Bio-
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chemical studies have demonstrated this uptake ac tiv ity  in the dien- 

cephalon. Furthermore, lesions of the LC significantly reduce its  

activ ity  in this brain region, suggesting that the uptake activ ity  is , 

at least in part, localized to LC neurons (Kuhar, 1973). Although this 

c rite ria  is not absolutely required (a transmitter system could have no 

inactivation system other than diffusion), i t  does appear to be satisfied  

for NE in the diencephalon and therefore presumably in the LGNd.

Taken together, the evidence cited above strongly suggests that 

NE is a chemical transmitter in the coeruleogeniculate pathway. An 

understanding cf the precise mechanism whereby NE influences the activ ity  

of LGNd neurons must await studies u tiliz in g  in tracellu lar recording 

techniques. Moreover, until such studies are carried out, the possibility  

remains open that NE exerts membrane actions which a lte r relay neuron 

excitab ility  in a more complex fashion than simple monitering of extra­

cellu lar spike ac tiv ity  can reveal.

Realizing the lim itations of the experimental methods, the present 

study has demonstrated that NE, acting through an ai-adrenoceptor, can 

fa c ilita te  the exc itab ility  of geniculocortical relay neurons. This 

appears to take place via a neuromodulatory mechanism in which the cellu lar 

responsiveness to synaptic excitation is enhanced. In the absence of 

synaptic inputs, this exc itab ility  change is not sufficient by its e lf  to 

cause action potentials to be generated. Thus, the ac tiv ity  of NE is 

significantly different from that of conventional transmitters such as 

excitatory amino acids (in the central nervous system) or acetylcholine 

(at the neuromuscular junction). I t  remains to be determined whether 

NE can fa c ilita te  synaptic inhibition as well as excitation.

I t  can be speculated that the physiological correlates at the

t
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membrane level of this modulatory action are similar to those observed 

with NE or 5-HT on facial motoneurons (VanderMaelen and Aghajanian, 

personal communication) or with 5-HT on tonic-type myenteric plexus 

neurons (Wood and Mayer, 1979). In both cases (see Part I)  the f a c i l i t ­

ation of exc itab ility  is associated with a small, long lasting 

depolarization and an increase in membrane input resistance. The exact 

biochemical and biophysical mechanisms mediating the ex c itab ility  change 

are presently unknown but w ill certainly be a fru itfu l area for future 

investigation.

On the basis of previous studies beginning to explore this area, 

i t  can be speculated that monoamine-induced increases in an in tracellu lar  

messenger such as cyclic adenosine monophosphate (cAMP) or Ca2+ might 

mediate the exc itab ility  change possibly through a subsequent alteration  

of the voltage-sensitive ion channels which mediate the conductances 

involved in action potential generation. Thus, Weiss et a l. (1979) have 

suggested that 5-HT-induced enhancement of buccal muscle contractility  

in Aplysia occurs via an increase in cAMP production, however, subsequent 

steps in the modulatory process in these cells have not yet been 

elucidated. On the other hand, Wood et a l. (1979) have provided prelim­

inary evidence in myenteric neurons that 5-HT reduces the magnitude of 

an inward Ca2+ current which, in turn, suppresses Ca2+-dependent K+ 

conductances. The K+ conductance change is postulated to directly  

regulate ce llu la r e x c ita b ility . The participation of cAMP or other 

second-messenger as the in it ia l  event in 5-HT's action on myenteric 

neurons has not been excluded.

Whatever the mechanism for the fa c ilita tio n  of exc itab ility  in the 

LGNd, i t  can be speculated that such an action would endow LC neurons

i
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with the capacity to enhance the transmission of visual signals through 

the geniculate. In order to appreciate the significance of this 

phenomenon, i t  is necessary to consider the physiological activ ity  of 

the LC neurons which provide the noradrenergic innervation of the LGNd.

In the awake, freely moving ra t (Jones et a l . ,  1979) or monkey 

(Foote et a l . ,  1979) LC neurons respond to a wide range of sensory 

modalities. Auditory, visual, ta c tile  and possibly other stimuli produce 

a burst of fir in g  at a latency of 20 to 50 msec followed by a transient 

decrease in rate. With repeated presentations of the stimulus, this

response rapidly habituates.

These observations, in conjunction with the present findings 

concerning the action of NE in the LGNd, suggest that the coeruleo- 

geniculate pathway may serve to fa c ilita te  the transmission of visual 

information when the organism is presented with a novel stimulus of the 

same or d ifferent sensory modality. When the stimulus loses its  novel 

character (and therefore an awareness of i t  presumably becomes less 

important to survival), the LC system no longer produces its  "sig­

nificance enhancing" function.

I t  has been speculated that at higher levels of activ ity  the LC 

may function as an "alarm system" in response to threatening stimuli and 

serve to prepare the organism for a "survival struggle" (Redmond and Huang, 

1979). In such circumstances, i t  would be adaptive to provide maximum 

visual awareness as would be the case i f  the ac tiv ity  of the LC was increased.

In addition to the phasic fa c ilita tio n  of sensory a c tiv ity  in 

response to novel (and possibly threatening) stim uli, the LC system may 

act, in part, to set the overall responsiveness of the LGNd with respect 

to the level of consciousness. For example, during behaviorial alertness
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(characterized by desynchronization of the electroencephalogram) the 

activ ity  of LC neurons tends to be highest. On the other hand, during 

drowsiness and slow-wave sleep, f ir in g  is sporadic (Foote et a l . ,  1979) 

and when rapid eye movement (REM) sleep commences the cells become 

silen t (Jones et a l . ,  1979). Thus during REM sleep the transmission 

of visual information through the geniculate would be suppressed possibly 

allowing an internal dream generator to override any external visual 

stim uli.

The LC system is  characterized by projections to many brainstem 

sensory nuclei and cortical sensory areas as well as to thalamic sensory 

relay nuclei such as the LGNd (Lev itt and Moore, 1979; Moore and Bloom, 

1979). The LC is thus anatomically situated to induce a state of 

attention or awareness with respect to sensory modalities other than 

vision, i f  its  physiological action in some or a ll of these sensory 

nuclei were sim ilar to its  action in the LGNd.

Recent studies in the monkey auditory cortex (Foote et a l . ,  1975) 

and rat somatosensory cortex (Waterhouse and Woodward, 1980) have 

indicated that NE can enhance the responsiveness to sound and ta c tile  

stimulation in these areas. Interestingly, preliminary evidence suggests 

that in the somatosensory cortex this fa c ilita to ry  effect is mediated 

via an a-adrenoceptor (Waterhouse et a l . ,  1979).

I t  thus appears that the LC system can have modulatory effects on 

sensory transmission and processing in many central nervous system areas 

and that these modulatory actions are mediated, in at least some cases, 

hy ct-adrenoceptors. Drugs with ct-adrenergic ac tiv ity  which gain access 

to the brain would therefore be predicted to produce alterations in 

sensory perception.
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Amphetamine, a drug which is believed to increase the synaptic 

ava ilab ility  of catecholamines by inducing release from presynaptic 

terminals and by blocking reuptake (Schildkraut and Kety, 1967), does in 

fact have such effects. In human subjects, characteristic behavioral 

features of amphetamine use and abuse are hightened awareness to sensory 

stimuli and an acute sense of novelty and curiosity (Ellinwood, 1967). With 

chronic use, there may be auditory or visual hallucinations (cf. Bell,

1973) and an overwhelming sense of fear or terror (Ellinwood, 1967). 

Generally subjects taking amphetamine are free from disorders of thought 

in spite of these profound psychological effects. The toxic effects of 

amphetamine are counteracted by chloropromazine (Espelin and Done, 1968), 

a neuroleptic with potent a-blocking ac tiv ity  (Peroutka et a l . ,  1977).

The psychotomimetic activ ity  of drugs such as mescaline or LSD may 

also, in part, depend upon an interaction with brain noradrenergic 

systems which project to sensory areas. Both of these drugs have been 

found to increase the reactiv ity  of LC neurons to peripheral stimuli 

(Aghajanian, 1980). In man, the net e ffect of this might be to increase 

awareness (a commonly described attribute of the drug experience), 

produce hallucinations (particularly  visual as experienced with these 

drugs), and possibly create a state of frig h t or terror (which occasionally 

occurs in some users).

Under extraordinary circumstances in the absence of drugs, high 

levels of ac tiv ity  in the LC system may also be perceived as a state of 

anxiety, fear or terror (Redmond and Huang, 1979). The therapeutic 

activ ity  of drugs with anti anxiety effects such as the benzodiazepines 

(S. Grant and D.E. Redmond, personal communication) or opiates (see 

Redmond and Huang., 1979) might be mediated by an action at the LC. I t
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would therefore be of interest to examine specific postsynaptic a-adreno- 

ceptor-active drugs for behavioral ac tiv ity  and potential therapeutic 

usefulness in man.
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APPENDIX

Portions of the work presented in this dissertation have been 

published or submitted for publication in the following papers and 

abstracts:

1. M.A. Rogawski and G.K. Aghajanian (1979): Norepinephrine activates

lateral geniculate neurons and fa c ilita te s  retinal inputs via 

an a-adrenergic receptor, Soc. Neurosci. Abstr. 5_: 350.

2. M.A. Rogawski and G.K. Aghajanian (1980): Activation of lateral

geniculate neurons by norepinephrine: mediation by an a- 

adrenergic receptor, Brain Res. 182: 345-359.

3. M.A. Rogawski and G.K. Aghajanian (1980): Norepinephrine and

serotonin have opposite effects on the exc itab ility  of lateral

geniculate neurons, Abstracts, Ninth Annual Meeting, New England 

Pharmacologists.

4. M.A. Rogawski and G.K. Aghajanian (1980): Norepinephrine and

serotonin: opposite effects on the ac tiv ity  of lateral geniculate 

neurons evoked by optic pathway stimulation, Exp. Neurol., in press.

5. M.A. Rogawski and G.K. Aghajanian (1980): Modulation of lateral

geniculate neuron exc itab ility  by noradrenaline microiontophoresis 

or locus coeruleus stimulation, Nature, in press.

6. M.A. Rogawski and G.K. Aghajanian (1980): Locus coeruleus modulates

lateral geniculate neuron exc itab ility  via an a-adrenoceptor,

Soc. Neurosci. Abstr., in press.
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