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Abstract

Tuba is a novel scaffold protein that functions to bring together dynamin with 

components of the actin cytoskeleton. It is concentrated at synapses in brain and binds 

dynamin selectively through four N-terminal Src homology-3 (SH3) domains. Tuba binds 

a variety of actin regulatory proteins, including N-WASP, CR16, WAVEl, WIRE, 

PIR121, NAPl, and EnaWASP proteins, via a C-terminal SH3 domain. Direct binding 

partners include N- WASP and EnaWASP proteins. Forced targeting of the C-terminal 

SH3 domain to the mitochondrial surface can promote accumulation of F-actin around 

mitochondria. A Dbl homology domain present in the middle of Tuba upstream of a 

Bin/amphiphysin/Rvs (BAR) domain activates Cdc42, but not Rac and Rho, and may 

thus cooperate with the C terminus of the protein in regulating actin assembly. The BAR 

domain, a lipid-binding module which also generates curvature in lipid membranes, may 

functionally replace the pleckstrin homology domain that typically follows a Dbl 

homology domain. The properties of Tuba provide new evidence for a close functional 

link between dynamin, Rho GTPase signaling, and the actin cytoskeleton.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table of Contents

Abstract 2

Table of Figures 6

Dedication 8

Acknowledgmeiits 9

Chapter I. Introduction 12

THE SYNAPSE 12

Overview of Fre-Synaptic Compartment Fiuiction 17

CLATHRIN AND CLATHRIN-MEDIATED ENDOCYTOSIS 19

Endocytosis 19

Coat-Mediated Endocytosis 20

Non-Coat-Dependent Endocytosis 21

Kiss-and-Run: A Unique Mechanism o f Endocytosis 22

Ciathrin 23

Role of Ciathrin in Membrane Deformation 26

Non-Endocytic Coat-Mediated Membrane Budding 27

Ciathrin Adaptor Proteins 28

AP2 and API 80 Play Important Roles in Clathrin-Mediated Endocytosis 29 

The ARH/Dab2/Numb Family o f Ciathrin Adaptors 32

Some Ciathrin Adaptors Respond to Post-Translational Modifications

o f their Cargo 33

Ciathrin Accessory Proteins 34

Dynamin is Critical to the Process o f Clathrin-Mediated Endocytosis 34

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



A Multitude o f Accessory Factors Flay a Variety o f Roles in Clathrin-

Mediated Endocytosis 36

The BAR Domains o f Amphiphysin and Endophilin Share Similar

Properties 37

The BAM Domain 40

A Model for Interactions Between Selected Participants of Clathrin-

Mediated Endocytosis 43

Clathrin-Mediated Endocytosis is Necessary for Normal Synaptic

Function 46

ACTIN AND CLATHRIN-MEDIATED ENDOCYTOSIS 47

The Actin Cytoskeleton 47

N-WASP is a Critical Regulator o f the Actin Cytoskeleton 48

Actin in Bulk and Clathrin-Mediated Endocytosis 49

Actin Participates in Endocytosis in Yeast 49

Actin and Clathrin-Mediated Endocytosis in Vertebrates 51

Multiple Proteins Link Ciathrin to the Actin Cytoskeleton 52

Many Ciathrin Accessory Proteins are Regulatory Components

of the Actin Cytoskeleton 55

Dynamin May Function as a Regulator o f the Actin Cytoskeleton 57

The Role of Actin in Endocytosis 58

Actin May Specify Sites o f Endocytosis 58

Actin Function at the Ciathrin-Coated Pit 58

TUBA MAY BE A BRIDGE BETWEEN CLATHRIN-MEDIATED

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ENDOCYTOSIS AND THE ACTIN CYTOSKELETON ' 60

Rationale for the Study of Tuba 60

Chapter II. Tuba is a Synaptic Protein 63

Tuba is a Novel BAR Domain-Containing Protein 63

Tuba is Ubiquitous 66

Tuba is Found at the Synapse 69

Chapter III. Tuba is a Dynamin-Binding Protein 73

Chapter IV. Tuba Interacts with Components of the Actin Cytoskeleton 81 

The C-Terminal SH3 Domain of Tuba Binds to an Actin Regulatory

Complex 81

The C-Terminal SH3 Domain of Tuba can Promote F-Actin

Recruitment 84

Chapter V. Tuba is a Cdc42-Specific Exchange Factor 90

The DH-BAR Region of Tuba Catalyzes the Formation of ■

Active Cdc42 90

The BAR Domain of Tuba May Bind to Lipids 93

Chapter VI. Independent Identification of Tuba 97

Chapter V n. Materials and Methods 106

Chapter VIII. Discussion 112

Bibliography 134

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table of Figures

Figure 1. The synaptic vesicle cycle. 15

Figure 2. Ciathrin coats, a collage of medium and high-resolution views. 24

Figure 3. The ciathrin adaptor interaction web. 30

Figure 4. Structure of the Drosophila amphiphysin BAR domain. 41

Figure 5. A model for the interaction between selected proteins at the clathrin-

coated pit. 44

Figure 6. Domain structures of proteins that may function at the interface

between actin and the endocytic machinery in clathrin-mediated 

endocytosis. • 53

Figure 7. Domain structure of Tuba and related proteins. 64

Figure 8. Ubiquitous expression of Tuba transcripts and their protein products. 67 

Figure 9. Tuba is concentrated at the synapse in brain. 70

Figure 10. The N-terminal SH3 domains of Tuba bind dynamin-1. , 74

Figure 11. Tuba SH3 domains 1,3, and 4 interact with dynamin. 76

Figure 12. Tuba and dynamin may interact in vivo. 78

Figure 13. The C-terminal SH3 domain of Tuba binds actin regulatory proteins. 82 

Figure 14. Tuba directly interacts with N-WASP. 85

Figure 15. The C-terminal SH3 domain of Tuba recruits F-actin. 88

Figure 16. The DH domain of Tuba specifically catalyzes the activation of

Cdc42. 91

Figure 17. The BAR domain of Tuba may bind to lipids. 94

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 18. lateraction of the SH3-6 domain of Tuba with Ena/VASP proteins; 99

Figure 19. Mena co-immunoprecipitates with Tuba. 101

Figure 20. Mapping of SH3-6-binding sites. 103

Figure 21. Model for the in vivo mechanism of Tuba function. 126

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Dedication

This thesis is dedicated to my wife, Amanda, who has made incredible sacrifices to allow 

me to pursue my dreams.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Acknowledgments

There were many people who contributed to the success of this thesis. First, I am 

indebted to my mentor, Pietro De Camilli. His dedication to science and his laboratory 

are inspiring. In addition, he gave me the opportunity to work with a great group of 

intelligent and insightful individuals who allowed me to grow as a scientist and person. I 

also thank my committee, Lynn Cooley, Anthony Koleske, and Elke Stein, for their 

advice and encouragement.

My experience in the lab would have been far less enriching, had it not been for Margaret 

Butler and Lorenzo Pellegrini. There is nothing more valuable than having someone who 

looks out for you, directing you away from disaster and helping you recover when you 

have failed. I will be forever grateful to Lorenzo for the considerable amount of time he 

spent teaching me science, and for the teaching, counsel, and encouragement that Maggie 

generously provided.

There were multiple people who made my lab experience enjoyable and productive. 

Maria Vittoria Letizia Spelta eliminated as much administrative hassle as possible, and 

her friendship is appreciated. Through our common situation, Hong Chen, Khashayar 

Farsad, Scott Floyd, Warren Kim, Kresimir Letinic, Melissa Marcucci, Gian-Carlo 

Ochoa, Niels Ringstad, and Roberto Zoncu understood my day-to day trials and provided 

advice, support, encouragement, and friendship. Ottavio Cremona, Detlev Grabs, Chris 

Haffner, Volker Hauke, Gilbert Di Paolo, Julie Di Paolo, Jan Modregger, Jennifer 

Morgan, Yasuo Nemoto, Vladimir Slepnev, Kohji Takei, and Markus Wenk generously

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



shared their experience, expertise, and friendship. Special thanks to Gianiuca Cestra for 

his valuable assistance in carrying out experiments when I was no longer in the lab. 

Laurie Daniel! helped teach me electron microscopy and was a good friend—may she 

rest in peace.

Kent Rossman and John Sondek at the University of North Carolina at Chapel Hill 

welcomed me to their lab and taught me how to carry out guanyl nucleotide exchange 

assays as well as how to think about Dbl homology domains. I am indebted to them for a 

great experience.

Adam Kwiatkowski and Frank Gertler at the Massachusetts Institute of Technology were 

generous with their data, experience, and reagents, which made for an excellent 

collaboration.

I thank Jim Jamieson for giving me the opportunity to pursue both MD and Ph.D degrees. 

In the MD/Ph.D office, Marybeth Brandi and Sue Sansone could not have made life 

easier. They provided answers and solved problems even before I matriculated at Yale. 

Their help and friendship is greatly appreciated.

Vemon Avila and Sanford Bernstein, both at San Diego State University, introduced me 

to basic science. I would not be here without their assistance and support. Thank you.

10

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



It goes without saying that my success would not have been possible-without the 

encouragement of Evangelina and Antonio Salazar, my mother and father. They taught 

me early that mediocre work was unacceptable and that success could be obtained only 

through hard work, and they have supported my endeavors throughout my life. Their 

sacrifices and love are not unrecognized. Arturo Salazar is a source of inspiration and 

pride, and his help and encouragement throughout the many facets of my life are greatly 

appreciated. Rene and Adrian Salazar contribute to the enjoyment of my life.

Most importantly, I am eternally grateful to my wife, Amanda, and my sons, Jakob and 

Lucas, who have had to endure long periods of my relative and real absence. Their 

support, encouragement, and patience is incredible, and they have made my life a 

pleasure even during stressful times. Thank you—I love you.

11

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter l —Introdiictioii'

The fuBction of the neuronal synapse is the subject of intensive investigation and 

continues to provide an increasing understanding of communication between cells and 

their environment. Among the many processes which take place at the synapse, clathrin- 

mediated endocytosis plays a critical role in maintaining norma! synaptic physiology. 

Fundamental to advancing our understanding of clathrin-mediated endocytosis is 

determining the function of the actin cytoskeleton at the synapse. Accumulating 

evidence suggests that actin is a participant in clathrin-mediated endocytosis, but it is not 

clear at which step(s) and to what extent. In this thesis, I will present evidence that Tuba, 

a novel BAR domain-containing protein, is a link between the endocytic and actin 

machinery at the synapse. The introduction will provide an overview of synaptic 

physiology, clathrin-mediated endocytosis, and the relationship between clathrin- 

mediated endocytosis and the actin cytoskeleton, establishing a framework in which to 

- place Tuba.

THE SYNAPSE

Cell-cell communication is vital to ensuring homeostasis and coordinated action in all 

organisms. Cells convey information through a variety of means, including the use of 

chemical mediators. In some cases, cells secrete mediators to be carried by the blood 

stream to distant targets. Other cases may require cells to secrete regulatory molecules 

which will convey information to neighboring cells, or to the secreting cell itself. The

12
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synapse is a special unit of cell-ceil communication, where a neural cell transfers 

information, through chemical mediators in a very specific compartment, to a variety of 

target cells. Unlike most forms of cell-cell communication, the synapse is designed for 

speed, allowing cells to convey information on a millisecond time scale. Synaptic 

communication may involve a distant or neighboring cell, or be autosynaptic, all 

analogous to non-synaptic information transfer.

Neuronal synapses require at least one member of the synaptic pair, the pre-synaptic 

member, to be a neuron. Neurons are the fundamental cellular units of the nervous 

system, and have a distinct morphology closely correlated to their specialized functions. 

The nucleus is located in the cell body, also called the soma. The soma extends a large 

number of processes, known as dendrites, which function to receive information from 

other neurons through synaptic contacts. In addition, synaptic contacts are made directly 

to the soma itself. One extension from the soma is special, termed the axon, which can 

be up to a meter in length. It courses to its target to transfer information from the 

neuronal soma to the postsynaptic cell at the axon terminals. Multiple synapses can be 

present along the length of the axon. Neurons thus function to integrate information 

conveyed from other neurons through dendritic and somatic synapses, and generate a 

signal that conveys the information to other neurons or cells through the axon. Along the 

way, this signal can be modified by incoming synaptic contacts received by the neuron at 

either the axon or synaptic terminal.

13
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The synapse is composed of pre- and post- synaptic compartments (Fig.l). The pre- ■ 

synaptic compartment (Murthy and De Camilli, 2003) is always neuronal in origin and 

contains the pre-synaptic vesicle cluster. These vesicles contain neurotransmitters, the 

chemical entities which transfer information between the two cells of the synapse. The 

pre-synaptic vesicle cluster is anchored to the membrane at the active zone, the region 

where synaptic vesicles fuse with the synaptic membrane (Rosenmund et al., 2003). 

Located at the periphery of the active zone is the endocytic zone, where vesicle 

membrane is retrieved from the pre-synaptic membrane after synaptic vesicle fusion 

(Murthy and De Camilli, 2003). The post-synaptic cel! can have a variety of post

synaptic specializations, all of which function to enrich the post-synaptic membrane with 

neurotransmitter receptors as well as to maximize the speed and strength of information 

transfer between the two cells of the synapse (Sheng, 2001). These components of the 

synapse play an important role in normal synaptic physiology.

Information transfer at the synapse is either excitatory or inhibitory. Excitatory synapses 

contain pie-synaptic vesicles filled with excitatory neurotransmitters, such as glutamate 

(Conti and Weinberg, 1999). There are a variety of post-synaptic receptor types for these 

neurotransmitters, each with unique properties, which control the response of the post

synaptic cell. In neuron-neuron synapses, excitation leads to downstream propagation to 

other neurons. At the neuromuscular synapse, the reception of the excitatory signal leads 

to contraction of the recipient muscle. Inhibitory synapses contain pre-synaptic vesicles 

filled with inhibitory neurotransmitters, such as GABA and glycine, and the 

corresponding postsynaptic density contains GABA and glycine receptors, which can

14
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FIGURE 1. The synaptic vesicle cycle» See text for details. Figure courtesy of Helge 

Gad.
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lead to inhibition of the signal-generating activity of the postsynaptic neuron (Meier, 

2003). The convergence of thousands of excitatory and inhibitory synapses onto a single 

neuron are integrated by the neuronal soma to generate a response.

Overview of Pre-synaptic Compartment Function

In response to an action potential, a neurotransmitter-filled vesicle may or may not fuse 

with the pre-synaptic plasma membrane, and it is unusual for more than one vesicle to 

fuse in response to a given stimulus. However, multiple vesicles will fuse with the 

plasma membrane in response to a train of action potentials, and the pre-synaptic vesicle 

cluster can be depleted if mechanisms for membrane retrieval and vesicle reformation are 

not in place. Vesicles exist in three states in the pre-synaptic compartment (Murthy and 

De Camilli, 2003). The majority of vesicles are not tethered to sites of exocytosis and are 

instead grouped above the active zone in the pre-synaptic vesicle cluster. These vesicles 

make up the reserve pool and take the place of vesicles which have fused with the pre- 

synaptic membrane. A second group of vesicles is tethered at sites of exocytosis, and are 

in a docked state. However, these vesicles are not competent for fusion. A few vesicles 

are docked and biochemically “primed” for fusion at the active zone. In response to the 

reception of excitatory inputs, an action potential is generated at the soma of a neuron and 

conveyed down the axon to the axon terminal, where specific voltage-gated calcium 

channels located in the pre-synaptic plasma membrane are activated to allow the influx of 

calcium, which results in fusion of primed vesicles with the pre-synaptic membrane. 

Vesicle fusion leads to the release of neurotransmitter into the synaptic cleft, the 

extracellular space between the two compartments of the synapse. The neurotransmitter

17
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diffuses across the synaptic cleft and binds to receptors enriched in the post-synaptic 

membrane (Sheng, 2001).

The vesicle membrane, now located in the pre-synaptic plasmalemma, must be retrieved 

and recycled to ensure a continuous supply of vesicles, as well as to prevent an increase 

in dimension of the synapse, which could negatively affect the function of the synapse. 

This process of membrane retrieval is thought to occur by two mechanisms: kiss-and-run 

and clathrin-mediated endocytosis. In kiss-and-run, vesicles fuse with the pre-synaptic 

membrane in a brief and rapidly reversible mechanism, allowing neurotransmitter release 

and rapid vesicle reformation (Fesce et al., 1994; Palfrey and Artalejo, 2003). Vesicles 

formed by clathrin-mediated endocytosis require the coat protein ciathrin, as well as its 

adaptor and accessory proteins, to effect de novo vesicle production (Murthy and De 

Camilli, 2003). After its formation, the nascent vesicle may or may not traffic through an 

endosomal compartment. Endosomes are membrane-bound organelles which function in 

many cells to sort material internalized by endocytosis (Sachse et al., 2002). While it 

appears that endosomes are present in the pre-synaptic vesicle compartment, some data 

suggests that nascent neuronal synaptic vesicles bypass the endosomal compartment. 

Once vesicles are generated, they must be filled with neurotransmitter. This process is 

mediated by specific uptake mechanisms and requires a proton ATPase (Gasnier, 2000). 

Finally, the vesicle is shuttled back to the pre-synaptic vesicle cluster to undergo another 

round of fusion.

18
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CLATHRIN AND CLATHRIN-MEDIATED ENDOCYTOSIS

Endocytosis

Endocytosis is the process by which a variety of substances and components of the 

plasma membrane are retrieved from the cell surface, through invagination of the plasma 

membrane, with subsequent internalization of the contents in a membrane-bound vesicle 

(Conner and Schmid, 2003). The cell utilizes endocytosis for a variety of purposes, 

including retrieval of plasma membrane, nutrient uptake, and in certain cell-types, 

antigen sampling. In addition, endocytosis is involved in the regulation of signal 

transduction, as many transmembrane receptors are internalized after activation, leading 

to signal termination, although in some cases, endosomes have also been shown to have a 

signaling function (Di Fiore and De Camilli, 2001). Thus, the process of endocytosis is 

critical to normal cell function.

The cell relies on two broad mechanisms of endocytosis (Conner and Schmid, 2003). In 

coat-mediated endocytosis, the proteins ciathrin and caveolin are utilized to aid in the 

process of membrane invagination. In contrast, protein coats have not been identified in 

non-coat-mediated endocytosis. This form of endocytosis includes phagocytosis, 

macropinocytosis and ciathrin and caveolin-independent pinocytosis (also known as 

micropinocytosis). Phagocytosis is used primarily by a very specific group of cells and 

does not require a protein coat to aid in invagination of the membrane. Macropinocytosis 

and ciathrin and caveolin-independent pinocytosis also carry out endocytosis without the 

assistance of a protein coat.

19
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Coat-Mediated Endocytosis

Cells utilize a variety of mechanisms to regulate endocytosis (Conner and Schmid, 2003). 

Clathrin-mediated endocytosis is the most extensively characterized mechanism of 

endocytosis. The protein ciathrin is used to mechanically invaginate the plasma 

membrane and generate vesicles. A variety of adaptor and accessory factors have been 

identified which participate in clathrin-mediated endocytosis. Clathrin-coated vesicles 

transport a variety of cargo, including antigen, nutrients, and membrane receptors 

involved in signal transduction, and it plays a critical role in membrane retrieval at the 

synapse.

Caveolae-mediated uptake is dependent on the protein caveolin (Pelkmans and Helenius, 

2002). Caveolin-mediated endocytosis is not nearly as well understood as clathrin- 

mediated endocytosis, but is partially distinguished by the high cholesterol content of its 

vesicles, as well as the insolubility of its lipids to commonly used detergents. Caveolae 

are thought to participate in internalization of glycosphingolipids and GPI-anchored 

proteins, nutrients, bacterial toxins, and non-enveloped viruses. In addition, caveolae 

participate in signal transduction and transcytosis. Thus, one mechanism which cells use 

to invaginate membrane and carry out the retrieval of specific substances is through the 

use of proteins which mechanically deform membranes.

20
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Non-Coat Dependent Endocytosis

Many researchers have observed that endocytic vesicles can be generated independent of 

a coat to generate a uniform set of vesicles in a process named ciathrin and caveolin- 

independent pinocytosis (Conner and Schmid, 2003). The mechanism responsible for 

ciathrin and caveolin-independent pinocytosis, also called micropinocytosis, is poorly 

understood. However, many believe that the process may be dependent on the actin 

cytoskeleton. Certain cell types, such as cells of the thyroid gland, extensively utilize this 

process (Dunn and Dunn, 2001). It is clear that much work remains to be done in the 

elucidation of the mechanism of formation and function of micropinosomes.

The endocytic processes described above generate vesicles with diameters no greater than 

120 nanometers, and are involved in the concentration and uptake of molecules. The cell 

also utilizes endocytosis in the internalization of large quantities of extracellular fluid as 

well as other cells. Macropinocytosis is a form of endocytosis utilized by cells to capture 

large particles and fluid volumes from the cell exterior (Conner and Schmid, 2003). 

Macropinosomes have a wide size range, with vesicles being as large as one micron in 

diameter. The process requires the formation of membrane ruffles, which are often 

stimulated by growth factors, but the process is not well characterized, and no coat 

proteins have been identified. It is clear, however, that the process is dependent on the 

actin cytoskeleton, and bacterial pathogens exploit this actin dependency by injecting 

actin-iegulatory substances into cells which dramatically increase cell ruffling and allow 

the organism to gain access into the cell. Bulk uptake of extracellular contents of this

21
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form is important for sampling the environment for antigens, and is thus a mechanism • 

heavily utilized by immature dendritic cells.

Another endocytic mechanism which is designed to capture large particles and cells is 

phagocytosis (Conner and Schmid, 2003; Underhill and Ozinsky, 2002). Phagocytosis is 

an actin-mediated form of endocytosis specifically used by ceils of the immune system to 

engulf bacteria, cell debris, and other particles. In a well-characterized example, binding 

of the Fc receptors on the surface of a neutrophil to a bacterium coated in antibody results 

in invagination of the plasma membrane around the bacterium, in an actin-dependent 

process, which results in the ingestion of the bacterium for destruction by the neutrophil 

(Lee et al, 2003). Taken together, all of the endocytic processes described thus far 

indicate that cells utilize a variety of mechanisms to effect the uptake of a large variety of 

substances.

Kiss-and-Run: A Unique Mechanism o f Endocytosis

Some cell types have also developed a mechanism where de novo vesicle formation is 

avoided, a process termed kiss-and-run (Fesce et al., 1994; Morgan et al., 2002; Palfrey 

and Artalejo, 2003). Kiss-and-run is a form of endocytosis occurring in secretory cells 

and at the neuronal synapse, which involves the brief, rapidly reversible, fusion of the 

exocytic vesicle with the pre-synaptic membrane, followed by the immediate reformation 

of the vesicle and transport back into the pre-synaptic compartment. While initially 

controversial, acceptance of this form of endocytosis is increasing, as evidence for kiss- 

and-run is accumulating in a variety of cell types which undergo regulated exocytosis. It

22
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is proposed that the exocytotic pore never dilates, stopping fusion at the stage of a pit; 

which allows the release of neurotransmitter, but also quick reformation of the vesicle. It 

is argued that this mechanism is highly advantageous in neurons with intense synaptic 

activity, where the mechanism of clathrin-mediated endocytosis would be temporally 

inadequate to replenish the synaptic vesicle pool. The process is poorly understood at the 

molecular level. Thus, endocytosis does not absolutely require the formation of de novo 

membrane invagination.

The description of the various forms of endocytosis illustrates how cells are heavily 

dependent on this process for their existence and function. While some forms of 

endocytosis are universal, such as clathrin-mediated endocytosis, other forms are 

primarily utilized by highly specialized cells, such as phagocytosis by cells of the 

immune system.

Ciathrin

Ciathrin is a highly specialized molecule requiring a variety of adaptor proteins to 

achieve its function in vesicle formation of clathrin-coated vesicles (Brodsky et al.,

2001). Clathrin-coated vesicles obtain their characteristic appearance on electron 

microscopic images from their ciathrin coat. Ciathrin exists as a trimer of ciathrin heavy 

chain proteins in vivo, termed a triskelion, with the carboxy termini of each molecule 

interacting to form a hub from which the rest of each molecule radiates (Fig. 2). The 

remainder of the molecule is divided based on its characteristic morphology into a 

proximal leg, distal leg, and terminal domain. Each leg is maximally separated from the

23
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FIGURE 2. Ciathrin coats, a collage of medium and Mgh-resolution views. The 

model of a ciathrin cage at 21-angstrom resolution was obtained by electron microscopy. 

The ciathrin triskelion is a puckered and relatively rigid molecule. The proximal and 

distal leg domains of the ciathrin heavy chain have similar a-zigzag atomic structures, 

and the globular terminal domain of the ciathrin heavy chain is a P-propeller.

From (Kirchhausen, 2000).

24
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other legs of the triskelion. The proximal leg of each clathrin heavy chain protein is 

associated with a clathrin light chain molecule. The proximal and distal legs interact with 

each other to form pentagons, hexagons, and septagons, with the correct proportion of 

pentagons and hexagons necessary to correctly invaginate the donor membrane to form a 

clathrin-coated vesicle, in vivo, and clathrin cages in vitro. Multiple adaptor and 

accessory proteins interact with the amino terminus of the clathrin heavy chain molecule, 

which comprises the terminal domain, or “foot.” Adaptor proteins recruit clathrin 

triskelia to the target membrane and aid in triskelion polymerization, while accessory 

proteins allow the efficient generation of vesicles. In vitro, clathrin triskelia will form 

clathrin cages in the absence of lipid or any other accessory factors, demonstrating the 

triskelion’s inherent polymerization and curvature-generating properties. In addition, 

there are many actin-regulatory proteins which interact with both the clathrin heavy and 

light chains (Engqvist-Goldstein and Drubin, 2003). This is of significance as there is 

increasing data suggesting that actin may play a role in endocytosis.

Role o f Clathrin in Membrane Deformation

There are two proposed mechanisms to explain how clathrin deforms the donor 

membrane. In a mechanism advanced by Heuser, preexisting islands of clathrin 

hexagons located on the donor membrane re-arrange to form the correct proportion of 

pentagons and hexagons, resulting in membrane invagination and clathrin-coated pit 

formation (Heuser, 1980). Using quick-freeze, deep-etch, rotary replication of fibroblast 

plasma membranes, he demonstrated by electron microscopy that flat islands of clathrin 

exist associated to the plasma membrane, and that the majority of the clathrin was in
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hexagonal form. He noted that with increased membrane curvature, the clathrin lattice 

contained an increasing proportion of pentagons, and reasoned that membrane curvature 

developed from the rearrangement of clathrin within the hexagonal flat clathrin lattice, to 

include clathrin pentagons at the correct location. Other investigators favor the 

hypothesis that clathrin is polymerized de novo in response to a signal initiating clathrin- 

mediated endocytosis (Kirchhausen, 2000). As the clathrin triskelia assemble into the 

correct proportion of pentagons and hexagons, the membrane is gradually deformed into 

a vesicle. In this model, the clathrin coat cannot be changed after polymerization.

Among the reasons cited is the geometric, and therefore energetic, challenge of taking a 

stable structure and effecting its rearrangement. It has been proposed that the observed 

hexagonal clathrin islands are merely reservoirs for clathrin. However, it is widely 

accepted that polymerization of the clathrin triskelion is necessary for invagination of the 

donor membrane and formation of the clathrin-coated vesicle.

Non-Endocytic Coat-Mediated Membrane Budding

Coat-mediated budding has a physiologic role in contexts other than endocytosis. 

Clathrin-mediated budding occurs from the trans face of the golgi apparatus, as well as 

from a variety of endosomal compartments (Bonifacino and Glick, 2004). In addition to 

clathrin, the cell uses other coat proteins to generate vesicles in processes other than 

endocytosis (Bonifacino and Glick, 2004). COP I vesicles are involved in intra-golgi as 

well as golgi to endoplasmic reticulum vesicle trafficking, while COP II vesicles are 

involved in trafficking between the endoplasmic reticulum and the cis face of the golgi 

apparatus (Barlowe, 2000). Generation of both of these vesicle-types requires distinct
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protein coats which also function to mechanically invaginate the donor membrane. 

Interestingly, many of the coat proteins of COP I vesicles are believed to form a complex 

structurally resembling clathrin and the clathrin adaptor AF2 (Bonifacino and Lippincott- 

Schwartz, 2003). The precise structure of the COP II coat is unknown, although some of 

its protein components have been crystallized (Bi et ah, 2002). Although there are a 

variety of protein coats which the cell utilizes to invaginate membranes to form vesicles, 

the structural similarity between many of these coat protein complexes indicates that 

nature capitalizes on similar principles for the generation of vesicles.

Clathrin Adaptor Proteins

Adaptor proteins involved in clathrin-mediated endocytosis play a critical role in the 

recruitment of clathrin to the membrane on which the vesicle will be generated 

(Bonifacino and Traub, 2003; Traub, 2003). The majority of adaptor proteins directly 

interact with the donor membrane and clathrin, and they are also able to recognize 

specific motifs on the tails of transmembrane proteins, leading to the differential 

intemalzation of protein cargo. Interactions with the lipid bilayer are mediated through a 

variety of protein domains, which bind to phosphatidyiinositoI(4,5) bisphosphate at the 

plasma membrane. In addition to interacting with clathrin, many of the adaptors 

participating in clathrin-mediated endocytosis also directly interact with each other. The 

clathrin adaptors thus function to recruit clathrin to sites of endocytosis as well as to 

concentrate specific proteins for internalization.
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AP2 and API80 Play Important Roles in Clathrin-Mediated Endocytosis 

The most abundant of the endocytic clathrin adaptor proteins is AP2, which is a 

heterotetramer and a member of a family of adaptor proteins which function throughout 

the cell in membrane trafficking. AP2 is recruited to the plasma membrane through 

binding of PtdIns(4,5)P2 and its protein cargo (Fig. 3). Cargo recognized by AP2 

consists of transmembrane proteins containing specific dileucine and tyrosine based 

motifs in their cytoplasmic tails. The cargo-AP2 interaction results in incorporation of 

those proteins into the nascent vesicle and subsequent internalization into the cell. 

Clathrin is recruited through binding of the terminal domain of the clathrin heavy chain, 

and AP2 also interacts with other clathrin adaptor and accessory proteins. Selective 

disruption of AP2 results in a reduction, but not block, of clathrin-mediated endocytosis, 

suggesting that although it is the primary clathrin adaptor at the plasma membrane, other 

adaptors also utilize clathrin to satisfy the cell’s needs.

AP180 is the brain-specific isoform of the API 80/CALM adaptor protein family, is 

enriched in nerve terminals, and like AP2, is recruited to the plasma membrane through 

its interaction with FtdIns(4,5)P2 (Fig. 3). It binds to the amino terminus of clathrin to 

aid in its membrane recruitment, and it directly binds to AP2. The coordinated activities 

of both AP2 and AP180 have been shown to increase the effectiveness with which 

clathrin is assembled, as compared to either adaptor alone. Unlike AP2, API 80 has been 

shown to promote the polymerization of clathrin triskelia, as well as regulate vesicle size. 

Genetic experiments in which either the Drosophila melanogaster or Caenorhabditis 

elegans API 80 gene is disrupted show that the organisms have defects in neurologic
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FIGURE 3. The clathrin adaptor interaction web. A schematic representation of the 

protein-protein interactions possible between clathrin, AP-2, and alternate endocytic 

adaptors. The sorting signal or putative cargo types recognized by the different adaptors 

are boxed in black. FtdIns(4,5)P2-binding sites are indicated by the spherical gray 

attachments. AP-2 is modeled on the known molecular architecture of the core and 

appendages, but the different proteins are not to scale. pGPCR, phosphorylated G 

protein-coupled receptor; AMPA-R, a-amino-3-hydroxy-5-methyl-4-isoxazole propionic 

acid receptor. From (Traub, 2003).
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function, have a decreased number of synaptic vesicles, and synaptic vesicles 

heterogeneous in their diameter (Nonet et a l, 1999; Zhang et al., 1998). API80 also 

appears to be necessary for sorting of the SNARE protein synaptobrevin (Nonet et al., 

1999). Stonin 2, a recently characterized brain-enriched adaptor protein which binds to 

AP2 and inhibits clathrin-mediated endocytosis when overexpressed in fibroblasts, also 

directly interacts with synaptobrevin (Martina et al., 2001; Walther et al., 2004).

The ARH/Dab2/NumbFamily o f Clathrin Adaptors

Recently, several other clathrin adaptors have been identified, although their involvement 

in synaptic vesicle recycling remains unclear. The ARH/Dab2/Numb family of clathrin 

adaptors rely on an amino terminal phosphotyrosine binding (PTB) domain to interact 

with both the target membrane and cargo proteins (Bonifacino and Traub, 2003; Traub,

2003). As in other adaptors involved in clathrin-mediated endocytosis from the plasma 

membrane, the PTB domain directly binds to PtdIns(4,5)P2 (Fig. 3). ARH and Dab2 

have been shown to interact with clathrin, while Dab2 and numb have been shown to 

interact with AP2. ARH was originally identified as the defective gene product in the 

disease autosomal recessive hypercholesterolemia. It is necessary for the uptake of the 

low-density lipoprotein receptor, and Dab2 and numb are believed to interact with both 

the LDL receptor and other members of the LDL receptor family. The PTB domain 

recognizes the sequence FXNPXY in the cytoplasmic tails of these receptors. Thus, 

through the recognition of specific protein motifs in the tails of transmembrane proteins, 

the clathrin adaptors can selectively recruit proteins for internalization through clathrin- 

coated vesicles.
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Some Clathrin Adaptors Respond to Post- Translational Modifications o f their Cargo 

In addition to recognizing specific protein sequences, clathrin adaptors also recognize 

post-translational modifications. The arrestins are a group of proteins which cause the 

internalization of activated G-protein coupled receptors (Luttrell and Lefkowitz, 2002). 

Like other clathrin adaptors, arrestins interact with the plasma membrane through 

PtdIns(4,5)P2-binding, and interact with clathrin and AP2 (Fig. 3). However, they 

recognize and recruit their cargo based on its state of phosphorylation. As has been well 

described for adrenergic receptors, arrestins only promote the internalization of receptors 

which have been phosphorylated due to ligand binding.

Epsinl provides another example of an adaptor protein responding to specific 

modifications of its cargo (Bonifacino and Traub, 2003; Traub, 2003). Similar to other 

clathrin adaptors, epsin is recruited to the plasma membrane through PtdIns(4,5)P2 as 

well as AP2 binding (Fig. 3). It also directly interacts with the terminal domain of 

clathrin, providing a mechanism for clathrin recruitment, but is unique in its recognition 

of protein cargo through its ubiquitin interaction motifs (UIM). In yeast, ubiquitination is 

a well-described signal for receptor-mediated endocytosis of transmembrane proteins, 

and the yeast epsin homologs play an important role in that process (Engqvist-Goldstein 

and Drubin, 2003). In higher eukaryotes, ubiquitination of specific proteins, such as 

growth factor receptors after ligand binding, are also believed to trigger endocytosis, and 

epsin may play a role in the recruitment of these receptors to clathrin-coated pits. Epsl5, 

a major interactor of epsin at the synapse, may function cooperatively with epsin to
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promote internalization of ubiquitinated receptors (Bonifacino and Traub, 2003). Epsl5 

was originally identified as a substrate for the epidermal growth factor receptor tyrosine 

kinase (Fazioli et al., 1993). It binds to both AP2 and epsin, and also contains UIMs. 

Unlike other protein adaptors, however, it does not directly interact with clathrin, and it is 

dependent on epsin and AP2 for its membrane localization.

The previous discussion of the clathrin adaptor proteins indicates that they are critical to 

the recruitment of clathrin to sites of clathrin-mediated endocytosis. The majority of 

adaptors can directly interact with the donor membrane through direct interaction with 

PtdIns(4,5)P2, and they also bind to other adaptor proteins. Each adaptor also contains 

the ability to recognize specific motifs on the tails of transmembrane proteins, allowing 

their internalization through recruitment to clathrin-coated vesicles. Thus, the expression 

of specific clathrin adaptors allows cells to control the molecules they internalize as well 

as the processes they regulate.

Clathrin Accessory Proteins

Dynamin is Critical to the Process o f Clathrin-Mediated Endocytosis 

Accessory proteins play an important role in clathrin-mediated endocytosis. The 

functions of the accessory proteins are varied, with many having the ability to interact 

with clathrin, the clathrin adaptors, and other accessory proteins. Dynamin is an 

accessory factor critically important to fission (Hinshaw, 2000). It was originally 

identified as a tubulin-binding protein (Shpetner and Vallee, 1989), and its structure 

consists of an amino terminal GTPase domain, a pleckstrin homology domain, a GTPase
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effector domain, and a carboxy terminal proline-iich domain. The pleckstrin homology 

domain binds specifically to phosphatidy!inositol(4,5,)bisphosphate, and may aid in 

recruitment of dynamin to an appropriate membrane, and/or may play a role in the 

regulation of GTPase function. The GTPase effector domain is believed to control the 

activity of the GTPase domain. The proline-rich domain of dynamin is recognized by the 

SH3 domains of a variety of clathrin-mediated endocytosis accessory proteins (Slepnev 

and De Camilli, 2000), as well as many proteins involved in the regulation of the actin 

cytoskeieton (Orth and McNiven, 2003). There is overwhelming evidence that dynamin 

plays a major role in clathrin-mediated endocytosis; it is also involved in other forms of 

endocytosis (Schafer, 2002).

The role of dynamin in endocytosis first became apparent with the work of Koenig and 

Ikeda, which demonstrated that in the Drosophila melanogaster shibire mutant, clathrin- 

mediated endocytosis was arrested at the stage of deeply invaginated pits(Koenig and 

Ikeda, 1989). The protein mutated in shibire mutants is dynamin (van, der Bliek and 

Meyerowitz, 1991). This work, as well as the work of many others, suggests that the 

function of dynamin is to release the nascent vesicle from the donor membrane.

Dynamin forms collars at the neck of clathrin-coated pits through oligomerization of 

dynamin muMmers (Hinshaw, 2000). In vitro, stimulation of its GTPase activity leads to 

vesiculation of liposomes and lipid tubules (Marks et al., 2001; Sweitzer and Hinshaw, 

1998). The above work suggests that through activation of its GTPase activity, dynamin 

undergoes a conformational change, resulting in release of the nascent vesicle from its 

donor membrane. However, there is no direct evidence that dynamin functions as a
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mechanochemical “pinchase” at the neck of clathrin-coated pits in vivo. Alternatively, 

dynamin may function similar to other GTPases and require interaction with an effector 

protein to accomplish vesicle fission (Thompson and McNiven, 2001). Unfortunately, 

other than dynamin itself, no interactors of dynamin’s GTPase domain have been 

identified. It is of interest that there are a variety of proteins which interact with both 

dynamin and the actin regulatory machinery (Orth and McNiven, 2003). This suggests 

that dynamin may promote vesicle scission indirectly, through the recruitment of other 

factors. The relationship between dynamin and actin, and its affect on endocytosis, will 

be discussed in detail later.

A Multitude of Accessory Factors Play a Variety o f Roles in Clathrin-Mediated 

Endocytosis

In addition to dynamin, there are many other accessory factors involved in 

clathrin-mediated endocytosis, all with varied roles. Synaptojanin is a protein containing 

a domain with 3- and 4-phosphatase activity and a separate domain with 5-phosphatase 

activity, leading to the conversion of PI(4,5)P2 to PI (McPherson et al., 1996; Nemoto et 

al., 2000). Synaptojanin interacts with clathrin, AP2 (Haffner et al., 2000), and 

intersectin (see below) (Yamabhai et al., 1998), and has an important role in the 

regulation of presynaptic PI(4,5)P2 levels (Cremona et al., 1999). Presynaptic PI(4,5)P2 

levels are involved in the regulation of dynamin function, clathrin-coat assembly, and the 

actin cytoskeieton (Cremona and De Camilli, 2001). Intersectin is a large, multi-domain 

protein which interacts with a variety of proteins involved in clathrin-mediated 

endocytosis and regulation of the actin cytoskeieton, including epsin, Epsl5, dynamin.
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synaptojanin, SNAP25, mSOS, and N-WASP (Hussain et al., 2001; Okamoto et al.,

1999; Rods and Kelly, 1998; Sengar et al., 1999; Tong et al., 2000; Yamabhai et al.,

1998). Its Dbl homology domain functions as a Cdc42-specific exchange factor (Hussain 

et al., 2001). It is a component of clathrin-coated vesicles, co-loca!izes with clathrin in 

fibroblasts, and inhibits transferrin uptake when its SH3 domains are overexpressed 

(Hussain et al., 1999; Sengar et a!., 1999). Auxilin and Hsp70 function together to release 

the clathrin coat from the nascent vesicle. Auxilin directly binds to clathrin and AP2 

(Scheele et al., 2001). Stimulation of the ATPase activity of Hsc70 by auxilin leads to 

uncoating of the vesicle (Ungewickell et al., 1995).

The BAR Domains ofAmphiphysin and Endophilin Share Similar Properties 

The amphiphysin, endophilin, and syndapin (also referred to as pacsin) families form a 

special superfamily of accessory proteins involved in clathrin-mediated endocytosis. 

Brain isoforms of the three proteins share a similar domain structure, consisting of an 

amino terminal BAR domain, a variable middle region, and a carboxy terminal SH3 

domain (Slepnev and De Camilli, 2000). The amino terminal BAR 

(Bin/Amphiphysin/Rvs) domain is a protein module found in a variety of proteins 

conserved from yeast (Rvs proteins) to humans (amphiphysin and Bin proteins) 

(Habermann, 2004). Many BAR domain-containing proteins, such as the amphiphysin 

yeast homolog Rvs 167, are involved in the trafficking of membranes as well as the 

regulation of the actin cytoskeieton (Munn et al., 1995). The BAR domains of 

amphiphysin and endophilin share similar properties. They are involved in homo- and 

heterodimerization within their protein family (Peter et al., 2004; Ringstad et al., 2001;
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■ Wigge et al., 1997a), and they function as lipid-binding and curvature-generating 

modules in vitro, demonstrated by their ability to tubulate liposomes (Farsad et al., 2001; 

Peter et al., 2004; Takei et al., 1999). The endophilin SH3 domain interacts primarily 

with synaptojanin, but also binds dynamin (Ringstad et al., 1997). The variable middle 

region in amphiphysins I and II contains a c!athrin/AP2-binding region, directly linking it 

to the endocytic machinery (Slepnev et al., 2000). The carboxy-terminal SH3 domain of 

amphiphysin binds primarily to dynamin, but also interacts less avidly to synaptojanin 

and itself (David et al., 1996; Farsad et al., 2003). Syndapin has only recently been 

recognized as a member of the amphiphysin superfamily of proteins (Habermann, 2004; 

Peter et a l, 2004). Although its amino terminus has the structure of a BAR domain 

(Habermann, 2004; Peter et al., 2004), its lipid-binding, dimerization, and curvature- 

generating properties remain to be characterized. Syndapin directly interacts with 

multiple proteins involved in clathrin-mediated endocytosis and regulation of the actin 

cytoskeieton, including dynamin, synaptojanin, N-WASP, mSOS, and synapsin, through 

its carboxy-terminal SH3 domain (Qualmann et al., 1999). Members of the amphiphysin 

superfamily can thus function as organizers of the clathrin-coated pit through their 

multiple interactions with lipids, clathrin and AP2, the clathrin accessory proteins 

dynamin and synaptojanin, and regulators of the actin cytoskeieton.

Experiments carried out in the reticulo-spinal synapse of the lamprey provide further 

support that amphiphysin and endophilin are proteins with similar properties (Gad et al., 

2000; Shupliakov et al., 1997). Peptides generated to disrupt the SH3-ligand interaction 

of either amphiphysin I or endophilin I were injected into the synapses. Nerves
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corresponding to the injected synapses were electrically stimulated, and the synapses 

were then analyzed by electron microscopy to determine the effect of the peptides on 

endocytosis. The amphiphysin-specific peptide blocked endocytosis at the stage of 

clathrin-coated pits, indicating that amphiphysin may play a role in recruiting dynamin to 

the clathrin-coated pit (Shupliakov et al., 1997). Peptides specific for the endophilin SH3 

domain also blocked endocytosis at the stage of clathrin-coated pits, but in addition 

caused the accumulation of actin in regions adjacent to the active zone, sites of 

endocytosis (Gad et al., 2000). This effect is probably secondary to the effect of 

inhibiting synaptojanin recruitment. Disruption of endophilin expression in both D. 

melanogaster and C. elegans yields similar phenotypes (Schuske et al., 2003; Verstreken 

et al., 2002). As compared with the neuromuscular junctions of wild type animals, the 

number of synaptic vesicles is reduced, the amount of pre-synaptic plasma membrane is 

increased, and the number of coated structures is increased, all indicating that clathrin- 

mediated endocytosis is impaired. In addition, endophilin/synaptojanin double mutants 

have an identical phenotype to mutants where expression of only one of the proteins is 

eliminated, suggesting that they function in the same pathway (Schuske et al., 2003). 

Interestingly, amphiphysin mutants in D. melanogaster were not found to affect 

endocytosis or clathrin-mediated endocytosis (Razzaq et al., 2001; Zelhof et a!., 2001).

The role of syndapin in clathrin-mediated endocytosis has not been examined to the 

extent of amphiphysin and endophilin. Overexpression of the SH3 domain inhibits 

transferrin uptake in fibroblasts, consistent with a rote in endocytosis (Qualmann and 

Kelly, 2000). In addition, overexpression of full-length syndapin in fibroblasts leads to
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filopodia formation (Qualmann and Kelly, 2000). Disruption of endophilin function also 

leads to accumulation of actin (Gad et al., 2000), albeit through misiocalization of 

synaptojanin as opposed to a direct effect on actin polymerization, as is the case with 

syndapin (Qualmann and Kelly, 2000).

Together, this data provides further evidence that the BAR domain-containing proteins 

share similar properties both in vitro and in vivo, and function as multifunctional adaptors 

in the process of clathrin-mediated endocytosis.

The BAR Domain

The crystal structure of the Drosophila melanogaster amphiphysin BAR domain has been 

solved, and it begins to provide an explanation for the in vitro properties of the module 

(Peter et al., 2004). The BAR domain is a banana-shaped homodimer, with each subunit 

composed of three alpha helices (Fig.4). At the dimer interface the three helices come 

together to form a six-helix bundle. Due to kinking of the helices, the characteristic 

banana shape is formed. It is at the concave face of the dimer that the BAR domain is 

believed to interact with membranes. There are multiple positively charged regions of 

the concave face, facilitating interaction with the negatively charged phospholipid 

membrane, and mutation of many of these positively charged residues abolish lipid 

binding. The banana shape of the BAR domain suggests that its curvature generating 

properties may be due to the BAR domain’s concave shape. In addition, the authors also 

demonstrate that BAR domains preferentially bind to liposomes with the diameter of
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FIGURE 4. Structure of the Drosophila amphiphysin BAR domain. A, Ribbon 

representation of the antiparallel homodimer (purple and green monomers). The 

principal side chains that make up the positive patches on the concave surface are 

marked. B, Same view as in A, with the surface colored by electrostatic potential (red, 

-10 kTe-1, blue, +10 kTe-1). C, Ribbon diagram viewed along the dyad axis (concave 

face) perpendicular to A. D, Electrostatic surface viewed as in C. From (Peter et al.,

2004).
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synaptic vesicles, suggesting a role for the BAR domain as a sensor of curvature. The 

ability to preferentially interact with membranes containing the correct curvature may 

regulate when BAR domain-containing proteins are recruited to membranes. This may 

explain the behavior of amphiphysin I, which is believed to be recruited only to clathrin- 

coated pits (Heuser and Reese, 1973; Shupliakov et al, 1997). One can also predict that 

as the BAR domain generates membrane curvature, it increases its avidity for that 

membrane. Thus, the crystal structure of the BAR domain provides key new insights 

towards the understanding of its properties.

A Model for Interactions Between Selected Participants of Clathrin-Mediated 

Endocytosis

Although simplified, figure 5 provides a framework in which to begin to think about the 

interactions between clathrin and selected clathrin adaptors and accessory factors. The 

clathrin adaptors AP2 and AP180 are localized to the plasma membrane through 

interactions with PtdIns(4,5)P2 and the tails of cargo proteins; they then recruit clathrin to 

sites of endocytosis. Through recognition of the curvature of the membrane, the 

amphiphysin dimer is recruited to the clathrin-coated pit. Alternatively, amphiphysin 

recruitment could be mediated via interactions with AP2, clathrin, and/or dynamin. 

Amphiphysin may also participate in the generation of the neck of the coated-pit through 

its curvature-generating properties. Dynamin oligomers form collars at the neck of 

clathrin-coated pits, and through an unrecognized signal and unknown mechanism, 

initiate the scission reaction, releasing the nascent vesicle from the donor membrane.

43

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



FIGURE 5. A model for the interaction between selected proteins at the clathrin- 

coated pit. See text for details. From (Takei et a l, 1999).
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This model of clathriB-mediated endocytosis provides a framework in which to place the 

multitude of clathrin adaptors and accessory factors.

Clathrin-Medlated Endocytosis Is Necessary for Normal Synaptic Function 

There is abundant evidence pointing to a major role for clathrin-mediated endocytosis at 

the synapse. As early as the 1970’s, Heuser and Reese provided electron microscopic 

evidence that clathrin-coated structures were the major mechanism by which membrane 

was retrieved in the pre-synaptic compartment of the neuromuscular junction (Heuser and 

Reese, 1973). Multiple biochemical experiments subsequently demonstrated that clathrin 

was enriched at the synapse and that coated vesicles isolated from bovine and rat brain 

always contained a clathrin coat (Maycox et al., 1992; Pfeffer and Kelly, 1985). 

Clathrin-coated vesicles are easily purified from brain synaptosomes, subcellular particles 

isolated by differential centrifugation and composed of only the pre- and postsynaptic 

compartments (Huttner et al., 1983). Immunogold electron microscopy, carried out on 

synaptosomes, clearly demonstrates that clathrin-coated structures are present in the pre

synaptic compartment of the synapse, and that they are easily generated with known 

inducers of endocytosis (De Camilli et al., 1983; Takei et al., 1995; Takei et al., 1996). In 

addition, these studies also showed that clathrin adaptor and accessory proteins were 

localized in clathrin-coated structures. Genetic studies in D. melanogaster and C. 

elegans which disrupt expression of the clathrin adaptor proteins AP2 (Gonzalez-Gaitan 

and Jackie, 1997) and API80 (Nonet et al., 1999; Zhang et al., 1998) and the clathrin 

accessory protein endophilin (Schuske et al., 2003; Verstreken et a!., 2002), as well as 

electrophysiologic studies in the reticulo-spinal synapse of the lamprey, which interfered
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with the function of the clathrin-accessory factors amphiphysin (Shupliakov et a!.; 1997) 

and endophilin (Gad et al., 2000; Ringstad et al., 1999), demonstrated a striking 

perturbation of clathrin-mediated endocytosis and normal synaptic function. It should be 

noted, however, that in the case of disruption of endophilin expression in D. 

melanogaster and C. elegans, the neuromuscular junction was able to compensate for 

these change possibly through utilization of the kiss-and-ran mechanism of endocytosis 

(Schuske et al., 2003; Verstreken et al., 2002). Taken together, there is strong evidence 

that clathrin-mediated endocytosis is the principle mechanism of membrane retrieval at 

the synapse.

ACTIN AND CLATHRIN-MEDIATED ENDOCYTOSIS

The Actin Cytoskeieton

■ Actin is an abundant protein present in all eukaryotic cells, and is a major component of 

the cell’s cytoskeieton. It is an ATPase which exists in either a globular (monomeric) or 

filamentous form, and its properties are affected by whether it is bound to ATP or ADP. 

Globular actin is polymerized to generate the filamentous form. F-actin is polarized, 

meaning that the ends of the filament are not equal in form or function. The polarization 

of the actin filament is utilized by the cell to control where actin polymerization takes 

place, as polymerization is much more efficient at the barbed or plus end, and the 

polarized filament is also used by actin-specific motor proteins, the myosins, to effect 

either cell movement or the transport of objects along the actin filaments, as different 

myosin family members only move in specific directions along the actin filament.

47

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



N-WASP is a Critical Regulator o f the Actin Cytoskeieton

There are many proteins that regulate various aspects of actin’s function (Pollard and 

Borisy, 2003). These include proteins which initiate actin polymerization (Higgs and 

Pollard, 2001), sever actin filaments (Bamburg and Wiggan, 2002; McGough et al.,

2003), cap F-actin (Bear et al., 2002; Sarmiere and Bamburg, 2004), and bind actin 

monomers (to effect, for example, the state of its bound nucleotide) (dos Remedios et a!., 

2003). N-WASP is a protein which plays a critical role in the regulation of the actin 

cytoskeieton (Higgs and Pollard, 2001). It is the ubiquitous homolog of the Wiskott- 

Aldrich Syndrome protein (WASP), whose disruption causes a disease characterized by 

recurrent infections, eczema, thrombocytopenia, and cancer of the hematopoetic lineage 

(Snapper and Rosen, 1999). When activated, N-WASP stimulates a complex of proteins, 

the Arp2/3 complex, to polymerize actin. The Arp2/3 complex consists of seven proteins 

that function to nucleate actin polymerization. A variety of proteins, not all of which are 

members of the WASP superfamily of proteins, directly interact with the Arp2/3 complex 

to stimulate the polymerization of actin. N-WASP binds directly to the Arp2/3 complex 

 ̂through its carboxy terminal CA (cofilin-like, acidic) region. Adjacent to the CA region, 

N-WASP contains a verprolin-homology (V) region which directly binds G-actin, 

concentrating monomeric actin adjacent to the site of actin polymerization.

Full activation of N-WASP requires binding of the activated form of the Rho family 

small GTPase, Cdc42, to its CRIB (Cdc42 and Rac Interactive Binding) domain. In 

addition to GTP-Cdc42 binding, N-WASP also requires PtdIns(4,5)P2 binding to a region
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of the protein rich in basic amino acids (the basic region), or SH3 domain binding to its 

proline-rich region. Phenotypically, N-WASP activation leads to actin-dependent 

membrane spikes and membrane ruffles, termed filopodia and lamellipodia, emanating 

from the cell surface (Hall, 1998). N-WASP is a binding partner of multiple proteins and 

no doubt plays an important role in the regulation of the actin cytoskeieton of most cells.

The cell utilizes differential control of the cytoskeieton to carry out specific tasks. For 

example, in response to binding a bacteria opsonized with antibody through cell surface 

Fc receptors, a neutrophil will initiate, among other things, a signal transduction cascade 

which will result in the polymerization of actin at the correct location and intensity,

• resulting in the phagocytosis of the bacterium. The cell also utilizes actin for cellular 

locomotion, muscle contraction, and for generating specific structures, such as microvilli 

on enterocytes. Actin is a vitally important and versatile cellular component which the 

cell extensively utilizes to carry out its needs.

Actin in Bulk and Clathrin-Mediated Endocytosis

Actin Participates in Endocytosis in Yeast

A  role for actin in clathrin-mediated endocytosis has been postulated for some time. 

However, until recently, supporting evidence has been scant. The initial evidence 

implicating actin in the process of endocytosis came from work in yeast (Engqvist- 

Goldstein and Drubin, 2003). In an effort to identify proteins involved in receptor- 

mediated endocytosis, Riezman and colleagues developed a screening assay using the 

internalization of the yeast alpha factor protein. Alpha factor is a secreted pheromone
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which binds to a G-protein-coupled receptor to initiate mating between a and a-mating 

type yeast. Internalization of the receptor stimulates endocytosis of the receptor- 

pheromone complex, leading to degradation of the proteins in the lysosome. Many 

mutants were discovered to perturb both aipha-factor internalization and the actin 

cytoskeleton. One of these END (endocytosis) mutants disrupted the yeast actin gene 

(Munn et a!., 1995); other actin regulatory proteins were also identified. Mutants of the 

yeast clathrin heavy or light chain proteins also have defects in endocytosis and the actin 

cytoskeleton (Chu et a!., 1996; Tan et al., 1993), and the yeast amphiphysin and 

endophilin homolog, Rvsl67, also displays actin and endocytosis phenotypes when 

disrupted (Munn et al., 1995). Finally, the yeast genome contains homologs to many of 

the adaptors and accessory factors known to be involved in clathrin-mediated endocytosis 

in mammalian synapses, and experiments have demonstrated that these are indeed 

involved in receptor-mediated endocytosis (Engqvist-Goldstein and Drubin, 2003).

Many of these yeast proteins interact genetically and often biochemically with members 

of both the endocytic and actin machinery.

Supporting a connection between actin and endocytosis in yeast is the work of Kaksonen, 

et al. (Kaksonen et al., 2003), which demonstrates that in budding yeast, actin patches, 

sites of actin polymerization also believed to function in endocytosis, change their protein 

composition in a temporally uniform fashion resulting in actin patch motility and 

endocytic internalization. Using multicolor widefield epifluorescence microscopy, they 

analyzed the temporal and spatial localization of the Arp2/3 complex, activators of the 

Arp2/3 complex, an adaptor protein necessary for endocytosis, and Sla2, a protein
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considered a link between the actin and endocytic machinery. Actin polymerization was 

found to be a late step in endocytosis and necessary for internalization of endocytic 

components as well as actin patch disassembly. Yeast lacking expression of Sla2 

exhibited immobile actin patches capable of nucleating actin tails. This reinforces the 

idea that actin patches are sites of endocytosis, and that actin polymerization is a 

requirement of the endocytic process. Thus, it appears that the link between endocytosis 

and the actin cytoskeleton was established early in evolution.

Actin and Clathrin-Mediated Endocytosis in Vertebrates 

There is increasing evidence that actin plays an important role in endocytosis in 

vertebrates as well. Dunaevsky and Connor demonstrated by immunofluorescence 

confocal microscopy, in a preparation of frog neuromuscular junction lacking the post- 

synaptic compartment, that the pre-synaptic compartment has a rich actin network which 

does not overlap with the pre-synaptic vesicle cluster and sites of exocytosis (Dunaevsky 

and Connor, 2000). Work by Shupliakov, et al. (Shupliakov et al., 2002), in the 

reticulospinal synapse of the lamprey demonstrated that actin is localized around the 

active zone and pre-synaptic vesicle cluster of the synapse. Upon stimulation, actin 

filaments proliferated from the peri-active zonal region, which co-incidentally is the area 

where endocytosis is greatest. Vesicles, possibly newly formed endocytic vesicles, were 

found to be tethered to these filaments. When they perturbed the actin cytoskeleton with 

a variety of toxins, clathrin-mediated endocytosis was impaired and numerous shallow 

clathrin-coated pits accumulated. In addition, vesicles were found to accumulate and 

aggregate, suggesting a block in synaptic vesicle transport. Merrifield, et a l.
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demonstrated that actin was recruited to sites of endocytosis after the recruitment of first 

clathrin, and then dynamin, and that actin recruitment was necessary for the 

disappearance of clathrin from the site of clathrin-coated pit formation (Merrifield et a!.,

2002). The recruitment of actin to sites of endoc)dosis indicates that actin plays an 

important role in endocytosis.

Multiple Proteins Link Clathrin to the Actin Cytoskeleton

There are a variety of proteins in mammals which form a bridge between clathrin and the 

actin cytoskeleton (Fig. 6). Hipl was originally identified as an interactor of huntingtin, 

the causative protein of Huntington disease (Kalchman et ai., 1997). Hipl and its 

relative, HiplR, are enriched in clathrin-coated vesicles and co-localize with clathrin 

(Engqvist-Goldstein et al., 2001; Legendre-Guillemin et al., 2002). Hipl binds to both 

clathrin heavy and light chains, as well as the clathrin adaptor AP2 (Legendre-Guillemin 

et al., 2002; Metzler et al., 2001). HiplR directly binds F-actin and clathrin light chain 

(Legendre-Guillemin et al., 2002). Ankyrin is a member of the spectrin-based 

cytoskeleton, originally described in erythrocytes and which interacts with the actin 

cytoskeleton, which binds to the clathrin heavy chain protein as well as the spectrin beta 

subunit (Rubtsov and Lopina, 2000). Overexpression of the ankyrin repeats, a protein 

module originally described in ankyrin, inhibits the uptake of the low density lipoprotein 

receptor, which requires clathrin-mediated endocytosis for internalization (Michaely et 

al., 1999). Myosin VI is a member of the myosin superfamily of actin-dependent motor 

proteins (Buss et al., 2002). It is enriched in clathrin-coated vesicles and overexpression
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FIGURE 6. Domain structures of proteins that m ay function a t the interface 

between actin and the endocytic machinery in clathrin-mediated endocytosis. a,

Hipl and HiplR, b, myosin VI, c, Abpl, d, cortactin, e, intersectin-s and intersectin-1, 

and/, syndapin. The arrows point to interacting proteins. Abbreviations: ANTH, AP180 

- N-temninal homology domain; CL HC, clathrin heavy chain; CL LC, clathrin light chain;

: SH3, src-homology 3 domain; A, acidic motif; EH, Eps 15-homology domain; DH, Dbl- 

homology domain; PH, pleckstrin-homology domain. From (Engqvist-Goldstein and 

Drubin, 2003).
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of the tail domain inhibits transferrin uptake (Buss et al, 2001; Morris et al., 2002). 

Unlike the other myosin family members, it is a minus end-directed motor (Wells et a!.,

1999). ACKl and 2 are tyrosine kinases which interact with the clathrin heavy chain 

(Teo et a!., 2001; Yang et al, 2001b), the sorting nexin, SNX9 (Lin et al., 2002), and are 

effectors for the small Rho family GTPase Cdc42 (Mott et al., 1999). ACK2 can be co- 

immunoprecipitated with clathrin (Lin et al., 2002), and overexpression of ACKl or 2 

results in inhibition of transferrin uptake (Teo et al., 2001; Yang et al., 2001b), as well as 

disruption of stress fibers and focal adhesions (Yang et al., 2001a). The discovery of 

proteins which interact with clathrin and interact with the actin cytoskeleton under a 

variety of capacities further suggests that actin plays a role in endocytosis.

Many Clathrin Accessory Proteins are Regulatory Components of the Actin 

Cytoskeleton

In addition to clathrin, dynamin, a clathrin accessory protein absolutely necessary for 

clathrin-mediated endocytosis (Hinshaw, 2000), interacts with many proteins that are 

regulators of the actin cytoskeleton (Fig. 6). Intersectin was introduced earlier as a 

member of clathrin coated vesicles (Hussain et a!., 1999), whose SH3 domains can block 

transferrin uptake when overexpressed (Sengar et al., 1999). It interacts with epsin,

Eps 15, dynamin, synaptojanin, mSos, and N-WASP, and contains a Dbl homology 

domain which functions as a Cdc42-specific exchange factor (Tong et a!., 2000; 

Yamabhai et a!., 1998). A variety of its protein interactors are regulators of the actin 

cytoskeleton, and Cdc42 initiates filopodia formation (Hussain et al., 2001).
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Syndapin/Pacsin contains an SH3 domain that when overexpressed inhibits transferrin 

uptake (Qualmann and Kelly, 2000). Syndapin interacts with dynamin, synaptojanin, N- 

WASP, mSos, and synapsin through its SH3 domain (Qualmann et al., 1999). 

Overexpression of the full-length protein leads to filopodia formation (Qualmann and 

Kelly, 2000). Abpl is a Src tyrosine kinase substrate (Larbolette et al., 1999) which 

directly binds to dynamin and F-actin (Kessels et al., 2001), and the yeast homolog can 

stimulate actin polymerization through the Arp2/3 complex (Goode et al., 2001). It 

localizes to lamelUpodia (Kessels et al., 2000) and partially localizes with many of the 

accessory proteins of clathrin-mediated endocytosis (Kessels et a!., 2001). Transferrin 

uptake is inhibited in fibroblasts whose Abpl expression has been reduced by Abpl- 

specific RNAi (Mise-Omata et al., 2003). Cortactin is also a Src tyrosine kinase substrate 

(Wu et al., 1991). It interacts with dynamin (McNiven et al., 2000) and F-actin (Wu and 

Parsons, 1993), and it is an activator of the Arp2/3 complex, which directly catalyzes 

polymerization of actin (Uruno et al., 2001). Cortactin localizes to lamellipodia 

(Kaksonen et al., 2000) and podosomes (Bowden et al., 1999), both of which are.actin- 

rich structures, and it also localizes to endosomes and clathrin-coated pits (Cao et al., 

2003), structures which utilize clathrin-mediated budding. The ability of dynamin to play 

a critical role in clathrin-mediated endocytosis as well as interact with the described actin 

regulatory proteins indicates that dynamin may provide a link between the actin and 

endocytic machinery, and that actin may play a role in endocytosis.
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Dynamin May Function as a Regulator o f the Actin Cytoskeleton

While dynamin is an essential regulator of endocytosis, there is some data suggesting that 

dynamin might also function as an actin regulatory protein. Dynamin has been localized 

to the actin tails of Listeria monocytogenes as well as the actin tails of endosomal 

structures, both sites where endocytosis does not play a role (Lee and De Camilli, 2002; 

Orth et al., 2002). Further, dynamin mutants were able to either abolish the actin-rich 

podosome, a structure involved in cell motility in some cell types, or inhibit the dynamics 

of podosomal actin (Ochoa et al., 2000). Mutants of the GTPase domain of dynamin 

were also shown to inhibit PIP kinase-induced actin tail number and organelle velocity 

(Lee and De Camilli, 2002; Orth et al., 2002). Disruption of the interaction between 

cortactin and dynamin prevented the formation of membrane “waves,” actin-rich 

structures formed in response to stimulation of NIH-3T3 cells with PDGF (Krueger et al.,

2003). In addition to inhibition of the wave phenotype, the reorganization of other actin 

structures, such as stress fibers, was also impaired (Krueger et al., 2003). These 

observations, albeit preliminary, suggest the possibility that dynamin may itself be a bona 

fide regulator of the actin cytoskeleton. Nevertheless, given the prominence of its role in 

endocytosis, it is likely that dynamin functions as a bridge between endocytosis and the 

actin cytoskeleton. Additionally, the association of members of the actin cytoskeleton 

with clathrin itself indicates that actin plays an important role in clathrin-mediated 

endocytosis.
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The Role of Actin in Endocytosis 

Actin May Specify Sites o f Endocytosis

Although it is becoming increasingly apparent that actin plays a role in clathrin-mediated 

endocytosis, it is unknown at which step(s) it participates. Actin has the ability to play a 

variety of roles in the endocytic process. Multiple studies indicate that actin may 

delineate sites of endocytosis. The clathrin adaptor AP2 has been found to co-localize 

with actin stress fibers (Bennett et al., 2001). Co-localization was disrupted by the actin- 

specific poison, cytochalasin D (Bennett et al., 2001). This same study also showed that 

overexpression of the Hub fragment of clathrin disrupted the AP2-stress fiber co

localization and resulted in the dissociation of HiplR, a protein which binds both clathrin 

and F-actin that may be responsible for the co-localization of the two proteins. Work in 

which clathrin dynamics were visualized in live cells also suggests that sites of clathrin- 

mediated endocytosis may be specified by actin. When cells were treated with the actin- 

specific drug latrunculin-B, sites of clathrin-coated pit formation were random (Gaidarov 

et al., 1999). This is in contrast to cells whose actin cytoskeleton was not perturbed, 

where clathrin-coated pits were continually generated at the same location. The lamprey 

and D. melanogaster neuromuscular junctions also appear to restrict endocytosis to 

specific sites (Dunaevsky and Connor, 20(X); Shupliakov et al., 2002). Thus, actin may 

play a role in specifying sites of clathrin-mediated endocytosis.

Actin Function at the Clathrin-Coated Pit

While it appears that actin may specify sites of clathrin-mediated endocytosis, actin 

probably plays a more important role after formation of the clathrin-coated pit.
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Experiments carried out by Lamaze, et al., demonstrated that cells treated with ■ 

latruncuIin-A, endocytosis is blocked at the coated-pit stage (Lamaze et al., 1997). And 

in the previously described work of Merrifield, et al., actin does not appear at sites of 

clathrin-mediated endocytosis until after the recruitment of dynamin (Merrifield et al., 

2002). This is congruent with work described above which suggests that dynamin forms 

a significant link between endocytosis and the actin cytoskeleton. What does actin do at 

the coated pit? Merrifield observed that clathrin-coated structures moved away from the 

membrane following the appearance of actin (Merrifield et al., 2002). This suggests that 

nascent clathrin-coated vesicles may contain actin tails which propel them to their 

destination. Alternatively, actin may be required to release the nascent vesicle from the 

plasma membrane. A burst in actin polymerization may be able to generate force 

sufficient to stretch the neck of the clathrin-coated pit, leading to separation of the vesicle 

from the donor membrane. Polymerization of actin could also be used, with the 

assistance of myosin family proteins, to constrict the neck of the clathrin-coated pit 

sufficient to effect the release of the nascent vesicle. Filamentous actin may also be 

generated to provide tracks on which vesicles can be transported to their destination, 

using actin-dependent motor proteins such as myosin VI, which directly interacts with 

clathrin. Taken together, it appears that actin may play an important role in clathrin- 

mediated endocytosis after the coated pit has formed.

The different potential roles for actin described above are not mutually exclusive. That 

is, there is no reason why actin cannot simultaneously delineate sites of endocytosis, aid 

in vesicle fission, and transport the vesicle to its destination, using some or all of the
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delineated mechanisms. Dynamin is likely to play an important role in the recruitment of 

actin, probably through its interaction with multiple actin-regulatory proteins which when 

stimulated, lead to the de novo polymerization of actin at the appropriate site. PIP2 levels 

at sites of endocytosis are also likely to have an effect on the polymerization of actin. 

There are a variety of potential roles for actin filaments in the process of endocytosis, and 

either alone or working in concert, these functions are likely to increase the efficiency of 

membrane recycling.

TUBA MAY BE A BRIDGE BETWEEN CLATHRIN-MEDIATED 

ENDOCYTOSIS AND THE ACTIN CYTOSKELETON

Rationale for the Study of Tuba

The BAR domain was originally identified as a region of homology among the amino 

termini of the proteins Binl, amphiphysin 1, and Rvs 167. In vitro analysis of the BAR 

domain carried out in our lab indicates that it functions in lipid-binding, homo- and 

hetero-dimerization, and curvature generation (Farsad et al., 2001; Ringstad et al., 2001; 

Takei et al., 1999). When these observations were made, BAR domains were typical of 

proteins implicated in endocytosis. Database searches using the BAR domain of 

amphiphysin I identified a novel partial protein, KIAAIOIO, containing a BAR domain 

homology region. KIAAIOIO, like amphiphysin and endophilin, also contained SHS 

domains. This raised the possibility that it might be a novel member of the endocytic 

machinery.
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The putative BAR domain of KIAAIOIO was also of interest because of its location 

within the protein. At the time, the BAR domains of all the described BAR domain- 

containing proteins were located at the amino terminus. The BAR domain homology 

region of KIAAIOIO, however, was located in the middle of the protein. Furthermore, 

the predicted BAR domain of KIAAIOIO was located downstream of a Dbl homology 

region. Dbl homology domains function as exchange factors for the Rho family of small 

GTPases, which among other things, regulate the actin cytoskeleton (Hoffman and 

Cerione, 2002). This observation was exciting, as KIAAIOIO would provide a further 

link between endocytosis and the actin cytoskeleton. Dbl homology domains were 

invariably followed by pleckstrin homology domains, which function as phosphatidyl- 

inositol binding modules (Hoffman and Cerione, 2002). The Dbl homology domain of 

KIAAIOIO, however, was followed by the putative BAR domain. As described above, 

one of the functions of the BAR domain is to bind lipids, suggesting that the BAR 

domain might functionally replace the pleckstrin homology domain.

In summary, KIAAIOIO was a protein with a region homologous to the BAR domain of 

amphiphysin I, as well as multiple SH3 domains, suggesting a structural similarity with 

amphiphysin and endophilin, proteins shown to be important contributors to clathrin- 

mediated endocytosis. KIAAIOIO also contained a region homologous to Dbl homology 

domains, which activate Rho family members to effect changes in the actin cytoskeleton. 

Thus, there was sufficient evidence to investigate whether KIAAIOIO was a member of 

the endocytic machinery, and tantalizing hints that it might also be an actin regulatory 

protein, resulting in a novel protein which would link endocytosis to the actin
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cytoskeleton. A full-length clone of KIAAIOIO was generated and named Tuba. What 

follows is an initial characterization of the Tuba protein.
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Chapter II—Tuba is a Synaptic Protein

Tuba Is a Novel BAR Domain-Containing Protein

A BLAST search for proteins containing a domain related to the BAR domain of 

amphiphysin-1 revealed a large number of sequences. In one (KIAAIOIO), the putative 

BAR domain is not located at the N-terminus of the protein as in most other sequences, 

but downstream of a DH domain (Fig. lA). Although the overall homology to the 

amphiphysin-1 BAR domain is limited (24% identical and 39% similar) (Fig. IE), 

similarities are concentrated in regions generally conserved among the Bin/amphiphysin 

family. This region in KIAAIOIO is currently identified as a BAR domain by protein 

module-recognizing algorithms such as those of the Pfam and SMART programs.

We undertook 5’-RACE using human cDNAs from muscle and brain to isolate a full- 

length protein corresponding to KIAAIOIO. This protein, which we have named Tuba in 

line with the tradition of naming large synaptic proteins after musical instruments (Cases- 

Langhoff et al., 1996), comprises 1577 amino acids with a predicted molecular mass of 

178 kDa. The corresponding gene is located on human chromosome 10. The domain 

structure of Tuba (Fig. lA) includes four N-terminal SH3 domains (referred to as SH3-1, 

SH3-2, SH3-3, and SH3-4), a predicted coiled-coil domain, a DH domain, the BAR 

domain, and two additional C-terminal SH3 domains (SH3-5 and SH3-6). In addition, a 

proline-rich low complexity region containing putative SH3 domain-binding sites is 

present upstream of the coiled-coil region (Fig. lA).

In an independent line of study, a yeast two-hybrid screen aimed at identifying ligands 

for the EnaWASP family protein EVL from an embryonic mouse library led to the 

isolation of two independent clones highly homologous to the C terminus of KIAAIOIO
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FIGURE 7. Domain structure of Tuba and related proteins. A, Tuba, Tuba2, and 

TubaS are shown with domains of interest noted. The thick lines below Tuba indicate the 

portion of Tuba encoded by KIAAIOIO and the partial clones isolated in the yeast two- 

hybrid screen for EVL interactors. Also shown is the shorter isoform of Tuba as well as 

the C. elegans Tuba homolog, GEI-18. B, shown is an alignment of the BAR domains of 

the Tuba family of proteins. The amphiphysin (Amp), Tuba, and Tuba3 BAR domains are 

from human; the Tuba2 sequence is from monkey; and the GEI-18 sequence is from C. 

elegans.
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(Fig. 7A) (data not shown). Reverse transcription-PCR using an embryonic mouse cDNA 

library was carried out to obtain the full-length gene, which tumed out to be the mouse 

ortholog of Tuba. Mouse Tuba is 70% identical and 77% similar to human Tuba, has a 

similar domain structure, and is encoded by a gene located on mouse chromosome 19.

Searches through genomic and expressed sequence tag data bases revealed numerous 

expressed sequence tags to two genes that encode proteins homologous to the C-terminal 

half of Tuba in both human and mouse. We have named these proteins Tuba2 and Tuba3 

(Fig. lA). Tuba2 is located on human chromosome 4 and mouse chromosome 3, and 

TubaS is located on human chromosome 5 and mouse chromosome 8. Tuba2 is 41% 

identical and 60% similar to Tuba, and TubaS is 25% identical and 41% similar to Tuba. 

Tuba2 is 31% identical and 48% similar to Tuba3. Recent searches have also revealed 

what appears to be an alternately spliced form of Tuba that is similar in stracture to 

Tuba2 and Tuba3 (Fig. 7A).

A putative ortholog of Tuba, GEI-18 (GEX interactor-18), was identified in 

Caenorhabditis elegans (Fig. 7A) (Tsuboi et al., 2002). Two alternate transcripts of GEI- 

18 are described that comprise the N- and C-terminal halves of the protein. Although not 

recognized by Pfam or SMART, the region C-terminal of the DH domain in GEI-18 

appears to be very similar to a BAR domain. A comparison of the BAR domains of the 

Tuba family of proteins with each other and human amphiphysin-1 is shown in Fig. IB.

Tuba Is Ubiquitous

Northern blot analysis of human tissues with a probe corresponding to the C terminus of 

Tuba (nucleotides 4035-4540) revealed two transcripts of 7.3 and 6 kb (Fig. 8A) whose 

levels varied in different tissues. A probe directed against the N-terminal half of the 

protein (nucleotides 1246-1696) recognized only the larger transcript (data not shown). A
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FIGURE 8. Ubiquitous expression of Tuba transcripts and their protein products. A, 

multiple-tissue Northern blot using a probe directed against the 3’ end o f  Tuba. B ,  

multiple-tissue Western blot of rat tissue post-nuclear supernatants with affinity-purified 

Tuba-specific antibodies. Sk., skeletal.
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third transcript of 4.5 kb was observed in a number of mouse tissues with a larger probe 

corresponding to the C terminus of mouse Tuba (nucleotides 2971-4742) (data not 

shown). This Tuba mRNA likely encodes only the second half of the protein, i.e. a Tuba 

splice variant similar in domain structure to the homologous proteins Tuba2 and Tuba3 

(Fig. 7A). When tested by Western blotting against various rat tissues, affinity-purified 

antibodies generated against the C terminus of Tuba recognized a band at the expected 

molecular mass of full-length Tuba (180 kDa). The band was the strongest in testis, 

followed by brain, heart, liver, spleen, and lung. In addition, the same antibodies 

recognized lower molecular mass bands at 105 and 75 kDa with differential tissue 

distribution that may represent altematively spliced forms of Tuba or proteolytic C- 

terminal fragments (Fig. 8B). The 75-kDa band may also represent cross-reactivity of the 

antibodies against either Tuba2 or Tuba3, whose molecular masses are predicted to be in 

this range. Collectively, these data indicate that Tuba has a broad tissue distribution and 

may exist in multiple isoforms.

Tuba Is Found at the Synapse

To determine the localization of Tuba in brain, where dynamin participates in the 

clathrin-mediated endocytosis of synaptic vesicles, rat brain cryosections were stained for 

Tuba by immunofluorescence. Tuba immunostaining yielded a punctate pattem outlining 

the surface of neuronal perikarya and dendrites that co-localized with immunoreactivity 

for the synaptic markers amphiphysin-1 and dynamin-1 (Hudy-1 antibodies) (Fig. 9A). In 

addition. Tuba immunoreactivity was observed within neuronal cell bodies at locations 

that corresponded to the Golgi complex, as shown by counterstaining for the Golgi 

marker GM-130 (Nakamura et a!., 1995). However, high magnification observation 

indicated that GM-130 and Tuba did not have an overlapping distribution, suggesting that 

the two antigens localized to distinct Golgi complex subcompartments (Fig. 9A).
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FIGURE 9. Tuba is concentrated at the synapse in brain. A, double 

immunofluorescence of rat brainstem frozen sections with antibodies directed against 

Tuba (red) and other antigens (green) as indicated. Tuba co-localizes with the 

synaptically enriched proteins amphiphysin-1 and dynamin-1. Synapses appear as bright 

fluorescent puncta that outline the surface of perikarya and dendrites. In addition, Tuba 

immunoreactivity is present in the Golgi complex area, as shown in the section 

counterstained for the Golgi complex marker GM-130. Within the Golgi complex, 

however. Tuba and GM-130 do not have an overlapping distribution. B, immunogold 

labeling of a lysed synaptosome demonstrating the concentration of Tuba at the periphery 

of the synaptic vesicle cluster in the pre-synaptic compartment. The arrow points to a 

clathrin-coated vesicle.
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To analyze the synaptic localization of Tuba in more detail, lysed synaptosomes were 

processed for anti-Tuba immunogold electron microscopy using a pre-plastic embedding 

procedure. Gold immunolabeling was detected in the pre-synaptic compartment, where it 

was primarily concentrated at the periphery of synaptic vesicle clusters (Fig. 9B). These 

are the regions where clathrin-mediated endocytosis occurs (for example, see a clathrin- 

coated vesicle in Fig. 95) and where pre-synaptic actin is concentrated. This localization 

is consistent with a role of Tuba in endocytosis and actin function, as proposed for other 

BAR domain-containing proteins. To begin elucidating the physiological role of Tuba, 

the binding partners of its SH3 domains were investigated.
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Chapter III—Tuba is a Dynamin-Binding Protein

To identify binding partners of the N-teraiinal SH3 domains of Tuba, a GST fusion 

protein comprising the four N-terminal SH3 domains (SH3-1,2,3,4) was generated and 

incubated with Triton X-lOO-solubilized rat brain extracts in affinity chromatography 

experiments. As shown by Coomassie Blue staining of SDS gels of the material retained 

by the beads, the fusion protein, but not GST alone, specifically and efficiently retained a 

protein of 100 kDa (Fig. lOA). This protein was identified as dynamin-1 by matrix- 

assisted laser desorption ionization time-of-flight (MALDI-TOF) spectrometry (data not 

shown) and immunoblotting (Fig. 105). The interaction between the SH3 domains of 

Tuba and dynamin-1 is direct because it could be confirmed by far-Westem blotting 

using HA tagged SH3-1,2,3,4 as a probe (data not shown). Furthermore, dynamin (but 

not synaptotagmin) could be coprecipitated with Tuba from Triton X-100-solubilized rat 

brain extracts, demonstrating that the interaction can occur in vivo (Fig. 12A). The 

separate analysis of each of the four SH3 domains in affinity purification experiments 

revealed that all of them bound dynamin and that SH3-4 had the highest affinity for 

dynamin, followed by, in order of decreasing affinity, SH3-1, SH3-3, and SH3-2 (Fig.

11). We conclude that dynamin is the main ligand of the Tuba N-terminal region.

To better determine whether the interaction between dynamin and the N-terminus of 

Tuba is relevant in vivo, we expressed HA-tagged SH3-1,2,3,4 in Chinese hamster ovary 

cells and determined its effect on transferrin uptake, a dynamin-dependent endocytic 

reaction. It was shown previously that SH3 domains that bind dynamin can function as 

potent inhibitors of this process, probably by titrating out dynamin (Shupliakov et al., 

1997; Wigge et al., 1997b). When expressed in Chinese hamster ovary cells, SH3-1,2,3,4 

had a cytosolic distribution and inhibited transferrin internalization (Fig. 125),
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FIGURE 10. The N-terminal SH3 domains of Tuba bind dynamin-1. A, bead- 

immobilized GST and a GST fusion protein of the N-terminal region of Tuba (SH3- 

1,2,3,4) were incubated with a Triton X-100-solubilized rat brain extract, and the bound 

material was analyzed by SDS-PAGE and Coomassie Blue staining. A band of 100 kDa 

(dynamin) was selectively affinity-purified. The greater abundance of dynamin than of 

the fusion protein used as bait is likely to reflect the oligomerization state of dynamin. B, 

shown is an anti-dynamin Western blot of the material affinity-purified by GST or the 

GST fusion protein.
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FIGURE 11. Tuba SH3 domains 1 ,3, and 4 interact with dynamin. Bead 

immobilized GST and GST fusion proteins encompassing different combinations of the 

N-terminal SH3 domains of Tuba were incubated with a Triton X- 100-solubilized rat 

brain extract, and the bound material was analyzed by SDS-PAGE and Coomassie Blue 

staining. A band of 100 kDa (dynamin) was selectively affinity-purified by SH3 domains 

1,3, and 4, but not SH3-6. SH3-2 interacts with dynamin, but only weakly. Bands below 

the 100 kDa dynamin band represent fusion proteins. Note the intensity of the dynamin - 

band is greater with increasing numbers of SH3 domains.
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FIGURE 12. Tuba and dynamin may interact in vivo. A, control or anti-Tuba 

antibodies were used to generate immunoprecipitates from a Triton X- 100-solubilized rat 

brain extract. Western blots for Tuba, dynamin, and synaptotagmin of the 

immunoprecipitates are shown. B, Chinese hamster ovary cells were transfected with 

HA-tagged Tuba SH3-1,2,3,4 and then incubated for 7 min with Alexa-transferrin prior 

to fixation in 4% formaldehyde, followed by anti-HA immunofluorescence. 

Overexpression of Tuba SH3-1,2,3,4 inhibited transferrin uptake, as demonstrated by the 

lack of intracellular transferrin fluorescence in the transfected cell.
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suggesting that the N terminus of Tuba can interact with dynamin in vivo. Cytosolic 

expression of the C terminal SH3 domain (which does not bind dynamin; see below) had 

no effect on transferrin uptake (data not shown).
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Chapter IV—Tuba Interacts with Components of the 

Actin Cytoskeleton

The C-terminal SH3 Domain of Tuba Binds to an Actin Regulatory Complex 

We next searched for interactors of the C-terminal SH3 domains of Tuba. GST fusion 

proteins of SH3-5 and SH3-6 were generated and used in pull-down experiments with 

Triton X- 100-solubilized rat brain extracts. No major interactors were found for SH3-5 

(data not shown). However, SH3-6 (but not GST alone) pulled down a variety of proteins 

as revealed by the Coomassie Blue-stained SDS gel of the affinity-purified material (Fig. 

13). Each of the major protein bands was excised, trypsin-digested, and analyzed by 

MALDI-TOF spectrometry. The identified proteins are listed in Fig. 13 (upper panel). 

For some proteins, the interaction was validated further by Western blotting (Fig. 13, 

lower panels) (data not shown). Two of the major bands were actin and tubulin. Another 

was Hsp70, which is often found in eluates of pull-down experiments, possibly reflecting 

the promiscuous role of this ATPase in protein folding reactions. All other bands 

represent proteins that are either directly or indirectly linked to the regulation of actin 

dynamics.

The most abundant protein was N-WASP, the ubiquitous and brain enriched homolog of 

the Wiskott-Aldrich syndrome protein WASP (Miki et al., 1996). CR16 and WIRE (also 

known as WICH) are both related to WIP, a proline-rich protein that binds to actin and 

interacts with the N-termina! WASP-homology 1 (WHl) domain of N-WASP 

(Aspenstrom, 2002; Ho et al., 2001; Kato et al., 2002; Martinez-Quiles et al., 2001). 

WAVEl is a neuron-specific SCAR/WAVE protein and a member of the WASP 

superfamily (Miki et al., 1998) that, like N-WASP, regulates actin assembly through 

binding and activation of the Arp2/3 complex (Machesky et al., 1999). Unlike N-WASP,
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FIGURE 13. The C-terminal SH3 domain (SH3-6) of Tuba binds actin regulatory

proteins. A, bead-immobilized GST and a GST fusion protein of SH3-6 were incubated 

with a Triton X- 100-solubilized rat brain extract, and the bound material was analyzed by 

SDS-PAGE and Coomassie Blue staining {upper panel). The identities of the proteins 

were determined by MALDI-TOF and Q-TOF mass spectrometric analysis. Binding of 

WAVEl and N-WASP was confirmed by Western blot analysis {lowerpanels).
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isolated WAVEl is constitutively active (Machesky et al., 1999), but is kept in an 

inhibited state while bound to a protein complex that includes PIR121 and NAPl (Eden 

et al, 2002), two proteins present in the affinity-purified material. Mena, an Ena/VASP 

protein (Gertler et al., 1996), and Lamellipodin, a novel Ena/VASP-associated protein 

(M. Krause and F. B. Gertler, unpublished data), were also present in the affinity-purified 

material, as was drebrin, an F-actin-binding protein (Ishikawa et al., 1994).

A gel overlay with 32P-labeled GST-SH3-6 was performed on the material affinity 

purified by SH3-6 from mouse brain lysate. Two prominent bands bound by SH3-6 were 

adjacent to the 66-kDa marker (Fig. 14). Western blotting demonstrated that the upper 

band precisely co-migrated with N-WASP (data not shown), whereas the lower band 

appears to be CR16 (Fig. 14). The overlay experiment also revealed a prominent band at 

50 kDa and a somewhat weaker signal at 140 kDa. Western blotting indicated that the 

band at 140 kDa corresponds to Mena (Fig. 14). The identity of the 50-kDa band remains 

unknown. Immunoprecipitation experiments demonstrate that N-WASP and Tuba are co- 

immunoprecipitated from rat brain extracts with Tuba specific antibodies (data not 

shown).

The C-terminal SH3 Domain of Tuba Can Promote F-Actin Recruitment 

Because the Tuba SH3-6 domain can bind to a number of actin regulatory proteins, we 

wondered whether concentrating this domain on a surface within the ceil would result in 

recruitment or nucleation of F-actin. To accomplish this, we fused the SH3-6 domain to a 

mitochondrial anchoring sequence (SH3-6-mito), a method that has been used 

successfully to map protein domains that induce actin recruitment within living cells 

(Kessels and Qualmann, 2002). Because Tuba is expressed in brain and localizes to 

synapses, we used CAD cells, a neuron-like cell line, to express SH3-6-mito.

Interestingly, in 15-20% of transfected cells expressing high levels of SH3-6-mito, F-
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FIGURE 14. Tuba directly interacts with N-WASP. The material from mouse brain 

lysates affinity-purified by GST or GST-SH3-6 was separated by SDS-PAGE and 

overlaid with 32P-iabeled SH3-6 {left panel). The blot was stripped and reprobed with 

antibodies against potential ligands {rightpanel).
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actin was found to co-localize with the SH3-6-mito fusion (Fig. 15, D-F). Therefore, 

overexpression of the SH3-6 domain can promote F-actin nucleation and/or recruitment 

within cells, presumably via one or more of the actin regulatory proteins it is known to 

bind in vitro.
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FIGURE 15. The C-terminal SH3 domain of Tuba recruits F-actin. SH3-6-mito, a 

DsRed2 fusion protein of SH3-6 with a mitochondrial targeting sequence at the C 

terminus, was transiently transfected into CAD cells. A-C  show control cells stained for 

F-actin (A) that lacks any notable DsRed2 signal (B and merge in C). D -F  demonstrate 

the co-localization of F-actin (D) with SH3-6-mito (E and merge in F) in two highly 

expressing cells.
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Chapter V—Tuba is a Cdc42-Spedfic Exchange Factor

The DH-BAR Region of Tuba Catalyzes the Formation of Active Cdc42 

The results described above indicate that the C-terminal SH3 domain of Tuba can 

promote actin nucleation and/or recruitment. The presence of a DH domain in Tuba, a 

protein module involved in the activation of Rho family GTPases, suggests a further link 

to the actin cytoskeleton. The function of this domain was investigated.

Like other GTPases, Rho family GTPases cycle between a GTP-bound active state and a 

GDP bound inactive state. DH domains form the core catalytic domains of enzymes that 

activate Rho family GTPases by catalyzing the exchange of GDP for GTP (Hoffman and 

Cerione, 2002). We studied the substrate specificity of the DH domain of Tuba by testing 

its guanyl nucleotide exchange activity on three major representative members of the Rho 

family: RhoA, Racl, and Cdc42. A His-tagged Tuba DH domain was used in a mant- 

GTP-based assay, which allows the guanyl nucleotide exchange reaction to be monitored 

fluorometrically (Snyder et al., 2002). Unfortunately, the insolubility of the BAR domain 

prevented us from testing the DH-BAR fragment in this assay. The DH domain of Tuba 

specifically catalyzed, in a concentration dependent manner, the activation of Cdc42, but 

not Rho or Rac (Fig. 16). The His-tagged DH-PH domain of Vav2, a DH domain known 

to have a promiscuous exchange activity on Rho, Rac, and Cdc42 (Liu and Burridge, 

2000), was used as a control to demonstrate that all three GTPases used were competent 

for exchange (Fig. 16). The DH domain of Tuba, although specific for Cdc42, displayed 

relatively low activity compared with the DH-PH domain of Vav2: 10 M Tuba DH 

domain was comparable to 200 nM Vav2 DH-PH domain. DH domains without 

associated PH domains are generally less active than DH-PH fragments. Because we 

believe that the BAR domain of Tuba is a functional replacement for the PH domain, this
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FIGURE 16. The DH domain of Tuba specifically catalyzes the activation of Cic42. 

The indicated GTPases (2 M) were incubated with 400 nM mant-GTP for 200 s prior to 

addition of the indicated concentrations of His-tagged Tuba DH domain. Exchange 

activity was followed by the increase in fluorescence (fluor.), normalized to its starting 

value, and reflects the binding of mant-GTP to the GTPases. To verify the integrity of the 

GTPases, a fragment of Vav2 (0.2 M) containing the DH and PH domains and previously 

shown to be active on Rho, Rac, and Cdc42 was used to load mant-GTP onto the 

GTPases under identical conditions.
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- absence of the BAR domain could account for the low activity.

The BAR Domain of Tuba May Mediate Binding to Lipids

Ail characterized Dbl homology domain-containing proteins contain a pleckstrin 

homology domain immediately downstream of the DH domain (Hoffman and Cerione,

2002). This is not the case in Tuba. PH domains, through their ability to interact with 

phosphatidyl inositides, are believed to locate the DH domain to the correct membrane 

environment. Some PH domains also stimulate the catalytic efficiency of their associated 

DH domain upon PI binding (Rossman et a l, 2003). Analysis of multiple sequence 

alignments of BAR domain-containing proteins indicate that the BAR domain of Tuba is 

most closely related to the BAR domain of the amphiphysin family of proteins, proteins - 

whose BAR domains have been shown to bind lipids (Habermann, 2004; Peter et al.,

2004; Takei et al., 1999). This allowed us to predict that the BAR domain of Tuba may 

be acting to functionally replace the PH domain. We therefore attempted to carry out 

experiments to demonstrate that this was indeed the case. Unfortunately, the BAR 

domain of Tuba is insoluble, as demonstrated by clumping of BAR domain-containing 

constructs transfected into fibroblasts, as well as the complete insolubility of bacterially- 

expressed BAR domain-containing fusion proteins (data not shown). In an effort to 

circumvent these limitations, DH and DH-BAR Tuba constructs were in vitro translated 

in the presence of 35S-labeled methionine, and used in a co-sedimentation liposome- 

binding assay (Fig. 17).

The BAR domain of endophilin was previously shown to be necessary for endophilin- 

lipid interactions in liposome co-sedimentation assays (Farsad et al., 2001), allowing the 

use of full-length endophilin as a control. In the presence of liposomes (right half of 

Figure 17), in vitro translated endophilin was located in the pellet after sedimentation, as 

demonstrated by the presence of radioactive material in the pellet fraction, but was not
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FIGURE 17. The BAR domain of Tuba may bind to lipids, HA-tagged constructs 

consisting of either full-length endophilin, endophilinA34, which lacks the amino 

terminal 34 amino acids of the endophilin BAR domain. Tuba DH, or Tuba DH-BAR, 

were in vitro translated in the presence of ̂ ^S-methionine. 10% of each reaction was used 

in co-sedimentation assays, which differed for each construct by the presence or absence 

of liposomes generated from a purified brain lipid fraction. The left half of the figure 

demonstrates sedimentation in the absence of liposomes (- Liposomes), whereas 

sedimentation in the presence of liposomes is shown on the right half (+ Liposomes). S, 

supernatant. P, pellet.

94

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



- Liposomes + Liposomes 
S P S P

Endophilin

EndophilinA34

DH

DH-BAR

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



found in the supernatant, indicating that the -majority of the endophilin was bound to 

lipid. Note that only trace amounts of endophilin were present in the pellet fraction when 

liposomes were not included in the co-sedimentation assay (left half of Figure 17), 

providing further evidence that sedimentation of endophilin is dependent on lipid 

binding. A mutant form of endophilin lacking the amino terminal 34 amino acids of the 

BAR domain was unable to interact with liposomes, as had been previously demonstrated 

(Fig. 17) (Farsad et al, 2001).

The DH domain of Tuba was unable to interact with liposomes (Fig.17). This was not 

unexpected as no Dbl homology domain has been shown to exhibit lipid-binding 

properties. The Tuba DH-BAR construct was able to co-sediment with liposomes, 

suggesting that the BAR domain of Tuba is able to interact with lipids (Fig. 17). The 

control sedimentation, where liposomes were not added, provides a demonstration of the 

insolubility of the Tuba BAR domain (left half of Figure 17). Significant amounts of the 

DH-BAR construct were found in the pellet fraction of this control reaction. Although 

this casts some doubt on the results of the liposome-DH-B AR co-sedimentation reaction, 

note that there is almost no radioactive material in the soluble fraction (right half of 

Figure 17), which was not seen in the fraction lacking liposomes. Thus, albeit 

preliminary, these results suggest that the BAR domain of Tuba shares the lipid-binding 

properties of other BAR domains and may be acting to functionally replace the pleckstrin 

homology domain.
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Chapter VI—Independent Identification of Tuba

As we were completing our initial characterization of Tuba, we discovered that another 

group had independently identified Tuba. Adam Kwiatkowski, a graduate student in the 

laboratory of Frank Gerteler at the Massachusetts Institute of Technology, identified 

Tuba in a two-hybrid screen. Their focus, however, was on the interaction of Tuba with 

the EnaA^ASP family of proteins. We subsequently initiated a collaboration to develop a 

more complete understanding of Tuba.

Because the C terminus of mouse Tuba was identified as a binding partner of EVL in a 

yeast two-hybrid system (Fig. 7A) and the co-immunoprecipitation results demonstrated 

that Tuba and Mena interact in vivo, the EnaWASP interaction was further characterized. 

Pull-down experiments with lysates prepared from EnaAf ASP-deficient cells (referred to 

as D7 cells (Bear et al., 2000)) stably infected and sorted for equal expression of 

enhanced green fluorescent protein (EGFP) fusions of Mena, EVL, or VASP showed that 

the SH3-6 domain of Tuba bound to each of the three proteins, but more robustly to EVL 

and Mena (Fig. ISA). No binding was observed in cells expressing a mutant form of 

Mena that lacks the proline-rich region (Fig. ISA), indicating that this region, present in 

al! Ena/VASP proteins, is essential for binding. •

The two-hybrid results suggest that EVL and, by analogy, all Ena/VASP proteins bind to 

the SH3-6 domain of Tuba directly. To test this further, lysates from D7 cells and D7 

cells expressing EGFP-Mena were blotted and overlaid with 32P-labeled GST-SH3-6. A 

band at 115 kDa (the expected size of EGFP-Mena) was observed only in the lysate from 

D7 cells expressing EGFP-Mena (Fig. 185, D7 E-M). GST-SH3-6 pull-down 

experiments with the same lysates were performed, and the affinity purified material
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from these pull down experiments was blotted and overlaid with 32P-labeled GST-SH3- 

6. Again, SH3-6 bound directly to a band with the predicted molecular mass of EGFP- 

Mena only in cell lysates expressing EGFP-Mena (Fig. 185). Thus, Tuba binds directly to 

EnaA/'ASP proteins, consistent with the initial two-hybrid results. A direct interaction 

between SH3-6 and other proteins present in the affinity-purified material was also 

observed (Fig. 185). One prominent band had the predicted electrophoretic mobility of 

N-WASP, and Western blotting suggested that this band was indeed N-WASP (data not 

shown). The identity of a major band just above N-WASP remains unknown, but we 

speculate that it might be a member of the WIP family of proteins. Interestingly, the 

intensity of this band decreased in cells expressing EGFP-Mena, possibly due to 

competition between Mena and this protein binding to SH3-6.

Given the large number of proteins present in the Tuba SH3-6 affinity purified complex 

(Fig. 13), we investigated whether the occurrence of these interactions in cells was 

supported by immunoprecipitation experiments. When Tuba was immunoprecipitated 

from embryonic day 15 lysates, Mena was found to co-precipitate (Fig. 19). Longer 

exposures revealed that the 140-kDa Mena, a neuron-specific isoform of Mena (Gertler 

et al., 1996), was also co-precipitated. These results indicate that Tuba interacts with one 

or more actin regulatory proteins in vivo.

Because both Mena and N-WASP appear to bind directly to the SH3-6 domain of Tuba, 

we sought to map the binding site(s) within these proteins. A series of overlapping 

peptides corresponding to the proline-rich regions of N-WASP, WAVEl, EVL, and 

Mena were synthesized by the SPOTs method (Frank, 2002). This peptide blot was 

overlaid with 32P-labeled GST-SH3-6 (Fig. 20A), and the resulting signal intensity at 

each peptide spot was measured and compared with the background level (Fig. 205). N-
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FIGURE 18. Interaction of the SH3-6 domain of Tuba with Ena/VASP proteins. A, 

D7 cells, which contain no Ena/VASP protein family members, were infected with EGFP 

fusions of each member of the Ena/VASP family or of a Mena construct lacking the 

proline-rich domain (APRO). Lysates from cells expressing equal levels of the fusion 

proteins were affinity-purified by GST or GST-SH3-6. The starting lysates, as well as the 

supematant (Sup) and pellets of the affinity-purified material, were then processed by 

Western blotting with anti-EGFP antibodies. B, lysates of D7 cells or of D7 cells stably 

infected with EGFP-Mena (D7 E-M) were incubated with GST-SH3-6 in affinity 

chromatography experiments. The starting lysates and the pull-down (PD) products were 

separated by SDS-PAGE, blotted onto nitrocellulose, and overlaid with 32P-labeled SH3- 

6.
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FIGURE 19. Mena co-immunoprecipitates with Tuba. Control or affinity-purified 

anti-Tuba antibodies w ere used for immunoprecipitation (IP) from embryonic day 16 

m ouse lysates. The upper panel is a Western blot for Tuba; the l o w e r  panel is a  Western 

blot for Mena. Sup, supernatant. SM, starting material.
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FIGURE 20. Mapping of SH3-6-bindlng sites. A, shown is a SPOTs membrane 

containing an array of overlapping peptides corresponding to the proline-rich regions of 

N-WASP, WAVEl, EVL, and Mena overlaid with 32P-labeled GST-SH3-6. B, 

individual peptide spots are listed with intensity value demonstrated graphically as 

value/background. Peptide 118 is a negative control proline-rich sequence that binds 

Ena/VASP proteins, but not SH3 domains. Peptides in which the intensity/background is 

6 are in boldface. C, potential binding sites for SH3-6 in N-WASP, EVL, and Mena are 

listed with their corresponding peptide spot number.
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WASP has two potential binding sites for SH3-6 (where the signal level was at least 6- 

fold over the background level), whereas EVL and Mena each have one. Strong binding 

to any peptide in WAVEl was not observed. The four peptides demonstrating the 

strongest binding are listed in Fig. 20C. These results provide further evidence for direct 

and specific binding between SH3-6 and N-WASP and Ena/VASP proteins.
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Chapter ¥11—Materials and Methods

A variety of materials and techniques were utilized to make the observations described in 

this thesis. The protocols employed are well established and will be described only 

briefly.

Antibodies and Reagents

The following antibodies were used in this study: Rat anti-hemagglutinin (HA) 

monoclonal epitope (clone 3F10, Roche Applied Science), anti-dynamin polyclonal 

antibody DGl (our laboratory) and monoclonal antibody Hudy-1 (Upstate 

Biotechnology, Inc.), anti-amphiphysin-1 monoclonal antibody-3 (Floyd et al., 2001) and 

anti-N-WASP polyclonal antibody (gifts of P. Aspenstrom (Ludvig Institute for Cancer 

Research, Uppsala, Sweden) and M. W. Kirschner (Harvard Medical School), anti-CR16 

polyclonal antibody (gift of H. Y. Ho and M. W. Kirschner), anti-WAVEl polyclonal 

antibody (gift of John Scott, Vollum Institute), anti-Mena monoclonal antibody (gift of F. 

B. Gertler), anti-green fluorescent protein polyclonal antibody (Clontech), anti-actin 

monoclonal antibody (Sigma), anti-synaptotagmin monoclonal antibody (gift of Reinhard 

Jahn, Max-Planck Institute for Biological Chemistry, Gottingen, Germany), and anti- 

GM-130 antibody (Graham Warren, Yale University).

Anti-Tuba polyclonal antibodies were generated by injecting rabbits with a glutathione S- 

transferase (GST) fusion protein encompassing the final 292 amino acids of human Tuba. 

The antibodies were affinity purified on the antigen coupled to SuifoLink beads (Pierce) 

according to the manufacturer’s instructions. A GST fusion protein of the PH domain of 

phospholipase C was kind gift of Antonella De Matteis (Consorzio Mario Negri Sud, 

Italy). A GST fusion protein of the BAR domain of amphiphysin-1 was described
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previously (Takei et aL, 1999). The KIAAIOIO clone was obtained from the Kazusa 

Institute.

5’-Rapid Amplification of cDNA Ends (RACE)

To obtain the full-length sequence of Tuba from the KIAAIOIO clone, human skeletal 

muscle Marathon-Ready cDNAs (Clontech) were utilized for 5’-RACE using 

KIAAlOlO-specific primers and the Advantage 2 PCR enzyme system (Clontech). Based 

on this sequence, a full-length clone was generated by PCR using probes corresponding 

to the 5’- and 3’-ends of the Tuba sequence and human brain Marathon-Ready cDNAs 

(Clontech) as a template. Nucleotide sequencing confirmed the sequences of KIAAIOIO 

and of the N-terminal region of the protein obtained by 5’-RACE with the exception of 

the absence in KIAAIOIO of 40 amino acids in the second half of the BAR domain (see 

Fig. lA). Multiple clones generated by PCR in different amplification cycles yielded only 

sequences including the 40 amino acids. The nucleotide sequence of human Tuba has 

been deposited in the GenBankTM/EBI Data Bank under accession number AY196211.

Yeast Two-hybrid Screen

Full-length EVL was used as bait in the LexA two-hybrid system (Clontech) to probe an 

embryonic day 19 mouse library. Two independent clones of Tuba comprising amino 

acids 1502-1577 and 1092-1577 (see Fig. lA) were identified as strong interactors. Full- 

length murine Tuba was constructed by ligating the larger of the two clones with 

fragments generated by reverse transcription-PCR using Tuba specific primers and a 

mouse cDNA library. The nucleotide sequence of mouse Tuba has been deposited in the 

Gen-BankTM/EBI Data Bank under accession number AY383729.

Affinity Chromatography

GST or GST fusion proteins of SH3 domain-containing regions of Tuba were bound to
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glutathione beads (Amersham Biosciences) and incubated with a Triton X-100- 

solubilized rat brain extract. Bound material was recovered by centrifugation, followed 

by elution with SDS and separation by SDS-PAGE. For biochemical analysis of the 

interaction of the SH3-6 domain of Tuba with actin regulatory proteins in non-neuronal 

cell extracts, D7 fibroblastic cells, which lack endogenous expression of all EnaA/'ASP 

proteins, were used (Bear et a l, 2000). Uninfected or infected D7 cells were grown to 

confluency and extracted in Nonidet F-40 lysis buffer. Cell extracts were clarified by 

centrifugation and used for affinity chromatography experiments as described above. 

10-15 ug of GST or GST fusion protein was incubated with 1 mg of lysate.

Immunocytochemistry of Brain Tissue

Immunofluorescence of frozen rat brain sections was performed by standard procedures 

on formaldehyde-perfused brains. Anti-Tuba immunogold labeling was performed on 

lysed synaptosomes embedded in agarose, followed by Epon embedding and thin 

sectioning as described (De Camilli et al., 1983).

Guanine Nucleotide Exchange Assays

Exchange assays using bacterially expressed and purified Rho GTPases were performed 

essentially as described (Snyder et al., 2002). In particular, 2 M RhoA(C190S), 

Racl(C188S), or Cdc42(C188S) was added to buffer containing 20 mM Tris (pH 7.5), 

100 mM NaCl, 5 mM MgC12,1 mM dithiothreitol, 10% glycerol, and 400 nM mant-GTP 

(Molecular Probes, Inc.) and allowed to equilibrate for 5 minutes before adding the 

indicated concentrations of His-tagged Tuba DH domain or 200 nM His tagged Vav2 

DH-PH fragment. Increased fluorescence indicative of mant-GTP binding to GTPases 

was monitored using a PerkinElmer LS-55 spectrophotometer (ex 360 nm and em 440 

nm, slits 5/5 nm) thermostatted to 25 °C. Fluorescence was normalized to the initial value 

at the start of the experiment. A fragment containing the DH and BAR domains of Tuba
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is insoluble upon expression in Escherichia coli, preventing a comparison of exchange 

rates between this larger portion of Tuba and the isolated DH domain of Tuba.

Transferrin Uptake

Chinese hamster ovary cells were transfected with pcHA (pcDNA3-based vector)-full- 

length Tuba or pcHA-Tuba SH3-1,2,3,4 using FuGENE 6 transfection reagent (Roche 

Applied Science) and incubated overnight. They were then washed with serum-free 

medium and incubated in serum-free medium for 24 h in the presence of Alexa- 

transferrin (Molecular Probes, Inc.) during the last 7 min before a brief wash with 

phosphate-buffered saline, followed by fixation with 4% formaldehyde. Cells were 

stained by immunofluorescence according to standard procedures.

Peptide Binding

Overlapping SPOTs peptides corresponding to the proline-rich regions of mouse N- 

WASP (amino acids 217-399), SCAR/WAVEl (amino acids 274-^02), EVL (amino 

acids 157-210), and Mena (amino acids 277-351) were custom-synthesized by Sigma. 

All peptides are 12-mers offset by three amino acids, and each spot carries an equivalent 

amount of peptide (5 nmol) covalently attached to the membrane. A negative control 

peptide was added (no. 118 on the blot) that contains a known proline-rich binding site 

for EnaA/’ASP proteins that does not bind SH3 domains. The Tuba SH3-6 domain in 

pGEX-2TK was labeled by phosphorylating with protein kinase A and [gamma- 

32PJATP. The relative intensity of each spot was calculated by converting the 

Phosphorlmager scan into an 8-bit image and measuring the average pixel intensity in a 

74-pixel circle centered over each spot in Scion Image. This value was then divided by 

the background (the average intensity value of the 10 lowest spots) for comparison.
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Mitochondrial Targeting of the Tuba SH3-6 Domain

The mouse Tuba SH3-6 domain was fused in-frame to a modified retroviral expression 

vector downstream of an ATG start codon and upstream of a fusion between DsRed2 and 

the mitochondrial targeting sequence from the L. monocytogenes protein ActA (excluding 

EnaA^ASP-binding regions) (Pistor et al., 1994). This construct, referred to as SH3-6- 

mito, was used to transiently transfect CAD cells. Cells were plated onto poly-D-lysine- 

coated coverslips 24 h post-transfection. The medium was replaced with serum-free 

medium to induce differentiation 3-4 h after plating. Cells were incubated for an 

additional 24-36 h before fixation with 4% formaldehyde. Previously established 

procedures were used to visualize cells by immunofluorescence.

Lipid-Binding of the Tuba BAR Domain

Liposome sedimentation was performed using 10 fig sucrose-loaded liposomes incubated 

with 10% of -labeled in vitro translated reaction product (TnT Coupled Reticulocyte 

Lysate System, Promega) in 50 fil 25 mM  Hepes-KOH, pH 7.4, 25 mM KCl, 2.5 mM 

Mĝ "̂  acetate, and 150 mM K-glutamate for 20 minutes at 37°C. Liposomes were 

sedimented at 100,000 g in a Beckman Coulter TLA 100.3 rotor for 20 minutes. The 

supernatant was thoroughly removed and resuspended in 2% SDS, while the sedimented 

liposomes were gently washed in buffer and resuspended in 2% SDS. Samples were 

subjected to SDS-PAGE and analyzed by autoradiography at -20°C for 18 hours.

Miscellaneous'

We carried out Western and Northern blotting following standard procedures. For 

Northern blotting, human multiple tissue RNA blots were obtained from Clontech. For 

multiple-tissue Western blotting, tissues were isolated and prepared as described 

previously (McPherson et al., 1996). Far-Western assays and gel overlays were carried 

out using standard procedures. Immunoprecipitations were carried out as described
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previously (McPherson et al., 1996).
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Chapter VIII—Discussion

Multiple lines of evidence suggest that actin plays a role in the process of clathrin- 

mediated endocytosis. Although proteins have been identified which interact with both 

clathrin and actin or the actin regulatory machinery, dynamin appears to function as a key 

bridge between endocytosis and the actin cytoskeleton (Engqvist-Goldstein and Drubin,

2003). The shibire mutant of Drosophila melanogaster (Koenig and Ikeda, 1989) gave 

the first indication that dynamin, which is the product of the gene disrupted in shibire 

flies (van der Bliek and Meyerowitz, 1991), plays a critical role in endocytosis. shibire 

mutants also display defects in growth cone dynamics (Masur et al., 1990), suggesting a 

role for dynamin in the regulation of actin, as growth cones are heavily dependent on 

their actin cytoskeleton for normal function. Subsequent work by a multitude of groups 

has confirmed the predictions made from the analysis of the shibire phenotype, mainly 

that the block in endocytosis is a result of the inhibition of the fission activity of dynamin 

(Hinshaw, 2000). There is also an increasing body of evidence indicating that dynamin is 

involved in the regulation of the actin cytoskeleton (Orth and McNiven, 2003). In 

addition to directly interacting with a variety of actin-regulatory proteins, dynamin 

mutants have a variety of effects on the actin cytoskeleton in a variety of cellular 

contexts, including the disruption of podosomes and alteration of podosome actin 

dynamics (Ochoa et al., 2000). Tuba, a novel protein whose discovery and 

characterization has been the focus of this thesis, further strengthens the connection 

between the endocytic and actin regulatory machinery.
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Tuba was discovered in database searches for novel proteins with regions homologous to ■ 

the BAR domain of the synaptic and endocytic protein amphiphysin I. Originally 

identified as the partial open reading frame KIAAIOIO, a full-length clone was generated 

using 5’-RACE. Full-length Tuba has a molecular weight of 177 kiloDaltons. Database 

analysis indicates that it is one of several proteins in a novel family of proteins. The 

Tuba transcript and protein are ubiquitous. When examined by immunofluorescence in 

brain. Tuba was found to co-localize with the synaptic and endocytic markers 

amphiphysin 1 and dynamin 1, and electron microscopic studies localize Tuba to regions 

of endocytosis in the rat brain synapse. Thus, Tuba is a novel protein localizing to the 

endocytic compartment of the synapse.

The amino terminus of Tuba contains four tandem SU3 domains. GST pull-down assays 

utilizing constructs containing these four domains isolated dynamin 1. Dynamin is a 

protein absolutely necessary for clathrin-mediated and other forms of endocytosis, and 

functions in the release of the nascent vesicle from the donor membrane. It also interacts 

with a variety of actin-regulatory proteins, possibly providing a link between actin and 

the endocytic machinery. The amino terminus of Tuba, through a high avidity interaction, 

specifically interacts with the endocytic protein, dynamin.

Tuba contains two carboxy-terminal SH3 domains. While no interactor was identified 

for the penultimate SH3 domain, the terminal SH3 domain was found to isolate a 

multiplicity of proteins by GST affinity chromatography experiments from rat brain 

extracts. The majority of these proteins were identified by western blotting and MALDI-
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TOF mass spectrometry as reguiators of the actin cytoskeleton. Far-westem assays 

indicate that only N-WASP, CR16, and Mena interact directly with the terminal SH3 

domain of Tuba. The isolation of proteins which are involved in regulation of the actin 

cytoskeleton, but are not binding partners of the terminal SH3 domain of Tuba, suggests 

that the proteins are constituents of a complex.

N-WASP, in response to activation by Cdc42 and PtdIns(4,5)P2 or SH3 domain binding, 

stimulates actin polymerization activity via the binding of the Arp2/3 complex (Higgs 

and Pollard, 2001). WIRE (Aspenstrom, 2002) and CR16 (Ho et a!., 2001; Kato et a!., 

2002) are two N-WASP-interacting proteins whose functions are unknown. Both 

proteins are proline-rich, indicating a function in the recruitment and coordination of 

actin regulatory proteins, through SH3 domain binding, to ensure efficient polymerization 

■ of actin. Mena is a member of the EnaA/'ASP family of proteins , and is the mammalian 

homolog of enabled, a D. melanogaster mutant which functions to suppress the lethality 

caused by absence of the abelson tyrosine kinase, which itself causes neural defects 

(Gertler et ah, 1990). Mice lacking Mena expression fail to form a corpus callosum, 

which is a brain structure composed of axons involved in interhemispheric cortico- 

cortical communication (Lanier et al., 1999). In addition, mice heterozygous for profilin 

I, a Mena binding partner and G-actin binding protein, which also lack Mena expression, 

are inviable and have neurulation defects (Lanier et al., 1999). As neurulation and axon 

migration are actin-dependent processes, it is likely that Mena plays a role in the 

regulation of the actin cytoskeleton. Recent work indicates that Mena functions as an F- 

actin capping protein antagonist, allowing greater actin filament length (Bear et al..
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2002). Thus, Mena is a critical component of the actin regulatory machinery; 

Lamellipodin, a novel member of the Ena/VASP family of proteins, may also function as 

a capping protein, and is currently being characterized by Frank Gertler and colleagues.

NAFl is a member of a protein complex isolated from brain extracts by GTP-Racl 

(Kitamura et al., 1997), and directly binds to the SH3 domains of the adaptor Nek 

(Kitamura et al., 1996), a protein which interacts with tyrosine kinases through its SH2 

■ domain, and N-WASP, Sos, PAK, and dynamin through its three SH3 domains. In 

addition, the NAFl D. melanogaster mutant, kette, exhibits axonal pathfmding and actin 

cytoskeletal defects (Hummel et aL, 2000), and the C. elegans NAFl mutant, gex-3, has 

multiple defects in morphogenesis resulting in embryonic lethality (Soto et al., 2002). 

Recent work in D. melanogaster indicates that Kette inhibits WAVEl function, but also ■ 

activates the Drosophila WASP homolog (Bogdan and Klambt, 2003). In this study, a 

membrane-tethered form of Kette was found to cause a large accumulation of F-actin 

bundles. These bundles were suppressed by inhibiting WASP expression in a dose- 

dependent fashion, suggesting that WASP and NAFl genetically interact, and that NAFl 

stimulates WASP’s actin polymerizing property. WAVEl is a member of the WASP 

superfamily of proteins (Takenawa and Miki, 2001). Unlike N-WASP, it is constitutively. 

active. N-WASP and WAVEl share a similar carboxy-terminal domain structure, and 

thus the ability to bind and activate the Arp2/3 complex. The amino termini of WAVEl 

and N-WASP, however, differ in the absence in WAVEl of the CRIB regulatory region 

that in N-WASP binds GTP-Cdc42 and regulates the activation of N-WASP. GTP-Rac is 

necessary to localize WAVE to sites of membrane ruffling and stimulates WAVE
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activity. In fibroblasts, WAVE2 (an isoform of WAVEl), IRSp53, a protein which 

functions to link Rac to WAVE, and active Rac exist in a complex which is necessary to 

induce membrane ruffling (Miki et al., 2000). PIR121 (also known as Sral, pl40, and 

CYFIP) is involved in the regulation of WAVE function. Disruption of PIR121 in 

Dictyostelium discoideum results in cells which are severely limited in their locomotion 

(Blagg et al., 2003). In addition, PIR121/SCAR (the Dictyostelium WAVE homolog) 

double mutants have a phenotype identical to SCAR mutants, which the authors argue 

suggests that PIR121 is downstream of SCAR in vivo(Blagg et al., 2003). The C. elegans 

FIR121 mutant, gex-2, is phenotypically very similar to the NAPl mutant, gex-3, giving 

rise to defects in morphogenesis and resultant embryonic lethality (Soto et al., 2002). As 

discussed below, PIR121 is a member of a complex which regulates WAVEl activity.

NAPl, FIR121, and WAVEl exist in a complex whose function is to regulate the activity 

of WAVEl (Eden et a l, 2002). When bound to NAFl and FIR121, WAVEl is inactive, 

unable to catalyze the polymerization of actin through its bound Arp2/3 complex. ■ Upon 

binding of either activated Racl or the adaptor Nek, however, WAVEl is released from 

■ the complex to catalyze actin polymerization. It is unknown whether activation of N- 

WASF leads to activation of WAVEl. However, it is easy to imagine how subsequent 

activation of WAVEl would allow a greater filament-generating capacity. It is also 

possible that WAVEl is a member of an actin regulatory that is utilized in many contexts 

and thus plays no role In endocytosis. The actin complex isolated by the terminal SH3 

domain of Tuba is likely to not only maximize the efficiency of actin polymerization, but 

also ensure polymerization in the correct tempero-spatial context.
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Interestingly, the Caenorhabditis elegans Tuba homolog, GEI-18, was isolated in a two- 

hybrid screen using the nematode NAPl homolog, GEX-3, as bait (Tsuboi et al., 2002).

In C. elegans, GEX-3 plays an important role in morphogenesis, with homozygous null 

mutants exhibiting embryonic lethality (Soto et al., 2002). The GEX-3-GEI18 interaction 

provides further evidence that Tuba and NAPl function in the same pathway in 

mammals. Confirmation of similar properties between the nematode and human Tuba 

orothologs would allow the study of Tuba in a well-established genetic system.

Dbl homology domains function as exchange factors for the Rho family of small 

GTPases (Hoffman and Cerione, 2002). Exchange factors are necessary to generate 

GTP-bound small GTPases, which can then bind to effectors to effect changes in cell 

function. We found that the DH domain of Tuba specifically catalyzes the activation of ■ 

Cdc42. This result is very exciting given that the terminal SH3 domain of Tuba isolates a 

complex of actin regulatory proteins containing the Cdc42 effector, N-WASP. In 

addition to Cdc42 binding, N-WASP also requires co-activation with either PtdIns(4,5)F2 

or an SH3 domain-containing protein (Higgs and Pollard, 2001). The terminal SH3 

domain of Tuba directly interacts with the proline-rich region of N-WASP, providing th e ' 

co-stimulation needed for N-WASP activation. Thus, Tuba has the ability to, by itself, 

activate N-WASP, resulting in the polymerization of actin.

The DH domain of Tuba is interesting due to its association with a BAR domain. With 

the exception of proteins of the Tuba family, all known DH domain-containing proteins
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contain a pleckstrin homology domain immediately downstream of the DH domain 

(Rossman et al., 2003). Pleckstrin homology domains interact with PtdIns(4,5)P2 at the 

plasma membrane, and are believed to help localize the DH domain to its correct 

environment. As BAR domains have the ability to bind lipids (Parsad et al., 2001; Peter 

et al., 2004; Takei et al., 1999), the BAR domain of Tuba may be functionally replacing 

the PH domain. Preliminary experiments indicate that the BAR domain of Tuba indeed 

functions as lipid-binding module. In the case of some, but not all DH domains, 

PtdIns(4,5)P2 binding to the PH domain also increases the catalytic activity of the DH 

domain (Rossman et a l, 2003). Unfortunately, due to the insolubility of the Tuba BAR 

domain, we were unable to test whether liposome-BAR domain interactions increase 

Tuba DH domain catalysis. The significance of this experiment is indicated by the poor 

catalytic efficiency of the Tuba DH domain when compared with other DH domains.

The recently solved crystal structure of the Drosophila melanogaster BAR domain (Peter 

et al, 2004) suggests many interesting potential roles for the BAR domain of Tuba. The 

authors demonstrated that BAR domains preferentially recognize liposomes with smaller 

diameters, obtaining much more BAR domain recruitment with 50 nm liposomes, as 

opposed to 300 nm liposomes. This suggests that BAR domains function as sensors of 

membrane curvature. This has important functional implications for the BAR domain of 

Tuba. With the exception of muscle amphiphysin, which contains a lysine-rich insertion 

at the carboxy terminus of its BAR domain and allows the BAR domain to specifically 

interact with PtdIns(4,5)P2 (Lee et al., 2002), BAR domains are not known to bind to 

specific classes of lipids. If Tuba does indeed function in endocytosis, it may be
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recruited to the neck of ciathrin-coated pits or vesicles only when the curvature of the 

membrane reaches its optimum for BAR domain binding. Note that the diameter of 

synaptic and ciathrin-coated vesicles is approximately 60 nm. Also remember that the 

catalytic efficiency of the BAR domain of Tuba is poor. As mentioned above, membrane 

binding of the corresponding PH domain of selected DH domains increases the catalytic 

efficiency of that DH domain (Rossman et al., 2003). This suggests that the catalytic 

efficiency of the DH domain of Tuba may be enhanced through the recognition and 

binding of the Tuba BAR domain to a membrane with the correct curvature.

The BAR domain forms dimers (Peter et al., 2004). This suggests that Tuba may exist as 

a homodimer in vivo through intermolecular BAR domain interactions. There is no 

evidence, however, to support this hypothesis. The dimerization property of the BAR 

domain may also allow the heterodimerization of Tuba with other Tuba family members, 

as well as other BAR domain-containing proteins. It is difficult to predict the effect of 

Tuba-Tuba2 or -TubaS dimerization as these proteins have not been characterized. 

However, dimerization with amphiphysin I would give Tuba another mechanism for 

interacting with the endocytic machinery, through amphiphysin’s clathrin/AP2 binding 

region (Slepnev et al, 2000), and provide another means for appropriate tempero-spatia! 

recruitment of Tuba to sites of endocytosis. Heterodimerization with endophilin would 

provide additional regulation of both endocytosis and the actin cytoskeleton, as 

recruitment of synaptojanin would lead to a decrease in PtdIns(4,5)P2 levels (Cremona et 

a!., 1999). Thus, the ability of Tuba to heterodimerize with other BAR domain-
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containing proteins would strengthen the functional connection of Tuba to both 

endocytosis and regulation of the actin cytoskeleton.

The crystal structure and bioinformatics studies of the BAR domain indicate that it is 

present in a variety of proteins in spite of substantial amino acid dissimilarity 

(Habermann, 2004; Peter et a l, 2004). Most of these proteins appear to be involved in 

vesicle trafficking and/or regulation of the actin cytoskeleton. In particular, it was 

quickly appreciated that the structure of the BAR domain of Drosophila is almost 

identical to the Rac/Aif-binding motif of arfaptin (Tarricone et al., 2001), although Rac 

interacts with arfaptin in either its GTP or GDP bound state, while only GTP-Arf can 

bind arfaptin. Racs and Arfs are members of the Rho and Arf families of small GTPases. 

The function of Rac is to regulate the activity of the actin cytoskeleton (Burridge and 

Wennerberg, 2004), while Arfs direct vesicle trafficking and actin function (Randazzo et 

al., 2000). Arfaptin is thought to mediate the cross-talk between Rac and Arfs (Tarricone 

et al., 2001). The fact that the Rac binding region of arfaptin is a BAR domain raises the 

possibility that the BAR domain of Tuba may also have the ability to directly bind small 

GTPases. If this were the case, the BAR domain of Tuba could recruit GDP-Cdc42, the 

substrate of its associated DH domain. Alternatively, in a manner analogous to arfaptin, 

the BAR domain of Tuba might mediate the cross-talk between Rac and Cdc42.

The ability of the Tuba BAR domain to bind Cdc42 provides a possible explanation for 

the relatively poor catalytic efficiency of the DH domain. There is no indication that the 

BAR domain of any protein recognizes specific lipid-types. If the BAR domain of Tuba
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were to possess the ability to interact with GDP-Cdc42, it might function to, in effect, ■ 

concentrate Cdc42 in the vicinity of its exchange factor, potentially increasing the 

catalytic efficiency of the DH domain. Alternatively, the BAR domain may recognize 

GTP-Cdc42-rich membranes, allowing Tuba to function in a positive feed-back 

mechanism, with the BAR domain recognizing both the high concentration of Cdc42 as 

well as the curvature of the membrane as indicators that Tuba should bind that particular 

membrane. One should also consider that binding of Cdc42 or another small GTPase to 

the Tuba BAR domain would mask the BAR domain^s hydrophobic face, resulting in 

increased solubility of the BAR domain in vitro, and of Tuba in vivo. While small 

GTPase-BAR domain interactions predict interesting functions, it is also possible that the 

Tuba BAR domain is incapable of binding to this class of proteins.

The structure of the BAR domain suggests that it is incapable of simultaneously binding 

to both Cdc42 and lipid membranes. If this is indeed the case, the positive feed-back 

model proposed above for the BAR domain of Tuba would not be possible, as Cdc42 and 

lipid membranes would compete for BAR domain binding. Recall that the functional 

BAR domain is a dimer of BAR domain subunits, and that each BAR domain monomer 

forms half of the functional structure (Peter et al., 2004). This may preclude BAR 

domain subunits acting in different capacities. Also, if Cdc42 binding were to increase 

Tuba solubility, this might adversely affect Tuba recruitment to ciathrin-coated pits. A 

role for the Tuba BAR domain in increasing catalytic efficiency of the DH domain is 

attractive. BAR domain-binding to its membrane target may be sufficient to stimulate ■ 

DH domain efficiency. However, formation of active Cdc42 by the Tuba DH domain
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through BAR domain recruitment of GDP-Cdc42 could occur as well. This latter 

possibility is less likely if membrane and Cdc42 binding are mutually exclusive. It is not 

unreasonable to predict that multiple molecules of Tuba are present in the protein 

network surrounding ciathrin-coated pits in different states. The function of the BAR 

domain of Tuba might differ depending on its lipid-binding state, as well as the 

molecules which are interacting with other areas of the Tuba protein. Determining the 

properties of the Tuba BAR domain will be critical to understanding the mechanism of 

Tuba function in vivo.

The insolubility of the Tuba BAR domain makes the testing of most of these hypotheses 

difficult. It is clear, however, that the combination of the data presented by Peter, et al. 

(Peter et al., 2004), with the location of the Tuba BAR domain, as well as the binding 

partners of the terminal SH3 domain of Tuba, provide a tantalizing glimpse at the many ■ 

possible roles that the BAR domain may play in Tuba.

How might Tuba function in vivo! It is likely that Tuba normally exists in an inactivated 

state. While there is no evidence to support this statement, the cell is unlikely to allow 

the constitutive production of active Cdc42 and subsequent polymerization of actin, as 

this would exhaust valuable cellular resources and potentially harm the cell. Intersectin, 

a dynamin-binding protein sharing many properties with Tuba, provides a model for a 

switch of an actin regulatory protein from an inactive to an active state. Recent work 

(Zamanian and Kelly, 2003) demonstrates that intersectin normally exists in an 

inactivated state through an intramolecular interaction, where one of its SH3 domains
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interacts with its downstream DH domain, resulting in inhibition of exchange activity. 

The mechanism of inhibition release was not identified, and it did not involve binding of 

the DH domain-interacting SH3 domain to its ligand, suggesting that the SH3-DH 

domain interaction does not occur by a conventional mechanism. Tuba contains six SH3 

■ domains through which inhibition could be accomplished. However, we did not address 

the mechanism of Tuba inhibiton in our studies.

We have presented evidence suggesting that Tuba localizes to synaptic sites of 

endocytosis. Based on its strong interaction with dynamin, we have also proposed that it 

is involved in the process of endocytosis. And due to the actin regulatory properties of 

Tuba, Tuba is likely to be recruited to sites of clathrin-mediated endocytosis no earlier 

than the formation of the coated pit. There are multiple potential mechanisms by which 

Tuba may be brought to these sites. One possibility is that dynamin is responsible for the 

recruitment of Tuba to the neck of ciathrin-coated pits. Dynamin contains a PH domain 

with which it interacts with membranes (Hinshaw, 2000), and may itself be enriched at 

the neck of coated pits by one of its major binding partners, amphiphysin I (David et al., 

1996). Amphiphysin I recruitment to coated pits is likely to precede dynamin, through 

the curvature-sensing property of the BAR domain as well as its interactions with clathrin 

and AP2 (Peter et al., 2004; Slepnev et al., 2000). Supporting this idea is the work of 

Merrifield, et al. (Merrifield et a!., 2002), which suggests that the formation of actin is 

not initiated until after dynamin is localized to sites of clathrin-mediated endocytosis. 

Recall that one of the major functions of Tuba may be the stimulation of the de novo 

polymerization of actin.
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Alternatively, Tuba may not require external factors for its recruitment to the neck of 

coated pits, utilizing the curvature sensing activity of its BAR domain as well as the 

postulated BAR-Cdc42 interaction to recognize its membrane destination. The ability of 

Tuba to independently recognize its site of action suggests a substantial responsibility in 

dynamin recruitment, as the amino terminus of Tuba provides a mechanism for the 

concentration of dynamin. Finally, it is also possible that Tuba is recruited to the neck of 

coated pits through interactions with a member of the endocytic machinery. Tuba could ■ 

also be localized to ciathrin-coated pits through SH3-ligand interactions, as Tuba contains 

. multiple SH3 domains and consensus SH3 domain-binding sites. Tuba SH3 domains 2 

and 5 are candidates for this type of interaction, as binding partners for either of these 

SH3 domains have yet to be identified. This may be due to poor solubilization of its 

interactors with the methods used to create the brain extract, or a low concentration of the 

protein at the synapse. While affinity chromatography experiments were attempted with 

regions of Tuba rich in consensus SH3 domain binding sites, these constructs were 

unstable and subject to extensive proteolysis. Heterodimerization between the BAR 

domain-containing proteins Tuba and amphiphysin could also directly recruit Tuba to its 

site of action. Thus, multiple mechanisms are predicted, either alone or in concert with 

each other to recruit Tuba to sites of endocytosis.

Localization to its appropriate sub-cellular site leads to BAR domain-membrane 

interactions through the curvature sensing properties of the BAR domain. This leads to 

the stimulation of the catalytic activity of the Tuba DH domain and subsequent
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generation of active Cdc42. GTP-Cdc42 is in close approximation to its effector, N- 

WASP, which is bound to the Tuba carboxy-terminal SH3 domain. The activated Cdc42- 

N-WASP interaction leads to the polymerization of actin through the actions of the 

Arp2/3 complex, which is bound to the carboxy terminus of N-WASF. The remaining 

actin regulatory proteins isolated from rat brain by the terminal SH3 domain of Tuba then 

ensure the efficiency of actin polymerization.

The following will briefly summarize the envisioned in vivo function of Tuba (fig. 21). 

Tuba is first released from its intramolecular inhibition through an unknown mechanism, 

possibly phosphorylation. Via the curvature-sensing property of the BAR domain, as 

well as the dynamin-binding capability of the SH3 domains of the amino terminus, Tuba 

is recruited to the neck of the clathrin-coated pit (fig. 21 A). The BAR domain, upon 

recognizing the curvature of the pit neck, stimulates activation of the DH domain and 

formation of GTP-Cdc42 (fig. 21B). The newly-generated active Cdc42 is then bound by 

its effector, N-WASP, which is tethered to the terminal SH3 domain of Tuba (fig. 21B). 

GTP-Cdc42 and SH3 domain binding to N-WASP is sufficient to activate the Arp2/3 

complex, leading to the polymerization of actin (fig. 21C). The remaining members of 

the actin regulatory complex then function to ensure adequate and efficient formation of 

filamentous actin. Tuba is thus an integral component of the endocytic machinery and 

links it to the actin cytoskeleton.

What role is actin playing in clathrin-mediated endocytosis at the synapse? Actin may 

function, albeit not directly, as a dynamin effector. Dynamin interacts with many
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FIGURE 21. Model for the in vivo mechanism of Tuba function. See text for details.

Dyn, dynamin.
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proteins which have been shown to play a role in both endocytosis andxegulation of the 

actin cytoskeleton (Engqvist-Goldstein and Drubin, 2003). Polymerization of actin has 

two potential roles in the scission reaction. First, actin may form a meshwork around the 

neck of the clathrin-coated pit that with the aid of myosin family proteins will 

mechanically cinch the neck, freeing the nascent vesicle from the donor membrane. 

Alternatively, the polymerization of actin my occur parallel to the neck of the coated pit, 

between the donor membrane and vesicle. As actin polymerization progresses, one can 

envision the neck of the clathrin coated pit stretching to the point of vesicle release. 

There is very little evidence that actin plays a role in the fission reaction, suggesting that 

actin is not involved in vesicle scission.

In addition, or instead of, a role in scission, polymerization of actin may be used by the 

synapse to aid in the locomotion of newly formed vesicles to their destinations. At least 

two mechanisms are possible. In one scenario, actin tails may be formed upon release of 

the vesicle from the membrane. The actin tail would then be used to propel the newly 

formed vesicle away from the membrane or shuttle it to a specific destination. 

Alternatively, the creation of actin filaments might allow the transport of new vesicles 

using myosin family motors, such as myosin VI (Buss et aL, 2002). It is important to 

note that most of these roles of actin are not mutually exclusive, and in fact probably 

work in concert to ensure efficient membrane retrieval and reformation of functional 

synaptic vesicles. Multiple studies have demonstrated actin filaments emanating from 

sites of endocytosis (Dunaevsky and Connor, 2000; Shupliakov et aL, 2002), and some 

suggest that perturbation of the actin cytoskeleton disturbs clathrin-mediated endocytosis
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(Bennett et al., 2001; Gaidarov et a!., 1999). It will be important to determine what role 

actin plays in clathrin-mediated endocytosis, and whether dynamin is responsible for the 

recruitment and initiation of actin function.

Although the properties of Tuba are congruent with the postulated mechanisms described 

above, it is also possible that Tuba functions independently of endocytosis. However 

preliminary, there is some data suggesting that dynamin may function as a bona fide 

regulator of the actin cytoskeleton (Lee and De Camilli, 2002; Ochoa et al., 2000). In 

addition, there is a predicted splice isoform of Tuba which has its amino terminus at the 

Dbl homology domain, thus encompassing only the actin regulatory portion of the 

molecule. This implies that Tuba has two functional forms. The short, carboxy-terminal, 

isoform of Tuba contains the majority of the elements which are involved in the 

regulation of the actin cytoskeleton. Full-length Tuba was expressed in all tissues tested, 

and many of those tissues also displayed immunoreactivity for a protein at 100 kD, the 

approximate size of the short isoform of Tuba. It may be that the short form of Tuba is a 

component of the actin regulatory machinery in various cell types. As this isoform of 

Tuba contains all of the necessary components to activate N-WASP and actin 

polymerization, it would be advantageous for the cell to utilize this form of the protein. It 

is also possible that the amino terminal extension of Tuba is the defining characteristic 

allowing Tuba to participate in endocytosis. We have already described the dynamin- 

binding ability of the amino terminal SH3 domains, but the region spanning Tuba from 

the SH3 domains to the DH domain contains multiple consensus SH3 domain-binding 

sites as well as two predicted coiled-coil regions through which it could interact with
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other components of the endocytic machinery as well as an endocytosis-specific 

mechanism of regulation. Tuba family members Tuba2 and TubaS, similar to the short ■ 

isoform of Tuba, only show homology to the regions of Tuba involved in regulation of 

the actin cytoskeleton. As neither the short Tuba splice isoform, Tuba2, or TubaS have 

been characterized, we can only predict that they may regulate the actin cytoskeleton 

independent of the process of endocytosis.

In regards to Tuba itself, it cannot be stated with certainty that it is involved in clathrin- 

mediated endocytosis. However, the characterization of Tuba, when integrated with the 

work of others described throughout the chapters of this thesis, strongly suggests that 

Tuba is a link between the endocytic and actin machinery.

There are three fundamental questions whose answers will greatly increase our 

understanding of Tuba. First, is Tuba a regulator of the actin cytoskeleton in vivol We 

have demonstrated that the DH domain of Tuba is an exchange factor for Cdc42, and that 

the carboxy terminal SH3 domain of Tuba interacts with N-WASP and a complex of 

actin regulatory proteins, strongly suggesting that Tuba is a regulator of the actin 

cytoskeleton. However, the insolubility of full-length Tuba prevented us from showing 

an effect of Tuba overexpression in fibroblasts, and overexpression of SH3-6 in 

fibroblasts also failed to perturb the actin cytoskeleton (data not shown). The effect of 

Tuba on N-WASP can initially be tested in vitro, using established actin polymerization 

assays (Machesky et al., 1999). In the presence of G-actin, N-WASP, GTP-Cdc42 or 

liposomes containing PtdIns(4,5)P2, and the Arp2/3 complex, addition of Tuba SH3-6
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should initiate actin polymerization. The best way to confirm Tuba’s effect on the actin ■ 

cytoskeleton in vivo is through disruption of Tuba expression. This can be done in mice 

through Tuba gene-knockout experiments, which would be expected to demonstrate 

defects in actin-dependent processes such as body morphogenesis, signal-dependent actin 

cytoskeletal rearrangement in individual cells, and axon migration. Recall that the short 

isoform of Tuba is not believed to participate in endocytosis, and its absence might 

account for the majority of the predicted phenotypes. RNA interference is another tool 

which could be utilized to test the effects of the absence of Tuba on cells in culture, again 

assaying for defects in the rearrangement of the actin cytoskeleton in response to external 

signals. Finally, the C. elegans Tuba homolog, GEI-18, provides another modality in 

which to study the effect of Tuba on actin in vivo.

Understanding the role of the BAR domain of Tuba would also provide significant 

insight into the mechanistic details of Tuba function. As discussed above, the BAR 

domain of Tuba has the potential to regulate Tuba localization as well as DH domain 

function. In vitro studies would initially be needed to refine our knowledge of the

properties of the Tuba BAR domain. Preliminary experiments indicate that the BAR 

domain of Tuba has the ability to bind lipids. This needs to be confirmed. If the BAR 

domain contained the ability to localize Tuba independent of dynamin or SH3-6 binding, 

it would suggest that Tuba might be responsible for recruiting and concentrating dynamin 

and N-WASP at clathrin-coated pits. The relationship between Cdc42 and the Tuba BAR 

domain must also be investigated. Can the BAR domain directly interact with Cdc42, 

and if so, does this alter DH domain function or lipid-binding? Is binding of the BAR
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domain to lipids sufficient to increase the catalytic efficiency-of the DH domain of Tuba? 

The crystal structure of the BAR domain is a homodimer, suggesting that Tuba is a 

homodimer in vivo. Does Tuba dimerize with amphiphysin or other BAR domain- 

containing proteins? This would have significant implications for Tuba localization and 

function. Answers to these questions would give us a greater understanding of the BAR 

domain in general, and of Tuba specifically. Unfortunately, the insolubility of the BAR 

domain will make addressing many of these inquiries technically challenging. In vivo 

examination of many of these issues needs to be based on the results from in vitro 

investigation due to the many hypotheses now available regarding the function of the 

Tuba BAR domain.

Of greatest interest is whether or not Tuba is indeed necessary for clathrin-mediated 

 ̂endocytosis. While most investigators believe that actin plays a role in endocytosis, it is 

unknown if actin function is essential, or at what stage it participates. Experiments 

similar to those done to help elucidate the role of amphiphysin and endophilin in the 

lamprey spinal cord could be employed (Gad et al., 2000; Shupliakov et al., 1997). 

Peptides inhibiting the Tuba SH3 interactions with dynamin, N-WASF, or both proteins 

could help suggest the step at which Tuba is recruited to the endocytic process, and if 

Tuba is at ail necessary for normal synaptic physiology. The function of Tuba in 

endocytosis could also be probed with gene knockout experiments in mice. 

Electrophysiology combined with morphologic analysis of the synapse as well as 

morphometry of indicators of endocytosis, such as clathrin-coated structures, would also 

imply a role for Tuba in endocytosis. A potential problem with these experiments is that
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proteins such as intersectin, which also simultaneously interact with dynamin, N-WASP, 

and catalyze the forniation of Cdc42, might play a functionally redundant roles in the 

synapse, masking the effect of Tuba disruption.

While much work remains, the study of Tuba will not only shed light on the properties of 

a very interesting protein, but may also help elucidate a fundamental unknown of 

clathrin-mediated endocytosis.
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