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ABSTRACT

ANALYSIS OF PULSE TRANSIT TIME WITH THE INCLUSION OF A
MICROVASCULAR COMPONENT IN HEAD-UP TILT AND BLOOD WITHDRAWAL

INDUCED CENTRAL HYPOVOLEMIA
Mark Schlangel, Adriana Oprea, John Ryan, David G. Silverman. Department of Anesthesiology
Yale University School of Medicine, New Haven, CT.

The pulse transit time (PTT) has been investigated as an early noninvasive marker of
hypovolemia, reflecting a combination of changes in the pre-ejection period (PEP) and vascular
transit time (VTT). The use of photoplethysmography (PPG) has limited the analysis to the
macrovascular peripheral circulation by nature of the detection mechanism of the PPG itself.
Excluded is the richly innervated microcirculation that may have a significant influence on the
vasomotor response to a hypovolemic challenge. Therefore the time required for the blood to
travel from the PPG to the microvasculature (VTTn) under a laser Doppler flowmeter (LDF)
would provide a more complete understanding of the physiologic response to hypovolemia. The
present study sought to assess changes in the components of PTT, including VT Ty, in a head-up
tilt (HUT) model and in a post hoc analysis of data recorded from a two-unit blood withdrawal
(BW) experiment performed by members of this research team.

With IRB approval, 10 healthy volunteers were recruited for a 60° HUT test to simulate mild-to-
moderate hypovolemia. Monitoring included a 3-lead EKG, Finapres and a PPG and LDF applied
to both the finger and ear. Measurements were taken during the pre-tilt phase while the subject
was supine and again upon tilting. The data from the BW study were retrospectively analyzed
(see Appendix for methodology). Paired t-tests were performed and p-values are given where p
< 0.05.

During HUT and BW, PEP increased significantly (p < 0.001). While PTT also significantly
lengthened with tilting (p = 0.02), no such change was observed with BW. There was no change
in heart rate in either experiment. VTT also remained essentially the same after tilting and BW.
As expected, VT T, was a significant addition to VTT, however it did not exhibit any significant
changes in any region with either hypovolemic challenge. VTT and VTTwn of the forehead were
significantly different than the finger at baseline and after blood withdrawal. The component
values of the ear and finger did not vary significantly.

Results confirm previous reports of an increase in PEP in response to a mild-to-moderate
hypovolemic insult. Flow through the microcirculation is a significant component of PTT.
However, the VTT, did not exhibit a significant response to mild-to-moderate hypovolemia.
VTT remained essentially the same in both conditions and PTT was only found to change
significantly with tilting. It is interesting to note the lack of change in VTT, with tilting in the
finger as well as the ear, even though the arterial network of the finger is more densely
innervated by a-adrenergic receptors than other parts of the body. In a comparison with the
existing literature, timing of the measurements and testing conditions are believed to
significantly influence the results. Though our early timing of the measurements after the
hypovolemic challenge might veil the presence of a sympathetic hemodynamic response, it is
believed that baseline hydration status of the subject and time spent in the supine position
before tilting are the root causes of this discrepancy with other studies.
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INTRODUCTION

Perioperative early detection of progressive hypovolemia associated with internal
bleeding is not a simple task. The bleeding site is often not identifiable and the vital sign
measurements taken by the monitoring equipment, blood pressure (BP) and heart rate
(HR), are not reliable early indicators of mild-to-moderate hypovolemia.! These
physiologic indicators remain stable during the initial phase of central blood volume
loss, masking the actual deficit because of the complex cardiovascular response. In the
early stage, the baroreceptor reflex is triggered, maintaining the perfusing BP by
increasing systemic vascular resistance (SVR), despite a decrease in stroke volume (SV)
and cardiac output (CO). HR is also an insensitive marker of early hypovolemia because
it changes in a complex manner as hypovolemia worsens.? 3 It is only in the later stages
of hypovolemia, when about 30% or more of the total blood volume is lost, that the
physiological regulatory mechanisms become ineffective and a noticeable change in BP
is observed. Hypotension and tachycardia do not indicate “the beginning of circulatory

failure, but rather represent the beginning of decompensation.”#

The hemodynamic response to acute hemorrhage can be divided into three stages.3 >
The first stage encompasses a blood loss up to 15% and, despite this reduction, arterial
BP is maintained because of an increase in total peripheral resistance from
baroreceptor-reflex compensated vasoconstriction. HR does increase, but only
modestly to less than 100 bpm.> ¢ The second stage can be characterized by either a CO
below 50-60% of the resting CO or a 30% loss in blood volume. Compensatory

mechanisms begin to fail leading to bradycardia and hypotension.” 8 If hemorrhaging



continues, the third stage manifests as worsening hypotension and tachycardia greater
than 120 bpm. This stage transitions to irreversible decompensation, with ischemia,

cellular dysfunction and eventually death.>?

By the time hypotension and tachycardia manifest, there is a greater risk of
cardiovascular collapse secondary to severe hemorrhagic shock.!> 2. 10. 11 Hemorrhagic
shock, defined by a systolic blood pressure less than or equal to 90 mmHg, is also
associated with organ failure.l? Delayed hemorrhage control has been identified as a
major contributor to preventable trauma deaths and often, late detection is to blame.13
14 The unreliability of these vital signs as early markers of volume status demonstrates
the importance of a timely and accurate indicator to diagnosis early stage hypovolemia.
To decrease barriers of adoption and wider and quicker utilization, it is ideal that this

marker be derived from common, currently used patient monitoring equipment.

Head-up tilting (HUT),% 15-18 blood withdrawal (BW)1%-23 and lower body negative
pressure (LBNP)10. 23-30 are all acceptable and well-established functional models of
blood loss. HUT simulates mild and moderate hypovolemia only, while the latter two
have the potential, depending on the degree to which the model is implemented, to
represent all stages of hypovolemia. A head-up tilt of 60 degrees approximates
moderate blood loss, about 10-20% of total central blood volume. This is equivalent to

550-1,000 mL of blood withdrawal or 20-40 mmHg LBNP.10.17



In an unpublished study by members of our research team (Wardhan et al.)3!
withdrawal of two units of blood was protocoled to discover a signal of moderate blood
loss. Subjects were monitored with EKG and noninvasive continuous finger arterial
blood pressure as about 900 mL of blood was removed at a rate of 1-unit/10-minutes,
after which the two units were reinfused along with 200 mL of saline. Despite this
moderate hypovolemic insult, BP and HR remained stable within 5% of baseline. This is
consistent with other findings and can be explained by the fact that BP and HR, because
of their sensitivity to the reflex response, are secondary responses to blood loss and are
therefore insensitive to moderate changes in volume status. Primary responses, such as
central blood volume, diminished venous return, ventricular end diastolic volume (or
preload) and reduced stroke volume, would be a more direct and appropriate target

from which to glean volume status information.

Much of these primary events are accounted for in the pulse transit time (PTT), which
in its technical sense is the time it takes the pulse wave to travel between two arterial
sites.32-35 PTT is a function of the physical characteristics of the blood vessel and blood,
as well as the intravascular pressure. The speed at which the arterial pulse wave travels
is therefore proportional to blood pressure. Vascular tone rises with BP, resulting in a
constricted and stiffer arterial wall which causes PTT to shorten.3¢ Multiple studies
have attempted to use PTT as a surrogate for beat-to-beat blood pressure, but results
have demonstrated that PTT lacks the clinical accuracy to be substituted for continuous
BP measurements.3”-41 PTT also has had mixed success when applied to gain further

insight into other conditions, such as diagnosing and monitoring sleep apnea,*?



assessing cardiovascular reactivity*3 and estimating arterial stiffness.** 4> But, studies
have been successful in demonstrating that PTT can detect hypotension caused by
central hypovolemia,#® and even holds promise in signaling the early stage of

hypovolemia before hypotension manifests.*7. 48

Practically, it is too difficult to continuously monitor artifact-free pulses from two
peripheral sites. Instead, PTT can be observed between the ventricular electrical
activity and a point on the systolic upstroke of the corresponding peripheral pulse
wave. This has the advantage of using a proximal timing point that is simple to detect
and tolerant of motion artifact. This interval can be functionally measured from the
peak of the R-wave on an electrocardiogram (EKG)35 49-51 to a reference point on the
periphery detected by pressure monitors, either a photoplethysmograph (PPG) or laser

Doppler flowmeter (LDF), marking the arrival of the pulse wave.

The PPG is a noninvasive probe that utilizes infrared optics to produce a signal that
reflects the minutely changing volume of red blood cells in the microvascular bed
during a cardiac cycle.52 53 Light is transmitted through the tissue and sensed by a
photodetector, which then amplifies and processes the emitted signal.>* As the BP wave
propagates along the arteries of the skin, the tissue blood volume increases and
decreases with the periodicity of the heartbeats. The dynamics of this change depend
on many factors, including heart function, neural processes and size and elasticity of the
local vessels themselves.>> PPG signals can be best obtained from the tissue pads of the

fingers, toes and ears, because these are sites with adequate cutaneous perfusion and



good contact can be made between the skin and sensor.>¢ Signal quality and accuracy is
therefore dependent on sensor placement and contact,5? peripheral temperature,>8
degree of perfusion>? ¢0 and motion artifact.6? The resulting pulse oximeter waveform
carries a significant amount of information, however besides for measuring arterial

blood oxygen saturation, most of its utility has not been clinically realized.62-64

From a clinical perspective, the ease of deriving PTT from monitors already routinely
required for measuring vital signs makes any application of PTT more likely to be
adopted in patient care. The literature calculates PTT as the sum of two distinct
components: the pre-ejection period (PEP), which corresponds to the time from the
start of ventricular depolarization to the onset of ventricular ejection (Figure 1), and
the vascular transit time (VTT), which is the time it takes the arterial pulse wave to
travel from the aortic valve to a point in the peripheral arteries. In other words, PTT
consists of a central component, PEP, and a peripheral component, VTT (Figure 2). VTT
and its inverse, the pulse wave velocity (PWV), have been used to evaluate the physical
characteristics of peripheral arteries in atherosclerotics*> 6568 and to ascertain the

autonomic cardiovascular response in diabetics.32 69
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Figure 1. Relation of the measured systolic time intervals to the cardiac cycle. Abbreviations: LVET = left ventricular
ejection time; QS2 = electromechanical systole. [Reprinted from Stafford et al.”0]
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Figure 2. Representative drawing of electrocardiogram (EKG), central aortic pressure (CAoP), and peripheral aortic
pressure (PAoP). The interval between the R-wave of EKG and pulse arrival of AoP is PEP. The interval between CAoP
and PAoP is the VTT. The sum of PEP and VTT, which is the interval between the R-wave and the peripheral pulse

arrival, is the PTT. [Adapted from Ochai et al.39]
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Studies on the physiology of animals and man show that PEP is prolonged when either
stroke volume or ventricular filling is reduced.”’ 72 The duration of the PEP also
depends on the isovolumetric pressure gradient difference between the afterload and
the end diastolic pressure, with a larger gradient correlating to a longer PEP.70 In the
setting of hypovolemia, the compensatory baroreceptor-mediated reflex, which
increases peripheral vasoconstriction, elevates the aortic diastolic pressure, thereby
widening the pressure gradient and consequently lengthening PEP. However in
opposition to this effect, the reflex also sympathetically stimulates the myocardium,!>
quickening the isovolumetric rise of left ventricular pressure’3 and thereby shortening
PEP. The observed lengthening of PEP in studies is instead explained by a widening of
the pressure gradient due to the slower rise of left ventricular pressure during
isovolumetric contraction secondary to shortened myocardial fiber length from the

hypovolemic-reduction in left ventricular end-diastolic volume.”4 7>

PWYV, as described by the Moens-Korteweg formula,’¢ 77 depends on the distensibility
and the dimensions of the vessel, such that:

gEa
pd

where v is the PWV, g is the gravitational constant, E is the elastic modulus, a is the
vessel wall thickness, d is the interior diameter and p is the density of the blood. When

BP increases, vessel diameter widens and the wall thickness thins. However, these

adjustments are more than offset by the change in the elastic modulus, which increases
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exponentially with the increasing BP.78-80 This is why PWV increases with a rising BP.

The VTT is inversely proportional to the velocity v, expressed as:

where T is the VTT and K is a proportional coefficient indicating the distance the pulse

wave must travel.

Studies have verified this, showing VTT to have a negatively linear correlation with BP.
However, the relationship between PEP and BP was inconsistent,3° varying with cardiac
preload’? 81, 82 and sometimes contributing as much as 35% of PTT.34 Several other
reports also reveal this larger role of PEP on PTT when the cardiovascular response
alters the myocardial contractility.*® 41 This confirms that PEP is a major factor in
modifying the relationship between PTT and BP and explains why studies that have

only measured PTT alone have had trouble showing accurate estimations of BP.

It is our contention that the PTT should actually consist of three components. The
peripheral VTT component can be separated between the macrocirculation and the
microcirculation. After all, the microcirculation contains the major resistance vessels in
the body and is the primary site of regulation.83 The richly innervated microcirculation
may have a significant influence on the vasomotor response to a hypovolemic challenge
and this unmeasured section of the vascular circuit could very well provide a fuller
understanding of the hemodynamic response to hypovolemia. It could also potentially
serve as an early signal of volume loss in its own right. However, experiments to date

have limited the pulse transit time to the major vessels only, because the PPG signal has
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been ubiquitously used to measure the pulse arrival in the periphery. One study did use
LDF to measure the PTT through the microvasculature, however there was no
evaluation of PEP and VTT nor were any components tested under hypovolemic
conditions.8* The PPG is most sensitive to the larger peripheral arteries due to a
reduction in the pulsation of the wave beyond the arterioles, which makes detection of
the microvascular waveform unreliable. Though the PPG actually detects the blood at
the level of the arterioles, it is its time-value component that serves as the endpoint in
the VTT calculation, marking the arrival of the pulse from the macrovasculature of the

peripheral circulation.

Therefore, a different measurement modality is needed to measure VTT through the
microvascular (VTTn). Laser Doppler flowmetry (LDF) has the capability to assess the
microcirculation of the pulse wave at the level of the capillary network. The LDF is also
a noninvasive probe, but it detects phase shifts of low-powered laser light to
continuously measure microvascular perfusion.8> LDF, like PPG, has been proven to
satisfactorily detect pulse waveforms in the periphery for purpose of measuring PTT.84
And just like the PPG, even though the LDF actually measures the blood flow directly
beneath the probe in the capillary network, it is used to mark the endpoint of the wave
propagation through the precapillary arteriolar network. Even though PPG and LDF
measure different aspects of the blood, they can be compared on the common
dimension of time. Any inherent differences in measurement due to the distortion
between the mechanics of how the two probes actually measure - the PPG tracks blood

volume, while the LDF relies on blood flow - are eliminated by the consistent
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comparison of only the time values from each probe. The PPG clocks the wave
propagation of the major vessels, while the time differential between the PPG and the
LDF gauges it on the micro level. Because only the time differential is being analyzed,
the arrival of the pulse at the PPG marks the new starting point and the VTTn is
therefore free from the influences of any proximal regulation in the major vascular

network.

PTT is therefore the sum of not two, but three components. The PEP, which measures
the cardiac portion, the VTT, which is the pulse travel time through the major arteries,
and finally the VTTm, which is the propagation of the wave in the microcirculation.
Separate analysis of each component and its associated waveform can then be used to
untangle and better understand the contributing factors and perhaps uncover a reliable
pattern to serve as an early detection of diminishing volume status. In the analysis of
PTT, it is also important to acknowledge that changes at one site in the peripheral

arterial network might not be representative of changes at other sites.

Different locations vary in their sensitivity and responsiveness to stimuli because of the
uneven presence and concentration of autonomic receptors.>* Burton defines the role of
the autonomic nervous system on the blood volume pulsations, such that:

AV =AP xD
where AV is the volume pulsation, AP is the systemic intravascular pulse pressure and D
is the distensibility of the vascular wall.8¢ For instance, the vessel walls in the arterial

network of the finger is more densely innervated by a-adrenergic receptors than other
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parts of the body and is therefore more sensitive to sympathetic stimuli.8’ Since
distensibility is chiefly dependent on vascular smooth muscle tone, it will be primarily
altered by the autonomic nervous system.88 Thus, vasoconstriction from an increase in
sympathetic tone would create a vigorous decrease in vessel distensibility and, in turn,
a sizeable reduction in volume pulsation. The waveform detected by a finger PPG

therefore indicates local vascular tone and volume alterations.89 90

This is opposed to the ear, which has a relatively less pronounced vasoconstrictive
response to sympathetic stimuli.8° These regional differences in microvasculature flow
and regulation have been verified by a more profound decrease in amplitude in the
finger PPG than the ear pinna PPG in response to cold immersion,?° intubation and
stressful surgical stimuli®l 92 as well as in numerous studies testing various
pharmacological agents.32 93 Changes in volume detected at the ear would have to be
mostly caused by changes in pulse pressure, inferring that the ear is a more fitting
indicator of the systemic circulation and stroke volume.88 Because the PEP reflects the
contractility of the left ventricle, which is primarily controlled by p-sympathetic
activity,34 35 94 95 the PTT to the ear is also a measure of -sympathetic myocardial

influences.

A PPG probe on the earlobe is a convenient and accurate surrogate to measure the
central component of PTT,3* even though the PTT to the ear technically incorporates
the PEP and the VTT of the pulse originating in the aorta to the arrival at the probe.

Anatomically, the blood supply of the lobule of the auricle mostly consists of the major
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central arteries - the aorta, carotid and external carotid arteries. The remaining
peripheral flow is from the posterior auricular and superior temporal branches, which
directly feed from the external carotid artery.?® The aorta is non-reactive to
hypovolemia-induced sympathetic stimulation®” and the remaining course of the blood
supply to the ear is not sympathetically reactive enough to result in a significant

difference between PEP and PTT.34

STATEMENT OF PURPOSE

A HUT model was used to investigate the multiple components of PTT, including the
proposed VTTy, and to determine if a change in any of these variables can signal early
hypovolemia. LDF was added to the standard PTT measuring devices, so that the effects

of the microcirculation on PTT could be quantified and analyzed.

Earlier studies have used a HUT model to measure the different factors of PTT.47 70
Head-up tilt testing repositions a subject from supine to reverse Trendelenburg, in
which the feet are below the head. The sine of the tilt angle has a linear relationship
with the hydrostatic effects of a decreasing thoracic volume.18 98 Although HUT is not
identical to blood loss because the blood volume is only redistributed to the lower body
under gravity’s hydrostatic influence as opposed to permanently lost from circulation, it
nonetheless still closely simulates the physiological responses to a compounding deficit
in central blood volume.? 7.11.99 The resulting venous pooling reduces ventricular filling,
end-diastolic volume, SV and CO, while increasing total peripheral resistance through

baroreceptor-mediated reflexes.”0. 100,101
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A post hoc analysis of the data collected from the research team’s unpublished BW
study was also done in hopes of confirming and supporting any findings from the
current HUT trial. While BW cannot exactly reproduce the effects of progressive,
uncontrolled hemorrhage,12 it still is able to closely simulate the physiological
response to a reduction in blood volume. The HUT model was used as the primary
investigation because HUT, as compared to BW, more acutely simulates hypovolemia.
The full physiologic simulation of hypovolemia in HUT occurs within a minute of tilting,
whereas the hypovolemic effects of BW gradually occur, as the blood is removed
overtime, in this case over twenty minutes at a rate of 1-unit/10-minutes. Also, while
the data from the BW study showed no change in HR or BP, which is congruent with
some of the blood withdrawal literature investigating hypovolemia, studies that used a
head-up tilting model reported a change in HR and BP. It was therefore decided to
measure the components of PTT using a model that has elicited a substantive
sympathetic response and that could easily be applied to identify early stage acute

hemorrhage in trauma settings.

Based on the literature, we hypothesized that a hypovolemic challenge will lengthen
PEP and slow PTT. The increase in PTT, which is mostly attributed to the prolonged
PEP, will be partially offset by a decrease in both VTT and VTTwn due to a sympathetic-
mediated peripheral vasoconstriction. We anticipated the acceleration in VTTy, to have

a greater contribution to the change in PTT than VTT, because the microcirculation
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comprises the major resistance vessels, which are highly innervated and sensitive to

sympathetic stimuli.

METHODS

BLOOD WITHDRAWAL

The data from the blood withdrawal study were retrospectively analyzed and the
methodology protocol implemented in that study can be found in the Appendix. It
should be noted that though the blood withdrawal study had a PPG monitor on the ear,
it lacked an ear LDF. Without a measurement of the microcirculation in the ear, VT Tn
cannot be directly compared between studies. However, the study does have a forehead

PPG and LDF, allowing for other comparative analyses.

HEAD-UP TILTING

Subject
With IRB approval, 10 healthy volunteers were recruited for a 60° HUT test to simulate
mild-to-moderate hypovolemia. All subjects were healthy and had no history of

cardiovascular or respiratory disease.

Measurement devices

Unfiltered PPG (ADInstruments finger clip) and LDF (Perimed, Sweden) waveforms
were measured from the tip of the right index and middle fingers, respectively, and
from the right ear lobule. Data were recorded at 200 Hz and digitized to a computer

using commercially available data acquisition software (PowerLab, ADInstruments).



19

Monitoring also included a lead III EKG configuration, with sensors placed on each wrist
and the left shin. To measure continuous noninvasive finger arterial BP, a Finapres
(Finapres, Ohmeda, Boulder, CO) was applied to the left middle finger between the

proximal inter-phalangeal and the metacarpo-phalangeal joints.

Measurement protocol

The subjects rested on the tilt table in the supine position while the monitors were
attached. Data recording was performed with the subjects positioned comfortably on
the tilt table. Subjects were instructed to breath in synchronization with an audio
metronome that was set to a respiratory rate of 12 breaths per minute. After a short
period confirming satisfactory device signals with minimal artifact and with the subject
resting comfortably, baseline measurements were recorded with the volunteer supine
in the “pretilt” phase. The subject was then quickly tilted directly to 60° without pause
and with a footboard supporting the subject’s feet. The monitored (right) arm was
passively maintained at heart level by one of the investigators. Measurements were
recorded again in this half-minute “tilt” phase. The subject was then returned to the
supine position for the monitors to be removed, remaining there for a minute to reach

homeostatic balance before standing.

BLOOD WITHDRAWAL AND HEAD-UP TILTING

Signal processing and data analysis
Signals were processed and analyzed in LabChart (ADInstruments). A low-pass digital
filter with a cut-off frequency of 5 Hz was applied to all signals except the EKG. On a per

subject basis, a sequence of 11-13 consecutive beats with few or no artifacts in each of
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the pre-challenge and challenge phases was chosen for evaluation of the parameters
under investigation. The tilt phase data were collected as close to the act of tilting as
allowed to us by artifact-free beats. PEP, VTT, VT T, PTT and HR were all derived from
the EKG, PPG and LDF recordings. For the LDF and PPG tracings, the arrival of the pulse
was measured at the trough preceding each upstroke of the PPG curve. This foot of the
systolic upstroke is the ideal point of measurement because this initial portion of the
signal rise is dependent only on pulse propagation, while the rest of the pressure pulse
is determined by blood flow velocity and wave reflection from the periphery in addition
to the pulse propagation.3® The foot was identified from the plot of the first derivative
by finding the time value where the derivative equaled 0, or failing that, the closest
point greater than 0. The HR was calculated from dividing 60 by the R-R interval on the
EKG tracing. PEP was determined by the time interval between the peak of the R-wave
and the arrival of the subsequent pulse at the ear PPG. The time interval between this
pulse arrival at the ear and the arrival of the pulse on the peripheral PPG constituted
the VTT. The VT Ty is the measured time difference between the PPG and the LDF. PTT
is the mathematical addition of PEP, VTT and the peripheral VTTn. The mean and
standard deviation for each parameter are reported. Paired t-tests were performed and

p-values are given where p < 0.05.

RESULTS

The HUT experiment included finger and ear PPG and LDF monitors. PEP and VTTy
were measured at the ear. VIT, VITy, and PTT were measured at the finger. The BW

experiment included forehead PPG and LDF monitors in addition, but lacked an ear LDF.
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Only PEP was measured at the ear. VIT, VI Ty and PTT were measured at the forehead

and the finger.

HEAD-UP TILTING
In the HUT trial, both PEP and PTT significantly increased with tilting, p < 0.001 and p =

0.02 respectively. No significant change was seen with either VTT or VT Tw. The effects

of tilting on the macrovasculature and microvasculature are summarized in Table 1.

Table 1. Effects of HUT on the components of PTT

Macrocirculation
Subject PEP VTT

Pretilt Tilt Pretilt Tilt
1 0.118 0.132 0.077 0.076
2 0.112 0.120 0.063 0.067
3 0.083 0.097 0.077 0.079
4 0.098 0.105 0.062 0.071
5 0.092 0.109 0.069 0.076
6 0.097 0.112 0.057 0.057
7 0.112 0.131 0.080 0.074
8 0.124 0.126 0.040 0.059
9 0.079 0.096 0.055 0.052
10 0.112 0.135 0.070 0.075

Mean + SD  0.103 + 0.015 0.116 + 0.015*** 0.065 + 0.012  0.068 + 0.009

Microcirculation Overall
Subject VTT,, Ear VTT,, Finger PTT

Pretilt Tilt Pretilt Tilt Pretilt Tilt
1 0.128 0.118 0.118 0.129 0.313 0.337
2 0.138 0.130 0.117 0.117 0.292 0.304
3 0.132 0.124 0.076 0.063 0.237 0.238
4 0.144 0.148 0.109 0.123 0.268 0.299
5 0.135 0.133 0.081 0.098 0.242 0.283
6 0.100 0.087 0.083 0.083 0.237 0.252
7 0.132 0.120 0.125 0.108 0.317 0.313
8 0.093 0.108 0.114 0.112 0.278 0.288
9 0.102 0.103 0.150 0.128 0.284 0.276
10 0.116 0.122 0.103 0.101 0.284 0.311

Mean £ SD 0.122 £ 0.018 0.119 £+ 0.017 0.108 £ 0.023  0.106 £+ 0.021 0.275 £ 0.029 0.290 + 0.030*

Values reported in seconds. * p < 0.05, *** p < 0.001 for change from pretilt value.

During pretilt, the mean VTTy was 0.122 and 0.108 seconds at the ear and finger
respectively and during tilt it was 0.119 and 0.106 seconds (Table 2). As expected, in
both the pretilt and tilt phases, the VTTm component was found to be a significant
addition (p < 0.001) to PEP at the ear and VTT at the finger, as shown in Table 2. VTTy,

also constituted a significant addition (p < 0.001) to PTT between the R-wave of the
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EKG and the PPG, which was 0.168 and 0.148 seconds during pretilt and tilting

respectively (Table 3).

Table 2. The inclusion of VTTw to PEP and VTT

Ear
Subject Pretilt Tilt
PEP PEP + VTT,, PEP PEP + VTT,,
1 0.118 0.247 0.132 0.250
2 0.112 0.251 0.120 0.250
3 0.083 0.215 0.097 0.221
4 0.098 0.241 0.105 0.253
5 0.092 0.227 0.109 0.242
6 0.097 0.197 0.112 0.199
7 0.112 0.244 0.131 0.251
8 0.124 0.217 0.126 0.233
9 0.079 0.180 0.096 0.198
10 0.112 0.228 0.135 0.258

XKk XKk

Mean =+ SD 0.103 £ 0.015 0.225 + 0.023 0.116 £ 0.015  0.236 + 0.022

Finger
Subject Pretilt Tilt
VTT VTT + VTT,, VTT VTT + VTT,,
1 0.077 0.195 0.076 0.205
2 0.063 0.180 0.067 0.184
3 0.077 0.153 0.079 0.141
4 0.062 0.171 0.071 0.194
5 0.069 0.150 0.076 0.174
6 0.057 0.140 0.057 0.139
7 0.080 0.205 0.074 0.182
8 0.040 0.154 0.059 0.171
9 0.055 0.205 0.052 0.180
10 0.070 0.172 0.075 0.176

XKk XKk

Mean = SD 0.065 £ 0.012 0.173 £ 0.023 0.068 £ 0.009 0.175 £+ 0.021

Values reported in seconds. *** p < 0.001 for difference with addition of VT Tm.




Table 3. The inclusion of VT T to the traditional PTT (PEP+VTT) of the finger
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Subject Pretilt Tilt
PTT (traditional) PTT (with VTT,,) PTT (traditional) PTT (with VTT,)
1 0.195 0.313 0.207 0.337
2 0.175 0.292 0.187 0.304
3 0.161 0.237 0.175 0.238
4 0.160 0.268 0.176 0.299
5 0.161 0.242 0.185 0.283
6 0.153 0.237 0.169 0.252
7 0.192 0.317 0.205 0.313
8 0.165 0.278 0.176 0.288
9 0.134 0.284 0.147 0.276
10 0.182 0.284 0.210 0.311

Mean £ SD  0.168 £ 0.019 0.275 + 0.029

kX

0.184 +£ 0.020 0.290 + 0.030

XKk

Values reported in seconds. *** p < 0.001 for difference with addition of VT Tm.

VTTm of the ear and the finger did not differ significantly during pretilt, averaging 0.122

and 0.108 seconds respectively, despite the ear VTTn being greater than the finger in 8

out of 10 subjects. The same was true during tilting, with a VTTn of 0.119 seconds for

the ear and 0.106 seconds for the finger. Furthermore, the changes in VT T, with tilting

at both the ear and at the finger were not significantly different between the two sites. It

should be noted that these changes in VTTy showed no consistent trend of either

lengthening or shortening among subjects. These results are summarized in Table 4.

Table 4. Comparison of VT T at the ear and finger

Subject Pretilt VTT,, Tilt VTT,,, Pretilt-Tilt VTT,, Change

Ear Finger Ear Finger Ear Finger
1 0.128 0.118 0.118 0.129 0.011 -0.011
2 0.138 0.117 0.130 0.117 0.008 0.000
3 0.132 0.076 0.124 0.063 0.007 0.014
4 0.144 0.109 0.148 0.123 -0.004 -0.014
5 0.135 0.081 0.133 0.098 0.002 -0.017
6 0.100 0.083 0.087 0.083 0.013 0.000
7 0.132 0.125 0.120 0.108 0.012 0.017
8 0.093 0.114 0.108 0.112 -0.015 0.002
9 0.102 0.150 0.103 0.128 -0.001 0.022
10 0.116 0.103 0.122 0.101 -0.007 0.002

Mean £ SD  0.122 + 0.018

0.108 £+ 0.023 0.119 £ 0.017

0.106 £ 0.

021 0.003 +£0.009 0.002 +£0.013

Values reported in seconds.
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Similar to what was found in the previous analysis of the BW study,3! Table 5 shows
there was no significant change in HR with the moderate hypovolemic challenge

induced by tilting. The HR was 72.9 bpm during pretilt and 73.7 bpm during tilting.

Table 5. Changes in HR with tilting

Subject HR

Pretilt Tilt
1 65.40 65.84
2 82.70 84.49
3 71.18 66.09
4 67.94 61.18
5 87.07 89.10
6 72.35 75.24
7 59.39 57.03
8 68.64 69.61
9 77.67 80.79
10 76.71 87.48

Mean =+ SD  72.91 % 8.29 73.68 £ 11.39

Values reported in bpm.

BLOOD WITHDRAWAL

PEP significantly increased from baseline (p = 0.001) and PTT did not significantly
change with the withdrawal of two units of blood. VTT and VT T to the forehead and to

the finger also did not change significantly. These results are summarized in Table 6.
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Table 6. Effects of BW on the components of PTT

Macrocirculation
Subject PEP VTT - Forehead VTT - Finger
Baseline Blood Out Baseline Blood Out Baseline Blood Out
1 0.087 0.098 0.027 0.020 0.221 0.213
2 0.086 0.097 0.042 0.035 0.186 0.201
3 0.119 0.128 0.002 0.004 0.199 0.206
4 0.136 0.139 0.047 0.047 0.217 0.237
5 0.105 0.118 0.035 0.032 0.217 0.221
6 0.123 0.141 0.030 0.018 0.198 0.210
7 0.125 0.146 0.023 0.013 0.203 0.198
8 0.104 0.123 0.0008 0.0008 0.203 0.221
9 0.133 0.134 0.014 0.016 0.183 0.194

EEES

Mean + SD 0.113 +£ 0.019 0.125 + 0.018 0.024 +£ 0.016  0.021 £ 0.015 0.090 +£ 0.025  0.086 + 0.022

Microcirculation

Subject VTT,, Forehead VTT,, Finger
Baseline Blood Out Baseline Blood Out
1 0.193 0.157 0.076 0.052
2 0.141 0.099 0.090 0.081
3 0.155 0.128 0.038 0.044
4 0.088 0.124 0.041 0.087
5 0.152 0.144 0.055 0.103
6 0.120 0.124 0.132 0.104
7 0.132 0.111 0.091 0.062
8 0.144 0.140 0.105 0.070
9 0.141 0.129 0.123 0.153

Mean + SD  0.141 + 0.028  0.128 + 0.017 0.082 + 0.035 0.084 + 0.033

Overall
Subject PTT - Forehead PTT - Finger
Baseline Blood Out Baseline Blood Out
1 0.306 0.275 0.297 0.264
2 0.268 0.231 0.223 0.281
3 0.276 0.260 0.240 0.251
4 0.271 0.310 0.262 0.324
5 0.292 0.294 0.263 0.324
6 0.273 0.284 0.330 0.314
7 0.280 0.270 0.294 0.259
8 0.246 0.260 0.307 0.291
9 0.289 0.279 0.306 0.346

Mean £ SD  0.278 £ 0.017  0.274 £+ 0.023 0.280 £ 0.035  0.295 + 0.034

Values reported in seconds. * p < 0.05, *** p < 0.001 for change from baseline value. § Values treated as 0 for
calculations, because resolution did not enable a distinction between these two readings, causing the PPG to measure
the pulse arrival at the forehead before the pulse arrival at the ear.

As expected, during baseline the mean VTTy, was 0.141 and 0.082 seconds at the
forehead and finger respectively and after the blood was withdrawn it was 0.128 and
0.084 seconds (Table 6). Though VTT., was essentially the same during the
hypovolemic challenge, the VTTy, was a significant addition (p < 0.001) to VTT at both

the forehead and finger in both baseline and blood out conditions (Table 7).
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Table 7. The inclusion of VT Tm to VTT

Forehead
Subject Baseline Blood Out
VTT VTT + VTT,, VTT VTT + VTT,,
1 0.027 0.220 0.020 0.177
2 0.042 0.182 0.035 0.134
3 0.002 0.157 0.004 0.132
4 0.047 0.135 0.047 0.171
5 0.035 0.187 0.032 0.177
6 0.030 0.150 0.018 0.142
7 0.023 0.155 0.013 0.124
8 0.000 0.144 0.000 0.140
9 0.014 0.156 0.016 0.145

ok oKk

Mean £ SD 0.024 +£ 0.016 0.165 + 0.026 0.021 £ 0.015 0.149 + 0.020

Finger
Subject Baseline Blood Out
VTT VTT + VTT,, VTT VTT + VTT,,
1 0.135 0.210 0.114 0.166
2 0.100 0.190 0.104 0.184
3 0.080 0.118 0.079 0.123
4 0.081 0.122 0.099 0.186
5 0.112 0.157 0.103 0.207
6 0.074 0.207 0.069 0.173
7 0.078 0.169 0.052 0.113
8 0.099 0.204 0.099 0.169
9 0.050 0.173 0.060 0.213

kX XKk

Mean £ SD 0.203 +£ 0.013 0.285 £ 0.029 0.211 £ 0.014 0.295 £ 0.034

Values reported in seconds. *** p < 0.001 for difference with addition of VT Tm.

In the baseline and blood out conditions, VTT of the forehead was different than the
finger (p < 0.001). VTTn was also different for each region at both conditions, p = 0.005
and p = 0.008 respectively. VTT to the finger was greater than to the forehead in both
conditions, while the VTTy, was shorter. PTT to the forehead was also significantly less
than to the finger, but only in the blood out condition (p = 0.05). At baseline, they were
statistically equivalent. Furthermore, the changes in PTT, VTT and VTTwn during blood
out at both the forehead and the finger were not significantly different between the two

locations. It should be noted that the changes in VIT and VTTm showed no consistent
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trend of either lengthening or shortening among subjects. Changes in PTT were almost

uniformly negative. These findings are listed in Table 8.

Table 8. Comparison of PTT, VTT and VTTwm at the forehead and finger

Subject Baseline VTT Blood Out VTT
Forehead Finger Forehead Finger
1 0.027 0.135 0.020 0.114
2 0.042 0.100 0.035 0.104
3 0.002 0.080 0.004 0.079
4 0.047 0.081 0.047 0.099
5 0.035 0.112 0.032 0.103
6 0.030 0.074 0.018 0.069
7 0.023 0.078 0.013 0.052
8 0.000 0.099 0.000 0.099
9 0.014 0.050 0.016 0.060

HAK HAK

Mean £ SD 0.024 £ 0.016 0.090 + 0.025 0.021 + 0.015 0.086 + 0.022

Subject Baseline VTT, Blood Out VTT,,

Forehead Finger Forehead Finger
1 0.193 0.076 0.157 0.052
2 0.141 0.090 0.099 0.081
3 0.155 0.038 0.128 0.044
4 0.088 0.041 0.124 0.087
5 0.152 0.046 0.144 0.103
6 0.120 0.132 0.124 0.104
7 0.132 0.091 0.111 0.062
8 0.144 0.105 0.140 0.070
9 0.141 0.123 0.129 0.153

Mean £ SD  0.141 + 0.028 0.082 £+ 0.035  0.128 £ 0.017 0.084 + 0.033™

Subject Baseline PTT Blood Out PTT
Forehead Finger Forehead Finger
1 0.306 0.297 0.275 0.264
2 0.268 0.223 0.231 0.281
3 0.276 0.240 0.260 0.251
4 0.271 0.262 0.310 0.324
5 0.292 0.263 0.294 0.324
6 0.273 0.330 0.284 0.314
7 0.280 0.294 0.270 0.259
8 0.246 0.307 0.260 0.291
9 0.289 0.306 0.279 0.346

Mean £ SD 0.278 £ 0.017  0.280 £+ 0.035 0.274 £ 0.023 0.295 + 0.034*

Subject Baseline-Blood Out VTT,, Change Baseline-Blood Out VTT Change Baseline-Blood Out PTT Change

Forehead Finger Forehead Finger Forehead Finger
1 0.036 0.024 0.007 0.020 -0.005 0.008
2 0.041 0.009 0.007 -0.004 -0.004 -0.015
3 0.027 -0.006 -0.002 0.001 -0.011 -0.007
4 -0.036 -0.046 0.000 -0.018 -0.003 -0.020
5 0.007 -0.057 0.003 0.008 -0.010 -0.004
6 -0.004 0.028 0.012 0.006 -0.006 -0.012
7 0.021 0.030 0.010 0.026 -0.011 0.005
8 0.004 0.035 0.000 0.000 -0.017 -0.019
9 0.013 -0.030 -0.002 -0.010 -0.003 -0.011

Mean + SD  0.012 +£ 0.023 -0.001 £+ 0.035 0.004 £ 0.005 0.003 + 0.014 -0.008 + 0.005 -0.008 + 0.010

Values reported in seconds. * p < 0.05, ** p < 0.01, *** p < 0.001 for difference between forehead and finger values.

Comparing information from the forehead in the BW study to findings from the ear in
the HUT trial, Table 9 shows that the time interval between the R-wave on the EKG and

the pulse arrival at each site is statistically different. This was true at both baseline and
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during the hypovolemic challenge, p = 0.002 and p = 0.004 respectively. The time to the

forehead was found to be longer than to the ear in both conditions.

Table 9. Comparison of PTT at the forehead and PEP at the ear

PTT/PEP
Subject Baseline Challenge

Forehead Ear Forehead Ear
1 0.114 0.087 0.118 0.098
2 0.127 0.086 0.132 0.097
3 0.121 0.119 0.132 0.128
4 0.182 0.136 0.186 0.139
5 0.140 0.105 0.150 0.118
6 0.153 0.123 0.159 0.141
7 0.148 0.125 0.159 0.146
8 0.102 0.104 0.120 0.123
9 0.147 0.133 0.150 0.134

Mean = SD 0.137+ 0.024 0.113 = 0.019"  0.145 + 0.022 0.125 + 0.018"

Values reported in seconds. ** p < 0.0 for difference between forehead and ear values.

A summary of the changes from baseline observed in each of the major components of

PTT from both HUT and BW is depicted in Table 10.

Table 10. Summary of PTT components from HUT and BW

Component Challenge vs. Baseline
HUT BW
PEP 'S T
VTT Forehead - 7
VTT Finger 0\ v
VTT,, Forehead - v
VTT,, Finger v A
VTT,, Ear 8 2 -
PTT Forehead - v
PTT Finger N 0\

*p <0.05,***p < 0.001 for difference between post-challenge and pre-challenge values.

DISCUSSION

In search for a noninvasive beat-by-beat BP monitor and an early detector of mild
hypovolemia, investigators have examined PTT and its components for a potential

solution. Their results have been mixed and less than promising. The current study was
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undertaken in hopes of reviving the potential usefulness of measuring the PTT by
including the overlooked peripheral microvasculature, with the understanding that the
microvasculature is the primary site of vascular autoregulation. Our results confirm

some of the previous outcomes, but not all.

Consistent with other experiments,*”> 70 PEP significantly increased during mild
hypovolemia in both HUT and BW. In an effort to generate an effective SV, an elongated
PEP maximizes ventricular filling while the left ventricular ejection time decreases!¢ 48
to circulate the blood to the organs more effectively. PTT also significantly lengthened
in HUT, though it was statistically unchanged in BW. Since both VTT and VTTn
remained essentially unchanged in both challenges, PEP must have contributed a
majority portion to the change of PTT. This is consistent with other findings that show

PEP to contribute as much as 35% of PTT.34

The lack of significant change in VTT does not necessarily rule out a vasoconstrictive
hemodynamic response. It in fact may reflect a minor degree of constriction that serves
only to maintain the baseline VTT, as opposed to hastening it to compensate for the
increase in PEP. Also, the decrease in blood volume from the declining SV, which is
independent from the increase in PEP, could have offset any observed effect of

peripheral vasoconstriction as well.

The responses of each of the components of PTT of the forehead were compared to the

finger and the ear using a retrospective analysis of the BW data. Results show that at
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both baseline and blood out, the time for the pulse to travel to the forehead is not
equivalent to the time it takes to reach the ear. The forehead is therefore not as good a
surrogate for measuring the central component of PTT. This is not surprising, because
the blood flow to the forehead involves a greater percentage of peripheral arteries than
does the path to the ear lobule and therefore includes a partial VTT component in its
timing. Furthermore, it has been shown in unpublished research by this team that the
forehead vasculature distinctively reacts to preserve blood flow during decreased
perfusion due to a mixture of sympathetic and parasympathetic activation. In fact, the
dilation of the microvasculature from the vagal stimulation explains why the forehead
VTTn is significantly slower than the finger VT T at both baseline and blood out. This is
contrasted to VT Ty, of the ear and finger, which were not significantly different in both
pretilt and tilt conditions. Though there was no significant difference between the two,
the VTTn, of the ear was longer than of the finger in all but two subjects, which might be
due to a higher basal level of vasoconstriction in those two subjects. The reason why
the VTT to the forehead is significantly quicker than to the finger is because of the

shorter path length the pulse travels.

The PTT to the forehead and to the finger are statistically equivalent at baseline, but
become significantly different when the subject becomes hypovolemic after two units of
blood withdrawal. The forehead microvasculature is less vasoconstricted at baseline
than the finger, but the decrease in VTT, with the hypovolemic challenge implies at
least some vasoconstriction. Though there was no significant difference in the change in

VTTm between the forehead and finger, there likely is some disparate sympathetic
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activity, because of the 0.012-second decrease in forehead VTTn, compared to the
0.001-second increase in finger VTTn. This slightly asymmetric observation can be
explained by either sympathetic activity or parasympathetic withdrawal. More thought
should be given to this question, as well as to the significantly different basal tone of the
forehead in future studies. Observed differences in the absolute values of the finger
VTTm among the HUT and BW studies (0.108 and 0.082 seconds at baseline and 0.106
and 0.084 seconds post-challenge) might be explained by the different PPG probes used

in each experiment.

The gestalt of the results from this study seems to suggest that mild hypovolemia does
not initiate a vigorous sympathomimetic response. Chan et al. reported that PTT
increased significantly with up to 50° of tilt, but then becomes insignificant at higher
degrees because of variations in VIT from sympathetic activation.#’ This has been the
pervasive understanding - that a-sympathetic-mediated peripheral vasoconstriction
shortens VTT, partially compensating for the increase in PEP. However, results from
this current study show a significant change in PTT at 60° of tilt. It should also be noted
that Chen et al.,, despite their explanation of the loss of a significant PTT change above

50°, failed to show a significant difference in VTT at all tilt angles save one at 60°.47

In additional support of a sympathetic absence, VT T, remained essentially unchanged.
Even though flow through the microcirculation turned out to be a significant
component of PTT, no change in VTTn indicates a minimal microvascular response to

the hypovolemic challenge. Since sympathetic-mediated vasoconstriction affects the
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microcirculation more than the major vessels due to its rich sympathetic innervation,
and this study failed to show any consistent and significant decrease in either VTT or
VTTm, the lack of vasoconstriction hints that there was no sympathetic activation.
Furthermore, it is interesting to note that VT Ty, did not change significantly in the ear or
in the finger, even though the arterial network of the finger is more densely innervated
by a-adrenergic receptors than other parts of the body. A similar finding was
discovered between the forehead and the finger in the BW study. If tilting activated the
sympathetic nervous system, then we would expect a variation in the vascular response

of different anatomical sites.

In opposition to results from previous studies, including Chen et al,*” the current study
also failed to appreciate a significant change in HR with tilting. Even though they
similarly did not find a significant alteration of VTT, they did record a significant change
in HR at tilt angles greater than 40°. Chan et al. replicated their findings on HR in
another study!® and Stafford et al. likewise found HR to significantly change at tilting of

25° and higher.”°

The current BW study also yielded some results that are incongruous with Middleton et
al.’s study, which used a blood donation model to investigate PTT. Though the amount
of blood withdrawn was half of the amount removed in our model, they showed a
significant increase in PTT from baseline (p < 0.01), as well as a change in HR (p <
0.01),48 while both these variables were found to insignificantly change in the present

experiment. However, other blood donation studies confirm our HR findings?? 21 and
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another shows only a change of about 2 beats per minute.?3 The lack of change in VTT,
VITm and HR in the current experiment suggests that there is no significant

sympathetic response to hypovolemia induced by a two-unit blood withdrawal.

Yet another clue to this sympathetic absence is the different results yielded from the
simulation of blood loss through HUT and BW than from experiments that administered
drugs to mimic physiological responses to hypovolemia. In these studies, significant
changes were observed for all variables — PTT, VTT, PEP and HR.32 40. 93 Payne et al.
specifically showed significant changes in VTT from baseline after separate
administration of glyceryl trinitrate, angiotensin II, norepinephrine and salbutamol.4?
The clear vascular response to these agents are not reproduced in our HUT and BW

trials, which failed to show any significant decrease in VTT.

A possible explanation of the apparent absence of a sympathomimetic response is that
the response to mild volume loss does not engage the sympathetic nervous system. In
this early stage, there is no need to redirect blood to the muscles for fight or flight or to
the brain for a mental challenge, so instead the response to this level of hypovolemia
might be more of a neurohumoral modulation. The HUT study would be the ideal model
to evaluate this claim, because there is no inherent stressful or painful stimulus to
invoke an inadvertent sympathetic response that would confound the findings. BW and

LBNP on the other hand, can create anxiety among subjects.
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Some findings in the literature do acknowledge an endocrine response, however not
this early. In the prehypotensive phase of hypovolemia, before about 30% of the blood
volume is lost, sympathetic-mediated vasoconstriction and tachycardia are in fact the
predominate mechanisms for matching the decrease in CO. Beyond this point when
hypotension appears, there is a withdrawal of the sympathetic response and a rise in
catecholamines, plasma renin and vasopressin in a final effort to countervail the
progressing volume loss.® This second phase hormonal response has been shown to
occur with 60° of tilt193 and with 85° of tilt.194 Concurrent with the precipitous decline in
BP and HR, a definitive rise in epinephrine, vasopressin, aldosterone and angiotensin II

was observed.103

In the current study, all subjects remained in the normotensive phase throughout the
experiment. Tilting lasted less than half a minute and data from the first stretch of 11-
13 artifact-free beats were analyzed. Data were collected close to the act of tilting
because it was expected that this would be the window of greatest change, similar to
the lightheadedness and tachycardia immediately experienced upon sudden standing
by those with orthostatic intolerance. However, other studies that used a HUT model,
including those by Chan et al, implemented a protocol with at least a 1.5-minute
adaption period after tilting before gathering any data for analysis. A deeper review of

the literature was performed to clarify the importance of measurement timing in HUT.

A study by Toska and Wallge investigated the time course of the hemodynamic

response to HUT and found that, even though baseline values varied among subjects,
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the time course of the cardiovascular response to tilting was fairly uniform.10> [t
required about 30 seconds after tilting and 10 seconds after returning to supine for the
measured parameters to respond and stabilize at their new compensatory levels.
Though it did take about 30 seconds to reach the final levels, significant changes and
trends were seen as early as 5 seconds after tilt. However, both CO and total peripheral
capacitance (TPC) rose slightly over the first 5 seconds before falling to stable levels
well below baseline. SV remained at pretilt levels for 4-6 seconds before steadily
decreasing. HR, which also exhibited an almost immediate rise, was the only variable

that did not reach a stable level.

In the current study, HR remained unchanged after tilting and so did VTT, which implies
that there was no significant vasoconstriction or change in SVR. PEP did increase as
expected, which means SV must have been threatened. However, the timing of the
analysis most likely compromised the degree to which it actually changed. There is a
rapid decline in blood volume within the first 30 seconds with a majority being lost
within the first 1019 and although our first beat was measured about 2 seconds on
average after the tilting was completed, according to the literature, this is before almost
all physiologic responses to the hypovolemic challenge would be expected to peak.
Though the span of data collection over the 11-13 consecutive beats were equivalent to
about 9-12 seconds, depending on the HR, this range overlaps with data values that are
more representative of baseline and values that have yet to reach stable levels.

Moreover, some of the values, notably CO and TPC, peaked before resolving to levels
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below the baseline. This conceivably could have artificially skewed the means, hiding

the expression of true significant changes.

The reasoning for our measurement timing was based on our collective experiential
knowledge of the immediacy of symptoms upon standing by those with orthostatic
hypotension. We aimed to capture the pure autonomic response, which would likely
occur acutely after the challenge, before any neurohumoral modulation could occur.
Review of the orthostatic hypotension literature reveals that there are actually
conflicting reports as to the proper timing of the measurements because of the varying
delay of symptoms. Symptoms accompanying an orthostatic drop in BP can appear as
soon as 30 seconds,7 but can sometimes take up to 30 minutes.19® Most subjects
reached the minimum BP within 2 minutes of standing.19? Because none of these studies
attempted to assess the emergence of symptoms earlier than 30 seconds, it seems to
reason that our assumption of the immediacy of the response to a postural change is

flawed.

However, a study on young normal subjects found that after a lying-to-standing
maneuver, the HR immediately and rapidly increased and then about 15 seconds later
rebounded to be bradycardic.!l® The same study also compared the responses from
free-standing to tilting, each at fast (2-3 seconds) and slow (12 seconds) speeds, to
determine if there exists a fundamental difference in the degree and timing of the
physiological responses to standing as opposed to tilting. They found that tilting lacked

this rebound bradycardia, which they attributed to the muscular activity of standing,
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and that tilt speed was an important factor in determining the hemodynamic response.
The blunted effect from slower tilting can explain the results from a study by Spranglers
et al. that demonstrated a significant difference between a slow 6-second tilt and quick

3-second stand.111

Fast tilting was demonstrated to mimic the immediate response to postural change
seen with standing,1%¢ except with regard to BP. After free-standing, BP noticeably
dropped before recovering to above baseline, but only slowly and gradually increased
after tilting.105 111 The rapid hypotension upon standing confirms our basis for the
limited elapsed time after tilting before measurements began, however the
hemodynamic responses to tilting and free-standing are too dissimilar to justify our

underlying assumption.

Though, it could still be argued that because Toska and Wallge’s results are from only
30° of tilt it took longer for the values to change than would be expected from a steeper
60° of tilt, as was used in the current experiment, Toska and Wallge’s outcomes were
confirmed in study with a protocol of a 70° tilt.196 Furthermore, both of these studies
used a fast tilt speed, reaching maximum tilt within 2.2 seconds. The same cannot be
said for Sander-Jensen et al.’s experiment on endocrine mechanisms and Chan et el.’s
study on PTT. Yet, both of these studies revealed an immediate and significant change in

HR, while the current study with a fast tilt speed failed to do so.
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A finer reading into the various protocols helps resolve this apparent disparity. All
experiments except this current one had much tighter restrictions on the testing
conditions and pre-experiment subject behavior. Many ensured a constant ambient
temperature and room lighting. Precise time spent in the supine position and the tilt
speed were also more rigidly controlled. Most required that subjects abstain from
exercise, caffeine, alcohol, food and water for at least 2 hours prior. Some even went as
far as requiring an overnight fast. In the current study, none of these factors were
standardized. It was our belief that it was primarily the act of tilting that determined
the hemodynamic response. However, assessing our data in the context of further
literature review clearly indicates that other factors may be predominant. In addition to
the importance of tilt speed as mentioned above, it was found that the preceding time

spent in the supine position also influences the physiologic response.112

Since some of the subjects in these experiments refrained from food and drink, they
began the study somewhere between slightly dehydrated and fully hydropenic. This can
potentially explain the significant hemodynamic responses reported in the literature,
including some extreme responses. In the aforementioned study by Sander-Jensen et al.
on the endocrine response to tilting, all subjects exposed to a 60° tilt experienced
presyncopal symptoms before the allotted 60 minutes was reached.1?3 The same vaso-
vagal outcome was even observed within 4 minutes after 85° of tilt.194 The baseline
hydration status of the subject seems to be a critical factor in eliciting a significant

hemodynamic response to a hypovolemic challenge.
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These results are interesting given that much of the literature describes HUT as a
suitable model for simulating at most a moderate degree of volume loss. Yet these
studies prove that HUT could even reproduce a second-stage functional hypovolemia in
normal young subjects. With such variation in the responses among subjects in
different HUT experiments, and with varying levels of control over the numerous
contextual variables built into the methodology, a reevaluation of the application of the
HUT model is called for. It seems that the simulation of hypovolemia is not just
attributable to the redistribution of the blood volume resulting from the act of tilting
itself, but to a variety of other variables that can extend hours before the tilting even

occurs.

Conclusion

This study investigated the different components of PTT, including the new addition of
the microvasculature transit time (VTTw). Analyzing data from both HUT and BW
models, results confirm previous reports of an increase in PEP in response to a mild-to-
moderate hypovolemic insult. Changes in PEP have been the most consistent across all
studies and it therefore seems to be the most promising early detection indicator to
pursue. It should be noted that an absolute value in PEP has no inherent clinical value;
rather it is the relative change in PEP, specific to each individual subject that can
potentially be used as a signal of early stage hypovolemia. Neither VIT nor VTTn
exhibited a significant response, and PTT was only found to change significantly during
tilting. While a lack of a significant increase in HR during BW is congruent with some of

the literature, it is surprising that our tilting experiment failed to reveal this change.
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Though the early timing of the measurements after the hypovolemic challenge might
veil the presence of a sympathetic hemodynamic response, it is believed that the
baseline hydration status of the subject and the time spent in the supine position before
tilting are the root causes of this discrepancy with other studies. Further HUT studies
with delayed measurement collection can confirm this. Regardless, the finding that
VTTm of the ear and finger did not significantly differ in their response to the volume
loss, despite an anatomical difference in the vascular sensitivity to sympathetic stimuli,

should be investigated further.



41

APPENDIX

Methodology of blood withdrawal study [Adapted from manuscript draft3']

With IRB approval, eight healthy volunteers (25-32 years of age) were recruited and
instructed to abstain from caffeine and other known vasoconstrictive compounds for a
minimum of four hours prior to testing. With the subject lying supine and the head
propped up on two pillows, a 16-gauge intravenous catheter was inserted into an

antecubital vein after local anesthetic to the skin.

After confirmation of a hematocrit of at least 36, the following noninvasive monitors
were applied: limb electrodes for electrocardiogram (EKG), intermittent cuff BP,
continuous noninvasive finger arterial BP (Finapres, Ohmeda, Boulder, CO) unfiltered
photoplethysmograph from the finger, ear, and forehead (Modified Model 520A
Oxypleth- Novametrix/Respironics, Wallingford, CT), laser Doppler flowmetry probes
on the finger and forehead (Perimed, Sweden), and a Piezo Respiratory Belt Transducer
around the chest (Model #MLT1132 ADInstruments, Castle Hill, Australia). The data
were recorded at 400 Hz with a microprocessor-based data acquisition system
(PowerLab 16 - ADInstruments, Colorado Springs, CO) and analyzed with commercially
available software (Chart 5.02 - ADInstruments; SPSS v 14.0.2 - SPSS Inc.). This
sampling rate was selected to enable effective identification of each R-wave for

assessment of HR and HR variability.

In addition to the aforementioned continuous noninvasive monitoring, the venous

peripheral pressure waveform was obtained from a 20-gauge IV catheter in an
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antecubital vein. After baseline readings were obtained under resting conditions
(“baseline” phase) and with the subject breathing at a rate of 12 breaths/minute (0.20
Hz) in response to a metronome, two units of blood were withdrawn continuously over
the course of approximately 25 minutes (range 12-40 minutes). Resting and
metronome measurements were repeated at this time (“blood out” phase). Subsequent
reinfusion was accomplished in 20 minutes (facilitated by the addition of 200 mL of
normal saline); and measurements were obtained in within 5 minutes of reinfusion.
Blood was taken for HCT readings at baseline, immediately after withdrawal and
immediately after reinfusion. In addition, in six of the subject, transthoracic
echocardiographic assessments were performed at selected time points. At the end of
each phase, measurements also were obtained while the subject breathed against an

expiratory retard.

Safety cutoffs included changes in HR or BP exceeding 15% of baseline and/or the

development of any signs or symptoms of hypovolemia.
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ABBREVIATIONS

BP = Blood pressure

BW Blood withdrawal

Cco = Cardiac output

EKG Electrocardiogram

HR = Heartrate

HUT Head-up tilt

LBNP Lower body negative pressure

LDF Laser Doppler flowmeter/flowmetry
PEP Pre-ejection period

PPG Photoplethysmogram/photoplethysmography
PTT Pulse transit time

Y% Stroke volume

SVR Systemic vascular resistance

TPC Total peripheral capacitance

VTT Vascular transit time

VTTm

Microvascular transit time
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