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NEONATAL RESPIRATORY DISTRESS SYNDROME AS A FUNCTION OF 

GESTATIONAL AGE AND THE LECITHIN/SPHINGOMYELIN RATIO 

Caryn M. St. Clair, Jessica L. Illuzzi, and Errol R. Norwitz.  Section of Maternal-Fetal 

Medicine,  Department of Obstetrics, Gynecology & Reproductive Sciences,  

Yale University School of Medicine, New Haven, CT. 

 

 This study was designed to derive predictive logistic regression equations to allow the 

risk of neonatal respiratory distress syndrome (RDS) to be defined as a function of both 

the lecithin/sphingomyelin (L/S) ratio and gestational age.  We hypothesize that the 

optimal cutoff value will vary significantly depending on gestational age, and that our 

data will support the need to account for gestational age when interpreting test results.   

 Data was collected via a retrospective chart review.  Women who underwent 

amniocentesis for the purpose of assessing fetal lung maturity at Yale-New Haven 

Hospital from 1998 to 2004 were identified and included if delivery of a liveborn, 

singleton, non-anomalous infant occurred within 72 hours of the lecithin/sphingomyelin 

ratio assay.  Maternal and neonatal data were collected regarding demographics, 

pregnancy complications and neonatal outcomes, including respiratory distress syndrome. 

 A total of 210 mother-neonate pairs met criteria for analysis, with 8 cases of RDS.  

Both gestational age and L/S ratio were independent predictors of RDS.  By modeling the 

odds of RDS using logistic regression, a probability of RDS approximating 10% was 

noted at an L/S cutoff of 3.6 at 32 weeks, 2.8 at 34 weeks, 1.8 at 36 weeks, and 1.4 at 

term.  Under 32 weeks of gestation a probability as low as 10% was not observed by this 

model.  We conclude that stratifying risk of neonatal RDS using both the L/S ratio and 

gestational age may aid in clinical decision-making concerning the timing of delivery. 
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Introduction 

Definition and Epidemiology of Neonatal Respiratory Distress Syndrome: 

 Respiratory distress syndrome (RDS), also known as hyaline membrane disease 

(HMD), refers to respiratory compromise presenting at or shortly after delivery due 

specifically to a deficiency of pulmonary surfactant.  Though this deficiency was 

originally described by Avery and Mead in 1959 (1), RDS remains a serious, frequently 

fatal, neonatal complication.  Neonatal RDS affects approximately 1% of all live births 

(2-4); however, not all infants are at equal risk. The pulmonary system is among the last 

of the fetal organ systems to become functionally mature. As such, RDS is primarily – 

although not exclusively – a disease of premature infants with an incidence and severity 

that is highly dependent upon gestational age (2-5).    

A recent epidemiological study estimated that there are approximately 80,000 cases 

of neonatal respiratory failure per year in the United States and roughly 8,500 deaths, 

with a hospital cost totaling $4.4 billion (6).  The 80,000 cases – representing 2% of all 

live births – were evenly distributed over three weight classes: very low birth weight (< 

1,500 g), low birth weight (1,500 – 2,499 g), and normal birth weight (> 2,500 g).  Thus, 

while prematurity and low birth weight have been associated with a higher risk for RDS, 

normal birth weight babies accounted for 1/3 of cases of neonatal respiratory failure.  

Neonates with very low birth weight, however, accounted for half of all deaths.   

 

History of Neonatal Respiratory Distress Syndrome: 

The documented history of respiratory distress syndrome dates back to the early 

twentieth century, when pulmonary hyaline membrane (PHM) was described and 
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considered by Hochheim to represent aspirated amniotic fluid.  This theory was relatively 

accepted until the early 1950’s when radiographic descriptions of the reticulogranular 

pattern in generalized neonatal atelectasis were distinguished from the radiographic 

appearance in cases of aspirated amniotic debris (7).  Work at that time by Pattle, 

Clements and Brown had begun to show that a low surface tension in the lung was 

imperative for proper lung function.  But it wasn’t until Avery and Mead’s publication in 

1959 that the clinical relevance of these findings was fully understood.   

In their paper Surface Properties in Relation to Atelectasis and Hyaline Membrane 

Disease (1), Avery and Mead provided evidence that the lungs of neonates with hyaline 

membrane disease lack the alveolar material – a “surface-active substance” – responsible 

for maintaining a low surface tension.  Experimenting on lung extracts, they showed that 

the lowest surface tension values in neonates 1,100 to 1,200 grams were 20-30 dynes/cm, 

while the lowest tensions in heavier infants, older children and adults were all under 20 

dynes/cm, and more commonly 5-7 dynes/cm.  Notably, heavier infants with hyaline 

membrane disease were the only exception and fell into the former category with tensions 

of 20-30 dynes/cm, and generally above 30 dynes/cm. 

Work by Adams and Fujiwara continued along this line.  They were able to determine 

by thin-layer chromatography that the active components of the surface-active substance 

were predominantly that of lecithin and sphingomyelin.  Further study showed that 

“without exception, lungs with poor surface activity contained considerably less total 

lipid, less total phospholipid, and a reduced percentage of lecithin” (8).  This also 

indicated that the dysfunction in the lungs of premature infants and infants with HMD 
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was due to a decreased quantity of these active components rather than deactivation or 

decreased quality of the lipids. 

 

Surfactant – Composition and Normal Physiology: 

Research to elucidate the composition of surfactant – a term derived from “surface-

active agent” – has been ongoing over the last several decades and has shown that 

surfactant is comprised mainly of lipids and proteins similar to a cell membrane (7).  

Lipids make up approximately 90% of pulmonary surfactant, half of which is dipalmitoyl 

phosphatidylcholine (DPPC); this lipid portion conveys the surface-active properties of 

surfactant (9).  Phosphatidylcholines are the second most common lipid component, 

specifically phosphatidylglycerol, followed by cholesterol and anionic phospholipids.   

The remaining 10% of pulmonary surfactant is comprised of proteins.  While plasma 

proteins such as albumin and secretory IgA make up around half of the protein 

composition, apoproteins (SP-A, SP-B, SP-C and SP-D) make up the remainder (9).  SP-

A and SP-D are large, water soluble proteins belonging to the collectin family that 

participate in both innate immunity and the metabolism of surfactant.  The smaller 

apoproteins, SP-B and SP-C, are hydrophobic intrinsic membrane proteins that facilitate 

formation of the monolayer, speeding the rate at which surfactant moves into the air-

water interface to form a stable film (7, 9). 

Synthesis and secretion of surfactant occurs predominantly within cuboidal type-II 

alveolar cells.  Lipids enter these cells via the bloodstream, while the pneumocytes use 

the secretory pathway to synthesize the various apoproteins.  Lamellar bodies act as the 

site for final assembly, and the resulting pulmonary surfactant is secreted from the cells 
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via constitutive exocytosis (9).  Surfactant levels are low until just prior to delivery, when 

increased synthesis is triggered by a surge in glucocorticoids, as well as other factors 

such as thyroid hormone, thyroid-releasing hormone, prolactin, and the growth-factor 

EGF.  Cortisol acts by increasing the differentiation of type-II pneumocytes and the 

formation of lamellar bodies within the fetal lungs, stimulating surfactant production and 

thereby lung maturation (9). 

Physiologically, pulmonary surfactant serves three main functions.  First and 

foremost, it increases the compliance of the lungs by decreasing surface tension.  By 

decreasing the tendency for elastic recoil, it allows the neonate to expand the lungs 

without exerting extreme effort and prevents collapse of the alveoli at end expiration.  

Second, surfactant decreases the amount of fluid accumulation in the alveoli by 

preserving the tendency for fluid movement into the interstitium.  Without surfactant, the 

increased surface tension collapses the alveolus, disturbs Starlings forces across the 

alveolar wall, and increases fluid movement into the alveoli, resulting in pulmonary 

edema.  Finally, the presence of surfactant maintains the equality of alveolar size during 

the respiratory cycle, preserving uniform surface area and maximizing gas diffusion and 

ventilation throughout the pulmonary apparatus (9). 

 

Pathology & Pathophysiology of Neonatal Respiratory Distress Syndrome: 

 Though respiratory distress in the newborn can have many etiologies – for example, 

maternal sedation, fetal head injury during delivery, aspiration, or hypoxia due to a 

nuchal cord – the most common cause is respiratory distress syndrome (10).  The 

fundamental defect in this disorder is a deficiency of pulmonary surfactant, which leads 
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to increased surface tension in the alveoli as described above.  The lungs are stiff and 

tend to collapse further with each breath, causing atelectasis; this effect is worsened by 

the soft thoracic wall that is pulled inward with inspiration.  Resultant hypoventilation 

and poor perfusion cause the newborn to become hypoxemic and to retain carbon dioxide, 

leading to a respiratory acidosis.  The pulmonary vasculature vasoconstricts, causing 

further hypoperfusion and ventilation/perfusion (V/Q) mismatch.  Both endothelial and 

epithelial damage lead to leakage of a protein-rich, fibrin-rich exudate into the alveolar 

spaces; this exudate accumulates with the necrotic cells and forms hyaline membranes.  

These membranes act to increase the diffusion gradient across the alveoli, creating a 

barrier to gas exchange and worsening the acidosis and hypoxemia.  These factors further 

impair surfactant synthesis and the cycle continues, severely impairing lung function in 

the neonate and increasing the likelihood of complete respiratory failure (10). 

 On gross pathology, the lungs of infants with RDS may be of normal size, but are 

solid and airless; they generally sink when placed in water.  They have a darker 

appearance than healthy lungs, commonly a reddish purple resembling the liver.  The 

alveoli are poorly developed, and most are collapsed.  Eosinophilic hyaline membranes 

composed of necrotic cellular debris, fibrinogen and fibrin, line the respiratory 

bronchioles, alveolar ducts and alveolar spaces.  Inflammatory cells such as neutrophils 

are generally absent from these membranes; the cell debris is mostly comprised of 

necrotic type-II pneumocytes (10). 
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Diagnosis of Neonatal Respiratory Distress Syndrome: 

RDS is diagnosed based on clinical and radiological findings.  The classic clinical 

signs of neonatal RDS include tachypnea, nasal flaring, chest retractions, and expiratory 

grunting (11, 12).  These findings generally appear immediately after delivery or within 

the first few hours of life.  Tachypnea is the newborn’s attempt to increase minute 

ventilation to compensate for a decreased tidal volume.  The relatively frequent finding of 

nasal flaring represents an effort to decrease the resistance in the upper airway, while 

retractions indicate an effort to increase negative intrapleural pressure to inflate the lungs.  

As the neonate tries to maintain end-expiratory lung volume, he may expire against a 

closed glottis, resulting in the audible grunting sounds characteristic of infants with RDS.  

More worrisome signs of neonatal respiratory distress include cyanosis, gasping, choking, 

and apnea (11).  Physical examination often aids the diagnosis.  Auscultation may reveal 

poor air exchange and/or fine rales, and observation may reveal the use of accessory 

muscles during inspiration as well as episodes of apnea (12). 

Chest radiographs at birth and at regular intervals can be helpful in establishing this 

diagnosis as well and can often allow differentiation between transient tachypnea of the 

newborn (TTN) and respiratory distress syndrome (RDS).  Unlike RDS, TTN is not the 

result of an underdeveloped pulmonary surfactant system; instead it represents delayed 

clearance of fetal lung fluid and a transient pulmonary edema (11).  It presents clinically 

as a milder form of RDS, but it is generally self-limited and resolves more rapidly.  The 

chest x-ray in TTN reveals increased pulmonary interstitial markings, fluid in the 

interlobar fissures, and occasionally a pleural effusion or alveolar edema (11).  This 

differs from the chest radiograph in RDS, which shows decreased lung volumes, domed 
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diaphragms, air bronchograms, and a diffuse reticular-granular opacification or ground-

glass appearance that may progress to total white-out of the lung fields (12).  It is 

important to account for the degree of prematurity, as well as positive pressure ventilation 

or surfactant administration, which can alter the appearance and degree of pathology in 

the chest film.   

 

Treatment of Neonatal Respiratory Distress Syndrome: 

 Treatment of neonatal RDS is based on interventions that occur in the prenatal, 

perinatal and postnatal periods.  Given the close relationship between RDS and 

gestational age (3-5), the most effective way to prevent RDS is to prevent prematurity by 

delaying delivery, thereby prolonging gestation (12).  Performing antenatal testing for 

fetal lung maturity and administering antenatal corticosteroids to women at risk for 

preterm delivery are additional means for reducing the risk of neonatal RDS prenatally.  

Options for antenatal fetal lung testing for prediction of RDS will be discussed separately. 

 

Antenatal Corticosteroids: 

The effect of steroids was first observed by Liggins in 1969 while experimenting with 

sheep given antenatal dexamethasone (13); he noted that the lungs of their premature 

lambs – delivered at a point where the lungs would not be expected to be aerated – were 

partially inflated.  Three years later Liggins and Howie published the first randomized 

control trial of antenatal administration of betamethasone in humans, showing that both 

respiratory distress syndrome and early neonatal mortality were significantly reduced in 

the treated group compared to controls (14).  Subsequent studies have supported their 
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conclusions that antenatal steroid treatment improves overall pulmonary status, increases 

neonatal survival, and decreases the incidence and severity of RDS (12, 15, 16).  A 2006 

meta-analysis of twenty-one studies confirmed a significant reduction not only in 

neonatal death and RDS, but also in intraventricular hemorrhage, necrotizing enterocolitis, 

intensive care admissions, respiratory support, and systemic infections in the first 48 

hours of life; the authors concluded that a single course of antenatal corticosteroids 

should be routine care in preterm deliveries with few exceptions (17). 

The morbidity and mortality associated with neonatal RDS increase significantly with 

perinatal asphyxia (12).  Therefore in the perinatal period, management of RDS is largely 

aimed at reducing the risk of asphyxiation and stress to the infant; an experienced 

resuscitation team led by a neonatologist or pediatric intensivist is highly recommended if 

the neonate is at high risk for respiratory distress. 

 

Surfactant Replacement: 

 Though many interventions play a role in the immediate postnatal management of 

RDS – correction of acidosis, maintenance of a neutral thermal environment, correction 

of hypovolemia and hypotension, maintenance of electrolyte balance, continuous 

monitoring, and control of infection (12) – respiratory support and surfactant replacement 

remain the cornerstones of therapy.  Once Avery and Mead determined that hyaline 

membrane disease was the result of a deficiency in surfactant (1), efforts were undertaken 

to replace the surface-active agent.  Initial attempts centered on administration of an 

aerosol form of the active phospholipid in natural surfactant, dipalmitoyl 

phosphatidylcholine (DPPC); unfortunately, this approach was not found to be effective 
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at treating RDS (18).  The first successful surfactant replacement took place in 1980 

when Fujiwara et al. administered artificial surfactant from cow lungs endotracheally to 

infants with severe hyaline membrane disease; results showed an overall improvement in 

oxygenation, a decrease in respiratory support requirements, resolution of radiographic 

lung changes, and reversal of acidosis and systemic hypotension (19).  Prospective, 

randomized controlled trials followed, confirming that administration of artificial 

surfactant in the immediate postnatal period decreased the severity of respiratory distress 

in the first days of life (20, 21).   

 Evidence has continued to demonstrate a decrease in morbidity, mortality, and use of 

resources with the advent of surfactant replacement (22-24), and attention has turned to 

comparison of timing, dosage, and type of preparation of the surfactant.  Studies have 

indicated that animal-derived, natural preparations are more effective at treating RDS, 

and convey lower mortality than their synthetic counterparts lacking a protein component 

(24, 25); however, recent randomized controlled trials of a new class of synthetic 

surfactants containing a peptide analog of SP-B have shown promising results with 

similar efficacy and mortality to the natural preparations (26, 27).  Literature regarding 

the timing of surfactant administration indicates that early administration and shorter 

duration of mechanical ventilation is advantageous compared to delayed administration 

and a longer period of time spent on the ventilator (28-31). 

 

Prediction of Neonatal Respiratory Distress Syndrome: 

 Given the gravity of neonatal respiratory distress syndrome and its complications, 

prediction of fetal lung maturity or lack thereof prior to delivery has been a heavily 
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researched topic.  To assist obstetric care providers in counseling pregnant women at risk 

of preterm delivery, a series of tests have been developed in an attempt to predict 

gestational age-related risk of developing RDS (2).  These can be divided into indirect, 

direct biochemical, and direct biophysical tests.  Indirect tests involve determination of 

the gestational age or size of the fetus in order to infer maturity and pulmonary status; 

these include calculation of the last menstrual period, appearance of fetal heart tones, 

identification of the gestational sac on ultrasound, measurement of crown-rump length 

and biparietal diameter.  Direct biochemical tests measure the concentration of various 

components of pulmonary surfactant secreted by the fetal lungs into the amniotic fluid, 

and include measurement of the lecithin/sphingomyelin (L/S) ratio and the 

phosphatidylglycerol (PG) band.  Direct biophysical tests evaluate the surface-active 

properties of the phospholipids in pulmonary surfactant and include the foam stability 

index (FSI), fluorescence polarization (TDx-FLM), and the lamellar body count (LBC). 

 

Lecithin/Sphingomyelin Ratio: 

 Introduced by Gluck and others at Yale University in 1971, the L/S ratio was the first 

widely accepted test available for assessment of fetal lung maturity (32).  This assay is 

based on the observation that pulmonary secretions from the lungs of the fetus flow into 

the amniotic fluid, affecting the phospholipid concentrations.  Lecithin and 

sphingomyelin are present in relatively equal amounts until 32 to 33 weeks of gestation, 

at which point the lecithin level begins to rise appreciably.  Gluck observed that neonatal 

respiratory distress syndrome was uncommon after the lecithin/sphingomyelin ratio had 

reached 2.0, which occurs around 35 weeks of gestation in uncomplicated pregnancies 
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(32, 33).  This value has remained an accepted threshold for the determination of fetal 

pulmonary status in nondiabetic women; however it is suggested that the value be 

correlated with clinical outcomes at individual centers, as the variation between 

laboratories can be considerable (2).   

 One disadvantage of the L/S ratio is that it can be difficult to perform and interpret 

and is not readily available at all institutions (34).  The sample must be handled 

appropriately during transport and while awaiting analysis, and the test itself is labor 

intensive, taking 3-5 hours.  Additionally, the presence of blood or meconium in the 

sample – common contaminants – affects the validity and utility of the result (35).  The 

L/S ratio has been studied against other assays for fetal lung maturity that have been 

developed over the years, and those comparisons are discussed in the following sections. 

 What is needed to improve obstetric care is not an innovation in biochemical assays 

and techniques, however, but rather an improved understanding of the probability of a 

fetus developing RDS for a given test value at a specific gestational age (36, 37).  Ghidini 

et al. reported significant morbidity in a study of preterm infants with mature lung indices, 

including a 12% incidence of neonatal RDS (38).  Gestational age-specific risk 

stratification cutoffs for RDS have been developed for other assays of fetal pulmonary 

maturity (39-41); a similar approach must be taken for the L/S ratio, a test frequently 

used at many institutions despite newer alternatives. 
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Phosphatidylglycerol: 

 Phosphatidylglycerol is a minor constituent of surfactant; its concentration in the 

amniotic fluid tends to increase most appreciably several weeks after the rise in lecithin 

occurs (42).  Measured by thin-layer chromatography, presence of a PG band generally 

represents a more advanced state of fetal pulmonary status, as PG serves to enhance the 

spread of phospholipids along the alveolar surface (2).  The advantage to PG analysis is 

that it is not affected by common contaminants, such as blood or meconium (2, 43); 

therefore, it is a good test in patients who have experienced rupture of membranes and 

can provide a vaginal pool sample.  The disadvantage remains that the sensitivity of PG 

on thin-layer chromatography varies, so the significance of its absence also varies (35).  

In other words, the PG band often becomes “positive” relatively late in pregnancy, and 

when used alone may suggest fetal lung immaturity at later gestational ages when the risk 

of neonatal RDS is low (44). 

 

Foam Stability Index: 

 The foam stability test, or “shake test,” was described by Clements et al. in 1972 (45).  

In this test, addition of ethanol to amniotic fluid eliminates any foam formed by non-

surfactant substances (2).  If after shaking the tube a stable foam remains, then surface-

active components of surfactant are present in the amniotic fluid; serial dilutions with 

ethanol allow quantification of the surfactant concentration.  This test has since been 

modified and is now referred to as the foam stability index, or FSI   (46).  The value of 

the index represents the highest ethanol volume fraction that permits the formation of 
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stable foam after vigorously shaking a mixture of ethanol and amniotic fluid; the 

accepted cutoff for fetal lung maturity is greater than or equal to 47.   

 

Fluorescence Polarization: 

One of the most widely used tests for fetal lung maturity is the TDx-FLM II 

surfactant-to-albumin assay (Abbott Laboratories, Abbott Park, IL), which uses 

fluorescence polarization to determine the relative concentrations of surfactant and 

albumin in amniotic fluid; results are given as mg of surfactant per 1 g of albumin.  An 

elevated ratio greater than 55 mg/g has been used as a cutoff to indicate fetal lung 

maturity (2, 47), although one study suggested that this threshold be lowered to 45 mg/g, 

maintaining a sensitivity of 100% and a specificity of 90% (3).  Again however, the 

dichotomous, “positive” or “negative” approach to biochemical assays for fetal lung 

maturity can be fundamentally misleading, and attempts have been made to account for 

gestational age when interpreting test results.  A number of studies have used logistic 

regression to show the probability of RDS based on the TDx-FLM value as well as 

gestational age (39-41).  In general, a higher threshold value is required at lesser 

gestational age, while a lower, more borderline value may be acceptable at later 

gestational age. 

The TDx-FLM surfactant-to-albumin ratio has performed similarly to the L/S and PG 

assays in terms of prediction of neonatal RDS (48).  Advantages of the TDx-FLM II 

assay are that it is a rapid test that is relatively easy to perform and highly reproducible.  

The disadvantage remains that blood and meconium contamination can interfere with 

interpretation of the results (2). 
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Lamellar Body Count: 

 Lamellar body count (LBC) is a newer technique being utilized to assess fetal lung 

maturity.  Final assembly and storage of surfactant occurs within lamellar bodies, which 

are extruded from type-II pneumocytes into the alveoli (2, 9); lamellar body count is, 

therefore, a relatively direct measurement of surfactant production.  While some studies 

have cited values of 30,000 per microliter as the lower limit for indication of fetal lung 

maturity (2, 49), a recent consensus of protocol by Neerhof et al. reported that values 

over 50,000 per microliter were more suggestive of pulmonary maturity, while values 

under 15,000 per microliter were indicative of pulmonary immaturity (50).  Ventolini and 

colleagues studied neonatal outcomes before and after this change in threshold, and 

concluded that the higher cutoff value of 50,000 per microliter resulted in significantly 

decreased neonatal morbidity and complication rates (51).  Efforts have again been 

undertaken, however, to create gestational age-specific risk predictions for this assay to 

replace dichotomous cutoff values (52). 

 Lamellar body count has been shown to perform as well or better than the PG, the L/S 

ratio, and the TDx-FLM assay (52-54).  LBC conveys many advantages; it is faster, more 

objective, less labor intensive, less technique dependent, and less expensive than both PG 

and L/S analysis (53).  Furthermore, the similar size of lamellar bodies and platelets 

allows the LBCs to be conducted on a standard Coulter counter, available in all hospital 

laboratories.  Some authors suggest that lamellar body count replace the 

lecithin/sphingomyelin ratio for prediction of fetal lung maturity and risk of neonatal 

RDS given these considerations (49, 54).  However the L/S ratio remains the oldest, most 

studied index for fetal pulmonary status, and continues to be the test of choice in many 
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institutions.  Given this, gestational age-specific L/S cutoff values to predict neonatal 

RDS are critical for improving the performance of this assay. 
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Statement of Purpose 

 This study was designed to derive predictive logistic regression equations to allow the 

risk of neonatal respiratory distress syndrome (RDS) to be defined as a function of both 

the lecithin/sphingomyelin (L/S) ratio and gestational age.  We hypothesize that the 

optimal cutoff value for this assay’s prediction of RDS will vary significantly depending 

on gestational age, and that our data will support the need to account for gestational age 

when interpreting these test results.  Secondarily we will contribute data to describe the 

current incidence of neonatal RDS in the post-steroid, post-surfactant, era. 
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Materials and Methods 

 An application to conduct a medical record review for the purposes of this study was 

submitted to the hospital’s Human Investigations Committee, and the study was approved.  

Women who underwent amniocentesis for fetal lung maturity screening with the 

lecithin/sphingomyelin (L/S) assay at Yale-New Haven Hospital in New Haven, 

Connecticut, between June 1998 and December 2004 were identified.  Patients were 

included only if the lecithin/sphingomyelin ratio measurement was obtained within 72 

hours of delivery, and the delivery resulted in a singleton, liveborn infant without major 

congenital anomalies.  Maternal records from the above dates were requested and 

reviewed for gestational dating criteria, timing and results of the lecithin/sphingomyelin 

ratio testing, presence or absence of the phosphatidylglycerol (PG) band, date and time of 

delivery, type of delivery, maternal age and race, smoking status, presence or absence of 

diabetes, chronic hypertension, preeclampsia, and preterm premature rupture of 

membranes (PPROM), as well as antenatal corticosteroid status.  Neonatal records 

provided information on infant sex, birth weight, apgar scores, resuscitation effort at 

delivery, and disposition to the well baby nursery or the newborn special care unit 

(NBICU).  Those not meeting inclusion criteria were documented as excluded, and the 

cause for exclusion was noted; such mother-neonate pairs were not included in the final 

statistical analysis. 

Infants sent to the well baby nursery were assumed not to have respiratory distress 

syndrome or other major complications as those clinical entities would not be managed in 

this setting, and no further data was collected.  For those sent to the NBICU, data was 

collected regarding type and duration of oxygen requirement (intermittent mandatory 
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ventilation, nasal cannula, nasal continuous positive airway pressure), diagnoses of 

respiratory distress syndrome (RDS), transient tachypnea of the newborn (TTN), 

persistent pulmonary hypertension (PPH), bronchopulmonary dysplasia (BPD), 

pneumothorax (PTX), and other complications including retinopathy of prematurity 

(ROP), necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), and sepsis at 

various points of admission.  The length of stay in the NBICU, as well as discharge with 

or without oxygen, was also noted. 

Gestational age was determined by last menstrual period confirmed by second-

trimester ultrasound, first trimester ultrasound, or in vitro fertilization or artificial 

insemination dating, as available.  Cases dated only by a second- or third-trimester 

ultrasound were excluded.  Maternal race was self-described in the medical record.  

Maternal diabetes was described by the White classification as documented in the 

medical record; diabetes in the study population was defined by any insulin requirement, 

including both insulin-dependent pregestational diabetes and insulin-requiring gestational 

diabetes.  Diet-controlled diabetes was noted separately.  Preeclampsia was defined as the 

presence of new-onset persistent hypertension (blood pressure 140 mm Hg or more 

systolic and/or 90 mm Hg diastolic) and new-onset proteinuria (300 mg or more urinary 

protein per 24 hours) after 20 weeks of gestation.  Chronic hypertension was defined by 

maternal antihypertensive use before pregnancy.  Maternal smoking status was identified 

in the medical record.  

Neonatal RDS, TTN, PPH, and BPD diagnoses were obtained via an existing 

database maintained by the Section of Perinatal Medicine in the Department of Pediatrics 

at Yale-New Haven Hospital.  Neonatal RDS – our primary outcome – was diagnosed by 
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the presence of at least 2 of the following 3 criteria: 1) evidence of respiratory 

compromise (tachypnea, retractions, and/or nasal flaring) shortly after delivery and a 

persistent oxygen requirement for more than 24 hours, 2) administration of exogenous 

pulmonary surfactant, and/or 3) radiographic evidence of neonatal pulmonary hyaline 

membrane disease as diagnosed by an attending pediatric radiologist or neonatologist.  

Radiographic evidence of neonatal RDS included atelectasis, air bronchograms, and a 

diffuse reticulogranular infiltrate.   

The data was analyzed using the SAS 9.1 statistical software package.  Maternal and 

neonatal characteristics were compared in infants with and without neonatal respiratory 

distress syndrome using Chi-square analysis as well as Fisher’s exact test.  The 

gestational age at the time of amniocentesis and the lecithin/sphingomyelin ratios were 

analyzed using the Student’s t-test; these values were compared in neonates with and 

without RDS by Pooled and Satterthwaite t-tests, after assessment of the equality of 

variances.  Wald odds ratios with 95% confidence intervals were determined for 

predictors of neonatal RDS; these values were also calculated after adjustment for 

gestational age.  Finally using multivariate logistic regression, a prediction equation for 

the probability of neonatal RDS was developed with both the lecithin/sphingomyelin 

ratio value and gestational age as the descriptive variables; step-wise backward 

elimination was used to eliminate other possible confounders, using the partial F test and 

testing for changes in parameter estimates of greater than 10%.  This equation is 

discussed further within the results. 
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Results 

 A total of 443 maternal charts identified by billing codes designating amniocentesis 

for fetal lung maturity within the study period were identified and screened for this study; 

210 mother-neonate pairs met criteria for analysis and were abstracted, while 233 were 

excluded.  The most common cause for exclusion was a time interval from amniocentesis 

to delivery greater than 72 hours, resulting in 158 exclusions (68%).  Nineteen subjects 

(8%) were eliminated based on absence of key data such as the lecithin/sphingomyelin 

ratio, while 20 subjects (9%) were excluded based on delivery at an outside hospital and 

lack of neonatal data.  Amniocentesis for genetic purposes and not for assessment of fetal 

lung maturity ruled out 11 subjects (5%), and multiple gestations accounted for 15 

exclusions (6%).  Seven maternal-neonate pairs (3%) were excluded because the mother 

was already represented in the database.  Finally three cases (1%) were excluded due to 

severe congenital malformations that could complicate the diagnosis of neonatal 

respiratory distress syndrome.   

 As indicated in Figure 1, sixty-five of the 210 included neonates (31%) went to the 

Newborn Intensive Care Unit (NBICU), while 145 neonates (69%) went to the well-baby 

nursery.  Those sent to the nursery were assumed not to have neonatal RDS, as oxygen 

support is not administered outside of the NBICU.  Of the included population of 210 

pairs, 8 cases of neonatal RDS were diagnosed, for an incidence of 3.8%.  An additional 

8 neonates were noted to have transient tachypnea of the newborn (TTN), also with an 

incidence of 3.8%.  One newborn had documented persistent pulmonary hypertension 

(PPH), for an incidence of 0.05%. 
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Maternal Charts ScreenedMaternal Charts Screened
n = 443

Excluded 
(n = 233)

Included
(n = 210)

Interval > 72 hrs 
(n = 158)

Missing Data (e.g. L/S) 
(n = 19)

Outside Delivery 
(n = 20)

Genetic Amnio. 
(n = 11)

Multiple Gestations 
(n = 15)

Mom in Database 
(n = 7)

Severe CMAL 
(n = 3)

Neonate to Well
Baby Nursery (n = 145)

Neonate to Newborn
Intensive Care (n = 65)

Assume No RDS –
No Further Data Collected

NICU Data Obtained
From Perinatal Database

RDS
n = 8

TTN
n = 8

PPH
n = 1

No RDS,
TTN, PPH

n = 48

Final Statistical AnalysisFinal Statistical Analysis

Cause for exclusion:

Figure 1: Study Population 

  

Figure 2 displays the gestational age distribution of the patient population at the time 

of amniocentesis, which occurred within 72 hours of delivery.  In the population without 

RDS (n = 202), the mean gestational age was 36.5 ± 1.2 weeks, with a median of 36.6 

weeks (interquartile range: 35.9 - 37.3 weeks).  Interquartile range represents the 25th 

through 75th percentiles.  The lowest gestational age in the population without RDS was 

32.9 weeks, while the highest was 39.1 weeks.  In the population with RDS (n = 8), the 

mean gestational age was 32.6 ± 3.6 weeks, with a median of 33.1 weeks (interquartile 

range: 30.1 - 35.0 weeks).  The lowest gestational age in the population with RDS was 
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26.0 weeks, while the highest in this population was 37.4 weeks.  The difference in the 

mean gestational age between the two populations was statistically significant, P = 0.02.   

0
5

10
15
20
25
30
35
40

%

26 28 30 32 34 36 38 40
Gestational Age (weeks)

Figure #2: Gestational age distribution of the patient population.  Data represent gestational age 

at amniocentesis for fetal lung maturity; all samples were obtained within 72 hours of delivery. 
 

The incidence of RDS did decline with increasing gestational age.  While the 

incidence in the total population was 3.8%, the incidence of RDS was 80% (4/5) for 

deliveries at 32 weeks or less of gestation, 2.4% (3/127) between 33 and 36 weeks of 

gestation, and 1.3% (1/78) for deliveries at or after 37 weeks of gestation.  A univariate 

logistic regression equation was derived using this data, and the probability of neonatal 

RDS for each week of gestational age was determined.  Equation 2 shows Equation 1 

rearranged to solve for the probability of RDS:  

 (Eq. 1)  ( )( )wksGA
RDSprob

RDSprob
e 1705.10220.38

)(1
)(log −=⎟⎟

⎠

⎞
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 (Eq. 2)  ))((1705.10220.38

))((1705.10220.38

1
)( wksGA

wksGA

e
eRDSprob −

−

+
=  

The results are shown in Figure 3a; similar studies of RDS and gestational age are plotted 

for comparison in Figure 3b.  It should be noted, however, that these studies may plot 

incidence rather than probability.   
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Figure 3: The risk of neonatal RDS as a function of gestational age in our population (a) compared to 
three previous studies (b). 
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In the population without RDS, the mean lecithin/sphingomyelin (L/S) ratio was 3.6 ± 

1.1, with a median of 3.5 (interquartile range: 2.8 - 4.0).  The lowest L/S value in the 

population without RDS was 1.4, while the highest was 8.5.  In the population with RDS, 

the mean L/S ratio was 1.8 ± 0.7, with a median value of 1.8 (interquartile range: 1.2 - 

2.3).  The lowest L/S value in the population with RDS was 1.0, while the highest was 

2.8.  The difference in mean L/S ratio between the two populations was statistically 

significant, P < 0.0001 

Table 1 presents the maternal clinical characteristics of the study population and their 

association with neonatal respiratory distress syndrome.  Within the limits of our study 

population, the categorical clinical characteristics of race, tobacco use, diabetes status, 

and presence or absence of hypertension and preeclampsia did not differ among maternal-

infant dyads who did and did not develop RDS.   

Other variables were also studied.  The mean maternal age for neonates without RDS 

was 31.0 years ± 6.0, while the mean maternal age for infants with RDS was 30.0 years ± 

9.9; this was not a significant predictors of neonatal RDS, with P = 0.78.  Only four cases 

of PPROM were documented in the study sample, one of those four cases resulting in a 

case of neonatal RDS; this was also found to be an insignificant predictor of RDS, with P 

= 0.14 by Fisher’s exact test.  Finally, neonatal sex was studied.  There were an equal 

number of male and female infants in the study sample, with 105 each.  Five females 

developed neonatal RDS, while three males developed the condition; this variable was 

also found not to be associated with RDS in our population, yielding a p-value of 0.72 by 

Fisher’s exact test.  
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In our total study population of 210 mother-neonate pairs, 40 mothers (19.1%) 

received corticosteroids in the antenatal period while 170 (80.9%) did not.  In the 

population without RDS (n = 202), 33 (16.3%) received steroids while 169 (83.7%) did 

not; in the population complicated by RDS (n = 8), seven (87.5%) received steroids while 

one (12.5%) did not.  Alternatively, 17.5% (7 of 40) pregnancies in the study population 

exposed to antenatal steroids were diagnosed with neonatal RDS, compared with 0.59% 

(1 of 170) of those not exposed.  This was a statistically significant result, with P < 

0.0001 by Fisher’s exact test.  It is known, however, that administration of corticosteroids 

to women in premature labor (spontaneous or planned) has been shown to decrease the 

incidence of neonatal RDS, as well as intraventricular hemorrhage and necrotizing 

enterocolitis (14, 55).  As administration of antenatal corticosteroids is only 

recommended for pregnancies threatening to deliver before 34 weeks of gestation (2, 56), 

and the average gestational age in our study population was 36 weeks, it is likely that 

antenatal corticosteroids in this study were a marker for early gestational age, and not that 

steroids increased the probability of developing neonatal RDS.   
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Table 1:  Incidence of Neonatal RDS by Maternal & Neonatal Characteristics 

RDS = respiratory distress syndrome, PG = phosphatidylglycerol band, L/S = lecithin/sphingomyelin 
    Values expressed as n (%), except where *.  * = values expressed as avg (standard dev.) 
    P-values calculated using Chi square or Fisher’s exact test 

 

  

Characteristic Incidence P value 
 Subgroup without RDS 

(n = 202) 
Subgroup with RDS 

(n = 8) 
 

Race 
     White 
     Black 
     Hispanic 
     Asian/South Asian 
     Other/Not documented 
 

 
118 (58.4) 
36 (17.8) 
26 (12.9) 
7 (3.5) 

15 (7.4) 
 

 
3 (37.5) 
1 (12.5) 
3 (37.5) 

0 (0)  
1 (12.5) 

 
0.23 

Tobacco use 
     Non-Smoker 
     Smoker 
 

 
173 (85.6) 
29 (14.4) 

 
8 (100) 
0 (0) 

 
0.60 

Diabetes status 
     No diabetes 
     Diet-controlled diabetes 
     Insulin-requiring diabetes 
 

 
135 (66.8) 
20 (9.9) 
47 (23.3) 

 
8 (100) 
0 (0) 
0 (0) 

 
0.23 

Hypertension 
     No hypertension 
     Chronic hypertension 
      

 
176 (87.1) 
26 (12.9) 

 
8 (100) 
0 (0) 

 

 
0.60 

 

Preeclampsia 
 No preeclampsia 
 Preeclampsia 
 

 
188 (93.1) 
14 (6.9) 

 
8 (100) 
0 (0) 

 
0.57 

Neonatal Sex 
     Male 
     Female 
 

 
102 (50.5) 
100 (49.5) 

 
3 (37.5) 
5 (62.5) 

 
0.72 

Antenatal Steroids 
     Steroid Course Given 
     No steroids 
 

 
33 (16.3) 

169 (83.7) 

 
7 (87.5) 
1 (12.5) 

 
< 0.0001 

L/S Ratio* 
 

 
3.6 (± 1.1) 

 

 
1.8 (± 0.7) 

 
< 0.0001 

Gestational Age* 
 
 

 
36.5 (± 1.2) 

 
32.6 (± 3.6) 

 
< 0.0001 

Maternal Age* 
 

 
31.0 (± 6.0) 

 

 
30 (± 9.9) 

 
0.78 
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Odds ratios (ORs) were calculated for the variables of interest in this study – 

gestational age and lecithin/sphingomyelin ratio – as well as other commonly cited 

predictors of neonatal RDS, and are shown in Table 2.  Both gestational age and L/S ratio 

were significant predictors of RDS, with ORs of 0.40 (95% CI 0.21 - 0.75) and 0.08 

(95% CI 0.02 - 0.42), respectively.  When adjusted for gestational age, the L/S value 

remained significant with an OR of 0.16 (95% CI 0.03 - 0.86) and P = 0.03.  As 

predicted, the OR for administration of antenatal steroids appeared significant (OR 21.5; 

95% CI 2.43 - 190.3), P = 0.005; however, once adjusted for gestational age, steroids did 

not increase the risk of neonatal RDS (OR 6.83; 95% CI 0.64 - 72.5), P = 0.11.  The 

presence of the phosphatidylglycerol (PG) band also predicted a decreased risk of 

neonatal RDS (OR 0.05; 95% CI 0.01 - 0.42) with P = 0.006, yet once adjusted for 

gestational age the PG band became insignificant in our population (OR 0.11; 95% CI 

0.01 - 1.14), P = 0.06.  Finally, ORs for African-American race, male sex of the neonate, 

and complication of PPROM were found not to predict neonatal RDS.  While the data 

was inestimable for calculating true ORs for maternal tobacco use, preeclampsia, and 

insulin-requiring diabetes, the Chi-square and Fisher’s exact tests reported above 

indicated that these variables were also not associated with RDS in our study sample, 

with p-values greater than 0.05.  
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  Table 2:  Odds Ratio for Logistic Regression Modeling of Neonatal Respiratory Distress Syndrome 

L/S = lecithin/sphingomyelin, PG = phosphatidylglycerol, GA = gestational age, DM = diabetes 
mellitus, PPROM = preterm premature rupture of membranes,  * = statistical significance (p < 0.05),   
£ = adjusted for gestational age, ¥ = compared to all other races, †=change in risk for each 1 week 
increment in gestational age or 1 unit increase in L/S ratio. 
 

 

 The data relating gestational age and lecithin/sphingomyelin ratio – the two 

significant variables in our study – were utilized to derive a predictive equation showing 

the probability of neonatal respiratory distress syndrome.  Equation 2 shows Equation 1 

rearranged to solve for the probability of RDS:   

(Eq. 1)  ( ) ( )( )wksGASratioL
RDSprob

RDSprob
e 9611.0/0712.21943.36

)(1
)(log −−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

 

(Eq. 2)  ))((9611.0)/(0712.21943.36

))((9611.0)/(0712.21943.36

1
)( wksGASratioL

wksGASratioL

e
eRDSprob −−

−−

+
=  

The results are displayed in Table 3.  At each week of gestation from 26 weeks, the L/S 

cutoffs are shown with a corresponding risk of neonatal RDS.  Bolded values represent a 

probability of neonatal RDS approximating 0.100, or 10%. 

                                                               Odds Ratio                                               Adjusted Odds Ratio£ 
                                                 (95% Confidence Interval)               P             (95% Confidence Interval)             P 
Gestational Age (wk) †                      0.40 (0.21 – 0.75)            *  0.005                           ---- 
L/S Ratio †                                         0.08 (0.02 – 0.42)            *  0.003                 0.16 (0.03 – 0.86)                * 0.03 
PG Band                                             0.05 (0.01 – 0.42)            *  0.006                 0.11 (0.01 – 1.14)                   0.06 
Antenatal Steroids                              21.5 (2.43 – 190.3)          *  0.005                 6.83 (0.64 – 72.5)                   0.11 
African American race¥                      0.60 (0.07 – 5.37)                0.65                   0.87 (0.08 – 9.45)                  0.91 
Male Infant                                         0.62 (0.14 – 2.85)                0.54                   1.87 (0.25 – 13.8)                  0.54 
PPROM                                              3.93 (0.31 – 49.1)                0.29                   0.45 (0.01 – 16.9)                  0.67 
Smoking                                             --- Inestimable ---           
Preeclampsia                                      --- Inestimable --- 
DM requiring insulin                         --- Inestimable --- 
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Table 3: Predicted Probability of Neonatal Respiratory Distress Syndrome by Gestational Age and  
   Lecithin/Sphingomyelin Ratio 

 
Lecithin/Sphingomyelin Ratio 

Gestational 
Age (wks) 

 
1.0    1.2    1.4    1.6    1.8    2.0    2.2    2.4    2.6    2.8    3.0    3.2    3.4    3.6 
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1.00 

 
1.00 

 
1.00

 
1.00

 
.999

 
.999

 
.999

 
.998

 
.997

 
.996 

 
.993 

 
.990

 
.985

 
.977

 
27 

 
1.00 

 
1.00 

 
.999

 
.999

 
.999

 
.998

 
.997

 
.995

 
.992

 
.988 

 
.983 

 
.974

 
.961

 
.942

 
28 

 
.999 

 
.999 

 
.998

 
.997

 
.996

 
.994

 
.991

 
.987

 
.980

 
.970 

 
.956 

 
.934

 
.904

 
.861

 
29 

 
.998 

 
.997 

 
.996

 
.993

 
.990

 
.985

 
.977

 
.966

 
.950

 
.926 

 
.892 

 
.845

 
.783

 
.704

 
30 

 
.995 

 
.992 

 
.989

 
.983

 
.974

 
.962

 
.943

 
.916

 
.878

 
.827 

 
.759 

 
.676

 
.579

 
.476

 
31 

 
.987 

 
.980 

 
.971

 
.956

 
.935

 
.905

 
.863

 
.807

 
.734

 
.646 

 
.547 

 
.443

 
.345

 
.258

 
32 

 
.967 

 
.950 

 
.927

 
.893

 
.847

 
.785

 
.700

 
.615

 
.513

 
.411 

 
.316 

 
.233

 
.168

 
.117

 
33 

 
.917 

 
.880 

 
.829

 
.762

 
.679

 
.583

 
.480

 
.379

 
.288

 
.211 

 
.150 

 
.104

 
.071

 
.048

 
34 

 
.809 

 
.737 

 
.650

 
.551

 
.447

 
.349

 
.261

 
.189

 
.134

 
.093 

 
.063 

 
.043

 
.029

 
.019

 
35 

 
.619 

 
.518 

 
.415

 
.319

 
.236

 
.170

 
.119

 
.082

 
.056

 
.038 

 
.025 

 
.017

 
.011

 
.007

 
36 

 
.383 

 
.291 

 
.213

 
.152

 
.106

 
.073

 
.049

 
.033

 
.022

 
.015 

 
.010 

 
.006

 
.004

 
.003

 
37 

 
.192 

 
.136 

 
.094

 
.064

 
.043

 
.029

 
.019

 
.013

 
.009

 
.006 

 
.004 

 
.002

 
.002

 
.001

 
38 

 
.083 

 
.057 

 
.038

 
.026

 
.017

 
.011

 
.008

 
.005

 
.003

 
.002 

 
.001 

 
.001

 
.001

 
<.001

 
39 

 
.034 

 
.022 

 
.015

 
.010

 
.007

 
.004

 
.003

 
.002

 
.001

 
.001 

 
.001 

 
<.001

 
<.001

 
<.001

 
40 

 
.013 

 
.009 

 
.006

 
.004

 
.003

 
.002

 
.001

 
.001

 
<.001

 
<.001

 
<.001

 
<.001

 
<.001

 
<.001

Values are expressed as odds ratios. 
Bolded values represent risk cutoff of approximately 0.100, or 10% 
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Discussion 

 The timing of a delivery remains a difficult and highly debated topic within the field 

of obstetrics.  Clinical providers must weigh risks and benefits to both mother and baby 

when faced with the possibility of a preterm delivery.  Given what is known about fetal 

pulmonary development, underdeveloped lungs and respiratory complications including 

neonatal RDS are some of the most significant risks of prematurity.  Data showing that 

the incidence of respiratory distress syndrome declines significantly as mothers approach 

full term encourages obstetricians to prolong gestation, avoid early elective deliveries, 

and tocolyze in cases of preterm labor long enough to administer a course of antenatal 

steroids.  However in some cases – when there is danger to the mother or child – delivery 

is the safest option.  Clinical judgment remains the critical factor in assessing these 

situations case by case; amniotic fluid analysis for fetal lung maturity can aid these 

decisions when used properly. 

Since its development in the early 1970’s, the lecithin/sphingomyelin ratio has been 

used to help predict fetal lung maturity.  Institutions generally use a threshold for 

maturity of 2.0 or 2.5; this threshold has not changed appreciably over the years.  What 

complicates the use of such a cutoff is the fact that the incidence of RDS decreases with 

increasing gestational age, which our data supports.  When the incidence of a disease 

changes over a short time course, e.g. toward the end of gestation, a screening test with 

one defined cutoff value is bound to have significant false-positives and false-negatives 

and variable predictive power (57).  Fetal lung maturity studies including the L/S ratio 

generally perform well for ruling out RDS (predicting absence of disease), while falling 

short in terms of ruling in RDS (predicting presence of disease).  Still studies have shown 
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that neonatal morbidity can occur despite “mature” lung indices (37, 38), reminding us of 

the need for improvement in the interpretation of these tests.   

Gestational age-specific probabilities of RDS have recently been determined for the 

TDx-FLM II surfactant-to-albumin ratio assay (39-41).  Our analysis offers a similar 

gestational age-specific risk of RDS for the lecithin/sphingomyelin ratio, the first-line test 

in many institutions.  By modeling the odds of RDS using multivariate logistic regression 

based on our data, a probability of RDS around 10% was found at an L/S value of 3.6 at 

32 weeks, 2.8 at 34 weeks, 1.8 at 36 weeks, and 1.4 at term (37 weeks or greater).  This 

shows that in a frequently critical window for decision making regarding preterm 

delivery, 32 to 37 weeks of gestation, the L/S value conferring the same probability of 

RDS ranges from 3.6 down to 1.4; this significant variation supports the need for an 

algorithm like this one, as opposed to a single cutoff of 2.0. 

Above 38 weeks, an L/S ratio as low as 1.0 would still confer less than 10% 

probability of RDS, although such a result would be uncommon.  This reflects the finding 

that neonatal respiratory distress is uncommon at such a late gestational age, and 

therefore risk is low regardless of the L/S value.  At the other end of the spectrum in 

cases of very early gestation, a probability of RDS as low as 10% is not yielded by our 

algorithm.  Even at 31 weeks, an L/S ratio of 3.6 yields a probability of RDS 

approximating 25% with our model.  The lowest gestational age at which we have data, 

26 weeks, yields a probability of RDS of 97-99% irrespective of the L/S ratio; again this 

reflects the trend that neonatal respiratory distress is a disease of underdevelopment with 

higher rates of incidence at low gestational age.  Based on our table, assessing fetal lung 
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maturity with the L/S ratio before 28-29 weeks may have limited utility, as the likelihood 

of acquiring a reassuring test result would be low. 

The main strength of our study was also somewhat of a limitation.  Requiring that 

only mother-neonate pairs delivering within 72 hours of amniocentesis for fetal lung 

maturity ensured that the L/S ratio and the neonatal outcome were temporally related, and 

that information could be gleaned from the assay as a predictor for fetal pulmonary status.  

However, a test-to-delivery interval greater than 72 hours also turned out to be our most 

common cause for exclusion, ruling out 158 mothers from inclusion in the study and 

limiting our total number of cases.  The most significant weakness in the study was the 

low number of neonates with respiratory distress syndrome in our study population.  With 

only 8 cases in our sample, the confidence intervals surrounding our predictions for 

probability of RDS in Table 3 are wide.  Thus more data may be needed before these 

values are used to guide clinical practice and decision making regarding timing of 

delivery.  The precision of the regression model would be improved with additional data 

to increase the number of cases of RDS.   

Nevertheless, our results show that both the lecithin/sphingomyelin ratio and 

gestational age were significant predictors of neonatal respiratory distress in our 

population, and that the L/S ratio remained a significant predictor when adjusted for 

gestational age.  Furthermore the trend according to the logistic regression analysis 

displayed in Table 3 is clear.  The L/S cutoff for a probability of RDS around 10% ranges 

from 1.4 to 3.6 between 32 and 37 weeks of gestation.  The probability of RDS is not 

accurately represented by a single threshold of 2.0, but instead can be more accurately 

determined by a moving threshold based on the gestational age. 
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Aside from gestational age and the L/S ratio, several maternal-fetal characteristics 

may influence the risk of a given fetus developing RDS; these include maternal race (58), 

antenatal tobacco use (59), preeclampsia (60), and diabetes mellitus (61), among others.  

These variations in the host environment may affect fetal cortisol levels, impacting the 

progression of fetal lung maturation (12).  In this study, we included data on maternal age, 

maternal race, tobacco use, presence or absence of preeclampsia, chronic hypertension, 

PPROM, diabetes, and neonatal sex as possible characteristics that may affect the 

prediction of RDS.  Despite the evidence that suggests that these factors do modify the 

risk of neonatal respiratory distress, this did not prove to be the case in our study 

population.  This may be partially due to the small number of cases of RDS, which make 

it difficult to establish definitive trends and variations.  However it is also likely that the 

effects of these characteristics factor less significantly into the overall prediction of lung 

maturity when compared to gestational age and fetal lung maturity assays. 

As discussed briefly in the results, the administration of antenatal steroids was the 

only other significant predictor of RDS in our study; however once adjusted for 

gestational age, these results were no longer statistically significant.  This is likely due to 

the fact that the average gestational age in our sample was 36 weeks, whereas evidence 

for antenatal corticosteroid therapy has been demonstrated in pregnancies less than 34 

weeks of gestation (2, 56).  Steroid administration in our sample was more of an indicator 

of early gestation, and not an independent predictor of neonatal respiratory distress.  

Additional data with a broader range of gestational ages would allow further analysis 

regarding the role of antenatal steroids in the prediction of neonatal RDS using our 

prediction equation. 



 35

In conclusion, this analysis offers a gestational age- and test- specific algorithm for 

determining the probability of neonatal RDS throughout pregnancy.  While additional 

data is needed to increase the precision of the regression model, these initial results show 

a clear trend in the gestational age-dependent L/S cutoffs when predicting neonatal 

respiratory distress.  We hope that our data will contribute to the growing body of 

evidence that prediction of fetal lung maturity is not a dichotomous endeavor, but rather 

the evaluation of a continuum of risk dependent on gestational age, biochemical assays 

including the L/S ratio, and clinical factors.  As has always been the case, risks and 

benefits must be weighed.  For conditions placing the mother or fetus at risk, such as 

severe preeclampsia or chorioamnionitis, immediate delivery may be indicated regardless 

of gestational age or lecithin/sphingomyelin ratio.  However in cases where urgency is 

less of an issue, an accurate assessment of fetal pulmonary status and probability of RDS 

will likely aid clinical decision making and improve neonatal outcomes.  
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