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ABSTRACT 

STATISTICAL PARAMETRIC MAPPING ANALYSIS OF POSITRON EMISSION 

TOMOGRAPHY IMAGES FOR THE DETECTION OF SEIZURE FOCI: RESULTS IN 

TEMPORAL LOBE EPILEPSY. Jeffrey R. Tseng, Rajesh Krishnamurthy, Douglas 

Bremner, Susan S. Spencer, Dennis D. Spencer, Holley M. Dey. Section of Nuclear 

Medicine, Department of Diagnostic Radiology, Yale University, School of Medicine, New 

Haven, CT. 

The puipose of this study was to determine the efficacy of statistical parametric 

mapping (SPM) of [18F]-fluoro-2-deoxyglucose (FDG) positron emission tomography 

(PET) images of the brain for the localization of seizure foci in patients with temporal lobe 

epilepsy (TLE). 

Preoperative PET brain scans from 36 patients with TLE and from 8 healthy control 

subjects were retrospectively analyzed with SPM95 software written for Matlab version 

4.2. Scans were transformed to Talairach space, globally normalized, and smoothed. 

Differences between each patient’s scan and the control group were then computed with the 

t statistic on a voxel by voxel basis. SPM maps were thresholded at p < 0.001 and 

reviewed for areas of significant hypometabolism relative to the control group. All 44 

clinical 18FDG brain scans were also visually interpreted and regions of metabolic 

asymmetry noted. Localization of the seizure focus by both SPM and visual analyses were 

compared with each patient’s temporal lobe resection site and with that patient’s post- 

surgical outcome. A good post-surgical outcome was defined as > 90% reduction in seizure 

frequency six months after operation. 

SPM analysis predicted the surgical excision site in 32/36 patients (89%); visual 

analysis also correctly lateralized the temporal lobe resection site for 32/36 patients (89%). 

The SPM and visual analyses were concordant in 30/36 (83%) cases; both provided a false 

negative result in one cases. Of the 36 TLE patients, 31 had a successful surgical outcome 

with > 90% reduction in seizure frequency six months after surgery. SPM analysis 

identified the temporal lobe seizure focus in 28/31 of these patients (90%). Visual analysis 





identified 29/31 (94%). Of the 5 patients with poor surgical outcome, SPM analysis 

showed significant contralateral frontotemporal hypometabolism in 3 cases, and contra¬ 

lateral perihippocampal localization in 2 cases. 

We conclude that SPM analysis of 18FDG PET images is useful for the localization 

of temporal lobe seizure foci in clinical and research settings. SPM provides a more 

objective and consistent means of image analysis for the evaluation of patients with 

epilepsy, particularly for inexperienced observers. Our data suggests that SPM analysis 

may also prove useful for the prediction of clinical outcome after temporal lobe resection. 
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INTRODUCTION 

Background - Clinical Epilepsy 

Epilepsy is a term used to describe a diverse collection of disorders that affects 

more than one percent of the population of the United States (1). These disorders are 

characterized by episodic abnormal, paroxysmal electrical discharges within the brain that 

are manifested as recurrent, spontaneous seizures (2). Seizures that begin within a localized 

region of the brain cortex are termed “partial”. Generalized seizures diffusely involve both 

cerebral hemispheres at the onset. 

While a simple partial seizure does not impair the level of consciousness, a complex 

partial seizure is associated with loss of contact (1). This impairment of consciousness can 

be disabling for patients who suffer from recurrent and unpredictable complex partial 

seizures, and can lead to poor school/work performance, and eventually an inability to 

function independently (3). For some patients, medical treatment may be sufficient to 

control seizure activity. However, many patients have intractable complex partial epilepsy 

that cannot be controlled with reasonable doses of medication at tolerable levels of side 

effects. These patients may benefit from surgical excision of the epileptogenic focus in the 

brain, if this focus can be well localized. 

Medically refractory patients comprise approximately 10-20% of the more than two 

million people in this country with epilepsy (4). Of these, up to 50% have complex partial 

seizures that are potentially localizable, and therefore amenable to surgical therapy. The 

majority of complex partial seizures appear to arise from the temporal lobe (1). Following 

temporal lobe surgery approximately 50-70% of patients with complex partial seizures 

become seizure free, 10-30% are significantly improved, and the remaining 15-30% show 

little or no improvement (5,6). 
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Localization of Epileptic Foci 

Selection of a patient with complex partial epilepsy for surgical therapy requires that 

the abnormal electrical discharges within the brain be clearly and consistently localized to a 

specific brain region. The presurgical evaluation of patients who are considered for 

epilepsy surgery is completed in stages. During the first stage, non-invasive testing is 

performed to screen patients and to plan additional testing for those patients who may be 

surgical candidates. During the second and third stages, progressively more invasive 

testing is performed for those patients whose Stage 1 localization is ambiguous. This 

invasive testing includes intracranial electroencephalographic (EEG) monitoring (7). 

The Stage 1 evaluation includes a thorough medical history and physical 

examination, neuropsychological testing, ictal and interictal scalp EEG recordings, and a 

series of imaging studies. The medical history may describe clinical features of the patient’s 

epilepsy that are consistent with lateralization or localization of the seizure focus. The 

neuropsychological tests are used to identify areas of intact and/or impaired cognitive 

function that may be associated with an identified epilepsy syndrome (7). 

Scalp ictal and interictal EEG recordings have classically been the mainstay of 

seizure diagnosis and localization. The first epilepsy surgeries relied primarily on interictal 

EEG identification of the seizure site. While the interictal scalp EEG remains an important 

part of the diagnostic work-up of patients with epilepsy, the technique can reveal 

ambiguous patterns and incorrect localization. Seizure foci may also remain undetected 

(8,9). Video EEG recordings permit correlation of the patient’s ictal EEG pattern with 

clinical behavior. This data can enhance the probability of accurately localizing the seizure 

focus. However, the ictal EEG may falsely lateralize the seizure focus due to 

muscle/movement artifact, rapid spread of abnormal electrical activity to bilateral or remote 
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brain areas, or seizure onset in a deep brain region (7). In these cases, non-invasive 

imaging studies may provide critical localizing information. 

Radiographic and nuclear medicine studies can detect structural and functional 

abnormalities in the brain that are correlated with epileptic seizure foci (2). Structural 

imaging includes computed tomography (CT) and magnetic resonance imaging (MRI); 

functional imaging includes single photon emission computed tomography (SPECT) and 

positron emission tomography (PET). MRI and CT can identify small structural lesions 

such as hamartomas, gliomas, and vascular malformations that may be the cause of seizure 

activity. MRI may also define structural abnormalities within the temporal lobe and/or 

hippocampus in patients with probable temporal lobe epilepsy. SPECT can detect regional 

hypoperfusion in patients with lateralized epilepsy, with a sensitivity of 66% for temporal 

and 60% for extratemporal lobe epilepsy. PET is used to identify focal hypometabolism in 

the region of the seizure focus; a sensitivity of 84% has been reported for temporal lobe 

epilepsy, 33% for extratemporal lobe epilepsy. Where available, interictal PET is preferred 

for functional imaging of the patient with suspected temporal lobe epilepsy. 

Stage 1 evaluation of the patient with potentially localizable epilepsy now includes a 

conglomeration of clinical, EEG, and imaging tests. When the summed data, including 

surface EEG and imaging tests, provide a concordant seizure site localization, some 

epilepsy surgery centers now proceed directly to surgical resection, circumventing the need 

for more invasive intracranial EEG recording with its attendant surgical risks of cerebral 

infection and hemorrhage (10-12). 

Positron Emission Tomography 

PET imaging uses very small amounts of positron emitting radiopharmaceuticals to 

identify and measure tissue function. Short-lived radioactive isotopes of elements such as 
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carbon, oxygen, nitrogen, and fluorine are chemically “tagged” to compounds of 

physiologic importance; these radiopharmaceuticals are then internally administered to the 

patient. Organ specific uptake of the radiopharmaceutical is based upon the chemical 

structure of the injected compound. For example, [1 ICjacetate, a marker of myocardial 

oxidative metabolism, is targeted for and avidly extracted by heart muscle. A specialized 

PET camera is then used to detect and record the annihilation photons that result when the 

administered positrons interact with tissue electrons in the organ of interest (13,14). Images 

of the distribution of the positron emitting radiopharmaceutical within tissue are generated 

through a complex mathematical process known as filtered back projection. The resulting 

image is a cross-section of the tissue or organ, with the intensity of each pixel element 

proportional to the concentration of the radiopharmaceutical at that position in the body. 

Patients with epilepsy have been successfully imaged with the PET 

radiopharmaceutical [18F]fluoro-2-deoxyglucose (FDG), an analog of glucose (15). FDG, 

like glucose, is actively extracted into brain tissue, and is phosphorylated by hexokinase in 

the first step of the glycolytic pathway. Unlike glucose, FDG is not further metabolized and 

is essentially trapped in tissue. Images of FDG distribution within the brain therefore reflect 

regional cerebral glucose utilization, with the highest concentrations of radiopharmaceutical 

found in areas of greatest metabolic activity. 

PET images reveal reduced interictal cerebral glucose metabolism in patients with 

epilepsy (15-18). This evidence is particularly strong for patients with complex partial 

seizures of temporal lobe origin. A recent retrospective review of the literature showed that 

asymmetrically decreased metabolic activity within the temporal lobe accurately localizes the 

seizure focus in patients with complex partial epilepsy. The sensitivity of FDG PET for 

temporal lobe epilepsy as compared to an EEG gold standard was 84%, with a specificity 

of 86% (1). 

Compared to a tissue pathology gold standard, the sensitivity of PET for temporal 
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lobe epilepsy was 81%, with a specificity of only 22%. This lower specificity may 

represent extension of PET hypometabolism beyond the pathology defined seizure site, 

consistent with a larger area of functional disturbance within the brain than would be 

expected on the basis of structural changes alone. Analysis of the distribution of 

radiolabeled FDG within the temporal lobe has had varying results; recently, Hajek etal 

related tissue pathology to FDG distribution within the temporal lobe (1). Patients with 

medial temporal lobe epilepsy showed diffuse temporal lobe hypometabolism; patients with 

temporal neocortical epilepsy had more limited hypometabolism within the lateral temporal 

cortex. 

Several studies have related PET findings to surgical outcome in epilepsy. PET 

hypometabolism predicts a favorable clinical outcome for 71-96% of patients (20-23). It 

should be noted, however, that published studies lack consistency in the method of PET 

data analysis and in the definition of a “good” surgical outcome after epilepsy surgery. 

Table 1 summarizes these studies. 

PET Image Analysis 

PET image analysis can be performed by qualitative or quantitative means. 

Qualitative analysis consists of the identification of regions of hypometabolism through 

visual interpretation. In patients with suspected temporal lobe epilepsy, FDG PET images 

of the temporal lobes are carefully examined for global and/or regional asymmetries in 

radiopharmaceutical uptake. Left is compared to right in order to detect areas of 

abnormality. A rough measure of the severity of hypometabolism can be made by judging 

the degree of asymmetry between the abnormal temporal lobe and the presumably normal 

contralateral side. 

Visual qualitative analysis is necessarily subjective and requires the observer to 
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Studv 
No. of 
Patients 

No. of 
Good 

Outcome 

No. of 
Poor 

Outcome Definition of Good Surgical Outcome 

Heinz et al (20) 24 17 (71%) 7 (29%) > 90% reduction, < 10 seizures/year 

Manno et al (21) 35 29 (83%) 6(17%) seizure free 

Radtke et al (22) 25 24 (96%) 1 (4%) > 75% reduction of seizures 

Theodore et al (23) 42 35 (83%) 7(27%) seizure free 

Table 1 Summary of studies comparing PET imaging with surgical outcome for patients 

with temporal lobe hypometabolism and subsequent temporal lobectomy. 
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pinpoint differences in image intensity in order to identify a region of abnormality. The 

observer is also asked to relate areas of abnormality to regional brain anatomy. These tasks 

may prove difficult for an inexperienced reader (24). Qualitative interpretation of FDG PET 

can also be complicated by a bilateral temporal or diffuse reduction in metabolism that 

precludes identification of a metabolic asymmetry. For example, global hypometabolism 

that results from use of antiepileptic drugs (AED) may mask localized epileptic foci (25). 

PET images of regional cerebral glucose metabolism can also be quantified. 

Quantification can lend objectivity to image analysis that is not possible through visual 

interpretation. Quantification requires a computer based region of interest analysis to 

determine the concentration of radioactivity within user defined regions of interest in the 

temporal lobe and whole brain. Radioactivity concentration can be described as: 1) an 

absolute measurement, with the local cerebral glucose metabolic rate given in units of 

mg/100 gm/min ; 2) a ratio of activity in the region of interest to activity in a normal area of 

metabolism. The “normal” area might be the homologous contralateral brain cortex, or an 

area such as the cerebellum that is presumably unaffected by the temporal lobe epilepsy 

process. 

Absolute quantification of the cerebral glucose metabolic rate can be performed 

using a model developed by Sokoloff et al and is based upon knowledge of the arterial 

input function into the brain and plasma glucose concentration (26). Calculation of an 

absolute metabolic rate therefore requires serial blood samples from the patient to determine 

the amount and time course of delivery of injected radiopharmaceutical to the brain, as well 

as the plasma glucose concentration. Problems with absolute value analysis are the 

necessary complexity of the analysis, the requirement for frequent invasive blood draws, 

and possible confounding of the results by AED use (27,28). Quantitative analysis is also 

plagued by compromises between sensitivity and specificity when determining appropriate 

threshold values for normality (21,29). In addition, semi-quantitative ratio analysis is 
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problematic since bilateral and/or global hypometabolism can deter attempts to identify a 

localized focus of abnormality. 

The purpose of this research project was to evaluate the utility of a new tool, 

statistical parametric mapping analysis (SPM) of FDG PET, for the detection of seizure foci 

in patients with complex partial epilepsy. SPM refers to the construction of statistical maps 

of change significance, in which the patient’s images of cerebral glucose metabolism are 

compared on a voxel by voxel basis to images from a group of healthy controls such that 

areas of significant difference are highlighted. SPM has several theoretical advantages over 

current methods for FDG PET brain image analysis. These include substantial elimination 

of subjectivity in image analysis, more precise anatomic localization of functional 

abnormalities, and avoidance of blood sampling. Additionally, bilateral and global changes 

in metabolism are not masked as each patient can be compared to a normal healthy control 

population. 

Statistical Parametric Mapping 

Statistical parametric mapping (SPM) has been used to evaluate PET images of 

regional cerebral blood flow and metabolism and to identify significant changes from the 

patient’s own baseline or from healthy control subjects (30-32). Applications for SPM have 

been reported in PET studies of memory, sensory and motor activation, Alzheimer's 

disease, Parkinson's disease, and amyotrophic lateral sclerosis (33-37). Based on these 

reports, we believed that SPM analysis would prove useful for the detection of abnormal 

temporal lobe metabolism. 
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STATEMENT OF PURPOSE 

The primary objective of this study was to compare the utility of statistical 

parametric mapping (SPM) analysis to visual interpretation of FDG PET brain images for 

the detection of seizure foci in patients with complex partial epilepsy. A secondary objective 

was to determine the relationship between the SPM defined seizure focus and clinical 

seizure outcome following epilepsy surgery. 

We hypothesized that SPM analysis would prove more sensitive than visual 

analysis for the detection of seizure foci and for the prediction of post-operative seizure 

outcome in patients with complex partial epilepsy, based on the greater objectivity and 

greater potential sensitivity of the statistical method. 
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METHODS 

Patient Selection 

From January 1992 to June 1996, 156 patients with complex partial seizures of 

presumed temporal lobe origin were referred to the Yale-VA PET Center for imaging of 

regional cerebral glucose metabolism. Of this number, 80 patients subsequently underwent 

temporal lobectomy and had at least six months of clinical follow-up data available at the 

time of this study. From this group of subjects, 28 patients with known neoplastic or 

vascular lesions within the temporal lobe as identified from pathology, biopsy, or MRI 

reports were excluded. Image data could be retrieved for 36 of the remaining 52 patients. 

These 36 PET image data sets were retrospectively reanalyzed, and the results compared 

with each patient’s surgical resection site and post-surgical outcome. 

There were 18 men and 18 women in the group of epilepsy patients. Mean patient 

age at the time of PET imaging was 35.1 yrs. (range 9.2 - 55.3 yrs.). The mean duration of 

illness was 28.7 yrs. (range 4.2 - 51.0 yrs.). Average age of seizure onset was 6.4 yrs. 

(range 0-36 yrs.). 

Image data from 8 healthy control subjects were also retrospectively reviewed and 

reanalyzed. The healthy control subjects were eight men with a mean age of 44 (range 25 - 

60). Healthy subjects had no history of significant medical disease, and specifically no 

neurologic or psychiatric complaints. Each control subject provided a complete medical 

history, underwent a physical examination, and had normal serum chemistry and 

hematology tests prior to inclusion in the normal database. These patient studies were 

approved by the V.A. Institutional Review Board protocol under the direction of Dr. 

Douglas Bremner. 

Presurgical evaluation for all epilepsy patients included ictal and interictal surface 
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EEG and PET scan. In addition, intracranial EEG, MRI, ictal and interictal SPECT, 

neuropsychiatric testing, and cerebral angiography may have been performed during the 

course of the staged pre-surgical evaluation. 

All 36 epilepsy patients underwent temporal lobectomy. The standard surgery was 

an anteromedial temporal lobectomy with hippocampectomy. The extent of tissue resection 

differed between patients, and was based on the results of pre-surgical testing. There were 

a total of 24 left sided resections and 12 right sided. 

PET Imaging 

PET studies were performed on a Posicam 6.5 whole body camera (Positron 

Corporation, Houston, Texas). Patients were positioned in the camera gantry with the 

orbital meatal line oriented to the x-y plane. An intravenous injection of 10 mCi of 18-FDG 

was then administered. During radiopharmaceutical injection the patient’s eyes remained 

open and the camera room was dimly lit. Extraneous noise was minimized, and soft 

background music was played during and after dose administration. Forty-five minutes 

were allowed for clearance of FDG from the blood pool and uptake into brain. Image data 

were subsequently acquired until approximately 60 million positron annihilation events 

were recorded (approximately 20 min.). Two overlapping brain scans were obtained for 

each patient in order to maximize the likelihood of obtaining high quality images of the 

temporal lobes. 

The axial field of view of the camera was 11.5 cm. Twenty-one image slices were 

acquired, separated by 5.125 mm with an axial resolution of 11 mm. In plane resolution 

was 5.7 mm (full width at half maximum). A theoretical attenuation correction was applied 

to the acquired image data; a uniform attenuation coefficient of 0.096 cm'1 was applied. 

Transverse image reconstruction was performed using filtered backprojection with a 
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Butterworth 8 filter using a cutoff of 0.04, cutoff fraction of 0.306, and filter order of 

10.0. Images were reconstructed in a 256 x 256 matrix with a pixel size of 1.7 mm. 

Reoriented tomograms were displayed in the axial, coronal, and sagittal planes. A graded 

color display was normalized to the area of maximum activity. Each change (gradation) in 

color represented a 5% difference in normalized intensity. 

PET Visual Analysis 

PET brain images were visually interpreted by an experienced nuclear medicine 

physician (H.M.D.) who was blinded to the patients’ clinical information, except the 

knowledge that patients had a surgical epilepsy procedure. Visual analysis involved careful 

review of each patient’s PET scan with comparison of relative FDG uptake within 

homologous brain regions utilizing the graded color display. Areas of relative 

hypometabolism were recorded on data sheets (see Appendix). For each abnormal region 

the affected lobe/structure (temporal, frontal, parietal, occipital, cerebellum, thalamus, basal 

ganglia) was noted, and the distribution of hypometabolism within that region (medial 

/lateral, anterior/posterior, and superior/inferior) was defined. An asymmetry index was 

generated for each abnormal brain region by comparing FDG uptake within the 

hypometabolic lobe to uptake within the contralateral homologous brain tissue. The 

asymmetry index was based upon the graded color image display scale. Differences in 

uptake between the temporal lobes, for example, was recorded as: None (< 5% asymmetry 

in uptake on the graded color scale). Minimal (5-10% asymmetry). Mild (10-15% 

asymmetry), Moderate (15-20% asymmetry), or Severe (>20% asymmetry). When both 

homologous brain regions appeared hypometabolic, an additional measure of uptake, 

termed the “absolute index”, was generated by comparing activity within the regions of 

abnormality to uptake within a presumably normal area of brain metabolism (typically the 
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cerebellum). For each patient’s PET scan an overall reading was generated, with the area of 

most significant hypometabolism defined as the likely seizure site. 

PET SPM Analysis 

Image data from all 36 patients with temporal lobe epilepsy and from the 8 healthy 

control subjects were transferred to a SUN SPARC station 10 for SPM analysis. The 

image data were analyzed using SPM95 software written for Matlab version 4.2. 

Preprocessing of the data prior to statistical analysis was required. All scans were 

transformed into Talairach space based on an automated computer definition of the anterior- 

posterior commissural line. This procedure ensured that functional brain abnormalities 

could consistently be mapped to brain anatomy using the Talairach stereotaxic brain atlas. 

Data sets were then globally normalized to correct for individual differences in the injected 

dose of radioactivity, and smoothed. A statistical analysis of the data sets was performed. 

Each patient’s PET scan was compared against data sets from the 8 healthy control subjects 

on a voxel by voxel basis with computation of the t statistic. A statistical map representing 

change significance between the patient’s PET scan and the normal database was generated 

and thresholded at p < 0.001. Voxels with z scores > 3.0 (p < 0.001) were highlighted on 

coronal, axial, and sagittal image displays. An experienced nuclear medicine physician 

(H.M.D.) then visually analyzed the SPM maps to describe areas of regional 

hypometabolism. The likely seizure site was defined as that localized brain region 

demonstrating the most significant hypometabolism on SPM map. Where present, 

extension of hypometabolism to include remote areas of brain cortex was described in the 

SPM interpretation. 
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Statistical Analysis for Localization and Surgical Outcome 

Both the visual and SPM analyses of the PET data were retrospectively compared to 

each patient’s chosen surgical site. The sensitivity of both visual and SPM analyses for 

localization of the seizure site as defined by the surgery gold standard was calculated. The 

PET analyses were considered to have provided a true positive localization if the major 

identified focus of hypometabolism matched the surgical site, regardless of the presence of 

additional, less significant areas of hypometabolism. When homologous brain regions were 

bilaterally abnormal, the more hypometabolic side was labeled as the likely seizure focus. 

Both visual and SPM PET data analyses were also compared with the patients’ 

post-surgical outcome data. For this purpose, a good surgical outcome was defined as a 

greater than 90% reduction in seizure frequency 6 months after operation. Thirty-two of the 

36 patients were evaluated at > 1 year after surgery. A poor surgical outcome was 

considered less than a 90% reduction in seizure activity. For both visual PET interpretation 

and SPM analysis positive predictive values were calculated. The sensitivities and positive 

predictive values of the PET analyses for surgical outcome were compared using the 

McNemar test. 

Pathology Analysis 

For 33/36 epilepsy patients the results of histopathologic examination of the 

resected brain tissue were available. Abnormal findings within the resected temporal lobe 

were recorded and variably classified as hippocampal sclerosis, non-hippocampal gliosis, 

congenital abnormality (e.g. heterotopia), or other. Histopathology findings were then 

compared with the regional cerebral distribution of hypometabolism defined by visual and 

statistical analyses of the PET image data. 
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RESULTS 

PET Imaging Results 

Results of the visual analysis of the FDG PET scans are provided in Table 2. 

Temporal lobe hypometabolism was identified in 33 of 36 patients. One patient had 

regional hypometabolism limited to the frontal lobe. Two patients had PET scans that were 

interpreted as showing no focal abnormality. Relative temporal hypometabolism was 

visually graded as follows: a severe asymmetry was found in 12 cases, moderate 

asymmetry in 8, mild asymmetry in 11, and minimal in 2 cases. Extratemporal ipsilateral 

extension of hypometabolism was identified in 21 patients for a total of 29 extratemporal 

sites. Extratemporal hypometabolism was described as follows: a frontal lobe abnormality 

was found in 13 patients, parietal lobe in 8, occipital lobe in 5, thalamic hypometabolism 

was noted in 1, basal ganglia abnormality in 2 cases. Bilateral temporal lobe 

hypometabolism was present in 5 patients. 

Table 2 describes the results of the SPM analysis of the FDG PET data. Temporal 

lobe hypometabolism was present in 35/36 patients. Of these, 21 regions of 

hypometabolism were classified as frontotemporal and 3 as temporooccipital. One patient 

had a discrete occipital lobe abnormality. There were no normal scans. Bilateral extension 

of hypometabolism was found in 29 patients. Visual analysis of the SPM maps graded the 

extratemporal extension of hypometabolism as follows: severe extension in 8 cases, 

moderate in 6, mild in 7, and minimal in 7 cases. The location of the extensions were as 

follows: frontotemporal in 20 cases, frontal in 4, temporal in 3, and temporooccipital in 2 

cases. 
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Visual Analysis SPM Analysis 

Surgical 
Outcome 

Surgical 
Site Side Location Major Reqion Bilateral Extension 

Pt. 
No. 

Good Left - normal L frontotemp severe R frontotemp/perihipp 1 

Good Left B (L>R) temp L temp mild R front 2 

Good Left B (L>R) temp + front L frontotemp mild R frontotemp 3 

Good Left B (L>R) temp + front L frontotemp severe R frontotemp 4 

Good Left Left temp L frontotemp min R front 5 

Good Left Left temp L frontotemp min R frontotemp 6 

Good Left Left temp L frontotemp mod R frontotemp 7 

Good Left Left temp L frontotemp mod R frontotemp/perihipp 8 

Good 

Good 

Left Left temp L frontotemp none 9 
Left Left temp L frontotemp severe R frontotemp 1 0 

Good Left Left temp L temp none 1 1 

Good Left Left temp + front L frontotemp mild R temp 1 2 

Good Left Left temp + front L frontotemp mod R frontotemp 13 

Good Left Left temp + front L frontotemp none 14 

Good Left Left temp + front L frontotemp severe R frontotemp/perihipp 1 5 

Good Left Left temp + front + parietal L temp min R front 16 

Good Left Left temp + occip + BG L temporooccip min R frontotemp 1 7 

Good Left Left temp + parietal L frontotemp min R front 18 

Good Left Left temp + parietal L temp none 1 9 
Good Left Left temp + parietal + occip L frontotemp mod R temp 20 

Good Left Left temp + parietal + occip + front L temp min R frontotemp 21 

Good Right B (L>R) temp + front + thalamus L temp mild R frontotemp 22 

Good Right Right temp R frontotemp severe L frontotemp 23 
Good Right Right temp R temp none 24 

Good Right Right temp R temp none 25 
Good Right Right temp + front L frontotemp mild R frontotemp 26 

Good Right Right temp + front L occip none 27 

Good Riqht Right temp + front + occip R frontotemp mod L frontotemp 28 

Good Riqht Right temp + front + parietal R temporooccip mod L tempoccip 29 

Good Riqht Right temp + parietal L temp severe R frontotemp 30 
Good Riqht Right temp + parietal R temp min L frontotemp 31 
Poor Left B (L>R) temp L temp mild R temp/perihipp 32 
Poor Left Left frontal + BG L frontotemp mild R frontotemp/perihipp 33 
Poor Left Left temp L frontotemp severe R frontotemp 34 

Poor Right - normal R temporooccip severe L tempoccip 35 
Poor Riqht Riqht temp + occip R frontotemp severe L frontotemp 36 

Table 2. Results of surgical site, surgical outcome, visual PET analysis, and SPM PET 

analysis. For surgical outcome, "good" represents > 90% seizure reduction at a 

minimum of 6 months follow-up; "poor" represents < 90% seizure reduction. 

Surgical site lists the side of the temporal lobectomy. Visual analysis lists side 

and location of hypometabolism. SPM Analysis lists side and location of the 

major region of hypometabolism along with significant bilateral extensions and 

degree. PET analyses which do not agree with surgical site are highlighted. 

Abbreviations: B = bilateral; L = left; R = right; temp = temporal lobe; parietal = 

parietal lobe; occip = occipital lobe; front = frontal lobe; min = minimal; mod = 

moderate; perihipp = perihippocampal region. 
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Localization of Epileptic Foci Analysis 

Visual analysis was concordant with the surgical site in 32/36 (89%) cases. Two 

scans were normal (Patients 1 and 35). One patient was incorrectly lateralized (Patient 22). 

One patient was localized to the wrong lobe of the brain (Patient 33). 

SPM analysis was also concordant with the surgical site in 32/36 (89%) cases. 

Four patients were incorrectly lateralized (Patients 22, 26, 27, 33). Patient 33 was 

incorrectly lateralized by both visual and SPM analyses. The SPM and visual analyses were 

concordant in 30/36 (83%). There was no difference between the sensitivities of visual vs. 

SPM analyses for detection of the temporal lobe resection site. 

Surgical Outcome Analysis 

Favorable clinical outcomes were reported for 31 of 36 (86%) patients. Visual 

analysis identified 29/31 (94%), while SPM analysis identified 28/31 (90%) cases. Figures 

1 and 2 show clinical PET and SPM image data from Patient 16 with a good surgical 

outcome. There was no statistically significant difference between the positive predictive 

values of PET visual and SPM analyses for favorable post-surgical outcome. 

Five patients had poor surgical outcomes, with frequent recurrent seizures. One of 

these patients had bilateral temporal lobe hypometabolism by visual analysis. SPM revealed 

severe contralateral temporal hypometabolism in 3 cases (e.g. Patient 34 in Figure 3) and 

contralateral perihippocampal hypometabolism in 2 cases (e.g. Patient 32 in Figure 4). 

Of the five patients considered to have bilateral temporal hypometabolism on visual 

analysis, one had a poor clinical outcome. Of the 29 patients with bilateral temporal 

abnormalities on SPM analysis, 5 had a poor outcome. Of patients with severe bilateral 

extension of hypometabolism on SPM, 3/9 showed no improvement after epilepsy surgery. 
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Figure 1. PET image for visual analysis from Patient 16 with a good surgical outcome. 

Two coronal slices (A, B) and two transaxial slices (C, D) are shown. Left 

temporal lobe hypometabolism is evident in B and D. There is also frontal (A) 

and parietal (C) hypometabolism. 
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Figure 2. PET image for SPM analysis from Patient 16 with a good surgical outcome. The 

surgery was located on the left side, and the pathology report revealed 

hippocampal sclerosis. Sagittal, coronal, and transaxial views are shown. On the 

coronal view, the left side of the patient is displayed on the left side of the image. 

Left frontotemporal hypometabolism is present with a pixel size of 6693 and a Z- 

score of 5.06. 
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Figure 3. PET image for SPM analysis from Patient 34 with a poor surgical outcome. The 

surgery was located on the left side, and the pathology report revealed 

hippocampal sclerosis. Sagittal, coronal, and transaxial views are shown. On the 

coronal view, the left side of the patient is displayed on the left side of the image. 

Bilateral (left > right) frontotemporal is present with a pixel size of 3305 and a Z- 

score of 4.87. 
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Figure 4. PET image for SPM analysis from Patient 32 with a poor surgical outcome. The 

surgery was located on the left side, and the pathology report revealed 

hippocampal sclerosis and non-hippocampal gliosis. Sagittal, coronal, and 

transaxial views are shown. On the coronal view, the left side of the patient is 

displayed on the left side of the image. Left frontotemporal hypometabolism is 

present with a pixel size of 6693 and a Z-score of 5.06. Contralateral right 

perihippocampal hypometabolism is also present with a pixel size of 140 and a 

Z-score of 4.36. 
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Pathology and Temporal Lobe Hypometabolism 

Histopathologic correlation was available for 33 patients. Results are summarized in 

Table 3. Microscopic examination of resected temporal lobe tissue revealed the following: 

hippocampal sclerosis in 18 patients, hippocampal sclerosis and non-hippocampal gliosis in 

7 cases, non-hippocampal gliosis in 5 cases, hippocampal sclerosis and heterotopia in 1 

case, hippocampal hemorrhage in 1 case, and heterotopia in 1 case. 

Visual PET image analysis revealed that 23/25 (92%) patients with hippocampal 

sclerosis or hippocampal sclerosis and non-hippocampal gliosis demonstrated ipsilateral 

temporal lobe hypometabolism that included the medial, anterior, and inferior regions. One 

scan was normal. One scan contained a defect in the frontal lobe. More detailed regional 

analysis showed medial > lateral hypometabolism in 20/25, anterior > posterior in 22/25, 

inferior > superior in 23/25 patients. Ipsilateral frontal extension of the hypometabolic zone 

was present in 8/25, parietal extension in 4/25, and occipital extension in 3/25. By SPM 

analysis, 24/25 cases had ipsilateral temporal lobe hypometabolism. 
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Regional Temporal Lobe Hypometabolism Pt. 

Patholoqy Medial vs. Lateral Anterior vs. Posterior Inferior vs. Superior No. 

hipp sclerosis medial>lateral anterior>posterior inferior>superior 1 8 

hipp sclerosis medial>lateral anterior>posterior inferior>superior 31 

hipp sclerosis medial>lateral anterior>posterior inferior>superior 2 

hipp sclerosis medial>lateral anterior=posterior inferior>superior 1 1 

hipp sclerosis medial>lateral anterior=posterior inferior>superior 9 

hipp sclerosis medial>lateral anterior inferior 4 

hipp sclerosis mediaklateral anterior>posterior inferior>superior 5 

hipp sclerosis mediaklateral anterior>posterior inferior>superior 20 

hipp sclerosis medialdateral anterior>posterior inferior>superior 7 

hipp sclerosis medialdateral anterior>posterior inferior>superior 12 

hipp sclerosis medialdateral anterior=posterior inferior>superior 34 

hipp sclerosis medialdateral anterior=posterior inferior>superior 1 6 

hipp sclerosis medialdateral anterior=posterior inferior=superior 1 3 

hipp sclerosis medialdateral anterior inferior>superior 1 5 

hipp sclerosis mediaklateral anterior>posterior inferior>superior 24 

hipp sclerosis medialdateral anterior=posterior inferior>superior 23 

hipp sclerosis mediaklateral anterior=posterior inferior>superior 1 4 

hipp sclerosis normal 1 

hipp sclerosis, qliosis mediaklateral anterior>posterior inferior>superior 32 

hipp sclerosis, qliosis mediaklateral anterior=posterior inferior>superior 1 7 

hipp sclerosis, qliosis mediaklateral anterior inferior>superior 22 

hipp sclerosis, qliosis mediaklateral anterior inferior 6 

hipp sclerosis, qliosis mediaklateral posterior inferior 28 

hipp sclerosis, qliosis medial anterior inferior 10 

hipp sclerosis, qliosis no temporal defect 33 

hipp sclerosis, heterotopia mediaklateral anterior> posterior inferior>superior 21 

gliosis mediaklateral anterior>posterior inferior>superior 25 

gliosis mediaklateral anterior>posterior inferior 26 

qliosis mediaklateral anterior=posterior inferior=superior 30 

gliosis mediaklateral anterior=posterior inferior=superior 29 

gliosis normal 35 

heterotopia lateral anterior=posterior inferior>superior 36 

none mediaklateral anterior>posterior inferior>superior 8 

none mediaklateral anterior inferior 27 

none mediaklateral anterior>posterior inferior>superior 3 

old hemorrhage in hipp mediaklateral anterior>posterior inferior>superior 1 9 

Table 3. Results of pathology and regional location of temporal lobe hypometabolism. 

Abbreviations: hipp = hippocampus; gliosis = non-hippocampal gliosis. 
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DISCUSSION 

SPM As a Useful Analytic Tool for Epilepsy 

PET images of regional cerebral metabolism have proven useful for the localization 

of seizure foci in patients with complex partial epilepsy. These images are most commonly 

interpreted through visual analysis. The reader is asked to compare homologous brain 

regions in order to identify areas of relative hypometabolism. The reader is then asked to 

map these functional abnormalities to specific anatomic structures/areas within the brain. 

These areas are then considered as potential sources for that patient’s seizure activity. Both 

tasks can be difficult for the inexperienced observer, leading to interpretive error. A more 

objective and consistent means of image analysis would be useful for the evaluation of 

patients with epilepsy. 

A number of quantitative/semi-quantitative methods for PET data analysis have 

been described. These include absolute quantification of regional cerebral glucose 

metabolism and ratio based region of interest analysis. Absolute quantification requires 

invasive blood sampling during acquisition of the PET data, as well as complex 

mathematical manipulation of the acquired data. Ratio based analyses are semi-quantitative 

and are not useful for the detection of bilateral or diffuse abnormalities. 

We have proposed using a new tool, statistical parametric mapping (SPM), for the 

objective analysis of FDG PET brain images in epilepsy. SPM is a powerful statistical 

method of localizing differences in regional cerebral metabolism. The patient’s image data 

are compared on a voxel by voxel basis to data from a group of normal, healthy control 

subjects using the Student’s t test. The results are displayed as a statistical map that 

represents images of change significance. These maps are thresholded such that voxels 

reaching a specified level of significance are highlighted. The theoretical advantages of 
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SPM include its objectivity, precise anatomic localization of functional abnormalities, 

avoidance of blood sampling, and the ready identification of diffuse and bilateral 

abnormalities. 

In this paper, we compared SPM to visual analysis of PET brain scans for the 

detection of seizure foci and prediction of post-surgical outcome in complex partial 

epilepsy. We found that SPM analysis identified the seizure focus, as defined by the 

eventual surgical resection site, in 32/36 (89%) patients that were evaluated. The SPM 

defined seizure site correlated with the surgical site in 28/31 (90%) patients who had good 

outcomes. These results are in agreement with the outcome of our own visual PET analysis 

and with published literature values that describe the utility of PET for seizure site 

identification (2,20-23). We conclude that SPM analysis is useful for the evaluation of PET 

data in epilepsy, and may provide an objective and sensitive means of seizure site 

identification. 

To the best of our knowledge, this is the first report of the use of SPM for FDG 

PET analysis in epilepsy. There has been one prior report, however, on the use of 

“statistical parametric imaging” (28). In this paper, the authors performed a statistical 

analysis that compared temporal lobe uptake of radiopharmaceutical to the patient’s own 

mean global cerebral metabolism. Image data from 17 patients were retrospectively 

reviewed by the authors; seizure foci for 16/17 patients were correctly lateralized using the 

statistical method. Unlike our study, patient data was not compared to a normal database of 

FDG images. Each patient served as his/her own control. It is therefore possible that 

regional hypometabolism was underestimated, and that areas of abnormality were not 

detected due to some level of global cerebral hypometabolism. Study of larger groups of 

patients would be necessary to determine whether our SPM method of data analysis is more 

sensitive than statistical parametric imaging for the detection of localized seizure foci. 
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Implications of Bilaterality and Extratemporal Extensions 

It is interesting to note that SPM analysis identified significant regions of 

hypometabolism both adjacent to and remote from the primary temporal focus of 

abnormality. When visual and SPM analyses were compared, it was clear that SPM more 

consistently identified extratemporal lobe extension of abnormal hypometabolism. This 

extended area most commonly involved the frontal lobe, but on occasion included the 

parietal or occipital cortex, and sometimes implicated the contralateral temporal lobe and 

hippocampus. 

Some published reports suggest that extratemporal lobe foci of hypometabolism 

connote a poor prognosis (22,38), while other reports show no discernable difference 

(23,39) in patient outcome. Our own results are preliminary, and not conclusive in this 

regard. We found that 29/36 patients had extratemporal lobe extension of hypometabolism 

on SPM analysis. This extratemporal extension was subjectively graded as “severe” in 9 

cases. When these 9 cases were reviewed, it was determined that 6 of the 31 patients with 

good post-surgical outcomes had diffuse hypometabolism on SPM analysis, while 3 of the 

5 patients with poor post-surgical outcomes had severe extratemporal extension of 

hypometabolism. Unfortunately, the number of patients with poor surgical outcome in our 

study, as well as in the other studies referenced above, is too small to draw any definite 

conclusions regarding a correlation between extratemporal lobe hypometabolism and 

prognosis in complex partial epilepsy. 

The pathophysiologic significance of extratemporal/bilateral hypometabolism on 

PET images of temporal lobe epilepsy is not clear. This scintigraphic finding may reflect 

deafferentation, with defective neuronal connections and projections between the 

hippocampus and temporal, extratemporal, and contralateral sites (40). These connections 

may be very fine; their detection might be facilitated by the use of SPM rather than the more 
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gross inspections made through visual analysis. Alternatively, extratemporal lobe 

hypometabolism may suggest a widespread ultrastructural brain abnormality that could 

have resulted from a congenital defect during critical periods of brain development (41). 

Comparison of Regional Temporal Hypometabolism to Histopathology 

Hippocampal sclerosis is a histopathologic diagnosis associated with temporal lobe 

epilepsy (41). Hippocampal sclerosis can be detected on MRI (42,43), and has been 

associated with PET temporal lobe hypometabolism (44). In our study, we subdivided the 

temporal lobe into medial, lateral, anterior, posterior, inferior, and superior regions during 

visual analysis. We found that 23/25 (92%) scans of patients with hippocampal sclerosis (± 

non-hippocampal gliosis) had inferior anteromedial temporal hypometabolism. This 

suggests that PET imaging may provide important non-invasive evidence for the presence 

of hippocampal sclerosis. 

Limitations of the Study 

This study was limited by the small size of the epilepsy patient, and especially of 

the healthy control, study groups. It is possible that comparison of patient data to a larger, 

more diverse population of healthy control subjects could reveal more limited areas of PET 

brain hypometabolism, and less extensive extratemporal extension of metabolic 

abnormality. 

This study was also limited by the absence of a literature based definition for the 

range of SPM significance. It is still unclear whether SPM readings should be based solely 

on z score, on the number of significant voxels, or on a combination of both criteria. In this 

study, the area of greatest z score significance was selected as the most likely seizure focus. 
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CONCLUSIONS 

In this study, SPM analysis of FDG PET brain images was as sensitive as visual 

analysis for the localization of seizure foci and for the prediction of favorable clinical 

outcome after epilepsy surgery. We would encourage the development of SPM as a 

supplement or alternative to visual analysis due to the ease of use and reproducibility of 

inteipretation. SPM is also useful for quantitative research analysis which can be compared 

to clinical data, imaging modalities such as SPECT and MRI, and pathology data such as 

hippocampal cell loss. 

SPM analysis revealed significant extension of PET hypometabolism to 

extratemporal brain regions. This finding may reflect the connections and projections of 

neurons from the hippocampus to other temporal lobe, extratemporal lobe, and contralateral 

sites. Alternatively, this widespread functional abnormality may result from developmental 

brain damage that includes extratemporal brain regions. 

Future directions for SPM would include creation of a large normal database of 

healthy subjects, and creation of more rigid interpretation criteria regarding the size and 

level of z score significance required to pinpoint the seizure focus. Continued investigation 

of the utility of SPM for the localization of both temporal lobe and extratemporal lobe 

epilepsies should be pursued. As more data is acquired, patterns may emerge that will 

enhance the likelihood of image based detection of epileptic foci. 
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APPENDIX 

PET - Epilepsy Data Form 

ID Label: 

Name: 
Date of PET: 
ID Number: 

Reader 1 = Dr. Holley Dey 
2 = Dr. Raiesh Krishnamurthv 

Overall 
Category 

1 = normal 
2 = temporal lobe only 
3 = temporal with frontal extension 
4 = temporal with parietal extension 
5 = temporal with occipital extension 
6 = temporal with other extension 

7 = frontal lobe only 
8 = frontal lobe with extension 
9 = parietal lobe only 

1 0 = parietal lobe with extension 
1 1 = occipital lobe only 
1 2 = occipital lobe with extension 

13 = other (describe below) 
Bilateral 1 = Yes 

Notes 
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REGION 1 REGION 2 
Lobe 1 = temporal 5 = cerebellar 

2 = frontal 6 = thalamus 

3 = parietal 7 = basal ganglia 

4 = occipital 

Lobe 1 = temporal 5 = cerebellar 

2 = frontal 6 = thalamus 

3 = parietal 7 = basal ganglia 

4 = occipital 

Area 1 1 = med. 2 = lat. 3 = med. + lat. Area 1 1 = med. 2 = lat. 3 = med. + lat. 

4 = med. > lat. 5 = lat. > med. 4 = med. > lat. 5 = lat. > med. 

Area 2 1 = ant. 2 = post. 3 = ant. +post. Area 2 1 = ant. 2 - post. 3 = ant. +post. 

4 = ant. > post. 5 = post. > ant. 4 = ant. > post. 5 = post. > ant. 

Area 3 1 = sup. 2 = inf. 3 = sup. + inf. Area 3 1 = sup. 2 = inf. 3 = sup. + inf. 

4 = sup. > inf. 5 = inf. > sup. 4 = sup. > inf. 5 = inf. > sup. 

Sp. Type 1 = focal 2 = diffuse/patchy Sp. Type 1 = focal 2 = diffuse/patchy 

Side 1 = left 2 = right Side 1 = left 2 = right 

3 = bilateral left = right 3 = bilateral left = right 

4 = bilateral left > right 4 = bilateral left > right 

5 = bilateral right > left 5 = bilateral right > left 

Metabol. 1 = hypomet. 2 = hypermet. Metabol. 1 = hypomet. 2 = hypermet. 

Asym. 1 Absolute 1 = < 5% (none) Asym. 1 Absolute 1 = < 5% (none) 

Index 2 Index 2 = 5-10% (minimal) Index 2 Index 2 = 5-10% (minimal) 

3 3 = 10-15% (mild) 3 3 = 10-15% (mild) 

4 4 = 15-20% (moderate) 4 4 = 15-20% (moderate) 

5 5 = > 20% (severe) 5 5 = > 20% (severe) 

6 6 = post op (missing) 6 6 = post op (missing) 

REGION 3 
Lobe 1 = temporal 5 = cerebellar 

2 = frontal 6 = thalamus 

3 = parietal 7 = basal ganglia 

4 = occipital 

Area 1 1 = med. 2 = lat. 3 = med. + lat. 

4 = med. > lat. 5 = lat. > med. 

Area 2 1 = ant. 2 = = post. 3 = ant. +post. 

4 = ant. > post. 5 = post. > ant. 

Area 3 1 = sup. 2 = inf. 3 = sup. + inf. 

4 = sup. > inf. 5 = inf. > sup. 

Sp. Type 1 = focal 2 = diffuse/patchy 

Side 1 = left 2 = right 

3 = bilateral left = right 

4 = bilateral left > right 

5 = bilateral right > left 

Metabol . 1 = hypomet. 2 = hypermet. 

Asym. 1 Absolute 1 = < 5% (none) 

Index 2 Index 2 = 5-10% (minimal) 

3 3 = 10-15% (mild) 

4 4 = 15-20% (moderate) 

5 5 = > 20% (severe) 

6 6 = post op (missing) 

REGION 4 
Lobe 1 = temporal 5 = cerebellar 

2 = frontal 6 = thalamus 

3 = parietal 7 = basal ganglia 

4 = occipital 

Area 1 1 = med. 2 = lat. 3 = med. + lat. 

4 = med. > la 5 = lat. > med. 

Area 2 1 = ant. 2 = post. 3 = ant. +post. 

4 = ant. > post. 5 = post. > ant. 

Area 3 1 = sup. 2 = inf. 3 = sup. + inf. 

4 = sup. > inf. 5 = inf. > sup. 

Sp. Type 1 = focal 2 = diffuse/patchy 

Side 1 = left 2 - right 

3 = bilateral left = right 

4 = bilateral left > right 

5 = bilateral right > left 

Metabol . 1 = hypomet. 2 = hypermet. 

Asym. 1 Absolute 1 = < 5% (none) 

Index 2 Index 2 = 5-10% (minimal) 

3 3 - 10-15% (mild) 

4 4 = 15-20% (moderate) 

5 5 = > 20% (severe) 

6 6 = post op (missing) 
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