
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

2003

Developing anti-CD30 recombinant
immunotoxins targeting shed and non-shed
epitopes for cancer therapy
Abhishek Sinha

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

Part of the Medicine and Health Sciences Commons

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Sinha, Abhishek, "Developing anti-CD30 recombinant immunotoxins targeting shed and non-shed epitopes for cancer therapy"
(2003). Yale Medicine Thesis Digital Library. 3352.
http://elischolar.library.yale.edu/ymtdl/3352

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/3352?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3352&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu




YALE 
UNIVERSITY 

CUSHING/WHITNEY 
MEDICAL UBRARY 



Permission to photocopy or microfilm processing 

of this thesis for the purpose of individual 

scholarly consultation or reference is hereby 

granted by the author. This permission is not to be 

interpreted as affecting publication of this work or 

otherwise placing it in the public domain, and the 

author reserves all rights of ownership guaranteed 

under common law protection of unpublished 

manuscripts. 

_ 
Signature of Author 

3/13/os 

Date 





Digitized by the Internet Archive 
in 2017 with funding from 

The National Endowment for the Humanities and the Arcadia Fund 

https://archive.org/details/developingscaletOOfast 





Developing Anti-CD30 Recombinant Ininiunotoxins Targeting Shed and 

Non-Shed Epitopes for Cancer Therapy 

A Thesis Submitted to the 

Yale University School of Medicine 

in Partial Fulfillment of the Requirements for the 

Degree of Doctor of Medicine 

by 

Abhishek Sinha 

2003 



f (13 

+ Yl'L 
h1050 



Developing Anti-CD30 Recombinant Immunotoxins Targeting Shed and 

non-Slied Epitopes for Cancer Therapy 

Abhishek Sinha, Richard Beers, Satoslii Nagata, Tapan Bera, Masanori Onda, Kenneth Santora, Ira 

Pastan. Laboratory of Molecular Biology, National Cancer Institute, National Institute of Health, 

Bethesda, MD 20892. (Sponsored by Vincent DeVita, Yale Cancer Center, Yale University School 

of Medicine). 

Although combination chemotherapy and radiation therapy achieves high remission rates in patients 

with Hodgkin's disease (HD) and some forms of Anaplastic Large Cell Lymphoma (ALCL), most 

patients who relapse will die of their disease. Also, approximately 20% of long term survivors of 

HD who receive chemotherapy and radiation therapy develop secondary malignancies, which further 

underlines the need for more selective therapeutic agents. CD30, a 120 kd transmembrane protein of 

the TNF receptor family, is a human lymphocyte activation antigen that is consistently over¬ 

expressed in Reed Sternberg cells (HD) and in ALCL cells, yet it is poorly expressed on normal 

lymphocytes, making it an ideal target for selective immunotherapy. Recombinant immunotoxins 

(RITs) genetically fuse the Fv (variable region) of a monoclonal antibody (MAb) targeting a surface 

tumor antigen with a modified form of the Pseudomonas exotoxin, combining the specificity of an 

antibody with the powerful cytotoxicity of a bacterial toxin. To develop anti-CD30 RITs, four new 

high affinity anti-CD30 antibodies (T420, T427, T405, T105) targeting different epitope groups were 

selected from a panel of anti-CD30 MAbs. Because part of CD30 is cleaved into a soluble fragment, 

it is important to design RITs that target the shed and non-shed CD30 epitopes. After cloning and 

sequencing the variable regions of these MAbs, separate expression constructs were made for the 

light chains (Vl) and the heavy chains fused to the Pseudomonas exotoxin (VH + PE38). After 

expressing, refolding, and purifying the RITs, each RIT’s specific cytotoxicity was evaluated in 

various CD30+ cell lines. Three of RITs demonstrated high degrees of specific cytotoxicity towards 

CD30+ cells in in vitro assays, with IC5o’s as low as 0.63 to 2.0 ng/ml. RITs with the highest 

activities will be further characterized, and the RIT with the most favorable properties may be a 

candidate for development for clinical trials. 
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Introduction: 

Combination chemotherapy and radiation therapy can cure a substantial fraction of 

patients with Hodgkin’s Disease (HD) (1). In the advanced stages of the disease, 

approximately 30 to 50% of patients will respond to therapy but relapse and die of this 

disease (2). Overall, 20% of patients with Hodgkin's disease die as a result of their illness 

(3). In addition, conventional therapy for Hodgkin’s disease leads to several co-morbidities. 

Long-term survivors of Hodgkin’s Disease who received chemotherapy and radiotherapy 

have a higher risk of developing a secondary malignancy. The possible secondary 

malignancies include myelodysplastic syndromes, AML, lung cancer, NHL, breast cancer, 

gastric cancer, sarcoma, and malignant melanoma (4). Women who are treated with 

radiation therapy to the chest during adolescence are especially at risk for developing breast 

cancer (5). Approximately 19% of long term survivors of Hodgkin’s disease receiving 

chemotherapy and radiotherapy will develop a secondary malignancy after 15 years from 

their treatment. Other complications of radiotherapy include pulmonary fibrosis and 

accelerated atherosclerosis. The poor prognosis in patients who relapse and the co¬ 

morbidities of patients receiving combinational chemotherapy and radiotherapy underlie the 

need for more selective therapy in Hodgkin’s Disease. 

Anaplastic large cell lymphoma (ALCL), a novel category of lymphoma (categorized 

in 1985) that has a cohesive proliferation of large pleomorphic blastic cells and consistently 

expresses the cytokine receptor CD30, can be clinically divided into a primary systemic 

form, a primary cutaneous form, and a secondary form (6,7). The most common subform is 

the primary systemic form which can account for 2 to 8% of non-Hodgkin’s lymphomas in 

adults and about 20-30% of large cell lymphomas in children (7). It is worth noting that 
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because ALCL has been recognized relatively recently and in the past has been misdiagnosed 

(as malignant histiocytic tumors, regressing atypical histiocytosis, melanoma, metastatic 

carcinoma), its true prevalence is unknown. The primary systemic form can also be divided 

into groups that are anaplastic lymphoma kinase (ALK) positive or negative. Anaplastic 

lymphoma kinase is a receptor tyrosine kinase. The ALK+ ALCL form presents mostly in 

the first three decades of life while the ALK- form occurs in older patients (8,9,10). 

Extranodal involvement is possible in both ALK+ and ALK- subforms (esp. ALK+) and 

includes skin, bone, soft tissue, lung, liver, and CNS (rare) (11). The prognosis of primary 

ALCL can also vary depending on the presence of ALK. The 5 year overall survival for 

ALK+ ALCL is 71% +/- 6% and for ALK- ALCL is 15% +/- 11% (11). The secondary form 

of ALCL arises from the progression of other lymphomas and is associated with a poor 

prognosis. While the prognosis of ALCL varies depending on the subforms, there is a 

clinical need, as in HD, for more selective therapies. 

Hodgkin’s disease and ALCL are distinct clinical entities, but they share many 

characteristics. One of the most important of these is that both Reed-Sternberg cells of HD 

and ALCL cells consistently expresses CD30, a human lymphocyte activation marker. 

CD30, a type 1 transmembrane glycosylated protein of 120/105 kDa, is a member of the TNF 

receptor (TNFR) superfamily (12,13). CD30 expression in normal cells is restricted to 

activated lymphocytes and is absent from hematopoietic stem cells. Stimulation of CD30 has 

been associated with a variety of biological activities in lymphoid cells (depending on the 

circumstances) including proliferation, activation, differentiation, and cell death (14). It is 

also known that CD30 cross-linking leads to NF-k B activation (15,16). NF-k B activation 

(via CD30) is believed to transcriptionally regulate several cellular genes (including various 
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cytokines) which may explain some of the numerous biological effects of CD30 activation, 

such as lymphocyte proliferation (17). The extracellular portion of CD30 can also be 

cleaved by a zinc-metalloprotease to yield a soluble form (sCD30, mass 85/90 kDa) (18). 

Increased levels of sCD30 have been found in patients with HD and ALCL and correlate 

with disease burden. In fact, the median sCD30 levels in patient with HD and ALCL were 

found to be 20 to 1500 times greater than in normal controls (19). Because CD30 expression 

is restricted to Reed-Sternberg cells, ALCL cells, and some activated lymphocytes and is 

absent from hematopoietic stem cells, it is an excellent target for selective immunotherapy. 

One possible strategy for targeting CD30 is the use of recombinant immunotoxins 

(RITs). RITs are chimeric proteins that genetically fuse the Fv (fragment of the variable 

region) of a monoclonal antibody (MAb) that targets a tumor surface antigen with a modified 

bacterial toxin (or plant toxin) (20,21). Hence, RITs combine the specificity of a MAb with 

the powerful cytoxicity of a bacterial toxin (Figure 1). RITs are useful in cases when 

unarmed MAbs are not able to kill cancer cells, which is often the case. Linking a MAb or 

Fv of MAb with a toxin (as opposed to cytotoxic drug or radioisotope) has many advantages 

which include: 1. toxins are highly potent, 2. toxins are not mutagenic, 3. toxins are not toxic 

to bone marrow, 4. toxins can kill cancer cells that are chemotherapy resistant, 5. It is rare 

for cells to develop resistance to bacterial toxins. There are several generations and forms of 

immunotoxins (ITs). The term recombinant immunotoxin is used to signify that the toxin 

and Fv of the MAb were genetically fused rather than chemically conjugated. The RITs 

utilize a modified Pseudomonas exotoxin which kill cells by ADP ribosylating and 

inactivating elongation factor 2 (Figure la) (20). The RIT binds to its target and enters the 

cell through an endocytosis pathway. The Pseudomonas exotoxin is proteolytically cleaved 
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and a portion of it is sent to the Golgi and then the endoplasmic reticulum, from where it is 

translocated to the cytosol. Once in the cytosol, the toxin kills the cell by inhibiting protein 

synthesis. Clinical trials with other RITs that target other tumor antigens indicate that such 

therapy may be effective in hematologic malignancies. LMB-2 (anti-CD25 scFv 

immunotoxin) resulted in significant clinical responses in various types of leukemia and 

lymphoma (22). In addition, RFB4 (dsFv)-PE38 (the anti-CD22 RIT) was able to achieve 

high rates of complete remission in patients with Flairy Cell Leukemia refractory to 

chemotherapy (23,24). 

A number of attempts to target CD30 with MAbs and immunotoxins have been made. 

Some of the earlier MAbs generated to target CD30 are Ber-H2, HeFi-1, M44, M67, and Ki- 

1 (25). Anti-CD30 MAbs have been shown to induce cell growth inhibition and apoptosis in 

ALCL (26,27). Mouse models using ALCL xenografts that were treated with the HeFi-1 

MAb and the M44 MAb had growth arrests of tumors and increased in survival (27,28). 

Clinical studies with the Ber-H2 MAb and the HeFi-1 MAb were performed. The Ber-H2 

MAb was given to patients (along with a small amount of 1 ’'l-labeled Ber-H2) to patients 

with refractory Hodgkin’s disease. Tumor localization was seen (through radioimaging) in 

50% of the tumors, and there was non-specific uptake in the spleen and liver. This study 

revealed no clinical responses or toxicities. Results of the study with HeFi-1 MAb revealed 

tumor localization and no responses (25). Recently, a group reports some efficacy of another 

MAb (SGN-30) on HD in in vitro studies and in murine models (29). Immunotoxins 

targeting CD30 have had some effects in in vitro studies and animal models. A RIT that was 

derived from the Ki-4 MAb and modified Pseudomonas exotoxin was shown to have some 

specific cytotoxicity in in vitro studies with CD30+ cells and some anti-tumor activity in a 





SCID mouse model (30,31). Clinical studies with a Ber-H2 MAb conjugated to a saporin 

toxin used in patients with HD revealed greater than 50% reduction in tumor mass, but these 

responses were temporary (32). Recently, a Phase I study with Anti-CD30 Ricin A-Chain 

immunotoxin (Ki-4.dgA) had minor clinical responses (1 partial remission in 15 patients) but 

significant toxicity (33). The Pastan lab has also made several RITs which have shown 

significant specific activity in both in vitro studies and animal models (34,35). 

Statement of purpose and hypothesis: 

While previous attempts to target CD30 with MAbs and ITs have shown some efficacy in in 

vitro assays and in animal models, producing a RIT with improved properties should result in 

greater clinical efficacy. Four MAbs (T420, T427, T105, and T405) were selected from a 

panel of anti-CD30 MAbs recently produced and characterized by affinity assays and CD30 

epitope mapping (Figure 2, Table 1). Because a high affinity parent MAb should produce a 

more active RIT, two of the MAbs (T420 & T427) were selected because of their very high 

affinities (T420's Kd = 1.9 nM, T427’s Kd = 0.9 nM) towards CD30. The epitope the RIT 

targets may be especially significant because, as mentioned above, the extracellular portion 

of CD30 is cleaved to yield a soluble fraction (sCD30), and sCD30 levels can be dramatically 

higher in patients with HD and ALCL. CD30 has multiple epitope groups, some of which 

are located on the non-shed portion (S. Nagata, unpublished data. Figure 2). The advantage 

of a RIT that targets a non-shed epitope is that it should have a greater number of available 

binding sites and should not be neutralized by sCD30. RITs based on T105 and T405 parent 

MAbs are the first to target non-shed CD30 epitopes. 
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METHODS 

Cloning of Vh (variable region of the heavy ehain) and VL (variable region of the light 

chain) of the Parent MAbs. 

In order to clone the Vh and VL of the four parent MAbs (T420, T427, T105, T405), the total 

cellular RNA was extracted from hybridoma cells and used to produce the Vh and Vl cDNA 

through a SMART RACE (Rapid Amplification of cDNA Ends) reaction. The Vh and Vl 

cDNA were then separately cloned into a pCR2.1 -TOPO (plasmid) vector. Isolation of total 

cellular RNA from 107 hybridoma cells was done with an RNA extraction kit (StrataPrep 

Total RNA Miniprep Kit, Stratagene Cloning Systems, Ea Jolla, CA). From each hybridoma 

total RNA, the cDNA of the Vh and VL of the MAbs (T420, T427, T105, T405) were 

generated using SMART RACE cDNA Amplification Kit (Clontech, Palo Alto, CA). 

Essentially a two step process, the first part involved generating adaptor-ligated cDNA 

through a reverse transcriptase reaction of 5ug RNA using a 3’ primer that was derived 

from the sequence of the constant region (Chi or Cl) or hinge region (for heavy chains only) 

for that parent MAb. Since different subclasses of immunoglobulins have different constant 

region sequences, the 3” primers were designed and chosen corresponding subclass of the 

parent MAb using the Kabat database (Table 1). The 3’ primers used were: yl (hinge region 

primer, T105 VH ) = ACC-ACA-ATC-CCT-GGG-CAC-AAT-TTT-CT; y2a (hinge region 

primer, T427 VH) = TCT GGG CTC AAT TTT CTT GTC CAC C; y2b (hinge region 

primer, T420 & T405 VH) = GCT GGG CTC AAG TTT TTT GTC CAC C; k (for all VL) = 

CTC ATT CTT GTT GAA GCT CTT GAC ATT. The next step involved using the cDNA 

generated from the reverse transcriptase reaction as a template for a 5’ RACE reaction. This 

reaction used a 5' end primer that binds to the adaptor sequence and a 3’ end primer also 
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derived from the constant region of the appropriate immunoglobulin subclass (but is 

upstream to the primers used in the first step). These 3' primers for the RACE reaction were: 

yl (CHI primer, T105 VH) = CAG GGT CAC CAT GGA GTT AGT TTG, y2a (CHI region 

primer, T427 VH) = TAG AGT CAC CGA GGA GCC AGT TGT, y2b (CHI region primer, 

T420 & T405 VH) = TCC AGA GTT CCA AGT CAC AGT CAC, k (for all VL) = GAC 

TGA GGC ACC TCC AGA TGT TAA. To purify the products of the 5’ RACE reaction, the 

PCR products were run on 1.2% low melting agarose gel, and bands of the expected product 

size were excised and purified with Qiaquick gel extraction kit. Using Invitrogen’s TOPO 

TA cloning kit (Invitrogen, San Diego, CA), these purified PCR products were cloned into a 

pCR2.1 -TOPO vector. These clones were then sequenced. To eliminate the possibility that 

the clone contained a PCR generated error, at least five clones per VfI or VL clone were 

sequenced. Once the sequences were obtained, they were aligned according to the Kabal 

alignment scheme (36). 

Construction of Plasmids for dsFv-PE38 (disulfide-stabilized Fv fragment linked to a 

modified Pseudomonas exotoxin) Recombinant Immunotoxins. 

After cloning and sequencing the Vh and VL of the parent MAb, cysteine (cys) mutations 

were introduced into the Vh and VL (to form a disulfide bond during the refolding process), 

and the Vh w/cysteine and Vl w/cysteine were incorporated into separate plasmid 

expression vectors. In the Vh expression vector, VH w/cys is joined to a modified 

Pseudomonas exotoxin that is 38 kDa large (PE38). A cysteine mutation was introduced into 

the Vl chain at position 100 (according to Rabat numbering) in framework region 4 (FR4) 

and into the Vh chain at position 44 in framework region 2 (FR2) (Figure 3a) (37). To 





introduce a cysteine mutation in VL and prepare it for ligation into the expression construct, 

the VL chain was PCR amplified with a 5’ primer (that introduce an Nde I site) and a 3’ 

primer that introduced a cysteine mutation in position 100 (FR4) and an EcoRl site. Because 

a cysteine mutation had to be introduced in the middle (position 44) of the Vh chain, a 

splicing overlap extension PCR method was employed (38). This involves PCR amplifying 

the first half of the Vh chain with primers that introduce a Nde I site (with an ATG initiation 

codon) at the 5’ end and a cysteine mutation (at position 44) at the 3’ end of the fragment. 

The second fragment of Vh is produced by PCR amplification with primers that introduce a 

cysteine mutation at position 44 in the 5’ end of the fragment and a Hind III mutation at the 

3’ end. Because Vh fragment 1 and fragment 2 overlap (around the cysteine mutation), an 

overlap reaction produces a Vh w/cysteine chain by allowing the overlapping ends to anneal 

and extend. This full length Vh segment with cysteine is amplified with the 5' and 3’ 

primers. The V^cys) and Vn(cys) were digested with Nde I and EcoRl (for Vl) or Hind III 

(for Vh). They were then ligated into separate T7-based expression vector pRB98a (which 

originated from pUL17; 4) (Figure 3b). The Vh expression vector attaches Vh (cys) to PE38 

(with a small connector region in between) (Figure 3c). The VL(cys) is alone in a separate 

expression vector (Figure 3d). The sequence of the VH(cys)-PE38 and V^cys) expression 

vector were verified. 

Production and Purification of dsFv Recombinant Immunotoxins (RITs) 

The preparation of recombinant dsFv immunotoxins involved expressing the Vh (cys)-PE38 

and Vl (cys) (which collect as intracellular inclusion bodies, IB), purifying, solubilizing 

and denaturing the IB, refolding the IB in a redox-shuffling buffer, a dialysis process, and 
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column chromatography to separate the refolded dsFv IT from aggregates (39,40). The 

VH(cys)-PE38 and VL(cys) expression vectors were separately transfected into E.coli BL21 

(>J)E3). Protein expression was induced in the bacterial cultures with ImM isopropyl-1- 

thio-[3-D-galactopyranoside for 2 hrs during the exponential growth phase. The cells were 

collected by centrifugation. The recombinant proteins, which collect as intracellular 

inclusion bodies, were recovered by lysing the cells. The inclusion bodies were then 

washed repeatedly with a non-ionic detergent. After washing, the purified inclusion bodies 

are solubilized and denatured with 6 M guanidine hydrochloride and then reduced by 

dithioerthritol for approximately 5 hours. After being solubilized and reduced, Vn(cys)- 

PE38 and VT(cys) were added in a 2:1 molar ratio and diluted (lOOx) into a redox-shuffling 

buffer which contains oxidized and reduced glutathione and L-arginine (to help prevent 

protein aggregation). The refolding process (which takes about 38 to 42 hrs) is followed by 

dialysis against a Tris buffer (with 0.1 M urea) for approximately 18 hours to remove the 

guanidine hydrochloride. The refolded, dsFv RIT is then separated from misfolded 

aggregates and bacterial protein through a series of anion exchange chromatography (Q- 

Sepharose and then Mono-Q [Amersham Pharmacia Biotech]) and then size exclusion 

chromatography (TSK3000; TOSOOH, Tokyo, Japan). The refolded dsFv was further 

analyzed by SDS-Page gel for size and purity. A Bradford assay (Coomassie Plus, Pierce, 

Rockford, IL) using a BSA standard was used to measure the concentration of the 

recovered IT. 

Cell Lines for Cytotoxicity Assays. 

The cell lines used for the cytotoxicity assay include Atac-4 and A431-CD30 (which is a 

stable transformant of A431 that expresses CD30) (41,42). A431 is a human epidermoid 
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cell line, and Atac-4 is a stable transformant of A431 that expresses CD25 (but is CD30-). 

ALCL-derived cell lines were SUDHL-1 and KARPAS-299 (from the German Collection of 

Microorganism and Cell Cultures, DSMZ. Braunschweig, Germany). L540 was a HD 

derived cell line (from Dr. C.S. Duckett, NIH. Bethesda, MD). SUDHL-1, KARPAS-299, 

and L540 cells are all CD30+. Iscove’s modified Dulbecco’s medium (Life Technologies, 

Inc., Gaithersburg, MD) was used for culturing the cells. 

In Vitro Cytotoxicity Assay 

Activity of the RIT is measured by the inhibition of cellular protein synthesis as measured 

by 'H-leucine incorporation (41). Cells are plated in a 96 well plate at 2.0 x 104 cells/well. 

They are then incubated for 24 hrs if the cell line is attached or for 1 hrs if the cells grow in 

suspension. Serial dilutions of the RIT are made in PBS with 0.2% with human serum 

albumin. The RIT are added to the cells (3 wells for each RIT dilution) and then incubated 

for 18-30hrs (the incubation period varies depending on the growth rate of the cell line being 

tested). After being incubated with the RIT, 2 pCi of 'II Leucine (diluted 1:10 in 0.2% HSA 

in PBS) is added and incubated with the cells for 2 to 5 hrs. If the cell line used is attached, 

the plates are frozen and thawed (to disattach the cells from the surface of the 96 well plate). 

If the cell line grows in suspension, the freezing and thawing step is not necessary. They are 

then harvested onto glass filters using a cell harverster (Tomtec, Hamden, CT). The 

incorporation of radioactivity (counts) is measured by an automated scintillation counter 

(1205 Beta-plate; Wallac, Gaithersburg, MD). 
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Surface Plasmon Resonance Assay 

A BIAcore (Biacore, Piscataway, NJ) biosensor was used to measure the affinity of the dsFv 

RIT for CD30. To measure the on and off rates, CD30-Fc (4000 resonance units) was 

affixed to a biosensor chip, and 25pg/ml of an Fr (in PBS) was injected over the chip 

surface for 5min . The RIT was then allowed to dissociate by flowing buffer over the chip. 

Binding kinetics were measured by using BIAevaluation 2.1 software (BIAcore). [The 

surface plasmon resonance assay was done largely by Richard Beers] 





RESULTS: 

Cloning of Vn (variable domain of the heavy chain) and Vl (variable region of the light 

chain) cDNA of the Parent MAb 

The cDNA of the Vh and V| domains of each of the MAbs (T420, T427, T105, T405) were 

cloned as described in “Materials and Methods”. The sequence data were arranged into 

tables organized by framework regions (FR) and complementary determining region (CDR) 

(Table 2 ). The amino acid sequences were also analyzed through an “Fv Sequence 

Alignment “ program (Molecular Modeling Section, Laboratory of Molecular Biology, 

NCI/NIH) that identifies any unusual residues in the framework region. This is important 

because unusual amino acids in the framework can prove to be problematic for the stability 

and activity of the Fv. One interesting anomaly among the Vh and Vl sequences was that 

CDR3 in the Vh chain for T405 has only three amino acid residues, considerably shorter 

than most other CDR3s. Otherwise, most of the cloned sequences appeared reasonable. 

Preparation and Purification of Anti-CD30 dsFv (disulfide-stabilized Fv) Iminunotoxin 

The dsFv RITs (recombinant iminunotoxin) were produced according to the protocol 

described in “Materials and Methods”. Cysteine mutations introduced into the VH-PE38 and 

VL chains allow them to form a disulfide bond during the refolding process (Figure la). The 

redox-shuffling buffer promotes the formation of the disulfide bond between Vh and V|. 

This disulfide form of IT was found to be more stable than the single chain form (Vh and Vl 

linked by a peptide) and has greater anti-tumor activity (37,39,43). 

Two important criteria for a successful RIT are yield and purity, as dsFv 

immunotoxins may aggregate during the refolding process (lowering yield and purity). A 

16 





low yield indicates that the Vh and VL are not stable in an Fv form. A dsFv RIT that cannot 

be recovered with good purity will likely have diminished activity because of the 

contaminants (misfolded protein aggregates). All four anti-CD30 dsFv RIT were made 

(T420, T427, T105, & T405) with reasonable yields (minimum acceptable yield is 1%, a 

yield >= 5% is desirable) ( Table 2). Also, all four were produced and recovered with high 

purity (Figure 4), indicating that their Fvs are relatively stable. Except for T420, the RITs 

are shown in reducing and non-reducing conditions. In non-reducing conditions, the 

disulfide bond is cleaved, causing Vh-PE38 to be separated from VL. Since good yields and 

high purity typically correlate with high activity, all four RITs appeared favorable at this 

stage. 

Testing Anti-CD30 RIT for Specific Activ ity 

The specific activity of the anti-CD30 dsFv RITs were measured by in vitro 

cytotoxicity assays in CD30+ cell lines. Because the Pseudomonas exotoxin’s mechanism 

of killing is through in ADP ribosylation of elongation factor 2, these cytotoxicity assays 

measure inhibition of cellular protein synthesis as means to determine the activity of the 

RIT. This inhibition of cellular protein synthesis correlates with cell death. The IC50 of the 

anti-CD30 dsFv was determined by applying varying concentrations of the RIT to 

A431/CD30 (see “Materials and Methods”). As a positive control, a potent anti-CD30 dsFv 

RIT previously made in the lab (T6 dsFv RIT) was included in the assay. To confirm that 

their cytotoxicity was specific, these anti-CD30 dsFv RIT’s were tested in a CD30 negative 

cell line, Atac4. 
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The results of the cytotoxicity assay indicate that T420 RIT, T105 RIT, and T427 

RIT were all highly active against CD30+ cells (with IC50 in the 0.63 ng/ml to 2.05 ng/ml 

range), whereas T405 RIT was not (IC50 > 100 ng/ml) (Figure 5a & b. Table 4a & b). In 

addition, 1405 RIT (which targets a non-shed epitope) was the most active, even more 

active than the potent control RIT T6. (Note that because of the space limitations on the 96 

well plate, it was not possible to test all four RITs and the T6 control in one plate. Hence, at 

least two assays were done for each cell line.) The cytotoxicity assay with the Atac4 cells 

(IC50 range 240 to 700 ng/ml) confirmed that the cytotoxicity was specific to CD30+ cells 

(Figure 5c & d. Table 4a & b). 

Cytotoxicity on HD and ALCL Derived Cell Lines 

The activity of T420 RIT, T427 RIT, T105 RIT, and T405 RIT was tested against a HD 

derived cell line (L540) and two ALCL derived cell lines (SUDHL-1 & Karpas 299). T6 

dsFv RIT was also used as a positive control in these assays. The results were qualitatively 

similar to those in the A431/CD30 assay. T420 RIT, T427 RIT, and T105 RIT all had high 

degrees of cytotoxicity towards the SUDHL-1 (IC50 range 7.4 ng/ml to 19 ng/ml) and 

Karpas 299 (IC50 range 17 ng/ml to 60 ng/ml) (Figure 6, Table 4a & b). The RITs were 

also active against L540 cells but to a lesser degree (IC50 60 ng/ml to 105 ng/ml). T405 RIT 

was not active against Karpas 299 and SUDHL-1 (IC50 > 100 ng/ml) and was not tested on 

the L540 cell line. Among all of these anti-CD30 dsFv RITs, T105 RIT which targets the 

non-shed epitope was consistently the most active in all of the CD30+ cell lines in every 

assay. 
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Measuring the Affinity of the Anti-CD30 dsFv IT towards 0)30 

The affinities of the anti-CI)30 dsFv RITs towards CD30-Fc on a biosensor chip was 

measured by surface plasmon resonance assay (See “Materials and Methods'”). By 

measuring the on and off rates of the RIT binding to the CD30-Fc on the biosensor chip, the 

affinity was calculated (Kd). The Kd of T420 RIT, T427 RIT, T105 RIT, and T405 RIT 

were 5.8 x 10'8M, 3.6 x l(f8M, 1.2 x 1 O'8 M, and 3.14 x 10'7M (Table 5). The RIT with 

the highest affinity, T105, also had the highest activity against CD30 positive cells. 

Conversely, the RIT with the lowest affinity, T405, had the lowest activity against CD30 

cells. All of the RIT Fvs had lower affinities than the parent MAbs they were based on, 

which was not unexpected considering that MAbs are divalent and are generally in a more 

stable form. In addition, the parent MAb with the highest affinity, T427, did not have the 

highest affinity in the RIT Fv form. 
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DISCUSSION 

While combination chemotherapy and radiation therapy can achieve high remission 

rates in Hodgkin’s Disease (1 ID), many of the patients who relapse will die from their 

disease (1,2,3). In addition, conventional therapy for Hodgkin’s disease leads to several co¬ 

morbidities, including the development of secondary malignancies. Anaplastic large cell 

lymphoma (ALCL) is a novel category of lymphoma that has a cohesive proliferation of 

large pleomorphic blastic cells and consistently expresses the cytokine receptor CD30 (6). 

While the prognosis of ALCL varies depending on the subforms, there is a clinical need, as 

in HD, for more selective therapies. 

HD and ALCL are clinically distinct, but they have many similarities. One of the 

most important of these similarities from the standpoint of designing a selective therapy is 

that both Reed-Sternberg cells (of Classic HD) and ALCL cells overexpress CD30. A 

number of attempts to target CD30 with MAbs and immunotoxins have been made. 

Although previous anti-CD30 RITs have demonstrated some effectiveness in in vitro assays 

and in animal models, a RIT with improved properties should have greater clinical efficacy. 

Two strategies were employed in attempting to develop an more effective RIT : 1) choosing 

parent MAbs with a high affinities to CD30 and 2) choosing parent MAbs that target epitopes 

in the non-shed portion of CD30. As mentioned in the introduction, CD30 is cleaved by a 

zinc-metalloprotease to produce a soluble fraction. CD30 also has multiple epitope groups, 

some of which are located on the non-shed portion of CD30 (Figure 2, S. Nagata - 

unpublished data). Targeting such epitopes has the advantage of: 1) having a greater number 

of binding sites available to the RIT and 2) not having the RIT neutralized by soluble CD30. 

Four novel anti-CD30 dsFv RITs (disulfide-stabilized Fv recombinant immunotoxins) were 
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produced based on two high affinity parent MAbs, T420 and T427, and two parent MAbs 

that target non-shed epitopes of CD30, T105 and T405. All four of the Fv’s from these 

MAbs had unique sequences. Three of these RITs (T420, T427, T105) had a high degree of 

activity against CD30+ cells. Among these, T105 R1T was consistently the most active 

against each CD30+ cell line. 

All four anti-CD30 dsFv RITs were produced with good yields (~5%). This is 

important for a number of reasons. Not all MAbs translate faithfully into an Fv form, so a 

good yield with high purity indicates stability of the Fv form. In addition, a good yield and 

high purity generally correlates with a highly active RIT. Another reason why yield and 

purity are important is that the best anti-CD30 dsFv RIT may be a candidate for clinical 

studies. Since producing RIT on a larger scale is a laborious and expensive process, it is 

important that the RIT can be produced with a reasonable yield. In addition, there are 

several strategies to improving the yield of a RIT which can be explored. One of these 

involves altering the conditions of the refolding process so that the RIT may aggregate less. 

Another approach is to use molecular modeling techniques to identify various framework 

residues which can be altered to produce an even more stable Fv configuration. 

The four anti-CD30 RITs were tested on a panel of CD30+ cells, including those 

derived from HD and ALCL. While they were some differences in how effective they were 

in each cell line, three (T420, T427, and T105) of the RITs were generally very active in all 

of the CD30+ cell lines. Among these, T105 RIT, which targets a non-shed CD30 epitope 

was consistently the most active. The surface plasmon resonance assay revealed that the 

T105 RIT Fv also had the highest affinity towards CD30 among the anti-CD30 RITs. Since 

previous studies with RITs indicate that the affinity of the Fv to its target is one of the most 
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important factors in determining activity, T105’s high activity may be explained by its high 

affinity to CD30 (35). Hence, it is unclear what the significance of T105 targeting a non¬ 

shed epitope is. Previous studies with anti-CD30 RITs did not find a relationship between 

RITs targeting different epitope groups within the shed region and their activity, but the 

non-shed region has not been explored before (35). As mentioned above, a RIT that targets 

a non-shed epitope should have several advantages. The idea that such a RIT should not be 

neutralized by soluble CD30 (sCD30) may be especially significant because it is believed 

that sCD30 may be dramatically elevated in a patient because it is shed in several places 

near a tumor site. However, it is difficult to replicate such conditions in an in vitro setting 

because the sCD30 released by the cells become quickly diluted by the media. It is also 

difficult to produce sCD30 in the quantities predicted in an in vivo setting and add it to an in 

vitro cytotoxicity assay to test the effects of neutralization of RITs that target shed epitope 

groups. Hence, it may only be possible of revealing the significance of targeting a non-shed 

epitope group through animal studies or through clinical studies. 

While T420 RIT and T427 RIT were also highly active in CD30+ cells, they were not 

as active as predicted considering the high affinity of their parent MAb. Again, not all MAb 

translate faithfully into an Fv form. This was confirmed by the surface plasmon resonance 

assay which revealed that both of these RITs’ Fvs had less affinity than their parent MAb. 

In addition, the lack of activity from the T405 RIT was surprising considering its good yield 

and high purity, which often correlate with strong activity. The surface plasmon resonance 

assay did reveal that the T405 RIT has significantly decreased affinity towards CD30, which 

may partially explain its low activity. Another interesting aspect of T405 RIT’s structure is 

that its CDR3 in VH has only three amino acids, which is considerably shorter than most 

11 





CDR3s in immunoglobulins (Table 3). CDR3 usually plays a critical role in binding, but it 

is unclear what the significance of this short CDR3 may play in T405 RIT’s lack of activity. 

Within the CD30+ cell lines, there was a difference in their susceptibilities to the anti- 

CD30 RITs. It may be possible that these different cell lines express different levels of 

CD30, and this may play a role in how susceptible they are to RITs. This idea was explored 

in earlier studies, but surprisingly no relation between the CD30 expression and 

susceptibility to anti-CD30 RITs was found (35). There other factors that play a role in how 

susceptible a given cell line may be to RITs. Some of these factors include the differences 

in internalization of the surface antigen (usually a receptor) and differences in how the toxin 

is processed once inside the cell. These other factors may explain the differences in the 

susceptibility of these cell lines. 

Since the long-term objective is to develop an anti-CD30 therapeutic agent for 

clinical trials, future directions would involve further characterizing and development of the 

RIT(s) with the best specific activity. Future studies would include in vitro stability assays, 

pharmacokinetics (T1/2) studies, and toxicity (LD50) studies. In addition, the anti-tumor 

activity in a mouse subcutaneous tumor model will be measured. The RIT(s) with the most 

favorable properties can still be improved in several ways. Although the candidate RIT 

would already have high activity towards CD30, it is still possible to make a more active RIT 

by increasing the RIT’s Fv’s affinity through in vitro affinity maturation. While there are a 

number of approaches to affinity maturation (codon-based mutagenesis, CDR walking, error 

prone replication, and synthetic CDR construction), one of the most efficient methods is to 

mutagenize hot spots in the Vh and Vl of CDR3, which play a critical role in antigen 

binding. Using phage display technology, panning of hot spot mutant libraries using CD30+ 
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cells should yield mutants with increased affinity. This strategy has been previously applied 

to other RITs with dramatic increases in affinity, activity and yield (44, 45). In addition, it 

may be possible to decrease the RIT’s non-specific toxicity by lowering the isoelectric point 

(Pi) of the Fv through mutation of exposed surface basic or neutral residues in the framework 

region to acidic residues (identified by molecular modeling). In another RIT, this approach 

resulted in a more than 2 fold decrease in non-specific toxicity in mice (46). While these 

earlier strategies involve improving the RIT itself, it is also worthwhile to investigate what 

conditions might increase the efficacy of the RIT. Since the antitumor effects of a RIT are 

affected by how many antigen binding sites are present on the tumor cell, agents (such as 

interferon gamma or IL-4) which may upregulate the expression of CD30 in malignant cells 

should be examined in in vitro cytotoxicity assays and in animal tumor models. Furthermore, 

previous studies with other RITs have demonstrated that chemotherapy can sensitize 

malignant cells to RITs (Pastan, unpublished data). Flence, animal tumor studies could be 

performed by pretreating animals with chemotherapy before applying the RIT. These 

combinations of strategies should optimize the candidate RIT(s) to have the greatest clinical 

efficacy. 

If one of these novel anti-CD30 dsFv RITs is selected for clinical trials, it is important 

to consider how to incorporate it into a therapeutic regimen. RITs would be especially 

helpful in dealing with cancer cells that are chemotherapy resistant or in eliminating minimal 

residual disease. Another RIT developed in the Pastan lab (BL22) has been found to 

eliminate minimal residual disease in patients with chemotherapy resistant Hairy Cell 

Leukemia (24). Previous studies with anti-CD30 MAbs reveal that these antibodies do reach 

the tumor in most cases. Hence, RITs, which are smaller than IgG’s, should be able to reach 
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tumor sites. Since chemotherapy has also been found to sensitize cancer cells to RITs, it 

would perhaps be most effective to include the anti-CD30 dsFv RITs with the typical 

chemotherapy regimen for HD or ALCL. By adding RITs to the chemotherapy regimen, the 

RITs may be able to eliminate chemotherapy resistant cells and minimal residual disease as 

well as decrease the doses of chemotherapy drugs needed, hence reducing the co-morbidities 

associated with them. 
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Fv of MAb 

translocation toxin moiety 

domain 

Figure la. Diagram of a disulfide-stabilized recombinant immunotoxin (dsFv RIT). Note 

that V, is covalently bonded to VH by a disulfide bond. VH is fused to a modified 

Pseduomonas exotoxin (PE-38, 38 in size of the modified toxin in kDa). A Pseudomonas 

exotoxin typically has three domains: 1. a binding domain, 2. a translocation domain, 3. 

toxin moiety. In the RIT, the binding domain is replaced with the Fv of a MAb that targets 

a surface tumor antigen. 

lb. A three dimensional molecular model of a dsFv RIT. (created by the Molecular 

Modeling Section of the Laboratory of Molecular Biology, NCI, NIH) 





Table 1: Parent MAb’s for Anti-CD30 Recombinant Immunotoxins (RITs) 

Parent 

MAb 

Isotype 

Subclass 

(of VH) 

Affinity 
to CD30 

Kd (nm)* 

Epitope 

Group 

Shed vs. 

Non-shed 

Epitope Target 

T420 y2b 1.9 I shed 

T427 y2a 0.9 III shed 

T105 yl 4.2 II non-shed 

T405 y2b 5.7 VI non-shed 

Affinity measurements and epitope characterization done by Satoshi Nagata of the Pastan Lab, unpublished data) 

Figure 2. Proposed topographical map of CD30 epitope groups determined by mutual 

competition assay (data not shown, done by Satoshi Nagata of the Pastan lab). There are 

six major epitope groups, each labeled with a Roman numeral. Note that T105 and T405 

bind to epitopes that are in the non-shedding portion of CD30. T420 and T427 both bind 

to epitopes in the shed portion. T6 is a control anti-CD30 dsFv RIT. 
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Figure 3a. A diagram of V, (variable domain of the light chain) and Vn (variable region of the 

heavy chain)cDNA with cysteine mutations introduced and restriction sites added to the 5’ 

and y end (to allow integration into the expression vector). A cysteine mutation was 

engineered in position 100 (framework region 4) for V, and in position 44 (framework 

region 2) for Vn. (FR = framework region, CDR = complementary determining region). The 

cysteine mutations allow Vj to form a disulfide bond with VH during the refolding process. 

3b. Expression plasmid with PE-38 under a T7 promoter used for RIT production. 

3c. Expression vector for VH. Note that VH is fused to a modified Pseudomonas exotoxin (PE-38). 

3d. Expression vector for V, . 





Table 2: Yields of the four anti-CD30 dsFv RITs. Minimal acceptable yield is 1%. A 

yield of 5% or greater is desirable. 

dsFv RIT yield (%) 

T420 4.27 

T427 5.18 

T105 5.58 

T405 5.85 

a. T420 dsFv RIT 

T420 RIT mm 
'61 kbiT^6 mnm 

4 

non-reducing 

b. 

64 kDa 

50 kDa 

T427 dsFv RIT 

T427 RIT 

non-reducing reducing 

T427 Vh-PE38 

T427 V L 

c. T105 dsFv RIT d. T405 dsFv RIT 

T105 RIT 
T405 RIT 

T105 Vh-PE38 

T405 V,,-PE38 

non-reducing 

T105 VL 

reducing 
non-reducing reducing 

T405 V, 

Figure 4. The four anti-CD30 dsFv RITs analyzed on SDS-Page gel (to confirm size 

and determine purity). 4a. T420 dsFv RIT is shown in a non-reducing gel. The protein 

shown is of correct size (~61 kDa) and is very pure. 4b. T427 dsFv RIT is shown here in 

non-reducing and reducing conditions. Reducing conditions cleaves the disulfide bond, 

separating VH-PE38 from VL. 4c. T105 dsFv is shown in both non-reducing and reducing 

conditions. 4d. T405 dsFv RIT is shown in non-reducing and reducing conditions. 
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a 
A431/CD30 Cells 

b 
A431/CD30 Cells 

Figure 5. In vitro Cytotoxicity assays of anti-CD30 dsFv RITs in A431/CD30 cells (a & b) 

and in Atac4 (CD30-) cells (c & d). The final concentration of the RIT in the media (ng/ml) 

is plotted against the counts per minute (CPM) of 3H-Leucine (which correlates with cell 

count). The red bar indicates where the counts are 50% of the starting value and identify the 

IC50 point. 

5a. T105, T420, & T6 in A431/CD30 cells 

5b. T105, T405, T427, & T6 in A431/CD30 cells 

5c. T105, T420, T6 in Atac4 cells 

5d. T105, T405, T427 in Atac4 cells. 





a Karpas 299 cells 

b Karpas 299 cells 

c. SUDHL-1 Cells d. SUDHL 1 Cells 

5000' 

Figure 6. In vitro cytoxicity assays of anti- 

CD30 RITs in Karpas 299 (ALCL), SUDHL-1 

(ALCL), and L540 (HD). The final cone, of 

RITs in media is plotted against counts per 

minute of 3H-Leucine. The red bar indicate 

where the counts are at 50% of the starting 

value and identify the IC50 point. 

6a. T105, T420, & T6 in Karpas 299 

6b. T105, 1427, T405, & T6 in Karpas 299 

6c. T105, T420, T6 in SUDHL-1 

6d. T105, T427, T405, & T6 in SUDHL-1 

6e. T105, T420 & T6 in L540 
04- 

001 Q1 100 1000 





Table 4 (a & b): Summary of cytotoxicity studies of the anti-CD30 dsFv RIT in a 

number of different cell lines. IC50 values of the RIT in each cell line is listed. 

Cell Line T427 

(IC50) 

T405 

(IC50) 

T105 

(IC50) 

T6 

(IC50) 

(control) 

A431/CD30 2.05 ng/ml > 100 ng/ml 1.05 ng/ml 2 ng/ml 

Karpas 299 41 ng/ml > 100 ng/ml 22 ng/ml >30 ng/ml 

(~40ng/ml?) 

SUDHL-1 13 ng/ml > 100 ng/ml 8 ng/ml 11 ng/ml 

Atac 4 

(neg. control) 

310 ng/ml 710 ng/ml 720 ng/ml not 

included 

b. 

Cell Line T420 

(IC50) 
T105 

(ICso) 
T6 

(ICso) 

Atac4 

(CD30-) 
400 ng/ml 700 ng/ml 480 ng/ml 

240 ng/ml 640 ng/ml 300 ng/ml 

A431/CD30 1.5 ng/ml 0.63 ng/ml 0.7 ng/ml 

1.9 ng/ml 0.73 ng/ml 0.8 ng/ml 

Karpas 299 

(ALCL) 

53 ng/ml 17 ng/ml 20 ng/ml 

60ng/ml 19ng/lm 24ng/ml 

SUDHL-1 

(ALCL) 

18 ng/ml 8 ng/ml 9.8 ng/ml 

19 ng/ml 7.4 ng/ml 11 ng/ml 

L540 (HD) 105 ng/ml 60 ng/ml 90 ng/ml 





Table 5: Surface Plasmon Resonance Assay Results. The k()n and koff rates were measured 

BIAcore biosensor, and the Kd for each anti-CD30 dsFv RIT was calculated. 

Anti-CD30 

dsFv RIT 

kon (1/MS) k0ff(l/s) Kd (M) 

of RIT Fv 

Affinity 

of Parent 

MAb (M) 

T420 5.3 x 104 3.0 x 10 3 5.8 x 10 8 1.9x10 9 

T427 5.9 x 104 2.1 x 10 3 3.6 x 10 8 0.9 x 10 9 

T105 6.1 x 104 7.4 x 10 4 1.2 x 10 8 4.2 x 10 9 

T405 2.7 x 104 8.6 x 10 3 3.14 x 10 7 5.7 x 10-9 
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