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ABSTRACT 

Rupani R.N., Pawelek J.M. Co-localization of (31,6-Branched Oligosaccharides and Coarse Melanin in 
Macrophage-Melanoma Fusion Hybrids and Human Melanoma Cells In Vitro. Department of 
Dermatology, Yale University School of Medicine, New Haven, CT. 

Fusion hybrids between nonrial macrophages and Cloudman S91 melanoma cells were shown in previous 

studies to have increased metastatic potential, along with high expression of (3 1,6-N- 

acetylglucosaminyltransferase V (GnT-V) and (31,6-branched oligosaccharides. Curiously, hybrids, but not 

parental melanoma cells, also produced ‘coarse melanin’— autophagic vesicles with multiple melanosomes. 

Since (31,6-branched oligosaccharides were known to be associated with metastasis, and coarse melanin 

had been described in invasive human melanomas, the purpose of this study was to look for potential 

relationships between the two. Using lectin/immunohistochemistry, we analyzed cell lines producing coarse 

melanin for (31,6-branched oligosaccharides; gpl00/pmel-17, a melanosomal structural component; and 

CD63 a late endosome/lysosome component highly associated with melanoma and certain other human 

cancers. Cell lines were hybrid 94-H48, a highly metasatatic, macrophage-melanoma artificial fusion 

hybrid; 6nL0 mouse melanoma cells, the weakly metastatic, parental fusion partner; and SKMel-23, a human 

melanoma cell line derived from a metastasis. Coarse melanin granules were prominent in both hybrids and 

SKmel-23 cells, and co-localized with stains for (31,6-branched oligosaccharides, gplOO/pmel 17, and 

CD63. Co-expression of (31,6-branched oligosaccharides and coarse melanin was recently shown to be a 

common and pervasive characteristic in archival specimens of human melanomas (most prominently in 

metastases), but this is the first report of this phenotype being expressed in vitro. Such expression in both 

human melanoma cells and experimental macrophage-melanoma fusion hybrids provides new biological 

systems for more detailed analyses of its genesis and regulation at the molecular genetic level. 
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INTRODUCTION 

A detailed discussion of melanoma, which is principally (but not exclusively) a 

cancer of epidermal melanocytes, first requires a succinct review of the skin itself. As the 

body’s largest organ, the skin serves a variety of functions including, fundamentally, the 

maintenance of a constant internal environment. In order to accomplish this, the skin 

functions in photoprotection, thermoregulation, cutaneous circulation, barrier formation, 

and immunologic protection (1). 

The outer layers of the skin comprise the epidermis, which is subdivided from top 

to bottom into the stratum corneum, stratum granulosum, stratum spinulosum, and 

stratum basale. 

(c) 2003 Elsevier - Bologma, Jonzzo and Raptni: Dermatology - www.dermtcxt.com 

Figure 1. Human epidennis/dermis. The five layers of the epidermis are visible from top to bottom. 

The major cellular components of the epidermis are keratinocytes, melanocytes, and 

Langerhans cells; melanocytes are embryologically-derived from the neural crest, and 

with their capacity to elaborate the radiation-absorbing pigment melanin, play a primary 

role in protecting the skin and body from ultraviolet radiation damage. Melanin is 
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packaged into melanosomes, which are subsequently transferred through melanocyte 

dendritic processes into neighboring keratinocytes, where they then reside in a 

perinuclear location (1). 

© 2003 Elsevier - Bolognia, Jorizzo and Rapini: Dermatology - www.dermtext.com 

Figure 2. Nonrial human melanocyte stained for tyrosinase. 

Finally, beneath the epidermis lies the dermis, a mucopolysaccharide gel bound by a 

collagen and elastin-containing fibrous matrix, which is vascularized to provide both 

nutritional and structural support to the skin (1). 

Given this brief structural and functional outline of normal epidermis and dermis, 

we turn to the example of disordered epidermal cellular function which is the particular 

focus of this study: melanoma, a malignant tumor arising from melanocytes. The 

incidence of melanoma and its associated mortality rates are increasing, particularly 

amongst younger individuals (1). Diagnosis includes attention to early sunburns and 

intense intermittent exposure to sun in individuals with types I or II skin (although 

melanoma in darker-skinned individuals can occur on non-sun-exposed areas such as 
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acral sites). Clinical features are characterized by the ABCD mnemonic for evaluation 

of any suspicious lesions (asymmetry, border, color variation, diameter), and studies 

have shown that melanomas present more typically on the trunk in males and on the 

lower extremities in females (1). Histology reveals cellular atypia, mitoses, and invasion 

of the epidermis (2), and tumor thickness remains the most important prognostic indicator 

in primary melanoma (i.e., Breslow thickness scale). Melanomas can be extremely 

aggressive if not discovered early enough; metastases can occur in various organs 

including the lungs, liver, and central nervous system, with homing behavior often 

following the neural crest pattern of embryologic origin, resulting also in cutaneous 

metastases. 

An important question is how or why, in fact, such metastatic spread occurs. Key 

components of metastasis include an imbalance in regulation of adhesion, motility, and 

proteolysis, but the origins of cells with a metastatic phenotype are as yet unknown (3). 

The metastatic transformation of a primary melanoma is likely a multimodal process: 

“There are of course numerous examples correlating cancer with genetic changes, and in 

primary tumors many gene mutations have been identified that lead to cellular 

immortalization. But fewer gene mutations have been identified that correlate with 

metastasis, and indeed the strongest correlation for genetic changes in metastasis is 

aneuploidy as opposed to direct gene mutation.” (4). In thinking of metastasis as an 

evolutionary process (i.e., a process whereby acquired genetic variability allows the 

selection of more aggressive cell sublines [5]), there arises the question of whether there 

is a role for hybridization in the generation of cellular aneuploidy—meaning, a genetic 

fusion event between a phagocyte and a melanoma cell (e.g., during the abortive 
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digestion of apoptotic tumor cells by phagocytes), thereby yielding a hybrid which 

demonstrates features of both parental lines including myeloid-type mobility and the 

deregulated growth of cancer cells. 

Figure 3. Macrophage x melanoma fusion hybrids (6). 

Thus, as the genes for mitochondria and chloroplasts were acquired via endosymbiosis 

between pro-eukaryotes and prokaryotic cells, such is the logic for the theory of hybrid 

formation between myeloid and primary tumor cells (4). 

The idea of hybridization as a source of aneuploidy in cancer dates back to the 

research of Theodor and Marcella Boveri in the late 1800s: Their work with sea urchin 

eggs, which were experimentally fertilized with two different sets of spermatozoa, 

resulted in abnormal mitoses and led to the speculation that chromosomal imbalance 

might also play a role in the deregulated growth of cancer cells (7). These findings 

prompted Aichel in the early 20th century to extend the notion of chromosomal excess to 

human cancers, specifically the idea that hybridization between leukocytes and cancer 

cells might lead to genetic pooling/chromosomal imbalance, and therefore abnormal 

mitoses (8-9). Finally, Mekler in 1971 formulated the concept that hybridization between 
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immortalized tumor cells and leukocytes might confer properties of motility (i.e., that 

which is necessary for metastasis) to cells of the primary tumor (10). Indeed, today it is 

well-documented in animal models that tumor hybrids occur spontaneously (11-13). 

Also, leukocyte x lymphoma and leukocyte x melanoma fusion hybrids demonstrate 

increased moility in vitro and metastatic potential in vivo (11-13). 

With specific regard to melanoma there have been many studies, including those 

by Munzarova et al, Pernick et al, and others (14-16), which noted not only the 

expression of macrophage-like traits by metastatic melanoma (such as invasive behavior, 

chemotactic migration with reversible adhesive contacts, accumulation in draining 

lymphoid tissue, extravasation and release into circulation [17]) but also the presence of 

known histiocytic markers such as Mac-1 and CD68 on metastatic melanoma cells, as 

evidenced by immunoreactivity (16, 18-19). Both artificial and naturally-occuring tumor 

x host hybrids in mouse models were previously studied and noted to have enhanced 

metastatic capabilities (20-31). 

Thus, it was in the context of this historical and experimental background that the 

theory of macrophage-melanoma cell hybridization was tested in this thesis. This study in 

particular centered around a known phenomenon in highly metastatic cell lines and solid 

tumors (including breast, colon and others [32]), which is an increased level of (31,6- 

branched N-glycosylation of integral membrane proteins. Such proteins include 

lysosome-associated membrane proteins (LAMPs) 1&2, which are over-expressed in 

malignant cells and likely serve to stabilize lysosomes for transport to the cell membrane, 

with subsequent extracellular release of lysosomal enzymes for degradation of 

surrounding tissue (6); (3-integrins, essential for cell adhesion to fibronectin; cadherins, 
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involved in Calcium-mediated cell-cell adhesion properties; matriptase, which (among 

other functions) activates the HGF/cmet motility pathways; and other proteins which 

are as yet uncharacterized. This form of glycosylation is catalyzed by the myeloid-type 

enzyme GnT-V, or (31,6-N-acetyl-glucosaminyltransferase-V. 

(31,6-branched glycosylation is employed in motility by both myeloid cells and 

cancer cells, conferring changes in substrate adhesion, loss of contact inhibition, and 

activation of motility-promoting integrins such as cx5(31 (6, 32-34). (31,6-branching is 

catalyzed by the trans-Golgi enzyme GnT-V (E.C.2.4.1.155) and initiates the addition of 

polylactosamine antennae to the mannose-rich core of N-glycans. 

Polvlactosamine chain GnT-V 

SAa2-3(Gal pl-4GlcNAc pl-3)n Gal pl-4GlcNApi-6 

SAcx2-3 Gal pi-4 GlcNAc pi-2 Mancxl-6 

Man pi-4 GlcNAc pi-4 GlcNAc 

SAa2-3 Gal pi-4 GlcNAc pi-2 Mapa 1-3 

SAa2-3 Gal pi-4 GlcNAc pi-4' 

Figure 4. N-acetylglucosaminyltransferase V (GnT-V) involved in P 1,6 branch formation and 
polylactosamine chain synthesis. Man - mannose, GlcNAc - N-acetylglucosamine, Gal - galactose, SA - 
sialic acid. 

As principal carriers of N-acetylpolylactosamine antennae, LAMPs-1 and -2 are the most 

densely N-glycosylated of cellular proteins; synthesis of these antennae is catalyzed by 

GnT-V in the trans-golgi apparatus, where (31,6 branches are formed on the trimannosyl 

terminus of Asn-linked oligosaccharides (35). This in turn facilitates the enzymatic 

addition of (31,6-GlcNAc-linked poly-N-acetyllactoseaminyl chains by UDPGlcNAc-N- 

acetyllactoseaminide (31,3-N-acetylglucosaminyl transferase (36). These 
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polylactosamines are carriers of Lewis1 and Lewis" antigens, used in selectin binding 

during intravasation and systemic migration, and associated with poor patient prognosis 

in human cancers (6, 32-34). Thus, in summary, the enzyme GnT-V regulates the 

polylactoseamine contents of N-linked oligosaccharides with its activity serving as an 

indication of [31,6-branching, and elevated GnT-V activity is characteristic of both 

myeloid cells and metastatic melanoma cells (35). 

In our lab’s previous studies of artificial fusion hybrids between normal 

macrophages and a weakly metastatic mouse melanoma cell line, approximately half of 

the hybrids demonstrated GnT-V expression and (31,6-branched glycosylation similar to 

that of the parental macrophages and three to four times that of the parental melanoma 

cells (35). This correlated with dramatic phenotypic changes that, at least in some cases, 

appeared to be due to altered N-glycosylation. For example, hybrid clones with elevated 

GnT-V showed enhanced chemotactic motility in vitro that was suppressed by N- 

glycosylation inhibitors such as swainsonine and castanospermine (17, 37). Hybrids with 

elevated [31,6-branched glycosylation also tended to be highly pigmented, as opposed to 

the nonpigmented parental melanoma cells. Enhanced pigmentation correlated with 

elevated N-linked glycosylation of melanosomal proteins tyrosinase (the rate-limiting 

enzyme in melanogenesis), TYRP-1 (tyrosinase-related protein 1), dopachrome 

tautomerase (TYRP-2), and LAMP-1, and was again suppressed by N-glycosylation 

inhibitors and glycosidases (38-39). Hybrids also acquired enhanced responsiveness to 

inducers of intracellular cyclic AMP— MSH (melanocyte-stimulating hormone, 
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melanocortin-I) and IBMX (isobutylmethylxanthine, cholera toxin)— with increased 

pigmentation, motility, and dendricity (17, 35, 37-39). 

A curious finding was that melanosomes in artificial melanoma-macrophage 

(both mouse and human) hybrids were often packaged together in heterogeneous ‘coarse 

melanin’ vesicles, rather than existing free in the cytoplasm as in normal melanocytes and 

parental melanoma cells. Coarse melanin was first described in relation to animal-type 

melanoma in 1832, and then in humans in 1925 (40). It was described by Clark et al as a 

major melanosomal abnormality primarily associated with cells in vertical growth phase 

melanomas, consisting of numerous granular organelles, 250-500nm in width with 

melanin deposited in a coarsely granular fashion, commonly seen in superficial spreading 

melanoma, in nodular melanoma, and in metastatic melanoma (41). 

Similarly, recent studies from our laboratory of human archival melanoma and 21 

other cancers universally revealed for the first time the production of ‘coarse’ 

autophagosomal vesicles, apparently a shared phenotype associated with elevated GnT-V 

activity (32). This phenotype was an independent predictor of metastasis and poor 

survival in melanoma, breast, and colon carcinomas. In melanomas, the autophagosomes 

were often laden with coarse melanin, accounting for the well-known hypermelanotic 

regions of primary tumors used in clinical diagnosis. The association between this 

phenotype and elevated GnT-V activity was established via immunoperoxidase staining 

for a particular marker of (31,6-branched structures known as LPHA, as well as by 

staining with antibodies against HMB45 and CD63. 

LPHA, or leukocyte-phyto-hemagglutinin, is a lectin derived from the plant 

phaseolus vulgaris which binds to and thus identifies (31,6-branched structures. HMB45 
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is an antibody to human melanosomal membrane protein gplOO (pmell7 is the mouse 

homolog, used herein). CD63 is a glycoprotein that was first discovered as a 

melanoma-associated antigen (42-44) but has since been found in a number of other 

neoplasms and normal cells (32, 45-46). CD63 belongs to the transmembrane 4 

superfamily, or tetraspanins, a large family of membrane proteins associated with cell 

proliferation, cell migration, and tumor cell invasion (47-49), in part through affecting 

integrin signaling and differential adhesion (50-54). CD63 is usually found in association 

with LAMPs 1 and 2, both major substrates for GNT-V, and it would thus be expected to 

co-localize to structures containing (31,6-branched N-glycans. 

There have been previous studies documenting vesicle formation in various 

other models, with a postulated link to GnT-V activity. Fukuda et al, for example, 

discussed a case of a pigmented renal cell carcinoma which demonstrated collections of 

“abnormal lysosomal granules” (55). It was also of considerable interest to us that Hariri 

et al (56) reported formation of autophagy-dependent “multilamellar vesicles” following 

transfection of GnT-V into non-neoplastic mink alveolar type II lung cells. The vesicles 

were decorated with (31,6-branched N-glycans and contained both LAMP-2 and CD63 

(56). 
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PURPOSE 

Thus, in the setting of historical knowledge of GnT-V activity and aberrant 

glycosylation in neoplastic cells, and previous findings by our lab of increased GnT-V 

levels and a coarse vesicular phenotype in human melanomas and other solid tumors, the 

purpose of this study was to confirm said findings in an in vitro model via histochemical 

analyses of known GnT-V substrates/markers in an artificial mouse macrophage- 

melanoma hybrid cell line and a human melanoma cell line. It was hypothesized that 

coarse melanin vesicles in macrophage-melanoma fusion hybrids might also be related to 

GnT-V expression. As such, I show below that melanized autophagosomal vesicles in 

experimental macrophage-melanoma fusion hybrids were indeed rich in [31,6-branched 

N-glycans, and that such structures were also a feature of human melanoma cell lines in 

vitro. The biological significance of this phenotype is not understood; however, the 

strong relationship to metastasis makes it of obvious interest. The cultured cell lines 

provide new biological systems for analysis of GnT-V regulation and TV-linked 

glycosylation at the molecular genetic level. 
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MATERIALS AND METHODS 

Two cell lines utilized in this study (S91-6wo and hybrid 94-H48) were 

previously generated in our lab by Dr. John Pawelek and Michael Rachkovsky. Cells 

were prepared for electron microscopy by Dr. John Pawelek. Experiments and analysis 

conducted by myself included the following: Cell culture and maintenance, fixation 

(protocol kindly provided by Dr. Ruth Halaban, Ph.D., Yale University Department of 

Dermatology), bleaching (protocol kindly provided by Vincent Klump, Yale University 

Department of Dermatopathology) and immunoperoxidase staining; additionally, under 

the guidance of Dr. John Pawelek, I photographed cells under both the electron and light 

microscopes; I prepared cells for FACS analysis under the supervision of Dr. Ashok 

Chakraborty, as well as carried out the experiments and ensuing computer data analyses; 

transfection experiments (see Discussion) were performed by Dr. Ashok Chakraborty and 

cells were analyzed by myself under the light microscope; finally, I performed all cell 

counts and statistical analyses. 

Cell lines: As stated above, two of the cell lines here studied, namely S91 -6nc' and hybrid 

94-H48, were previously generated in our lab by other researchers. Methods are here 

paraphrased (17): Melanoma cells and macrophages were maintained in HAM’s F10 or 

Dulbeco’s MEM media with the addition of 10% fetal bovine serum (mouse cells) or 

15% human serum (human macrophages). Cells were maintained in a gassed and 

humidified incubator (5% C02 in air, 37°C). The cell line used as a control partner for 

fusion with macrophages was identified as Cloudman-S91 (PS-l-HGPRT-1), and 

generated as follows: The S91 tumor originated as a malignant melanoma in the tail base 
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of a DBA female mouse, and after subsequent transplantation to another mouse tail, 

showed a striking amount of highly-pigmented pulmonary metastases (57). Via 

subsequent transplantations into different DBA mice, this tumor was maintained through 

successive generations. Clone M3 was adapted to culture from a transplanted S91 tumor 

and deposited with the American Type Culture Collection (58), then manipulated in our 

laboratory. PS1-HGPRT-1 was again isolated by resistance to azaguanine and 

thioguanine, then further selected for resistance to neomycin (which typically destroys 

macrophages). Similarly, spontaneous hybrids within this clone were isolated by 

resistance to hypoxanthine, aminopterin, thymidine (HAT, which typically destroys S91 

cells) and/or neomycin, as hybrids are resistant to both neomycin and HAT. 

Peritoneal macrophages were obtained from DBA/2J mice four days after 

injection with 3ml of thioglycollate broth (Difco) and immediately prepared for fusion 

experiments. Human blood monocytes were donated by a member of the lab, isolated by 

standard Ficoll density centrifugation techniques, and kept in monolayer culture for 72 

hours before use in fusion experiments (17). 

Creation of the hybrid cell line was accomplished previously by polyethylene 

glycol fusion (PEG), and is here paraphrased (17): PS1-HGPRT-1 neomycin -resistant 

Cloudman-S91 cells were mixed with macrophages (separately mouse and human) at 

respective ratios (tumor/macrophage) between 1:4 to 1:10. Polyethylene glycol (PEG 

1450, Sigma Chemicals) was dissolved by warming and mixed in a 50:50 volume ratio 

with Ham’s F10 serum-free nutrient medium. Mixed PEG/F10 (0.8ml) was added to 

centrifuged cell pellets over a period of 1 minute at 37° C, with gentle mixing. The 

suspension was maintained at 37° C and continuously mixed for an additional minute; 
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this procedure was followed by the addition of 1ml of Ham’s F10 over another minute, 

and then 20ml of Ham’s F10 over 5 minutes. The mixture was finally centrifuged, 

supernatant withdrawn, and cells seeded into 25 cm2 Corning tissue culture flasks 

(concentration 1.5 x 105 cells/flask). These flasks were maintained in a gassed and 

humidified incubator at 37° C for 48 hours, after which time the initial medium was 

replaced with medium containing HAT (concentrations^ hypoxanthine 1 x 1 O'4, 

aminopterin 4 x 10'7, thymidine 1.6 x 10'5) +/- neomycin, depending on the experiment. 

Hybrid cells, then, were identified as those resistant to both HAT and neomycin (17). 

Only mouse/mouse hybrid cells were ultimately used in this study. 

Pigmented human metastatic melanoma cell lines SKmel-23 (clone C22), 

SKmel-30, and SKmel-188 (59) were kindly provided by Dr. Alan Houghton, Sloane- 

Kettering Memorial Institute for Cancer Research. 

Cell culture: Cells (5 x 104), in 0.2ml DMEM/10% fetal bovine serum with penicillin 

and streptomycin were plated onto Snowcoat sterile glass slides. Medium was changed 

the following day, and half of the cultures were supplemented with MSH (2xl0‘7M) 

and 3-methyl isobutylxanthine (10‘4M). Cultures were incubated in a gassed 

(5%C02/95% air), humidified incubator at 37"C, reaching 60-75% confluence (by visual 

approximation) by 3 days when they were processed for lectin/immunohistochemistry. 

For fixation, cultures were gently rinsed in phosphate-buffered saline, immersed in 

methanol (100%, 1 min), and then air-dried. 
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Coarse melanin co-localization. Coarse melanin was identified and photographed in 

unstained cells using an Olympus AH2 light microscope/camera adapted with Spot'" 

software, and microscope coordinates of the region were recorded. The sections were 

bleached (below), then lectin-, or immunostained via standard horseradish peroxidase 

techniques, counter-stained with hematoxylin, and the same regions were again located 

and rephotographed. 

Bleaching: To decolorize melanin, slides were immersed in tap water for 24 hours to 

dissolve the water-based mounting medium (Clearmount, Zymed Laboratories Inc.) and 

passively remove cover slips. The cells were then bleached by immersion in KMn04 

(0.25%, 4 min.); rinsed in distilled water; immersed in oxalic acid solution (1%, 1 min.); 

washed in gently-running tap water (2 min); and rinsed twice in phosphate-buffered 

saline to restore pH. The slides were monitored under the light microscope to ensure that 

bleaching was complete. 

Lectin- and Immunohistochemistry: Slides were processed and stained by the Dako'M 

immunoperoxidase technique: The slides were incubated in peroxidase block for 5 

minutes and rinsed in phosphate-buffered saline to restore pH. Biotinylated primary 

antibodies (described below) were applied, and slides were incubated for a period of 15 

minutes before rinsing with PBS. This was followed by a 15 minute incubation in 

streptavidin-peroxidase and another PBS rinse, and the procedure was completed with a 

5-minute incubation in prepared DAB+substrate-chromagen solution and tap water rinse. 
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After immunoperoxidase staining, each slide was counterstained using filtered Gil III 

Hematoxylin (10 second rinse), a 1 second immersion in Ammonium Hydroxide (1%), 

and a running tap water rinse. The slides were then dehydrated in 100% ethanol and 

mounted with coverslips using a Xylene-based mounting medium (Cytoseal 60 low 

viscosity, Richard Allan Scientific). 

Antibodies and lectins were as follows: HMB45 (anti-human melanosomal 

component gplOO; prediluted by company, 1:50 dilution) was from Dako, Inc., 

Carpinteria, CA. Anti-pmel-17 (mouse homologue of human gplOO, 1:50 dilution) was 

kindly provided by Dr. Vincent Hearing, US National Cancer Institute. Anti-CD63 

(MAbME491; lysosome/late endosome component; 1:20 dilution) was a kind gift of Dr. 

M. Herlyn, Wistar Institute, Phila. PA. Biotinylated. LPHA (1:50 dilution), for detection 

of (H ,6-branched N-glycans, was from Vector Laboratories, Burlingame, CA. 

Electron Microscopy. Fixation/preparation was conducted by other researchers in our 

lab. Cells were fixed in half-strength Karnovsky's fixative for 6 hrs at 4°C; washed in 

cacodylate buffer overnight; post-fixed with 1% Os04 and 1.5% potassium ferrocyanide 

in cacodylate buffer for 2 hrs; and embedded in Spurr's resin. Ultrathin sections were 

stained with uranyl acetate and lead citrate, and photographed by this author through a 

Zeiss 109 electron microscope. 

FACS Analysis. Analysis was carried out for LPHA only, in 6n“ and hybrid 48 cells (no 

human melanoma cell analysis). LPHA binding was facilitated by incubating cells with 
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FITC-conjugated LPHA (lOpg/ml; Vector, Burlingame, CA) in phosphate-buffered 

saline with 0.1% bovine serum albumin and 0.05% sodium azide (to prevent fungal 

contamination). After 3-4 washings with PBS, cells were fixed with 1% 

paraformaldehyde. Flow cytometry was carried out using a FACS Vantage flow 

cytometer (Becton Dickinson). Predominantly cell surface expression of LPFIA target 

ligands was measured, as the antibody and lectin incubations were performed with intact 

cells on ice. 
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RESULTS 

Quantitation of pmel-17/gpl00 and (51,6-branched oligosaccharides. The three cell 

lines, with and without MSH/IBMX treatment, were scored as to the percentage of cells 

in the population staining for LPHA and anti-pmel-17/gpl00 (Figure 5). 

100 

6neo 94-H48 SK.mel-23 6neo 94-H48 SKmel-23 

Figure 5. Relative expression of pmel-17/gpl00 and (31,6-branched oligosaccharides in cell 

lines 6neo, hybrid 94-H48, and SKmel-23, cultured in the absence and presence of MSH/ 

IBMX (Methods). Following staining, the three lines were scored under a light microscope 

as to the percentage of cells positive for LPFIA or anti-pmel-17 (mouse)/gp 100 (human). 

Results represent mean + /- S.D. for three separate counts of 100-200 cells each. 

A. LPHA, control; B. LPHA, MSH/IBMX; C. anti-pmel-17/gp 100, control; D. anti- 

pmel-17/ gp 100, MSH/IBMX. 

In the absence of MSH/IBMX, hybrid 94-H48 and SKmel-23 cells each showed a higher 

percentage of LPHA- and HMB45-positive cells compared to parental 6"° melanoma 

cells, and for hybrid cells this was increased further following exposure to MSH/IBMX. 

(P values were computed by Student’s t-Test using the Statview™ program, and for these 

differences were all less than P=.0060.) In the absence of MSH/IBMX, SKmel-23 cells 
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showed even higher numbers of positive cells than did hybrid 94-H48, with >90% of 

the population positive for LPHA and >80% positive for HMB45. Exposure of SKmel- 

23 cells to MSH/IBMX did not further increase this already high percentage of positive 

cells, although it did promote an increase in dendrites (not shown). 

On a ‘per cell’ basis, the staining intensity in hybrid 94-H48 and SKmel-23 cells 

was estimated (by visual approximation) as about 4-5 times greater than that seen in 

parental 6ncocells, consistent with flow cytometry data conducted previously by other 

members of our lab (35) (Figure 6). 

parental 
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•' 48 

Figure 6. Comparison of parental 6IU0 melanoma cells and hybrid 94-H48 following staining with LPHA. 
Left: 6n'"°, arrows denote LPHA staining. Right: 94-H48, arrows denote LPHA staining. Cells were treated 
with MSH/IBMX. 

Thus, from both ‘population percentage’ data and ‘per cell’ estimates, hybrid 94-H48 and 

human melanoma SKmel-23 each showed significantly higher expression of pmel- 

17/gpl00 and (31,6-branched oligosaccharides compared to parental 6nc" melanoma cells. 

Coarse melanin in hybrid 94-H48. H&E staining revealed little to no melanin in the 





19 

parental 6"cu cells, but most of the hybrid cells were heavily pigmented with coarse, dark 

melanin throughout the cytoplasm (Figure 7). 

Figure 7. Comparison of parental 6neo melanoma cells and hybrid 94-H48 following staining 
with H&E. Left: 6nco, H&E stain; lighter perinuclear area denotes Golgi region. Right: hybrid 
94-H48, H&E stain; dark, coarse melanin visualized in perinuclear region. Cells were treated 
with MSH/IBMX. 

Electron micrographs revealed that although some melanosomes existed freely in the 

cytoplasm, the coarse granular appearance of melanin in hybrid 94-H48 was due to 

melanosome-filled autophagasomes in various stages of maturation (60) (Figure 8). 

Figure 8. Electron micrograph of macrophage-melanoma hybrid 94-H48 in culture with coarse 
melanin (melanosome-containing autophagosomes (arrows) in various stages of 
maturation), (n, nucleus; magnification, 30,000x). Cells were treated with MSH/IBMX. 
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LPHA staining of 6nco cells revealed an acentric, perinuclear pattern, highlighting the 

Golgi region (Figure 7 above, left). LPHA staining in hybrid 94-H48 was far more 

extensive, resembling the melanization pattern and encompassing large portions of the 

cytoplasm to obscure the nucleus (Figure 7 above, right). 

Co-localization studies in hybrid 94-H48 cells, revealed that both LPHA and anti- 

pmel-17 co-localized to coarse melanin, demonstrating that these structures contained 

both [31,6-branched oligosaccharides and melanosomal matrix proteins (Figures 9 & 10). 

Figures 9 and 10 (below). Mouse macrophage-melanoma hybrid 94-H48. Co-localization of 

coarse melanin with |31,6-branched oligosaccharides and pmel-17. Left: unstained sections; 

right: the same sections bleached and stained with LPHA (upper) or anti-pmel-17 (lower). 
Arrows denote examples of co-localized structures (left vs right panels). Cells were treated with 
MSH/1BMX. 

hvhrid 

melanin LPHA 

Figure 9 
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CD63 was not investigated in depth in the mouse cell lines, because the antibodies 

available were antihuman and did not cross-react well with mouse melanoma cells. 

Coarse melanin in human melanoma cell line SKmel-23. SKmel-23 human metastatic 

melanoma cells exhibited prominent dendrites, often in a bipolar morphology. Melanin 

granules were seen throughout the cell body and dendrites, and appeared to protrude from 

the membrane surface (Figure 11). 
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Figure 11. Fluman SKmel-23 melanoma cell with coarse melanin. 
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Co-localization studies revealed that the melanin granules stained with LPHA (Figure 

12), anti-HMB45 (Figure 13), and anti-CD63 (Figure 13). 

Figures 12-14 (below). Human SK.mel-23 melanoma cells. Co-localization of coarse melanin with 

(31,6-branched oligosaccharides, gplOO, and CD63. Left: unstained sections; right: the same 

sections bleached and stained with LPHA (upper), anti-HMB45 (middle), or anti-CD63 (lower). 

Arrows denote examples co-localized structures (cf left vs right). Cells were treated with 
MSH/1BMX. 

Figure 12 

SKmel-23 

x 
melanin 

Figure 13 
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Figure 14 

Electron microscopy demonstrated that although some melanosomes were free in the 

cytoplasm, most were packaged in autophagosomes and multilamellar bodies (Figure 15). 

Figure 15: Electron micrographs of human SKmel-23 cells. Each panel is an example of 
coarse melanin from a separate cell. Cells were treated with MSH/IBMX. 

LPHA-positive coarse vesicles were also observed in pigmented human melanoma cell 

lines SKmel-30 and SKmel-188 (not shown). 

FACS Analysis. Analysis of LPHA staining was carried out on 3 separate occasions for 

both the 6nc0 and hybrid cell lines, but data was inconsistent/inconclusive overall and 

therefore not here included. Possible explanations include errors in FACS preparation 

technique, as well as the use of cells placed in culture at different points in time. 
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DISCUSSION 

In the present studies, a newly-described cancer phenotype in humans, i.e. co¬ 

expression of coarse vesicles and (31,6-branched oligosaccharides (32), has been 

demonstrated in vitro. I have shown here that the phenotype was expressed in cultured 

human melanoma cells and could also be generated through fusion hybridization between 

normal macrophages and mouse melanoma cells. In macrophage fusion hybrids, the 

phenotype was enhanced by exposure to MSH in combination with IBMX, a potent 

stimulus for cyclic AMP production. SKmel-23 cells strongly expressed the phenotype 

whether or not they were treated with MSH/IBMX. 

GnT-V is normally elevated in macrophages and other phagocytes, where |31,6- 

branched polylactosamines with terminal Lewis* and Lewis* antigens are employed for 

selectin binding during intravasation and systemic migration (61-64). In the macrophage 

fusion hybrids described here, it is tempting to speculate that GnT-V was expressed as a 

transcriptionally dominant, developmentally-imprinted myeloid trait. In any case, since 

an LPHA-positive, vesicular phenotype is a characteristic of normal migratory cells, this 

might provide clues as to the relation between this phenotype and migration of malignant 

cells. 

It is also notable that human melanoma-associated melanophages are laden with 

LPHA-decorated, melanin-containing vesicles, thought to be phagolysosomes from 

phagocytosed melanoma cells (32). In mammalian cells, the process of macroautophagy 

is a known mechanism for degradation of intracellular macromolecules and organelles, 

thus playing a prominent role in controlling cell growth and protein metabolism (32). 

Indeed, by electron microscopy of cultured human Skmel 23 melanoma cells and 
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previous ultrastructural studies of human melanoma, results indicated that coarse melanin 

in melanoma is autophagosomal (4, 35; 65-69). Interestingly, GnT-V expression has also 

been shown to induce multilamellar bodies in mink type II alveolar lung cells through 

autophagy pathways, raising the possibility that the coarse vesicles observed herein might 

have been generated through the same GnT-V-mediated mechanisms (56). 

Coarse melanin also contained melanosomal structural protein gpl00/pmel-17, 

and in human melanoma SKmel-23, CD63. CD63 is a lysosome/late endosome protein 

(70-71), and is associated with the membranes of large vesicles such as macrophage 

phagolysosomes, secretory granules, multivesicular bodies, and multilamellar bodies 

ranging in size from 0.1 to 2.4 microns (56; 72-74). In archival human melanomas, CD63 

was always found associated with coarse vesicles, with or without melanin (32). As 

previously described (see Introduction), the association of CD63 with LAMPs 1 and 2 

creates expections that this protein should co-localize to structures containing (31,6- 

branched N-glycans, as shown herein (56). 

These studies were an outgrowth of previous work from our lab on macrophage- 

tumor cell fusion hybridization and metastasis (3-4, 17, 35, 37-39, 56). Fusion of 

leukocytes with “somatic cells” was first proposed as a mechanism of malignant 

transformation to explain the increased number of chromosomes in cancer cells (7-9). 

Spontaneous fusion of tumor cells has since been well-documented in animal tumor 

models (3-4). In non-cancer systems, fusion involving bone marrow-derived stem cells 

was an underlying basis of liver regeneration in mouse models, and has been proposed as 

an alternative to the concept of stem cell transdifferentiation as a mechanism for 
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development and maintenance of a variety of differentiated cell types (75-77). Indeed, 

there is considerable literature on cell-cell fusion within a variety of biological systems. 

Our previous findings that artificial macrophage-melanoma fusion hybrids 

demonstrated elevated expression of (31,6-branched N-glycans as well as production of 

coarse vesicles led to the co-localization studies on cultured cells described herein, as 

well as to a recent survey of archival human specimens where this phenotype was 

observed in 22 different cancers including melanoma (32). In this same study, the coarse 

vesicular phenotype was particularly expressed in metastases compared with primary 

melanomas (P< 0.008), suggesting that LPHA positivity (and therefore GnT-V activity) 

in primary tumors may be a sign of increased metastatic competence (32). 

Although there are numerous regulatory systems involved in metastasis, there is a 

significant body of evidence that elevated GnT-V activity is an important factor. It has 

been shown that rodent cells transformed with Rous sarcoma/polyoma viruses or 

transfected with H-ras oncogenes have displayed increased (31,6-GlcNAc branched 

complex oligosaccharides and higher polylactosamine levels (78), and in another study, 

the loss of GnT-V activity in a glycosylation mutant of a highly metastatic cell line was 

associated with a loss of metastatic potential in mice (79). Very recent data also shows 

that the her-2/neu oncogene actually stimulates the transcription of GnT-V in human 

breast carcinoma cells via the ras-raf-Ets signaling pathway (80). Thus, it is reasonable to 

conclude that increased GnT-V activity correlates with high metastatic potential in solid 

tumors, but the question remains as to how (and in what genetic context) this up- 

regulation occurs. 





27 

Yet, despite the known association between GnT-V activity and metastatic 

potential, the LPHA-positive vesicular phenotype has also been inducible or observed in 

non-malignant cells such as the mink type II lung cells previously described as well as 

leiomyomas and some pigmented cutaneous nevi (81). The question thus arises as to 

how one might reconcile these data; a possible explanation might be that expression of 

the LPHA-positive phenotype in itself is insufficient to induce a metastatic 

transformation, and the genetic context of this expression might play a significant role in 

cellular behavior. In other words, GnT-V activity in fully-deregulated neoplastic (but not 

merely hyperplastic) cells could affect tumor progression (32). 

Recent experiments in our lab involving the transfection of GnT-V (versus a 

“naked” plasmid control) into 6nco cells revealed provocative results: In both the plasmid 

control as well as the GnT-V transfected cell lines, we saw an increase in pigmentation as 

well as the presence of coarse vesicular structures. This begged the question as to 

whether it was the addition of the exogenous GnT-V gene which up-regulated cellular 

glycosylation machinery, or whether it was simply the exposure to any foreign DNA (as 

in the naked plasmid) which induced cells to up-regulate native GnT-V activity. (Insofar 

as all cells contain the same genetic material, there must also be some baseline low level 

of GnT-V activity even in our control 6nco cells. The point enforced thus far in this thesis 

is simply that the level of activity is significantly higher in cells of myeloid lineage.) 

These experiments are in the preliminary stages, however, and clearly warrant further 

study. 

Another recent study of interest by Taniguchi et al (one of the pioneers of GnT-V 

research) is that addition of (31,6 GlcNAc-branching to Asn 772 in the serine protease 
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domain of matriptase played a pivotal role in its stability and resistance against trypsin 

(82). Matriptase plays important roles in cell migration, extracellular matrix degradation, 

and the activation of single chain urokinase-plasminogen activator and hepatocyte growth 

factor, all of which are involved in metastasis (83). Once activated by GnT-V induced 

glycosylation, matriptase cleaves pro-HGF into HGF, which acts as a ligand to cell- 

surface cmet receptors (with an ensuing known pathway of increased motility and 

metastatic potential) (83). Hence, along with glycosylation of integrins and adhesion 

molecules, matriptase glycosylation may constitute yet another pathway for GnT-V 

-induced metastatic behavior in cancer cells. The diagram below summarizes some of the 

potential contributions of GnT-V to metastasis thus far postulated at the molecular level: 

GnT-V 

HGF/cmet 

pathways 

-LAMP-1 

-LAMP-2 

-CD63 

-Others? 

In summary, artificial mouse macrophage-melanoma fusion hybrids demonstrated 

a high level of GnT-V activity consistent with previous studies, as evidenced by 

increased immunoperoxidase staining for LPHA (both number of cells and per-cell 

intensity) compared to controls. The human melanoma cells even surpassed thefusion 

hybrids in terms of LPHA staining positivity. Additionally, the phenotypic finding of 

coarse melanin previously identified by our lab in a variety of solid tumors was here 

confirmed in an in vitro model. These autophagosomes were noted to contain numerous 
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melanosomes, and also stained positively for LPHA, HMB45/pmell7, as well as CD63 in 

the human cell line. Yet, the exact significance of the coarse melanin phenotype remains 

elusive, and at this point we can only make note of its expression and apparent link to 

GnT-V enzymatic activity. 

The precise molecular genetic mechanisms regulating GnT-V expression in the 

biological systems here described will require considerable further study, and must also 

be analyzed within the greater multimodal context of cancer biology. Overall, however, 

hybridization between melanoma cells and tumor-infiltrating macrophages appears to 

present a simple and unifying explanation for metastasis that is compatible with its 

defining characteristics of phenotypic diversity, aneuploidy, enhanced motility and 

aberrant glycosylation. 
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