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ABSTRACT 

In order to study the involvement of human chromosomes in the 

expression of human liver-specific functions, somatic cell hybrids, were 

produced between a rat hepatocarcinoma cell line and normal human fetal 

liver cells. The rat hepatoma line was HGPRT deficient, and hybrids were 

selected in medium containing HAT and ouabain. The presence of human 

liver-specific proteins a^-antitrypsin, albumin, a-fetoprotein, 

transferrin and ceruloplasmin was analyzed by immunoelectrophoretic 

techniques applied to concentrated serum-free hybrid culture supernatants. 

A subset of hybrids secreted an antigen that was immunologically identical 

to human o^-antitrypsin (AAT or PJJ. Neither parental line supernatant, 

fetal calf serunK nor normal rat serum reacted with this antiserum. It is 

concluded that interaction of the rat hepatoma genome with that of the human 

fetal liver cells has activated the human PI locus. In 19 primary 

HAT-selected and 5 azaguanine back-selected hybrids, human PI production 

segregated ccnccrdantly with human chromosome 14. All ether human 

chromosomes were excluded by discordant clones. Assignment of the P_I gene to 

chromosome 14 is consistent with data of others localizing the GM 

immunoglobulin heavy chain gene cluster to this chromosome since family 

studies have established linkage between PJ and GM. 
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INTRODUCTION 

1. Somatic Cell Hybridization. The development of techniques for the 

production and analysis of somatic cell hybrids has provided an important 

tool for the investigation of cellular functions. During the nineteenth 

century many investigators had observed multi nucleated eucaryotic cells in 

vivo and fusion was suggested as a possible mechanism. These cells were 

described in tumors (Virchow, 1858}. tissue from tuberculous patients 

(Rokitansky. 1855} and bone marrow (Robin. 1849}. With the introduction of 

tissue culture techniques, reports appeared describing the spontaneous 

fusion of animal cells in culture (Lambert, 1912; Lewis. 1927}. These and 

numerous other studies described spontaneous fusion between cells of similar 

origin. 

Barski and colleagues (I960} were the first to report the isolation and 

description of a somatic cell hybrid between two different cultured mouse 

lines. The isolation was fortuitous in that the spontaneous hybrid had 

selective growth advantage and was thus easily separated from the parental 

cells. Because spontaneous fusion is a relatively rare event and it is 

extremely difficult to separate isolated fused cells from a sea of parental 

cells, techniques were needed to facilitate both of these processes. 

A report by Warthin (1931} describing numerous multi nucleated cells in 

tonsil tissue from patients with measles suggested the possibility of using 

virus to induce fusion of cultured cells. The use of measles (Enders, 

1954), mumps (Henle et al 1954} and parainfluenza viruses (Marston'. 1958} 

were reported. Of prime importance was the description by Okada (1958,1962} 

of the use of inactivated hemagglutinating virus of Japan (HVJ} for rapidly 

and reproducibly fusing suspensions of Ehrlich ascites tumor cells. This 

has become the standard agent for viral fusion. Harris and Watkins (1965} 

then showed that Sendai virus, another name for HVJ, induced fusion between 
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cells of different species and that the fused cells were viable. The 

mechanism cf fusion with inactivated virus is unclear but probably results 

from nonenzymatic adsorption of virus particles to the cell surface via the 

viral envelope. This then fuses with an adjacent cell surface and forms an 

intercellular bridge (Harris. 1970]. The cytoplasms then begin to merge. 

Other investigators have utilized the chemical polyethylene glycol. PEG. to 

promote fusion (Pontoccrvo. 1975]. It presumably acts in a similar fashion 

by causing adjacent cell surfaces to adhere and their membranes to fuse 

followed by cytoplasmic merging. 

A number of studies showed that spontaneously hybridized cells and the 

same cells fused with virus do not differ in growth potential, chromosomal 

composition or morphology (Engle et al, 1969 and Littlefield. 1966). The 

use of these agents was therefore felt to increase the frequency of 

otherwise rare events and to make possible hybridization cf cells that do 

not fuse spontaneously. 

Once cytoplasmic fusion has occurred there is apparently no intracellu¬ 

lar mechanism to recognize "self", and the cytoplasmic contents function in 

harmony. Johnson and Harris (1969). using conventional DNA radioactive 

labeling techniques-, showed that once fused the multinucleated cells, or 

heterokaryons. synthesize protein and mRNA and that all nuclei contributed 

to the synthesis. 

After formation of multinucleated heterokaryons. nuclear fusion must 

occur if daughter cells-, with the genetic information of each parent, are to 

be produced. Harris et al (1966), Ckada (1962), Yamanaka and Okada (1966) 

and Rao and Johnson (1970) have used DMA labeling to show that when cells of 

similar origin are fused a synchronization of the nuclei's cell cycle was 

rapidly achieved. Synchrony was also observed in heterokaryons of different 

species (Harris, 1966), although not as frequently. For extended viability 
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and reproduction of the heterokaryons nuclear fusion must occur. Since the 

nuclei have become synchronized they enter mitosis simultaneously, and 

nuclear fusion occurs as a single spindle network aligns the chromosomes 

from each parent. Cell division then results in two mononucleate daughter 

cells (synkaryons). each with the genetic complement of the parent cells. 

In heterokaryons where synchronization has not occurred, where there are 

more than two nuclei, or v/here unusual forms of mitosis occur, daughter 

cells with variable chromosomal and nuclear composition have been noted. 

These cells have been shown to have decreased viability and reproductive 

potential (Harris. 1966). 

Once the parental cells have been induced to fuse, a selection proce¬ 

dure must be used that separates hybrid cells from the unfused parental 

populations. A doubly selective system was described by Littlefield (1964. 

1966) which utilized enzyme deficient cell lines. By incorporating toxic 

substances, harmful to one or the other cell line, he was able to select 

hybrid cells from mixtures of parental and hybrid cells. He first isolated 

mutant clones of a mouse fibroblast cell line that was deficient for 

thymidine kinase (TK). A second strain of mouse cells, resistant to 

8-ezaguanine. a purine analog, was obtained by selection. This strain was 

shewn to lack activity of the enzyme hypoxanthine guanine phesphoribosyl- 

transferase (HGPRT]. 

With two enzyme deficient cell lines, one in the purine biosynthetic 

pathway and the other in the pyrimidine pathway. Littlefield could then 

subject the parental cells to fusion procedures and select hybrid cells by 

cultivation in hypoxanthine. aminopterin and thymidine containing media. 

This medium, called HAT. was doubly selective. TK deficient cells could not 

obtain thymidine monophosphate since de novo synthesis of tetrahydrofdate 

is inhibited by aminopterin. Because of their enzyme deficiency these cells 
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cannot utilize thymidine in the medium., and thus pyrimidine production was 

inhibited and the cells could not reproduce. Aminopterin also inhibits 

endogenous production of inosine monophosphate. Since HGPRT deficient cells 

cannot utilize exogenous hypoxanthine for conversion to inosine or guancsine 

monophosphate, this shuts down nucleic acid biosynthesis in these cells. 

Since hybrid cells contain the chromosomal complements of both parents, 

the enzyme deficiency of one parental line was compensated by the other. 

Littlefield showed that suspected hybrids selected in this manner were 

indeed hybrids by chromosomal analysis and by retreatment with 8-azaguanine 

and BrdU', a pyrimidine analog. Both chemicals caused killing of hybrid 

cells, indicating that the cells contained both enzymes. 

The model described above has been utilized by most investigators for 

the selection of hybrid cells after fusion. However, two distinct cell 

lines adapted to culture and treated to select mutants are necessary. The 

use of normal human cells in fusion experiments is facilitated by the 

relative resistance of rodent and rodent hybrid cells to ouabain (Baker et 

al, 1974). This glycoside compound inhibits the plasma membrane Na+/K+ 

ATPase and is cytotoxic to human cells at certain concentrations. 

Therefore, hybridization experiments utilizing rodent and human parental 

cell lines generally employ ouabain to select against unfused human cells 

and HAT medium against an HGPRT or TK deficient rodent parental line. 

Once fused and selected, hybrid cell lines are propagated with standard 

nonselective tissue culture techniques. In culture', hybrids between cells 

of the same species are generally stable in terms of their chromosomal 

composition with only slow, unpredictable loss of chromosomes over extended 

periods in culture (Barski et al, 1960; Engel et al, 1969, Littlefield, 

1966). Morphological changes of chromosomes in hybrids of the same species 

were noted (Engel et al. 1969). 
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The situation in hybrids of two distinct species is different in that 

there is a preferential loss of one parent's chromosomes. This phenomenon 

was first described by Weiss and Green (1967] who studied the fusion 

products of human diploid fibroblasts and TK deficient mouse fibroblasts. 

The chromosomal complement of the hybrids was not the expected sum of the 

parental lines. They noted that while the mouse genome appeared to be 

intact, a variable number of human chromosomes were found in each cell. 

Since the mouse line was TK deficient, the activity of this enzyme in any 

hybrid was assumed to be of human origin. By treating different hybrid 

lines with BrdU they selected against those with TK activity and found that 

surviving cells also lacked a human chromosome identified as E-17 or 18. 

They therefore postulated that the gene for thymidine kinase was carried on 

that chromosome. This assignment was later confirmed by Migeon and Miller 

(1968). 

Using similar techniques with human leukocytes and HPRT deficient mouse 

L cells, Nabholz et al (1969) confirmed the X-linkage of 8-azaguanine 

resistance in man. They proposed that the loss of human chromosomes 

occurred early, during initial hybrid cell divisions*, and lead to a variety 

of segregant clones. These clones remained stable enough for phenotypic and 

karyotypic analysis. Thus, somatic cell hybridization was established as an 

accepted tool for genetic analysis. 

The mechanism for preferential loss of human chromosomes from 

human/rodent hybrids is obscure. Early studies with interspecific hybrids 

suggested that the loss was random (Weiss and Green, 1967; Matsuya and 

Green, 1969; Nabholz et al, 1969). More recent work has shown that it is 

apparently a non-random process (Croce et al, 1973; Norum and Migeon, 1974; 

Rushton, 1976; Ruddle and Creagan, 1975; Reardon, 1981). The basis for 

non-random segregation has not been explained but may relate to culture 
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conditions and their selective pressures. For example, in human/rodent 

hybrids selected with HAT medium all hybrids contain the human X, since it 

carries the gene for HGPRT, and without which the cell would not divide. In 

a similar fashion, particular combinations of human chromosomes may confer a 

selective advantage under certain culture conditions and would therefore be 

found more frequently than expected by random. Other studies have shown 

that hybrids formed with differing human parental lines retain different 

non-random complements of human chromosomes (Allderdice, 1973). These 

studies point out the need for careful chromosomal analysis and caution 

against defining gene location or linkage on the basis of concordant 

isoenzyme markers exclusively. 

A variety of parental cells have been used to produce inter- and 

intraspecific hybrids. In fusion of two differentiated diploid lines the 

resultant hybrids are slow-growing. If at least one parent is a permanent 

or transformed cell line, the hybrids are generally rapidly growing and 

retain the immortality of the transformed parent. 

In somatic cell hybrids derived from cultured cell lines that express 

differentiated functions, those functions may be continually expressed or 

extinguished. Further, differentiated traits not present in the parental 

lines may become activated. Many studies have utilized cells from different 

tissues in order to study the genetic interactions of cells from 

histologically distinct sources. 

Early reports by Silagi (1967) and Davidson and colleagues (1966,1968) 

demonstrated that certain parental functions were not expressed in hybrids. 

These studies looked at the production of melanin in hybrids between a 

Syrian hamster melanoma and unpigmented mouse fibroblasts. Over one hundred 

hybrid lines were analyzed and all were amelanotic. It was hypothesized 

that the fibroblasts contributed a regulatory substance that blocked 
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expression of genes for melanin production. This process has been called 

extinction and is the basis for a large body of work that has been reviewed 

by Davidson (1974) and Davis and Adelberg (1973). The latter paper contains 

a discussion of possible mechanisms of extinction and cautionary statements 

for the interpretation of regulatory data from somatic cell hybridization 

experiments. 

Activation of human phenotypes not expressed by the human parental line 

has also been reported. Darlington et al (1974) produced hybrids between 

diploid human leukocytes, which did not secrete human albumin, and mouse 

hepatoma cells that secreted mouse albumin. These hybrids produced both 

human and mouse albumin, as determined by immunodiffusion. Whether the 

human phenotypic activation resulted from the loss of a repressing substance 

or interaction of an activating substance from the mouse parental line could 

not be determined. 

Later, Rankin and Darlington (1979) described hybrids of mouse hepatoma 

and human amniocytes. The human cells in culture produced no detectable 

extracellular proteins. However, with hybridization human albumin, 

transferrin, ceruloplasmin, and a-l-antitrypsin were produced. 

Activation of mouse liver enzymes in rat hepatoma/mouse lymphoid 

hybrids has also been reported (Brown and Weiss, 1975; Malawista and Weiss, 

1974). This appears to be a generalized phenomenon of interspecific 

hybridizations with the expression of differentiated functions dependent, in 

part, on the developmental status of the parental lines. 

The study of regulatory mechanisms has been facilitated by the use of 

differentiated cells, especially hepatocytes or hepatoma cell lines. 

Hepatoma cell lines have been adapted to tissue culture and demonstrated to 

express differentiated liver specific functions in culture (Kaighn and 

Prince, 1971; Darlington et al, 1974; Szpirer and Szpirer, 1975; Szpirer and 
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Szpirer, 1979; Darlington et al, 1980; Darlington et al, 1982). These 

products have included fibrinogen, transferrin, albumin, prealbumin. 

a]_-antitrypsin, c<2-haptoglobin, o^-macroglobin, alpha-fetoprotein and 

the third component of complement. 

A clue to the mechanism of extinction and therefore possibly activation 

was recently reported by Papaconstantinou et al (1982). They reported a 

series of hybrids from a mouse hepatoma/rat fibroblast fusion and found 

extinction of the mouse albumin production, even though all mouse chromo¬ 

somes were present in the hybrids. This was confirmed by the expression of 

3-glucuronidase, which is linked to mouse albumin. They then shewed, with 

Southern blotting techniques, that the rat and mouse albumin DNA sequences 

were present and that the hybrids contained little albumin mRNA, as 

determined by cDNA-RNA reassociation kinetics. They concluded that the 

mechanism of extinction in these hybrids was specific for albumin and that 

the block was at the level of transcription. 

The shut off of albumin expression in these experiments could have been 

accomplished in at least two ways. Diffusible substances have been sugges¬ 

ted as a regulatory mechanism (Britten and Davidson, 1969; Tomkins et al, 

1969; Malawista and Weiss, 1974; Brown and Weiss, 1975; Kahn et al, 1981). 

Alternatively, DNA conformational modification could also influence gene 

activity (Weintraube and Groudine, 1976). The exact mechanism remains 

unknown although experiments as described above continue to elucidate 

possibilities for extinction in hybrids. 

Other possible factors influencing expression in hybrids are gene 

dosage relationships of the parental lines' genomes (Brown and Weiss, 1975; 

Malawista and Weiss, 1974). When a cell line which produces a differenti¬ 

ated function is fused with one that does not, the activation or extinction 

of those functions may depend on the ratio of parental chromosomes retained 
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in the hybrids. However, another study (Darlington et al, 1982b) did not 

demonstrate a gene dosage effect. Rather, it was found that the histogene- 

tic state of the human cells influenced the frequency of hepatic gene 

expression. 

In the studies to be presented, hybrids between a rat hepatoma cell 

line and a cell line from human fetal liver were produced and production of 

human extracellular proteins investigated with the goal of determining which 

human chromosomes are involved in the expression of liver specific protein 

synthetic functions. With the hybridization of two cell lines with a simi¬ 

lar histologic background, we hoped to increase the likelihood of obtaining 

hybrid cells capable of producing human liver specific proteins. For 

example, alpha-l-antitrypsin (AAT) has been detected in cultures of human 

fetal hepatocytes (Eriksson, 1978). The identification and characterization 

of human AAT produced by hybrid cell lines forms the basis of this study. 

2. eg —Antitrypsin. AAT, the major protease inhibitor secreted by 

the liver, is one of the most polymorphic gene products known. Over 

twenty-six allelic variants have been identified (Morse, 1978). Variants 

observed fit a model of multiple autosomal codominant alleles at one locus 

(Fagerhol and Cox, 1981). The glycoprotein product is a monomer with a 

molecular weight of about 54,000 and has four carbohydrate side chains 

containing N-acetyl-glucosamine, mannose, galactose and sialic acid. About 

forty percent of the enzyme is found in plasma and sixty percent in the 

extravascular space (Fagerhol and Cox, 1981). 

Functionally, the protein inhibits a variety of proteolytic enzymes 

including trypsin, chymotrypsin. collagenase, elastase, cathepsin G, renin, 

urokinase and Hageman-factor cofactor. Therefore, it may play a role in 

modulating a variety of enzyme systems. Although AAT accounts for about 

ninety percent of the serum protease inhibitory capacity, disease states 
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associated with AAT deficiency suggest that inhibition of granulocyte and 

macrophage elastase, collagenase and cathepsin may be the major 

physiological function (Fagerhol and Cox, 1981). 

The system for naming allelic variants of AAT has been based on their 

electrophoretic mobility with type Z being slowest, M intermediate and F 

fastest. Type M is the most common form of the enzyme. Type S, the second 

most common form, migrates between Z and M. The molecular difference 

between types Z and M was found to be a single amino acid substitution of a 

lysine residue for a glutamic acid (Yoshida et al. 1976). Subtypes of M 

have also been identified with isoelectric focusing (Cox et al. 1980). 

A variety of disease states have been associated with AAT deficiency. 

Pulmonary disease in patients with AAT deficiency type ZZ was first 

described by Laurel 1 (1963). The most common pulmonary lesion is adult 

onset diffuse pan-ascinar emphysema with disruption of the bronchial 

elastica. The relative risk for development of chronic obstructive pulmon¬ 

ary disease in heterozygotes is uncertain; however, one study reported a 

three-fold increased risk (Cox et al, 1976). Elevated concentrations of 

unopposed leukocyte proteases in both MZ and ZZ individuals have been 

proposed as a mechanism of Tung damage. 

Childhood cirrhosis and a neonatal hepatitis syndrome have been 

associated with type ZZ (Moroz et al, 1976b). The livers of deficient 

patients usually contain large amounts of amorphous material that has been 

identified as an A7\T precursor (Jeppsson et al, 1975; Matsubara et al, 

1974). The hepatic accumulation of AAT in deficient patients is probably 

due to difficulties of post-translational modification which do not permit 

extracellular release of the protein. However, the pathogenesis of hepatic 

disease is not fully understood. The products of other genes may influence 

the phenotypic consequences of certain AAT deficiency states. 
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Other disease states that may be associated with AAT deficiency include 

membranoproliferative glomerulonephritis (Moroz et al, 1976), rheumatoid 

arthritis (Ccx and Huber, 1980), and chronic active hepatitis and crypto¬ 

genic cirrhosis (Hodges et al, 1981). A role in lymphocyte blastogenesis 

has also been proposed (Lipsky et al, 1979). 

The chromosomal location of the AAT locus was uncertain at the 

initiation of these studies. Mapping the AAT locus could contribute to the 

understanding of AAT deficiency states and to defining the molecular basis 

for deficiency. 
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MATERIALS AND METHODS 

1. Cell lines. Rat hepatoma 'Mne 7777-14b-aza was derived from a 

Morris "minimal deviation" hepatocarcinoma originally generated by chemical 

carcinogenesis and carried by serial transplants 4n Fisher rats. Tissue 

from a 7777 tumor was obtained from Dr. Stewart Sell, Department of 

Pathology, University of California San Diego. Tumor cells were adapted to 

in vitro culture conditions and selected for growth attached to plastic 

dishes. Especially at higher cell densities, the cells continue to have a 

tendency to form clumps and to grow in suspension. Cells were exposed at 

low density to medium containing 10~^M 8-azaguanine (8-AG) and 8-AG 

resistant colonies were selected that were subsequently tested for sensi¬ 

tivity to hypoxanthine aminopterin thymidine (HAT) medium. Clone 

7777-14b-aza, 8-AG resistant and HAT sensitive, was used for further 

studies. The karyotype of this line was originally near diploid but 

acquired a number of rearrangements during continuous culture. 

Cell strain HFL 101 (human fetal liver cells) was derived from a normal 

female fetus aborted at 20 weeks gestation. The liver was obtained under 

sterile conditions and a single cell suspension was prepared by treatment 

with collagenase (3 mg/ml) for 10 min. Fusion of the original cell suspen¬ 

sion of predominantly hepatocytes to 7777-14b-aza did not yield hybrid 

colonies. Within two weeks, actively growing cells were obtained from fetal 

liver tissue in culture. These cells had a fibroblastoid appearance and a 

normal 46,XX female karyotype. 

Standard culture conditions for all experiments included incubation at 

37°C in a humidified 5% CO2 atmosphere (Forma Scientific Model 3172). 

Cells were grown in minimum essential medium (MEME) with 10% fetal calf 

serum (FCS) and 1% glutamine. Penicillin and streptomycin were added to 

prevent bacterial contamination. The media were changed every 2-3 days 
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during expansion of cell lines. Cultures were split and expanded before 

reaching confluency. 

2. Cell fusion. Equal numbers of rat 7777-14b-aza and human HFL 101 

cells were plated as mixed confluent cultures in four 50mrn dishes (Falcon 

Plastics). After 24 hr. the cultures were exposed to 44% polyethylene 

glycol (6,000 M.W.) in serum free MEME for exactly 1 min. Immediately 

afterwards, the dishes were rinsed four times with serum free MEME contain¬ 

ing 10% DMS0 and were incubated in MEME with 10% fetal calf serum (FCS). 

After 24 hr, the four original fusion plates were subcultured at very low 

density in selective medium consisting of MEME with 10% fetal calf serum, 

glutamine, penicillin, streptomycin and 2 x 1Q~7m ouabain as well as the 

components of the FIAT selection system. Both parental lines were treated 

identically as control cultures. A ouabain concentration of 10"^M had 

previously been shown to inhibit growth of HFL 101 cells, while a higher 

concentration of 5 x 10"7m effectively killed the cells. The standard HAT 

medium killed 7777-14b-aza cells. No resistant colonies appeared in the 

control plate. 

Two weeks after the fusion, presumptive hybrid colonies were picked 

under an inverted phase microscope using an Eppendorf micropipettor with 

sterile disposable tips. Individual colonies were transferred into wells of 

microtiter plates containing MEME, 10% FCS and 2 x 10“7m ouabain. 

Forty-five colonies were picked from 13 different plates representing at 

least 13 independent fusion events. An initial set of 19 hybrids derived 

from 10 original plates were selected on the basis of widely divergent 

cellular morphology. These hybrid lines were expanded for simultaneous 

chromosome analysis, collection of culture supernatant and cell harvests fcr 

DNA and enzyme studies. 
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3. Counterselection in guanine analogues. Selection in HAT medium 

yields clones which have retained the human X chromosome. To obtain sub¬ 

clones without the X. hybrid lines were plated in minimal medium containing 

8-A6 or a combination of 8-AG and 6-thioguanine (6-TG). Colonies resistant 

to the guanine analogues were subcloned and tested for sensitivity to HAT 

medium. Fifteen subclones, guanine resistant and HAT sensitive, from three 

primary HAT selected hybrid lines were expanded for chromosomal and biochem¬ 

ical studies. 

4. Chromosome analysis. For chromosome preparation, an _i_n situ method 

was used. Cells were plated at low density in a Petri dish containing 

sterile coverslips. After incubation overnight, the cells were monitored 

during the next day for mitotic figures. If mitotic activity was suffi¬ 

cient, 50 yl of a stock colcemid solution (Gibco) was added to each dish 

containing 4 ml of culture media. After 30 min incubation at 37°C, the 

culture medium was aspirated carefully from the edges of the plate. Warm 

(37°C) 0.075 M KC1 was added slowly, and the dishes were kept undisturbed at 

room temperature. After 25 to 30 min, 5 ml of fixative was added gently to 

the hypotonic solution. After 2 min the fluid was aspirated slowly from the 

edge of the plate. Standard fixative (3 parts methanol: 1 part glacial 

acidic acid) was added for 30 min initially and was then changed several 

times. The coverslips were air dried at room temperature. Standard 

harvesting procedures in suspension were also employed. 

Air dried slides, prepared by the standard method, were GTG-banded 

using the trypsin-Giemsa protocol as described (Francke and Oliver, 1978). 

In situ fixed chromosomes on coverslips were more resistant to trypsin 

treatment. Therefore, the trypsin concentration was doubled and the time in 

trypsin had to be increased to 60-90 sec. After staining in Wright's 

Giemsa, coverslips were mounted upside down onto microscope slides using 
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neutral mounting medium. For cytogenetic analysis, 15 to 20 well banded 

metaphase spreads were located and photographed with a Zeiss photoscope on 

Kodak S0-115 Technical Film. Photographic prints of metaphase spreads were 

analyzed for the presence of human chromosomes and karyotypes were prepared 

for each hybrid. Chromosome studies were repeated at several passages 

during expansion of the hybrids. 

5. Concentration of culture supernatant. Confluent plates of hybrids 

and parental cell lines were incubated for 24-48 hr in MEME without FCS. 

Between 80 and 120 ml of serum free medium obtained from each line were 

centrifuged in a Beckman centrifuge for 30 min and the supernatants stored 

frozen at -20°C. After thawing the medium, samples were concentrated 

approximately 10 fold with a Diaflo Ultrafiltration Cell (Model 52, Amicon). 

UM10 filters were used which exclude molecules greater than 10,000 M.W. 

Concentration was carried out under nitrogen pressure to reduce the chance 

of protein degradation. Further concentration of small volume samples was 

carried out with a B-15 Minicon macrosolute concentrator (Amicon). This 

apparatus absorbes through a membrane that excludes molecules greater than 

15,000 M.W. Combination of the two procedures achieved an approximate 

100-fold concentration of the serum free culture media with minimal less of 

the proteins of interest. After extraction of the serum-free media and at 

different stages of clonal expansion, viable cell pellets were frozen and 

stored at -70°C (Forma Bio-Freeze). 

6. Immunoelectrophoresis. The electrophoresis of antigens into an 

antibody containing gel is a rapid method for the detection and identifica¬ 

tion of a particular antigen. The sensitivity and specificity of these 

procedures is dependent, in part, on the antibodies. Commercially available 

immunoglobulin G fractions of monospecific goat antisera against human 

al-antitrypsin (AAT). a-fetoprotein (AFP) and albumin (Atlantic 
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Antibodies) and rabbit antiserum against human transferrin and ceruloplasmin 

(DAKO) were used. As a positive control, a 3-fold concentrated normal human 

serum which had been calibrated for many serum proteins was included in all 

experiments (Atlantic Antibodies). Ainniotic fluid calibrated for AFP was 

obtained from Dr. A. Baumgarten, Dept, of Laboratory Medicine. Yale-New 

Haven Hospital. Optimal antibody concentrations were determined experiment¬ 

ally for each antigen-antibody combination. 

The electrophoresis buffer consisted of 0.01 M barbital 

(5,5'diethyl-barbituric acid) and 0.05 M sodium barbftal (Sigma) (pH 8.6). 

At this pH, the migration of immuno'globulins is apparently balanced by a 

cathodic movement due to electroendosmosis, which also causes slight move¬ 

ment of neutral molecules towards the cathode. 

For preparation of 1% agarose (medium electroendosmotic- M 0.18, Sigma 

type II) gels, the electrophoresis buffer was diluted 1:1 with distilled 

H2O. This dilution creates a concentration gradient between the gel and 

the running buffer which enhances protein migration. The agarose solution 

was boiled for 5 min on a hot plate and the molten agarose then cooled to 

55°C. An appropriate volume of this solution was mixed with a measured 

amount of antiserum and was then quickly poured onto an agarose pre-coated 

glass plate resting on a level surface. One ml of molten agarose per square 

inch of glass plate produced a gel slab between 1 and 2 mm in thickness. 

Antigen wells were made with a 2 mm vacuum gel'punch and spacing template 

(BioRad). Depending on the experiment, between 5 and 10 yl of antigen 

solution was placed into each well. Immunoelectrophoresis was carried out 

in an electrophoresis unit (Accurate) cooled to 4°C with a methanol-water 

circulator (Polyscience), using low resistance cellulose wicks (Ultra Wicks, 

BioRad) for 12-16 hr at a constant voltage of 20V (ISC0 Model 494 power 

supply). 
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After completion of electrophoresis, the agarose plates were prepared 

for staining by first covering them with water-saturated filter paper 

(Whatman) and then compressing the plates under paper towels and a weight. 

This procedure absorbs moisture as well as unprecipitated proteins from the 

gel. Because Coomassie Blue stains all proteins and nonspecific staining 

may hide a faint precipitate, we further reduced the amount of unreacted 

proteins in the gels by rehydrating the pressed agarose plates overnight in 

cold phosphate buffered saline. The plates were then pressed again and air 

dried with a hair dryer prior to staining. The completely dry plates were 

immersed in staining solution (45% ethanol. 45% distilled water. 9% glacial 

acetic acid and 1% Coomassie Brilliant Blue. BioRad) for 15 min and then 

destained in a 45% ethanol, 45% distilled water and 10% glacial acetic acid 

solution. The dried plates can be stored indefinitely with only slight loss 

of color intensity. 

A number of immunologic techniques were employed to detect and charac¬ 

terize extracellular proteins present in the culture supernatant from the 

different cell lines. 

Rocket immunoelectrophoresis was carried out following procedures 

modified from Weeke (1973) and Laurell (1966). The immunoassay consists of 

one dimensional electrophoresis of antigen into antibody containing agarose 

gel. This system was used to detect small amounts of a particular protein 

antigen and to quantitate the production of AAT by certain hybrid cell 

lines. Two sizes of glass plates were used for this assay, 4" x 4" and 1" x 

3" slides. The antigen wells were positioned to allow good wick contact 

with the gel and maximum distance for protein migration. 

Crossed immunoelectrophoresis was carried out following the procedures 

of Weeke (1973). This procedure demonstrates the homogeneity of antigens in 

terms of their electrophoretic mobility and antigen specificity. This assay 
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differs from rocket immunoelectrophoresis in that 4 ml of molten agarose 

without antibodies were poured onto a 2" x 2“ glass slide. Samples were 

then subjected to electrophoresis at high voltage (100 V) for 4 hr. Half of 

the gel was cut away and 2 ml of antibody containing gel was poured in its 

place. A second electrophoresis at 20 V for 12 hr was then done by changing 

the direction of current flow by 90° in such a way that the proteins 

migrated into the antibody gel. 

Tandem Crossed Immunoelectrophoresis is a variation of the two dimen¬ 

sional electrophoresis system described above. This technique allows direct 

comparison of an unknown antigen's immunoreactivity with that of a known 

standard. Preparation and electrophoretic conditions of these plates were 

similar to the crossed imrnunoelectrophoresis plates except that two antigen 

wells were made 5 mm apart, the two samples applied simultaneously and then 

allowed to diffuse completely into the agarose. The wells were then filled 

with a drop of molten agarose before electrophoresis. Thus, the antigens 

migrated simultaneously and produced an overlapping pattern in the antibody 

containing gel. 

Intermediate gel immunoelectrophoresis is a technique similar to the 

rocket system except that only a portion of the gel contains antibodies. 

The 1" x 3" microscope slides were used exclusively for this triple layer 

gel. Molten agarose (1.5 ml) without antibodies was poured onto a slide 

upon which a brass bar (BioRad) was placed 1 1/2" from the end. After 

solidifying, the bar was removed and the gel cut back to 1". The second 

layer was poured in a similar fashion using 3/4 ml agarose, with or without 

antigen, for 3/4" on the slide. This second layer was then cut back to 

1/4". The third layer consisted of 1 3/4 ml of molten agarose plus antibody 

which covered the remaining 1 3/4" of the plate. Antigen wells were punched 

in the first layer and electrophoresis was carried out under conditions 
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similar to those for rocket electrophoresis. A variation of this technique 

was used to identify small amounts of antigen by leaving an area of 

antibody-free agarose between the sample wells and agarose with antibody. 

7. Immunodiffusion. This technique was carried out as described by 

Cuchterlony (1953). Molten agarose (4 ml) was poured onto a 2" x 2" glass 

slide. A number of 2 mm wells were punched and 8 pi of antigen or antibody 

solution was delivered to each well. Each plate had one antibody well 

surrounded by six wells of antigen. The plates were allowed to diffuse for 

24 hr at 4°C, and were then pressed, rehydrated and stained as described 

above. While diffusing, the plates were kept in Petri dishes humidified by 

moistened filter paper. 

8. Cell pellet lysis. Hybrid cell pellets were lysed in Meera Khan's 

lysis buffer (1971): 5x10“3m PO4 buffer pH 6.4, lxl0~3^ p^EDTA, 

lxlCT^M 3 mercaptoethanol, and 2xlC“^M NADP. Viable frozen cell pellets 

were thawed and spun for 1 min. in an Eppendorf Microfuge. The pellet was 

resuspended in phosphate buffer, centrifuged again, and the supernatant 

removed. Cells were then resuspended in 50-100 yl of lysis buffer and 

sonicated three times for ten seconds each. Lysates were spun for four 

minutes in the microfuge and stored frozen at -20°C until use in the rocket 

immunoelectrophoresis assay and cellulose acetate electrophoresis. 

9. Cellulose acetate gel. Electrophoresis of cell lysates on 

cellulose acetate gel followed by enzyme specific stains allows the 

identification of enzymes whose chromosomal location is known. This 

approach is particularly useful as an alternative to karyotype analysis in 

hybrid cells when certain chromosomes may be difficult to distinguish. Cell 

lysates were prepared as described above. Standard electrophoresis 

conditions, buffers, stains and mapping data (Harris and Hopkinson-, 1976 and 

Meera Khan, 1971) were employed to screen for nucleoside phosphorylase 
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(NP), mapped to chromosome 14. glucose phosphate isomerase (GPI). mapped to 

chromosome IS, and adenosine deaminase (ADA), mapped to chromosome 20. The 

latter two enzymes served as markers for their chromosomes since these small 

human chromosomes were not readily distinguished from those of the rat. 
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RESULTS 

1. eg-antitrypsin (AAT) 

The first panel of hybrid cell lines (Table I), was initially screened 

by rocket immunoelectrophoresis for antigen reactive to anti-human AAT 

serum, after concentrating the culture medium ten-fold. Of the nine hybrid 

lines only five appeared to excrete a substance reactive with the anti¬ 

bodies. Figure I shows faint rocket shaped precipitates for cell lines IB, 

5C, 8A, 1IB and 15C. No reactions are seen with either parental cell line 

(7777 and 101). In order to detect cell lines possibly producing smaller 

amounts of antigen and to improve resolution, the media were again concen¬ 

trated ten-fold to a final concentration of 100 x the original. Repeat 

screening of these more concentrated media revealed positive reactions for 

the same hybrid cell lines (Figure II). The parental lines remained nega¬ 

tive (lanes 14 and 15). As positive controls, a dilution series of cali¬ 

brated human serum was run simultaneously (lanes 1 through 4). In addition, 

normal rat serum (NRS) and fetal calf serum (FCS) (lanes 16 and 17) were 

included and no specific precipitates were seen. 

A second panel, Table I, was then screened by rocket immunoelectrophor¬ 

esis using hundredfold concentrated media. Figure III shows two strongly 

positive cell lines (9A and 15B), and the dilution series of human standard 

(lanes 1-4). 

The lower limit of sensitivity of this assay was determined in two 

ways. The human standard was serially diluted and run in the electrophor¬ 

esis system. Figure IV shows visible precipitate down to a concentration of 

1.4 yg/ml. By decreasing the antibody concentration an increase in sensi¬ 

tivity was obtained to 0.7 yg/ml (Figure V). Alternatively, increased 

sensitivity was obtained by leaving a portion of agarose free of antibody 

between the antigen wells and the agarose containing antibody. With 
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electrophoresis, antibody molecules travel slowly with the electroendosmotic 

flow towards the wells, thereby creating a concentration gradient. This 

facilitates visualization of small precipitates. Figure VI illustrates this 

approach with a dilution series of human standard. A similar lower limit of 

sensitivity (0.7 ug/ml) was obtained. 

Detection of low levels of antigen produced by certain hybrid lines was 

accomplished as described above. Figure VII shows the detection of a posi¬ 

tive reaction for hybrid ID of the first panel. The two left sections also 

demonstrate that other cell lines negative by the rocket technique remained 

negative at the sensitivity limits of these assays. In the right section, 

antibody concentration was decreased ten-fold and a small precipitate can be 

seen for ID. The second panel was tested for low producers by decreasing 

antibody concentration, Figure VIII. Cell lines, 1A, 5A, 14A 18A and 1 IE 

showed small precipitates. Lanes 15 and 16 contained media from an earlier 

fusion experiment of 7777 hepatoma cells to human skin fibroblasts. 

The hypothetical possibility that a cell line was producing extremely 

large amounts of antigen and thus escaping detection was excluded by 

increasing the antibody concentration ten-fold. This maneuver revealed no 

high producing clones (data not shown). The compilation of data from rocket 

immunoelectrophoretic screening with anti-humar, AAT antibodies is seen in 

Table II. 

Although a subset of hybrid cell lines were clearly producing an anti¬ 

gen reactive with anti-human AAT antibodies, the nature of this antigen 

needed to be clarified. There are three possibilities that could explain 

the positive reactions seen. First, the antigen was in fact human AAT. 

Second, the antigen was rat protein extensively cross-reactive with anti¬ 

human antibodies or third, there was a mixture of reactive human and rat 

protein. To investigate these possibilities other immunoelectrophoretic 

techniques were used. 
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Crossed immunoelectrophoresis of culture media from producer hybrids 

demonstrated that the reactive antigen was not a heterogeneous mixture. 

Figure IX shows an experiment with three producing hybrids from the first 

panel after ten-fold media concentration and the human standard. Figure X 

demonstrates that the characteristics of the precipitate were not altered by 

concentration up to 100-fold. The symmetrical peaks, without shoulders, 

indicate an electrophoretically homogeneous antigen. Further, the antigens 

migrated essentially the same distance from the origin as the human standard 

suggesting molecules of similar weight and/or charge. 

The immunologic identity of the antigen was investigated by use of 

immunodiffusion (Ouchterlony technique) and tandem crossed immunoelectro¬ 

phoresis. Both methods demonstrate the immunologic relationship between two 

antigens by the juxtaposition of their precipitates. The interface of these 

precipitates can then be analyzed. Three basic patterns have been 

described. A reaction of identity produces a continuous arc between the 

precipitates. In the case of partial identity a spur extends beyond an 

otherwise continuous line. A reaction of nonidentity produces precipitates 

that cross in both directions. 

Immunodiffusion of producer hybrid lines from the first panel is shown 

in Figure XI. Wells containing human standard were interspersed among wells 

with culture media, FCS and NRS in plates 1-3. In all cases lines of ident¬ 

ity were produced between the human standard and culture medium precipi¬ 

tates. No precipitates were seen with FCS or NRS. Plate 4 of Figure XI 

demonstrates that precipitates from culture media not only produced lines of 

identity with the human standard but with each ether as well. Immunodiffu¬ 

sion of nonproducing lines, as determined by rocket assay, showed no identi¬ 

fiable precipitates (Figure XII). A precipitate from the low producing 

hybrid line, ID, could not be seen. This demonstrates the increased 

sensitivity of the electroimmunoassay. 
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Tandem crossed immunoelectrophoresis allowed simultaneous evaluation of 

the electrophoretic mobility and immunologic identity of two antigens. In 

the first dimension, culture media from producing hybrid lines and the human 

serum standard were applied to separate wells next to each other and were 

co-migrated into antibody-free agarose. The antigens were then co-migrated 

into agarose with antibody in the second dimension. Figure XIII shows the 

results with ten-fold concentrated media of selected hybrid lines from the 

first panel. All hybrids produced lines of identity with the human 

standard. Similar lines of identity were produced after 100-fold media 

concentration (Figure XIV). No lines of nonidentity or partial identity 

were seen. 

The possibility that an extensively crossreactive rat serum protein, 

activated by hybridization, confounded the results was excluded by an inter¬ 

mediate gel absorption technique. This method demonstrates the presence of 

crossreactive proteins and can approximate the degree of crossreactivity. A 

three layered gel was poured with antibody free agarose, containing the 

antigen wells in the first layer. The second layer contained agarose with 

either NRS, normal saline or human standard, and the third layer agarose 

with antibody. On electrophoresis the potentially crossreactive antigens in 

the middle layer migrate as a front into the antibody layer and absorb any 

crossreactive antibodies. This lowers the antibody concentration encounter¬ 

ed by antigens simultaneously migrating from the wells in the first layer. 

Since the height of the rocket is inversely related to antibody concentra¬ 

tions, higher peaks will be produced, when the middle layer contains a 

c^ossreactive antigen, as compared to a normal saline control. 

Precipitates produced by culture media of hybrid lines with NRS in the 

middle layer (Figure XV plates A and C) were compared to plates B and D 

where the intermediate gel contained normal saline. The similar heights of 
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the peaks indicate that NRS did not reduce the antibody concentration and-, 

therefore, did not contain crossreactive antigens. Figure XVI confirms the 

low-level production of a human protein by hybrid line ID. Plate 1 con¬ 

tained MRS-, plate 2 normal saline and plate 3 human serum in the middle 

layers. No rockets are seen in plate 3 since all the antibodies reactive 

with human AAT were absorbed. A line of antigen/antibody equivalence can be 

seen. 

From the extensive studies of the first panel it was concluded that the 

protein produced by our hybrid cell lines was homogeneous and immunologic- 

ally indistinguishable from human AAT and that the detection systems used 

were specific for human AAT. For this reason, the second panel was not 

tested as exhaustively as the first. 

Rocket immunoelectrophoresis of hybrid cell pellet lysates, run with 

antihuman AAT and antihuman albumin antibody, were difficult to interpret 

due to large amounts of nonspecific staining. No cell line, negative by 

immunoelectrophoresis of culture media, was clearly positive for AAT or 

albumin by this technique (data not shown). These results argue against the 

possibility that large quantities of normally extracellular protein were 

being sequestered intracellularly because of defects in transport through 

the cell membrane. 

2. A1bumin 

The production of other liver specific extracellular proteins was 

screened using rocket immunoelectrophoresis. Using anti-human albumin anti¬ 

body, the first hybrid panel figure (XVII) showed only one strongly positive 

reaction; in hybrid 15C. A low producing cell line, 8A was identified using 

the modified rocket technique with an antibody free agarose layer (Figure 

XVIII). The second panel (Figure XIX) contained four strongly positive 

hybrid lines; 9A, 14A, 18A and 11E. The tall faint peaks, seen especially 



jl 

' 



26 

in 15B, are typical of weakly crossreactive proteins. The identity of those 

proteins was not investigated. However, tandem crossed immunoelectro- 

phoresis of the second panel's positive cell lines (Figure XX) revealed 

lines of identity with the human serum standard. 

3. Transferrin 

Screening of the first panel for human transferrin identified only one 

hybrid line possibly producing the protein, 8A (Figure XXI plate 2). The 

lower limit of sensitivity was defined in plate 1 as being > 1.5 pg/ml. The 

second panel was entirely negative for transferrin (Figure XXII). 

4. Alpha-fetoprotein (AFP) 

Alpha-fetoprotein could not be detected in any culture medium from the 

first panel (Figure XXIII) or second panel (Figure XIV) at levels 2 5 yg/ml. 

5. Ceruloplasmin 

Human ceruloplasmin could not be detected in any culture media from the 

first hybrid panel (Figure XXV) or second panel (Figure XXVI) at levels 2 

0.5 yg/ml. A summary of the immunoelectrophoresis data for all hybrid cell 

lines and extracellular proteins studied is shown in Table II. 

6. Chromosomal analysis 

Karyotyping of the hybrid cell lines was carried out concurrently with 

the immunoelectrophoresis studies in order to determine which human chromo¬ 

somes were necessary for human liver specific protein production. Figure 

XXVII shows a karyotype of the rat hepatoma parental line. The majority of 

chromosomes are acrocentric and are readily distinguished from human 

chromosomes. The human fetal liver parental line had a normal 46,XX 

karyotype. The combination of chromosomal morphology and banding pattern 

allowed identification of the human chromosomes in the hybrid karyotypes. 

A representative hybrid karyotype of cell line ID (Figure XXVIII) shows 
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a double/triple set of rat chromosomes and intact human chromosomes 3, 6, 7. 

9, and X. Changes in ploidy and rearrangements of rat chromosomes were 

frequently seen in the hybrid cell lines. 

Figure XXIX shows the karyotype of hybrid line 15B. Human chromosomes 

1, 5, 8, 14. 21, X and rearrangements of 7 were identified. 

For each hybrid cell line 15 to 20 informative karyotypes were scored 

for the presence of human chromosomes and the average frequency of each 

human chromosome was calculated. The pattern of presence or absence of each 

human chromosome was compared with the pattern of AAT production and the 

discordancy ratto tabulated (Table III). Discordancy was defined as 

chromosome present-protein absent or chrmosome absent-protein present. 

Cellulose acetate investigation of nucleoside phosphorylase (NP) for 

confirmation of the presence of chromosome 14 in producer hybrids was 

unsuccessful for technical reasons. Identification of human NP in hybrid 

cells depended on good electrophoretic separation of the parental lines' 

isoenzymes. This was not accomplished since the rat and human enzymes 

migrated similar distances. Therefore intermediate bands of recombined 

subunits of this trimeric enzyme could not be evaluated. Extensive experi¬ 

mentation with different buffers and electrophoresis parameters did not lead 

to improved resolution. Cellulose acetate studies of GPI (on human 

chromosome 19) and ADA (on human chromosome 20) determined the presence of 

these chromosomes in the hybrids. 

7. Counterselection in guanine analogues 

Because of HAT selection, all hybrid cell lines had retained the human 

X chromosome. To test for the possibility that the X chromosome carries a 

gene also necessary for AAT expression, hybrids were counterselected in 

guanine analogue containing medium. This medium selects against the 

presence of the human X. Figure XXX shows the rocket immunoelectrophoresis 
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of counterselected hybrid lines run simultaneously with the HAT selected 

lines. Clone 8A HAT and four subclones counterselected in 8-azaguanine 

produced human AAT. HAT selected lines 18A and 8B and their subclones did 

not. 
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DISCUSSION 

These studies have identified an extracellular product of human fetal 

liver cell/rat hepatoma somatic cell hybrids that was immunochemically 

indistinguishable from human AAT. It was also shown by intermediate gel 

absorption experiments that no protein found in normal rat serum cross- 

reacted with anti-AAT serum. Therefore, the protein detected was considered 

to be of human origin. No cell line was shown to be sequestering signifi¬ 

cant quantities of AAT intracellularly. Therefore, the production of AAT 

was reflected by its presence in the culture medium. 

Functional studies (i.e. measurements of antitryptic activity) were not 

performed with the culture media. The rat was assumed to possess an 

antitrypsin-like enzyme, and recently Urban (1982) characterized a rat liver 

specific alpha globulin similar to human AAT. A functional assay would not 

be able to distinguish human or rat enzymatic activity. 

Since AAT could not be detected in the supernatant of either parental 

cell line, it must be concluded that activation of the human locus occurred 

in the hybrid cell lines. The mechanism of activation was not studied. 

Activation may have been facilitated by the histological origin or gesta¬ 

tional age of the human parental cells. 

These results demonstrate concordant segregation of the human AAT posi¬ 

tive phenotype and human chromosome 14. All other chromosomes are excluded 

by discordant cell lines. Only two possibly discordant hybrid lines were 

found. Hybrid lines ID and 14A appeared to produce low levels of human AAT 

but no human 14 was identified by karyotyping. The three most probable 

explanations are: 1) that chromosome 14 was present at very low frequency 

and thus escaped detection in the 15 to 20 karyotypes analyzed; 2) that 

rearranged fragments of 14, present at low frequency, were not identified; 
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or 3) that pieces of 14 were present in the unidentifiable genetic 

material, called markers, consistently found in hybrid cells. 

The very low frequency hypothesis is supported by the case of hybrid 

1fne 18A. This line initially appeared to produce AAT in quantities similar 

to ID and 14A. However, with expansion of this line, before counterselec¬ 

tion in guanine analogues, expression was lost. In addition, the approxi¬ 

mate correlation of gene dosage and amount of AAT produced supports the low 

frequency explanation. 

Subclones of 8A, 8B and 18A counterselected fn guanine analogues 

demonstrated that elimination of the human X chromosome did not stimulate 

expression. Therefore, the human X was not necessary for maintaining 

expression, nor was its presence inhibiting production. It may be concluded 

that chromosome 14 is both necessary and sufficient for expression of human 

AAT and therefore carries the structural gene. 

The localization of the AAT locus to chromosome 14 is consistent with 

the results of other studies. Gedde-Dahl (1972) established the close 

linkage of the gene for human AAT, the PJ^ locus, with GM, locus for the 

immunoglobulin heavy chain constant region. The most recent lod score being 

above 20 (Gedde-Dahl, 1981). A number of conflicting studies had mapped the 

GM locus to 6 (Smith and Hirschhorn, 1978), 8 (Bennick et el, 1978), 12 

(Noades and Cook, 1976), and 14 (Croce et al, 1979; Hobart et al , 1981). 

Previous somatic cell hybridization studies had assigned the PI locus to 

chromosome 9 (Turner and Turner, 1980) or chromosome 14 (Darlington et al, 

1982a). More recently, cytogenetic studies of two families with chromosome 

14 abnormalities have now mapped GM to 14 q at band q 32.2 and the PJ_ locus 

to a position between bands q 24.3 and q 32.1 (Cox et al, 1982). The 

present study, conducted simultaneously with those of Cox et al (1982) and 
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Darling et al (lS82a), confirms the assignment of to human chromosome 14 

by cell hybridization methodologies. 

In addition, these studies have used genetic analysis to characterize 

series of somatic cell hybrids in which the human loci for various extra¬ 

cellular liver specific proteins have been activated. Further investiga¬ 

tions with these hybrids, using cloned probes of the respective genes, may 

provide insight into the regulation of gene expression, an area of inquiry 

which remains central to molecular and developmental biology. 
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Table I: Hybrid Cell Lines and Controls by Panel 

Panel 1: IB, ID, 2C, 2G, 5C, 8A , 11B, 12C, 15C. 
7777-14b-aza. HFL 1C1 

Panel 2: 1A, 5A, 9A, 14A, 18A, 8B , 15B , 1 ID , 11E, 2F 

Table II: Immunoelectrophoresi s of Hybrid Cell Lines. 
Detection of Human Extracellular Proteins 

Anti serum 
AAT A1bumin T ransferri n AFP Ceruloplasmin 

Hybrid 1 i ne 

1A + . . . 

IB + . . 

ID + . . . . 

2C 

2F . . 

2G . . . . . 

5A + 

5C + . . . 

8A + + + . . 

8B . . . . . 

9A + + . 

1 IB + _ . 

1 ID . . . . 

he + + . . . 

12C _ 

14A + + . . . 

15B + . 

15C + + . . . 

18A + + 



' 



-
 

«
W

n
 > 

= 
14 

tra
n
slo

c
a
tio

n
 

C
alcu

lated
 

d
isco

rd
an

cy
 

ra
tio

 
ex

clu
d

in
g
 

lin
e
 

ID
 

and 
14A

. 
18A

 
sco

red
 

as 
(-) 

(see 
d

isc
u

ssio
n

) 

* 
—1 o —i o X X X X X X X X X X X X X X X X X X X ro rc 
o —J. o X X X X X X X X X X X X x X X x X X X -1 O; 
rt co C+ m »—H 1-1 1—1 1—1 h—1 1—1 1—1 1—1 1—1 1—1 I-—« 1—1 •—1 1—1 1—1 1—1 1-1 C-1 »—1 o cr 
OJ o cu n I—1 1—1 1—1 t-H H—1 ►—H 1-1 1—1 »—1 t—t 1—1 I—» t—i 1—1 K—1 •—H 1—1 1—1 1—H 03 
-» o -1 o i i 1 I 1 1 1 1 i i 1 1 1 1 1 1 1 1 i ID —»• 

-5 -5 1-» 1-» 1—1 1—» 1—‘ I—* 1—J 1—» to oo oo 05 05 ro ro ro I—1 1-‘ Cl 
CL CL 00 on 05 -ts rj 1—1 1—‘ 1—* on 3=> o J= o -T5 05 O CO 3s 
Oj OJ 3= o oo 3= o m o CO 
3i 05 
c+ r+ 

1—1 1—» 1—1 
i—1 1—» • • 0 0 0 0 

x to 05 0
 

s
 

o o o o o o 

0
 

0
 ro to o o 

c 0
 O Ol O I—1 

1—» 
1—i 1—1 1— • • • 0 0 

x to to O O -£=> o oo o o ro o 

0
 

0
 05 o 

0
 

0
 

0
 

0
 

0
 

0
 o ro 

rj 1-1 1—1 1—* 1—* 
H-* H-* • # 0 0 0 0 0 0 0 OJ 
X ro to OJ O -P=> o o o 

0
 

4 1—* 

0
 

0
 Js o o o 

0
 

0
 

6
 

8
 o 

1-* 1— • 0 0 0 0 

X oi to XI 0
 

6
 

o o o 

0
 

0
 Ol i—* O 00 o 

0
 

0
 

0
 

0
 

7 0
 o -F=> 

1—‘ 
1— 1—* • • • • 0 0 0 

"-J cr, to '-J 

4 0
 to 1—‘ 05 

0
 

0
 o 

0
 

0
 OJ X 

0
 

0
 

0
 

0
 

5 0
 o 05 

1—* 1—‘ 1—‘ 
t— 1 1 • • 0 0 05 
Xl 00 to co o o o o o 

0
 

0
 XI 0

 

0
 *xj o 

2
 

0
 

2
 

2
 UD I—1 -e=> 

1—» 1—* ro 1—‘ l—» f—‘ 1—» l—* 
1—* I-1 • • • 0 0 X 
X x to x 7 0

 o 05 o 

0
 

0
 ^xj 

0
 

0
 Ol o O r-* oi ro o ro 05 

Cu m 
1—* sc 

t— I-1 • • • 0 0 0 0 0 0 3 
X INO to OJ 

2
 

0
 CO o o 0

 

0
 

1—1 

0
 

4 OJ 05 

0
 

6
 

0
 

0
 

3 0
 o OO CU 

35 

O 
H-1 •-* • • 0 0 0 0 0 0 0 to 33- 
X to 

2
 

0
 o 05 o 

0
 

0
 o 

0
 

0
 05 X CO oo O I—1 

0
 

7 Ol -5 
O 

1-‘ 1—‘ 3 
H-* I—1 1—> • • 0 0 0 0 0 0 1-> o 
Xl <o to o O xl o ro o 

0
 

0
 05 

0
 

0
 1-1 o O I—‘ -C* t-* 

2
 

0
 o o CO 

o 
3 
CD 

I—1 1—» 0 0 0 I—* CO 
h—‘ 1—* 1—* • • • 

0
 

0
 to 

3 0
 xl o 

0
 

0
 

0
 

0
 

0
 

0
 o 1—* 

to to o o o o ro o --- 3 
1—* 1-» rD 

t—1 • • • 0 0 0 1—‘ cu 
X -XJ to 00 

9 0
 o 05 ro 

0
 

c o 

0
 

6
 1-> o 

0
 

0
 

0
 

0
 

9 0
 o ro 

33 
d 

1—1 t-> 1—> 0 0 1—1 3 
00 to o 

0
 

0
 o o o 

0
 

0
 1—* 0
 

0
 O to 

0
 

0
 

0
 

0
 

0
 

0
 o OJ cr 

rt> 
-5 

1-1 1—1 I—* O 
•-> 1—» • • 0 0 0 0 0 0 0 0 ~h 
XJ o to ro 

4 0
 OO o o i—> o Ol 

0
 

3 o o 

0
 

5 0
 

0
 O 05 -Cs 

cr o 
o 

1-» 1— • • 0 0 0 0 i—‘TO 
X on to 05 

3 0
 o to o 1—> o 05 

0
 

0
 ro o 

0
 

0
 

0
 

0
 O I—1 o 05 —1. 

rt> 
CO 

1—* 1—* H-1 1—1 • 0 0 0 0 0 1-1 o 
Xl i-* to ro 

0
 

0
 o -ts o 

0
 

0
 

0
 

0
 o o O t-> OJ I—* 

4 0
 o 05 n> 

—J 

—-J 
— 

1—1 t— • • • 0 !—‘ 

Xl x to oo 

4 0
 OJ o 

0
 

0
 ro 

C 0
 o o 

0
 

0
 

0
 

0
 

0
 

0
 o X 

1— ■- • 0 1—‘ 

Xl 00 to o 

2
 

0
 o O o 

0
 

0
 o 0
 

0
 rsj o 

0
 

0
 

0
 

0
 

0
 

0
 o oo 

*—1 t—' i-- 0 \—1 

XJ to to • 1 

0
 

0
 o o o 

0
 

0
 o 

0
 

0
 o o 

c 0
 

0
 

0
 

2
 

0
 o to 

1— I-1 • • • 0 0 ro 
J co to to O I—■ o -C=> 0

 

0
 o 

0
 

4 ro o 

0
 

0
 

0
 

0
 

0
 

0
 o o 

1—1 1—‘ ro 
I-* I-1 0 0 0 0 0 0 0 1—1 

1 rv> to ro 

6 0 OJ 1—» XI I-* o o 0
 

5 1—‘ 0
 

7 0
 

0
 x ro 1—» 

ro 
I—1 !-> • • 0 0 0 0 0 0 0 ro 
'-J ro PO OJ o ro on o o 

0
 

c 00 

0
 

0
 ro ro 

0
 

3 0
 

0
 

8
 

5 ro 

1—» 1—* 1—* 1—‘ 1—‘ 1—‘ 
1-1 1—‘ X 
X x to x o to CO I—• OO -pi oo OJ 05 O 00 to 

9 9 to i—* 

5 8
 oo 

ns 

1+ + + + 1 + 1 + 4* l + + + i 1 1 + + + 3= 
—1 

Q> 
cr 

fD 

S
e
rie

s 
X

X
II: 

R
at 

H
epatom

a 
7
7
7
7
-1

4
b
-aza 

x 
H

um
an 

F
etal 

L
iv

er 
C

ell 
H

y
b
rid

s 
and 

A
TT 

E
x

p
ressio

n
 



, 



34 

Figure I. 

Lane Lane Lane 

1 12C 7 15C 13 11B 
2 IB 8 ID 14 5C 
3 STD 9 STD 15 STD 
4 8A 10 7777 16 7777 
5 26 11 101 17 2C 
6 STD 12 STD 18 STD 

Immunoelectrophoresis of ten-fold concentrated culture media 
from first hybrid panel, parental cell lines and calibrated 
human standard (STD), 35 yg/ml. Performed with 5 yl samples. 
Antiserum: anti-AAT 2 y1/3ml of 1% agarose. 
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Figure II. 

Lane Lane Lane 

1 88 yg/ml STD 7 8A 13 2C 
2 44 yg/ml STD 8 2G 14 7777 
3 22 yg/ml STD S 15C 15 101 
4 11 yg/ml STD 10 ID 16 NRS 
5 12C 11 1 IB 17 FCS 
6 IB 12 5C 

Immunoelectrophoresis of one hundredfold concentrated culture 
media from first hybrid panel, parental cell lines, calibrated 
human standard, normal rat serum (NRS) and fetal calf serum (FCS). 
Performed with 5 yl samples. Antiserum: anti-AAT 60 yl/20 ml of 
\% agarose. 
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Figure III. 

Lane Lane Lane 

1 88 yg/ml STD 6 5A 11 15B 
2 44 yg/ml STD 7 9A 12 1 ID 
3 22 yg/ml STD 8 14A 13 he 
4 11 yg/ml STD 9 18A 14 2F 
5 1A 10 8B 

Immunoelectrophoresis of one hundredfold concentrated culture 
media from second hybrid panel and calibrated human standard. 
Performed with 5 yl samples. Antiserum: anti-AAT 60 yl/20 ml 
of 1% agarose. 
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Limits of sensitivity by decreasing antibody concentration 

\k 
]| 

M A 
A 

1 2 3 4 5 6 

Figure IV 

Calibrated human standard 5 pi 
samples. Antiserum: anti-AAT 
40 yl/20 ml of \% agarose. 

Lane Lane 

1 44 yg/ml STD 
2 22 yg/ml 
3 11 yg/ml 

4 5.5 yg/ml 
5 2.8 yg/ml 
6 1.4 yg/ml 

Figure V 

Calibrated human standard 5 yl 
samples. Antiserum: anti-AAT 
20 yl/20 ml of 1% agarose. 

Lane 

1 44 yg/ml STD 
2 11 yg/ml 
3 22 yg/ml 
4 5.5 yg/ml 

Lane 

5 2.8 yg/ml 
6 1.4 yg/ml 
7 0.7 yg/ml 
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Figure VI. 

Lane Lane Lane 

1 44 ug/ml STD 4 5.5 ug/ml 7 1.4 ug/ml 
2 22 ug/ml 5 3.5 ug/ml 8 0.7 ug/ml 
3 11 ug/ml 6 2.8 ug/ml 9 44 ug/ml 

Lower limits of sensitivity in a two layered agarose gel with 
calibrated human i standad. Antiserum: anti-, AAT 4 yl/ml of 1% 
agarose. 
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Figure VII. 

Lane Lane Lane 

1 12C 5 2C 9 X 
2 2B 6 7777 10 ID 
3 ID 7 101 11 44 yg/ml STD 
4 44 yg/ml STD 8 44 yg/ml STD 12 35 yg/ml STD 

Detection of low level antigen in one hundred fold concentrated 
culture media from first hybrid panel by two layer gel and decreased 
antibody concentration techniques. Performed with 5 yl samples. 
Lanes 1-8; Antiserum: anti-AAT 4 yl/ml of 1% agarose, Lanes 9-12; 
antiserum: anti-AAT 1 yl/ml of \% agarose. Lane 9 contains media 
from a different fusion experiment (X). 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Figure VIII. 

Lane Lane Lane 

1 11 yg/ml STD 6 5A 11 15B 
2 5.5 yg/ml STD 7 9A 12 1 ID 
3 2.8 yg/ml STD 8 14A 13 he 
4 1.4 yg/ml STD 9 18A 14 2F 
5 1A 10 8B 15 X 

16 Y 

Detection of low level antigen in one hundredfold concentrated 
culture media from second hybrid panel by decreased antibody 
concentration technique with calibrated human standard. Performed 
with 5 y 1 samples. Antiserum: anti-AAT 30 yl/20 ml of 1% agarose. 
Lanes 15 and 16 contain media from a different fusion experiment 
(X and Y). 
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Figure IX. 

Plate Plate 

1 8A 3 15C 
2 5C 4 35 ug/ml STD 

Crossed immunoelectrophoresis of ten-fold concentrated culture 
media from first hybrid panel and calibrated human standard. 
Performed with 7 yl samples. Antiserum: anti-AAT 1 yl/ml of 
1% agarose. 
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Figure X. 

Plate 

3 8A 
4 15C 

Plate 

1 IB 
2 5C 

Crossed immunoelectrophoresis of one hundred-fold concentrated culture 
media from first hybrid panel. Performed with 6 yl samples. 
Antiserum: anti-AAT 4 yl/ml of \% agarose. 
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Figure XI. 

Immunodiffusion of one hundred fold concentrated culture 
first hybrid panel, calibrated human standard (44 yg/ml) 
serum (FCS) and normal rat serum (NRS). Performed with 
Antiserum: anti-AAT, 5 yl in center wells. 

media from 
fetal calf 
yl samples. 
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12 C 2C 

STD STD STD 

/ \ 

STD 

ID" — 2G G 
7777 * 101 

STD STD 

Figure XII. 

Immunodiffusion of one hundred fold concentrated culture media from 
first hybrid panel not producing AAT. parental cell lines, and 
calibrated human standard (44 yg/ml). Performed with 5 yl samples. 
Antiserum: anti-AAT, 5 yl in center wells. 
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Figure XIII. 

Tandem crossed immunoelectrophoresis of ten-fold concentrated culture 
media from first hybrid panel with calibrated human standard (35 yg/ml). 
Performed with 7 yl samples. Antiserum: anti-AAT, 1 yl/ml of 1% 
agarose. 
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Figure XIV. 

Plate 

1 IB and STD 
2 5C and STD 

Plate 

3 8A and STD 
4 15C and STD 

Tandem crossed Immunoelectrophoresis of one hundred-fold concentrated 
culture media from first hybrid panel with calibrated human standard 
(44 pg/ml). Performed with 5 yl samples. Antiserum: anti-AAT 4.5 yl/ml 
of 1% agarose. 
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Intermediate gel absorption with normal rat serum (NRS), calibrated 
human standard (STD) 44 yg/ml, and one hundred-fold concentrated culture 
media from first hybrid panel. Performed with 5 yl samples. 
Antiserum: anti-AAT, 4.5 yl/ml of \% agarose. Intermediate layer 
plates A and C - NRS, plates B and D - normal saline. Plates A/B and 
C/D are compared. 
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Figure XVI. 

Intermediate gel absorption with normal rat serum (MRS), one 
hundred-fold concentrated culture media from hybrid lines 1D,15C,5C 
and 8A, parental line 7777 and calibrated human standard (STD) 44 
ug/ml. Performed with 5 yl samples. Antiserum: anti-AAT, 4.5 ylml of 
1% agarose. Intermediate layer plate 1 - MRS, plate 2 - normal saline, 
plate 3 - STD. 
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gure XVII. 

Lane Lane Lane 

1 370 yg/ml STD 7 2G 12 2C 
2 230 yg/ml STD 8 15C 13 7777 
3 180 yg/ml STD 9 ID 14 101 
4 12C 10 1 IB 15 NRS 
5 IB 11 5C 16 FCS 

Immunoelectrophoresis of one hundred-fold concentrated culture 
media from first hybrid panel with calibrated human standard, 
parental cell lines, normal rat serum (NRS) and fetal calf 
serum (FCS). Performed with 5 y 1 samples. Antiserum: anti 
human albumin. 1 yl/ml of 1% agarose. 
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Figure XVIII. 

Lane Lane Lane 

1 12C 5 2G 9 1 IB 
2 IB 6 15C 10 5C 
3 8A 7 ID 11 2C 
4 230 pg/ml STD 8 STD 12 STD 

Detection of low level albumin production in one hundred-fold 
concentrated culture from first hybrid panel by two layer gel 
technique. Performed with 5 pi samples. Antiserum: anti-human 
albumin 1 pi/ml of It agarose. 
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Figure XIX. 

Lane 

1 1.5 mg/ml STD 
2 750 yg/ml STD 
3 375 yg/ml STD 
4 180 yg/ml STD 
5 1A 

Lane Lane 

6 5A 11 15B 
7 9A 12 1 ID 
8 14A 13 he 
9 18A 14 2F 

10 8B 

Immunoelectrophoresis of one hundred-fold concentrated culture 
media from record hybrid panel and calibrated human standard. 
Performed with 5 yl samples. Antiserum: anti-human albumin 
2 yl/ml of 1% agarose. 
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P 

STD 9A STD 14A 

$ 

A- 

STD 18A STD 11E 

Figure XX. 

Tandem crossed immunoelectrophoresis of one hundred fold concentrated 
culture media from second hybrid panel with calibrated human standard 
(46 yg/ml). Performed with 6 yl samples. Antiserum: anti-human 
albumin, 2 pi/ml of 1% agarose. 
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r 
1 2 3 4 6 7 8 9 10 jl 12 13 14 15 16 

Figure XXI. 

Lane Lane Lane Lane 

1 12 yg/ml STD 5 12C 9 2G 13 11B 
2 6 yg/ml STD 6 IB 10 15C 14 5C 
3 3 yg/ml STD 7 8A 11 ID 15 2C 
4 1.5 yg/ml STD 8 12 yg/ml STD 12 12 yg/ml STD 16 12 yg/ml STD 

Detection of low level transferrin production, by two layer gel 
technique, in one hundred-fold concentrated culture media from first 
hybrid panel and determination of limits of sensitivity. Performed with 
5 yl samples. Antiserum: anti-human transferrin 3 yl/ml of 1% agarose. 
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Figure XXII. 

Lane Lane Lane Lane 

1 200 yg/ml STD 6 1A 10 18A 14 11E 
2 100 yg/ml STD 7 5A 11 8B 15 2F 
3 50 yg/ml STD 8 9A 12 15B 16 7777 
4 25 yg/ml STD 9 14A 13 1 IB 17 101 
5 12 yg/ml STD 

Immunoelectrophoresis of one hundred-fold concentrated culture media from 
second hybrid panel with calibrated human serum and parental cell lines. 
Performed with 5 yl samples. Antiserum: anti-human transferrin 2 yl/ml 
of 1% agarose. 
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12 3 4 5 6 7 8 9 » II 12 13 14 15 16 

Figure XXIII. 

Lane 

1 
2 
3 
4 11 

Lane Lane Lane 

12A 5 2G 9 7777 13 50 
IB 6 15C 10 101 14 20 
8A 7 ID 11 11B 15 11 yg/ml 

yg/ml STD 8 11 yg/ml STD 12 11 yg/ml STD 16 5 yg/ml 

Immunoelectrophoresis of ten-fold concentrated culture media from first 
hybrid panel, parental cell lines and calibrated amniotic fluid. 
Performed with 7 yl samples. Antiserum: anti-human alpha-fetoprotein 10 
yl/ml of \% agarose. 
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Figure XXIV. 

Lane Lane Lane 

1 28 yq/ml STD 6 9A 11 11B 
2 12 yg/ml STD 7 14A 12 he 
3 HSS 8 18A 13 2F 
4 1A 9 8B 14 7777 
5 5A 10 15B 15 101 

Immunoelectrophoresis of one hundred-fold concentrated culture 
media from a second hybrid panel, parental cell lines, calibrated 
amniotic fluid and human serum standard (HSS). Performed with 7 pi 
samples. Antiserum: anti-human alpha-fetoprotein 10 yl/ml of 1% 

agarose. 
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Figure XXV. 

Lane Lane Lane 

1 4 yg/ml STD 6 ID 11 11B 
2 2 yg/ml STD 7 2C 12 12C 
3 1 yg/ml STD 8 2G 13 15C 
4 0.5 yg/ml STD 9 5C 14 7777 
5 IB 10 8A 15 101 

Immunoelectrophoresis of one hundred-fold concentrated culture 
media from first hybrid panel, parental cell lines and calibrated 
human standard. Performed with 5 yl samples. Antiserum: anti-human 
ceruloplasmin 4 yl/ml of 1% agarose. 
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l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1? 

Figure XXVI. 

Lane Lane Lane Lane 

1 18 yg/rnl STD 6 1A 10 18A 14 11E 
2 9 ug/ml STD 7 5A 11 8B 15 2F 
3 4 ug/ml STD 8 9A 12 15B 16 7777 
4 2 ug/ml STD 9 14A 13 11B 17 101 
5 1 ug/ml STD 

Immunoelectrophoresis of one hundred-fold concentrated culture 
media from second hybrid panel, parental cell lines, and calibrated 
human standard. Performed with 5 yl samples. Antiserum: anti-human 
ceruloplasmin 3 yl/ml of 1% agarose. 
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7777 14b aza Rat Hepatoma 
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Figure XXVII. 

Kary°type of GTG-banded metaphase from rat hepatoma parental cell line. 
////-14a aza. 5 
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Rat Hepatoma 7777 x Human Fetal Liver Cell Hybrid XXII - ID 

7777 Chromosomes: 
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Figure XXVIII. 

Karyotype of GTG-banded metaphase from rat hepatoma-human fetal liver 
hybrid line ID. 
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Figure XXIX. 

Karyotype of GTG-banded metaphase from rat hepatcma-human fetal liver 
hybrid line 15B. 
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A 
4 

A 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Figure XXX. 

Lane Lane Lane Lane 

1 44 yg/ml STD 6 4d/8A 10 1 b /18 A 14 3d/18A 
2 22 yg/ml STD 7 5a/8A 11 2b/18A 15 8A HAT 
3 11 yg/ml STD 8 5b/8A 12 3 b /18 A 16 8B HAT 
4 4b/8A 9 lb/8B 13 3c/18A 17 18A HAT 
5 4c/8A 

Immunoelectrophoresis of concentrated culture media from hybrid lines 
counterselected in guanine analogues, hybrid lines selected in HAT 
media and calibrated human standard. Performed with 5 yl samples. 
Antiserum: anti-AAT 1 yl/ml of 1% agarose. 

Lanes 4-8 counterselected lines from HAT line 8A 
Lane 9 counterselected line from HAT line 8B 
Lanes 10-14 counterselected lines from HAT line 18A 
Lanes 15-17 HAT 1ines 
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