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FOREWARD 

Cosmic rays, medical x-rays, radioactive fallout, 

and nuclear reactor waste products expose modern man to 

considerable quantities of ionizing radiation (1). 

Concern for the biological effects of radiation has 

stimulated research in the medical and physical 

sciences® Studies of experimental animals, atomic bomb 

casualties, and victims of reactor accidents have shoxra 

that radiation can produce widespread tissue damage and 

death® In order to comprehend the mechanism of this 

tissue destruction, one must understand the intracellular 

effects of ionizing radiation. 

Gamma and x-rays eject excited electrons from atoms 

within cells; these electrons lose energy by interacting 

with adjacent molecules to produce ionizations and free 

radicals. This has been called the "primary event." 

Although most of the energy absorbed by the irradiated 

cell is dissipated as heat, the energy stored in ions 

and free radicals may spawn further chemical or physical 

reactions. Energy may be transferred through a series 

of chemical events which Irreversibly damage macro- 

molecular bonds, or it may be dissipated as fluorescence, 

phosphorescence, and vibrational energy. The time from 

the Initial wave of radiation until the physical or 

chemical event Is measured in fractions of a microsecond; 

the development of detectable biochemical or physiologic 
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changes may take hours, days, or even longer (2), 

The effect of ionizing radiation on the individual 

cell may take the form of: 1) chromosomal aberrations? 

2) malignant transformation; 3) division delay; 4) mitotic 

inhibition, in which the cell undergoes no visible damage 

but ultimately degenerates owing to its inability to 

divide; and 5) interphase death, a rapid cellular de¬ 

generation seen in extremely radiosensitive cells or 

after extremely high doses of radiation. Malignant 

transforraation follows subtle changes in the cell’s 

genetic material that allow continued mitosis, but in an 

altered form. Chromosomal damage may take the form of 

single or double strand breaks; the type of damage 

appearing at the next metaphase will depend upon whether 

the cell was irradiated before DNA synthesis {when the 

chomosome responds as a single strand) or during DNA 

synthesis (when the chromosome reacts as a two-stra.nd 

chromatid). Such damage, however, is not an important 

mechanism of cell death because the normal chromosomal 

structure is usually restored by a process involving 

oxidative metabolism and ATP formation (2)• 

The more extreme disruptions of cell division 

require an understanding of the cell's generative cycle, 

DNA synthesis (S') and mitosis (M) occur as separate, 

well-defined periods in the life cycle of mammalian cells. 
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The post-mitotic, pre-synthetic phase is known as G^; 

the post-synthetic, pre-roitotic phase is known as G • G ; 
^ Ju 

S and G2 comprise interphase. M and G? are the most 

radiosensitive stages of the cell life cycle? division 

is most easily delayed or blocked when the irradiated cell 

is in either of these stages and least readily delayed or 

blocked in G^. The block in G^ is reversible; irradiated 

cells pass into this stage but are delayed from going 

into mitosis. The duration of the delay depends on the 

radiation dose and on the life cycle stage of the cell 

at the time of irradiation. While cells are blocked in 

g2’ Gl oeHs begin to catch up; the mitotic index, which 

falls after irradiation, may increase temporarily to 

values above normal ("mitotic overshoot") when cells 

that have accumulated in G? begin to divide semisyn- 

chronously (2,3,4). The phenomenon is common to all 

mammalian cells, although the dose relationships may 

vary. 

A lethally-irradiated cell may undergo several 

normal division cycles and then degenerate during or 

after an abnormal mitosis; alternatively, the cell may 

attempt no further divisions but may enlarge to form a 

giant cell which eventually degenerates. The number of 

successful divisions for lethally irradiated cells 

varies inversely with radiation dosage (eg. five divisions 

for cells receiving 100 rads and one division for cells 
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receiving 1000 rads). An extreme example is the phen- 

omenon known as "interphase death"? here, the radio- 

sensitivity of the cell or the radiation dose is so great 

(10,000 rads or more) that nucleus and cytoplasm degenerate 

immediately without further cell division. 

Rad i a. t ion'-induced cellular damage is not necessarily 

lethal; many cells absorb sublethal amounts of radiation, 

and their recovery processes repair the damage (5)® These 

recovery processes Involve passive, nonenzymatic, 

stereochemical reactions between DNA and other molecules. 

Oxidative phosphorylation, ATP formation, uninterrupted 

DNA synthesis, and de novo protein synthesis are not 

believed to be necessary for intracellular recovery (5)® 

Thus, the extent of radiation damage is determined by the 

balance between macromolecular disruption and intro- 

cellular repair processes. 

The search for "the lethal biochemical lesion" has 

been disappointing. A number of chemical alterations 

have been observed, but the majority appear to be a conse¬ 

quence rather than a cause of mitotic failure. Some 

evidence, however, does suggest that DMA synthesis is 

essential for cell survival. Radiation-induced inhib¬ 

ition of DNA synthesis has been demonstrated in cell 

cultures (6^8), and is an immediate effect of radiation 

rather than a consequence of transient mitotic delay, 

cell lethality, or shifting cell populations between 

different stages of the life cycle (5)® 
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Degradation of existing DNA, as well as decreased 

synthesis, may play a role in mitotic failure* Cellular 

DNA may he denatured by the bombardment of ions and free 

radicals or destroyed by the activation of specific 

DNAases (2,5,9,10)* A definite correlation between 

cellular DNA content and radiosensitlvity has been 

established for a variety of bacterial, fungel, viral, and 

mammalian cells. Thus, DNA may well be the critical 

"target" which determines continued cell survival, func¬ 

tion, and reproduction (5)* 

The sensitivity of individual cells to reproductive 

failure is roughly similar for all types of mammalian 

cells (2). Varying radiosensitivity among different 

tissues is due to the varying number of cells in each 

tissue, the varying rates of mitotic activity, and the 

varying number of viable cells necessary for function. 

Several organ systems are exquisitely radiosensitive and 

contribute to radiation sickness and death; the 

gastrointestinal tract plays such a prominent role that 

it was selected for study. 

For three years, experiments were performed in the 

Gastrointestinal laboratory of the Yale University 

Department of Internal Medicine with the cooperation of 

the Department of Radiation Therapy, Division of Animal 

Care, Yale-New Raven Hospital Histopathology laboratory, 

and the Yale Computer Center, The results of these 





experiments will be reported and discussed with refer¬ 

ence to current theories of radiation sickness and death. 

These studies could not have been performed 

without the help or guidance of several people, I wish 

to thank Miss Sylvia Diamond, Mrs, Trudy Schonberger, 
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INTRODUCTION 

Following Hiroshima and Nagasaki, investigators 

realized that several organ systems contribute to the 

"post-radiation syndrome" and to radiation death, atomic- 

bomb victims demonstrated pathological signs and symp¬ 

toms such as nausea, vomiting, diarrhea, malabsorption, 

gastrointestinal ulcerations, fever, dehydration, 

acidosis, leucopenia, purpura,, Infections, and hemorrhages 

(11-15)• The manifestations of radiation exposure could 

be reproduced in experimental animals by whole-body 

X-irradiation, and they were subsequently divided into 

several dose-dependent syndromes (16-19)* 

If mice are given 50-100 rads, no perceivable 

illness occurs? however, longevity decreases (20), and 

the risk of malignancy Increases. After 400 rads, a 

small percentage of mice will suffer an acute death 

approximately 11% days later. Infection, hemorrhage, 

and anemia are prominent and are associated with wide¬ 

spread damage of lymphoid tissue and bone marrow. This 

is known as "typical radiation death", "bone marrow 

syndrome", "bone marrow death", or "hemopoietic death". 

The LDejq is 500-700 rads for these animals. As the 

radiation dose Is increased, mean survival time (M.S.T.) 

remains near 11% days, but the per cent of fatalities 

increases. As the percent of deaths approaches 100% 

(at 1000-1200 rads), mean survival time decreases 
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to 3^ days; the M,S,T, remains stable at this level until 

radiation doses of 15,000-20,000 rads are achieved# 

LD100 doses, infection is uncommon, and gastrointestinal 

symptoms predominate* This syndrome is known as "acute 

intestinal radiation death, the "intestinal syndrome", or 

"gut death"* At extremely high doses of total body 

radiation (20,000-40,000 rads) death may occur within a 

few hours* Shivering and convulsive movements (secondary 

to CNS damage) predominate, and this syndrome is known 

as "brain death". 

Species, strain, age, and other host factors 

determine the radiation dosage and MST associated with 

each syndrome (18-21). The variation of survival time 

for individual mice may be three days more or less than 

the MST of the group; however, this variance is less at 

higher doses of radiation* 

In addition to total body irradiation, exposure of 

any large portion of the small intestine to the approp¬ 

riate dose of radiation will produce the acute intestinal 

radiation syndrome. The anatomical lesions of the 

gastrointestinal tract in this syndrome have been 

well-studied by light (22-31) and electron (32-37) 

microcopy. 

The first changes after 1000 rads occur deep in the 

crypts of Lieberkuhn; at one hour after irradiation, 

nuclei and nucleoli are swollen* Chromatin material 

concentrates in central nuclear masses and in a thin rim 
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at the nuclear membranes® Mitotic figures disappear® 

Monomuclear infiltration occurs a.t four hours® During 

the first 24 hours, progressive vacuolation, pyknosis, 

karyorrhexis, and karyolysis take place® Disintegrating 

epithelial cells occupy positions close to the lumen of 

an intestinal gland., a site normally reserved for mitotic 

cells, and slough into the lumen of the gut® 

On the second postirradiation day, the crypts begin 

to regenerate® Mitotic figures reappear at 24=48 hours 

after irradiation although some studies report recovery 

as early as four hours. A significant proportion of 

these new mitotic spindles demonstrate triphasic or other 

bizarre forms® Cellular destruction slows to control 

levels, pyknotic nuclei disappear from the crypts, 

cellular debris is cleared, and the crypts appear normal 

by 48-60 hours. 

On the third postirradiation day, the villi appear 

grossly abnormal. Epithelial cells at the villus tip 

slough into the lumen of the gut and are not replaced 

for several hours. The earlier failure of mitosis in 

the crypts produces a temporary gap in the column of 

cells migrating up the side of the villus. At this time, 

most of the villi are short, stubby, and edematous? 

several are partially'denuded» The epithelial cells 

remaining at the tip and along the upper third of the 





4 

villus are large, misshapen, riddled with vacuoles, and 

sometimes multinucleated ® 

By the fourth postirradiation day, the villi are 

reconstituted? only a few abnormal cells remain at the 

tip# By the sixth posirradiation day, the microscopic 

appearance of the intestinal mucosa has returned to 

normal• 

Histological changes may be observed in other cells 

of the gut wall® Within a few hours after irradiation, 

goblet cells swell, discharge their contents, and cover 

the bowel lining with a thicker layer of mucus® There” 

after, the goblet cells increase in size and decrease 

in number? the mucus layer thins until villus recovery 

has been completed (28,29)» Similar changes occur in 

gastric mucoid cells (33)» Paneth cells are relatively 

radioresistant; only mild nuclear fragmentation and 

cytoplasmic degranulation take place following 1000 rads 

(26,28,36). These secretary cells, as well as gastric 

zymogen and parietal cells, demonstrate swelling and 

fragmentation of mitochondrial membranes or other 

subcellular membranes along with the disappearance of , 

ribsomes from the endoplasmic reticulum (33»3^*3^)o 

The intestinal lamina propria is infiltrated by 

neutrophils, small lymphocytes, and eosinophils on the 

first and second posirradiation day® On the second 

and third day, edema is prominent® The infiltrates and 
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edema resolve by the time that recovery of the villi has 

taken place (26) . 

PAS - S0hiff preparations of the small bowel dem¬ 

onstrate decreased intensity of Feulgen-positive mater¬ 

ial within one to two hours after irradiation; tissue 

sections remain pale until 48 hours after irradiation 

(68) , Biochemical studies of DNA synthesis in small 

bowel homogenates correlate well with these histocheraical 

findings; DNA synthesis drops precipitously one hour 

after irradiation, is minimal at eight hours after 

irradiation, and recovers completely within 48 hours 

(69) ® Toluidine-blue sections demonstrate a parallel 

sequence of events for intestinal MA content, 

Histocheraical studies of gastrointestinal enzyme 

activity in the irradiated animal offer conflicting 

results. In'the normal small bowel, enzyme activity is 

intense in the supranuclear region of cells at the tips 

of the villi, moderate in the cells at the sides of 

the villi, and minimal in cells at the junction of the 

villi and the crypts (29). Outside the body, irradiation 

inactivates enzymes in aqueous solution. In vivo, 

irradiation increases enzyme activity, presumably 

through the rupture of subcellular membranes. Enzymes, 

which are normally separated from intracellular substrates, 

spread through the entire cell and catalyze destructive 

reactions (70). This enzyme release theory (of Bacq 
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and Alexander) has never been substantiated to date 

(29,30), Spiro and Pearse demonstrated increased duodenal 

cathepsin and non-specific esterase activity in the first 

forty-eight hours after irradiation; however, staining 

was weak and diffuse on the third postirradiation day* 

Recovery of enzyme activity began in cells at the sides 

of the villi on the fourth day and was completed by the 

sixth day (29) , These a.uthors showed that early increases 

of intra.cellular enzymes do not necessarily produce 

irreversible cellular destruction; however, the disrup¬ 

tion of intestinal enzyme activity may contribute to the 

physiological disturbances observed in irradiated animals 

(29) * 

Radiation induces many functional disturbances of 

the gastrointestinal tract (38)* Vomiting occurs in 

species where this reflex exists* Gastric secretion of 

pepsin and hydrochloric acid decreases (33,39)» Pyloro- 

spasra and. progressive gastric distention prolong gastric 

emptying time (40,41), The propulsive force of the 

intestine may be increased or decreased, depending on 

the relative excitability of cholinergic and adrenergic 

receptors in intestinal smooth muscle (38)* Radiation- 

induced diarrhea may be reduced by diverting bile flow 

from the intestinal tract (42-44), Electrolyte concen¬ 

trations and enzyme activity within the gut wall are 
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disturbed (4.5-49) • Fecal weights increase to 2-§ times 

normal values as intestinal contents are poorly absorbed 

(50,51,6?)• Intestinal uptake studies for sugars (52-55) 

electrolytes (56,57), amino acids (58), vitamins (57,59- 

62), fats (63), and drugs (64-66) show contradictory 

results but usually demonstrate malabsorption on or 

about the third'day after irradiation (38). 

Histological changes by themselves do not explain 

the decreased uptake of substances which are absorbed 

by different mechanisms* .Alternative explanations 

of radiation-malabsorption include: l) impaired pancreatic 

exocrine secretion, 2) altered intestinal flora, 3) short¬ 

ened transit time resulting in inadequate exposure of 

intestinal contents to transport enzymes, and 4) de¬ 

activation of mucosal enzymes (50). 

After a single LD-^qq dose of radiation, the general 

appearance of irradiated animals correlates well with 

the amount of damage to intestinal villi. The mice 

appear normal for 48 hours. On the third day, the fur 

is ruffled, the back is arched, and the animals have 

diarrhea (28). On the fourth day, symptoms are 

accelerated, and feces may be blood-tinged• Death occurs 

on the third to seventh day, but a small percentage of 

animals may survive the intestinal radiation syndrome 

to die a "hemopoietic death" seven to ten days later. 

After a. single LD^q dose of radiation, a. less 

severe gastrointestinal reaction takes place. Survivors 

may live four to six weeks or longer; nonsurvivors usually 
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expire in the second postirradiation week with a syn¬ 

drome characterized by bacteremia, hemorrhage, and 

anemia. (18) * 

Postirradiation bacteremia has been observed for 

nearly fifty years, and the organisms involved are 

usually Gram negative bacilli (71-77)* Earlier investi¬ 

gators histologically demonstrated bacteria in the lumen 

of the bowel adjacent to the denuded epithelial lining; 

consequently, they attributed Gram negative septicemia 

to cross-country bacterial invasion of the gut wall (71, 

73, 74, 78» 79) » However, the clumps of bacteria, were 

isolated and superficial, and these authors never satis¬ 

factorily demonstrated the progressive intestinal 

cellulitis which they postulated to exist* By~ taking 

daily blood cultures, Hammond demonstrated that endogenous 

postirradiation bacteremia does not occur on days 2-4 when 

damage to the intestinal mucosa is maximum; it appears 

on day 7-15 when the epithelium no longer shows 

histological damage (80)• In a similar fashion, 

Shechmeister, Hammond and others demonstrated that art- 

ifical infection of irradiated animals, whether by oral 

inoculation, subcutaneous injection, or aerosol spray, 

produced the greatest incidence of bacteremia and 

death when bacteria were given on days 7-15 after 

irradiation (82-85). Death in this time period could 

not be produced by irradiating the abdomen alone, but 





it did follow irradiation of the whole body with the 

abdomen shielded (17), Therefore, more recent investi¬ 

gators have related bacteremia and death in the second 

week after midlethal irradiation to factors other than 

the temporary denudation of the intestinal epithelium 

(16-18, 82-8.5), 

Susceptibility of irradiated mice to infection, 

defined in terms of percentage deaths and rapidity of 

death after bacteremia, increases linearly until the 

fifteenth postirradiation day, At this time irradiated 

mice are five times more susceptible to infection than 

unirradiated controls; susceptibility then drops 

exponentially until control values are reached shortly 

after thirty days (83,84), 

The post-bacteremic survival time of irradiated 

mice depends on the organism involved. Pseudomonas 

bacteremia is fatal in less than 24 hours; Proteus, two 

days; E, coli, three days; and Paracolon, four to five 

days (80), Even heat-killed, avirulent and attenuated 

virulent bacteria are lethal for irradiated mice during 

the second week after irradiation (82,86), In the 

same period, bacterial endotoxins enhance the lethal 

effects of radiation; however, results are contra¬ 

dictory and depend on the time of inoculation and the 

dose of radiation (87-90), 
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In the second week after midlethal irradiation, the 

mouse’s defense mechanisms against bacteria, and bacterial 

products are grea.tly impaired; indeed, several radiation 

induced abnormalities of the reticuloendothelial system 

have■been described. The bone marrow, spleen, thymus, 

and. lymph nodes are exquisitely radiosensitive and show 

extensive cellular destruction within hours a.fter 400 rads 

(81,91); recovery, as judged by the weight of these 

organs, begins on or about the seventh day after irrad¬ 

iation. The migration of leucocytes, phagocytosis, 

antibody production, serum "Properdin" levels, and the 

bactericidal power of blood are markedly depressed by 

radiation (92-97), 

In addition, the hemopoietic functions of marrow 

and lymphoid tissue are disturbed. Lymphocyte and 

neutrophil counts drop to minimal values on days 4-8 

after irradiation; platelet counts, on days 9-10; and 

erythrocyte counts on days 8-12. By day fifteen, con¬ 

siderable recovery has taken place in both RBC and WBC 

counts (18,83)» 

As a complication of this pancytopenia, hemorrhage 

into vital organs or exsanguination often follow 

thrombocytopenia and at times may be the immediate cause 

of death. When bleeding is more subtle, anemia occurs 

three to six weeks after irradiation. 

Many observers have noticed that irradiated animals 

ingest smaller quantities of food and water and lose 

weight in the second week after whole-body irradiation; 
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consequently, attempts have been made to Implicate 

starvation and inanition in the etiology of death at this 

time. Indeed, the deprivation of food or the feeding of 

an inadequate diet to an irradiated animal may produce a. 

number of metabolic disturbances, may alter the intest¬ 

inal flora., and may enhance the animal’s susceptibility 

to bacteria and bacterial toxins (98-105)• On the other 

hand, nutritional deficiencies alone fail to abolish the 

bactericidal power of the blood, liver, and spleen in 

the manner that radiation alone does (104). Furthermore, 

the inoculation of 0.1 micrograra or less of Gram negative 

endotoxin by itself may bring about a reduction in oral 

Intake and body weight (106,107) , In this manner, food 

intake influences endotoxin tolerance, but the presence 

of endotoxin regulates food intake. Therefore, depressed 

oral intake may contribute to the debility observed 

in the second week after irradiation, but it is not the 

major mechanism of death (108,109). 

Although the signs and symptoms of the various 

post-irradiation syndromes have been well described, 

therapeutic attempts have been disappointing. A number 

of potentially protective agents have been Studied, and 

a few (eg. substances which induce hypoxia, such as 

histamine, cyanides, catecholamines, para-amino- 

propiophenone, some anesthetics, or tryptamine; thiols 
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and disulfide compounds such as mercaptoethylamine, 

glutathione, and 2-raeroaptoethylguanidine; spleen or 

bone marrow homogenates? nucleoprotein preparations; and. 

antibiotics) have achieved, limited successes under special 

circumstances (5)• A review of each compound and the 

specific instances in which it is effective is beyond 

the scope of this dissertation; however, two classes of 

radioprotective compounds were chosen for study and de¬ 

serve further mention. 

Following earlier observations that spleen-shielding 

may protect irradiated animals, Lorenz and others 

demonstrated that injections of spleen or bone marrow 

homogenates could prolong life, modify radiation injury, 

and enhance resistance to infection in irradiated mice 

(110-114). The same effects were also achieved by 

injecting; 1) homogenates of infant spleens into 

irradiated adult mice; 2) marrow homogenates from heter¬ 

ologous species into irradiated mice, and 3) uncontam¬ 

inated nuclear fractions of spleen cells into irradiated 

mice. Cytoplasmic subcellular fractions were inactive, 

and nuclear fractions pre-treated with Deoxyribonuclease 

or trypsin (but not Ribonuclease) lost their protective 

ability (115-120). Accordingly, these investigators 

concluded that the active component of marrow and spleen 

homogenates was a deoxyribonucleoprotein (X19912°)« 
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Indeed, DNA injections prolong survival in irrad¬ 

iated rats; in each instance, the duration of survival 

and the percentage of survivors depend on the amount and 

molecular weight of the DNA preparation, not on the 

homology of donor and recipient species (121,122), DNA 

labelled with tritiated thymidine, after intraperitoneal 

injection Into mice, localizes in the spleen, lymph nodes, 

bone marrow, free lymphocytes, and in the crypts of the 

small intestine (122,123)* Presumably, radiation 

increases the permeability of these cells to the entrance 

of macromolecules, including DNA; and this pre-formed DNA 

or its breakdown products can be utilized for the repair 

of radiation damage (122,124-127), 

In irradiated animals, antibiotic therapy produces 

variable and frequently disappointing results. When 

irradiated mice are inoculated with exogenous bacteria 

and with antibiotic preparations (eg, streptomycin, 

terramycin, aureomycin, chlormycetin, or penicillin, 

the incidence of bacteremia, is reduced; in some cases, 

mean survival time is prolonged but without any increase 

in the ultimate percentage of animals surviving (127-129)» 

However, such findings are not consistently reproducible 

because the efficacy of antibiotics is determined by 

many variables. 

One determinant of antibiotic efficacy is the dose 

of radiation. Antibiotic treatment has a protective effect 
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only after moderate exposure to radiation (less than ?00 

rads)? after higher doses, mice die before septicemia 

takes place (130) , Consequently, antibiotic therapy is 

relatively useless in the acute intestinal radiation 

syndrome compared to its protective effect during the 

bone marrow syndrome (17,18), 

Because the virulence of different experimental 

bacterial inoculations varies widely, the route of 

injection, the dosage, and the bacterial species employed 

will greatly influence the outcome of such studies. 

Similarly, the type of antibiotic, the dosage, the timing 

of injection, and the route of injection are also 

important. Parenteral antibiotics reduce the incidence 

of bacteremia but do not prolong life significantly; oral 

preparations, and especially those which are poorly 

absorbed across the intestinal mucosa, have been shown to 

prevent bacteremia, prolong life, and in some instances, 

prevent death (131)* When antibiotics are given prior to 

or immediately after irradiation, they must be continued 

for at least three weeks in order to obtain maximum effect 

The shorter the period of treatment, the greater will be 

the postirradiation mortality (131) , 

Postirradiation survival has been related to the 

suppression of intestinal coliform bacteria; when anti¬ 

biotics fail to render the stool coliforra-free, they have 

no effect on duration or rate of survival (131)• 

Conversely, the incidence of diarrhea, raelena, and weight 
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loss is significantly reduced in germfree or coliform- 

free mice, and. such animals routinely survive radia.tion 

doses which are lethal for conventional mice (19? 131-133)• 

With the improvement or experimental design and 

bacteriological techniques, some of the earlier 

conclusions must be re-examined. When previous in¬ 

vestigators inoculated irradiated animals with exogenous 

bacteria and noted the subsequent appearance of these 

organisms in the host animal’s blood (82-85,98,103*104, 

128,134,135)f they actually learned very little about 

the host animal’s susceptibility to its own gastro¬ 

intestinal flora. When these same investigators 

demonstrated Gram negative bacteria in the blood of 

irradiated animals (80-82,101,104,127), they interchanged 

the terms "bacteremia”, "septicemia", "sepsis", "infec¬ 

tion", and invasion" freely and perhaps improperly. 

The presence of bacteria at death did not necessarily 

mean that infection contributed to the animal’s demise, 

and, conversely, the absence of bacteremia did not prove 

that infection contributed nothing (86, 127), 

The early observers vigorously sought evidence 

to prove that progressive intestinal cellulitis was the 

source of pre-terminal bacteremia. Many were able 

to demonstrate increased bacterial counts in: homogenates 

of liver, spleen, mesenteric lymph nodes, kidney, and 

bone marrow (81,82,101,103)? homogenates of isolated 
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bowel segeraents containing stool (85); stool speciments 

excised from the intestine (105); mixtures of intestinal 

tissue and stool (135); and defecated stool specimens (136)* 

Upon more careful analysis, it is obvious that 

bacterial counts from such specimens do not necessarily 

support the intended conclusion. S^all numbers of intest¬ 

inal bacteria normally find their way into mesenteric 

lymph nodes, the liver, spleen, and kidney. Following 

irradiation, the proliferation of bacteria in these organs 

prior to bacteremia may reflect the reticuloendothelial 

incompetence of these organs rather than invasion of 

the gut wall. Furthermore, bacterial proliferation in 

feces is not necessarily evidence for proliferation 

in the bowel wall. T^e contamination of intestinal 

homogenates with gross quantities of fecal material 

produces bacterial counts which reflect growth in the 

stool rather than in the intestine itself. Colon 

feces and defecated stool samples contain material 

which has travelled the entire length of the alimentary 

tract. Bacterial counts from such specimens represent 

a composite of oral, gastric, intestinal, and colonic 

bacteria and may obscure local variations in bacterial 

populations• 

Despite inferences to the contrary, bacterial in¬ 

vasion of the gut wall has never been demonstrated 

satisfactorily by bacteriological techniques. In the 
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1950’s, in vitro culture methods were inferior to present 

methods. Media consisted of plain agar, blood agar, or 

broth; incubation was primarily a matter of keeping 

the cultures warm (18); and recovery of intestinal bac¬ 

teria: was poor by present day standards. To investiga¬ 

tors who used such techniques, lactobacilli appeared 

irregularly throughout the digestive tract, the stomach 

was sterile because of its low pH, the large bowel con¬ 

tained conforms as the predominant organism, and the 

small bowel was not very important. 

In 1965, Schaedler and Dubos demonstrated a reli¬ 

able method of anerobic incubation which enabled them to 

harvest a greater number and variety of intestinal bac¬ 

teria than their predecessors (137)» T^ey selectively 

incorporated stimulants and inhibitory substances into 

their media and recovered fastidious and nutritionally 

more demanding species (eg. Clostridia, bacteroides)• 

These authors also developed techniques to differentiate 

bacteria living freely in the lumen of the gut from 

those adhering loosely to the mucus covering the epithel¬ 

ium and from those that were buried beneath the surface 

of the gut wall (138). Schaedler and Dubos used these 

techniques to study the development of the mouse gastro¬ 

intestinal flora from birth to adulthood, and, by paying 

careful attention to quantitative procedures, achieved 
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greater precision and reliability in bacterial counts 

than previous investigators (137,138), Accordingly, with 

such improved techniques now available, we decided to 

re-evaluate the activity of gastrointestinal bacteria 

in the irradiated animals. 

Three major experiments were performed. Experiment 

I was a histological study designed: l) to describe the 

microscopic anatomy, mitotic activity, nucleic acid 

activity, and enzyme activity in the intestine of 

irradiated mice; and 2) to test the ability of exogenous 

intraperitoneal DNA to modify these parameters of radiation 

injury. 

Experiment II was a bacterioloecic study designed: 

1) to describe the normal gastrointestinal flora for 

weanling white mice of a particular strain; 2) to test 

the effect of irradiation on bacteria; and 3) to demon™ 

strate bacterial invasion of the gut wall by culture 

or by tissue Gram stain techniques. 

Experiment III was a bacteriological study designed! 

l) to describe the normal colonic flora for adult white 

mice of the same strain; 2) to test the effect of 

radiation on these bacteria; 3) to demonstrate bacterial 

invasion of the colon wall by culture or by tissue Gram 

stain techniques; 4) to test the effect of antibiotics 

on the colonic flora in normal and irradiated mice; and 

5) to study survival in antibiotic-fed and conventional 

irradiated, mice 





MATERIALS AND METHODS 

Experiment I 

Forty two male and female white mice of the Charles 

River strain were employed in this experiment® Twenty 

four were given 900 rads (250 kv., 117 rads/min., filtered 

by a % aluminum-^ copper filter, HVL-1,65 mm® copper, for 

7.69 min®, in a 10 section circular mouse container 

mounted on a turntable with the target 5^ cm. from the 

cone) of whole-body x-irradiation. Immediately following 

irradiation, twelve animals were given an intraperitoneal 

injection of 300 micrograms of DNA (“Highly Poljrmerized 

DNA*' from Nutritional Biochemical Corp., Cleveland) which 

had been suspended at 4 C in 0.14M' saline for 24 hours 

(122). Twelve controls received an injection of 0.14M 

saline. At 1,2,4,8,24 and 48 hours after irradiation, 

pairs of DNA-injected and saline-injected mice were killed 

by a quick blow to the head. As further controls, two 

mice were given saline and killed immediately without 

treatment? two mice were given saline and killed immed¬ 

iately? two mice were given DMA and 'killed immediately; 

six mice were given DMA and killed at 1,2,4,8,24, and 

48 hours after injection; and 6 were given DNA before 

irradiation and were killed at 1,2,4,8,24, and 48 hours 

after irradiation. 

From each animal, portions of mid-jejunum, mid- 

ileum, and mid-colon were excised and quick-frozen in 
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liquid nitrogen or fixed in Lillie’s formalin® Formalin- 

fixed tissues were embedded in paraffin, and sections out 

at 5 micra were stained with hematoxylin and eosin, 

Schiff*s reagent and Light Green to demonstrate DNA, 

and Methyl Green-Pyronin to demonstrate DNA and RNA (139? 

140), Quick-frozen tissues were mounted on liver slices 

for support and stored in plastic bags at -7Q°C. Cryostat 

sections, cut at 4 micra, were stained with indoxyl acetate 

to demonstrate cathepsin and non-specific esterases (139)* 

Enzyme activity in the epithelial cells of the villus 

tip, villus side, villus base, and crypt gland was eval¬ 

uated by a histochemistry technician unfamiliar with the 

treatment given to each animal. This activity was deter¬ 

mined by the intensity of the histochemical stain which 

was graded from 0 to 4. Four micra sections of liver 

from each animal served as controls for the staining 

procedure. 

The Feulgen-stained sections were used for mitotic 

counts. One thousand consecutive crypt epithelial cells 

from the basal regions of consecutively scanned crypt 

glands were counted. The mitotic index was expressed 

as the number of mitotic figures per 100 crypt cells 

(141,142), 

Experiment II 

Twenty eight white male weanling (3 week old) 

mice of the ICR strain were employed in this experiment,, 
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Fourteen were given 1200 rads (114 rads/min, for 10.53 

min. with the previously described irradiation equipment) 

of whole-body x-irradiation. Fourteen served as unir¬ 

radiated controls, At 1 hour, 1 day, 2,3,5,7,and 10 

days after irradiation, two mice from each group were 

killed by a quick blow to the head. The fur was sprayed 

with a germicidal aerosol (Staphene Spray, Vestal 

Laboratories, St. Louis), and the abdomen was entered by 

sterile dissection. From this point in the experiment, 

all specimens for bacteriologic assay were handled with 

aseptic technique. The entire stomach as well as 2 cm, 

segments of mid-jejunum and mid-colon were excised and 

placed individually in sterile petri dishes. For histo- 

chemical purposes, a specimen of each organ was mounted 

on a slice of liver, quick-frozen in liquid nitrogen, and 

stored in a plastic bag at -70°C; at a later time, 4 

mi era. cryostat sections were stained with the Brown- 

Brenn technique for bacteria (143) and studied by 

light microscopy. 

Many of the following bacteriological techniques 

have been described previously (137,138,144)» From the 

remainder of each organ, 0.1 gram of lumenal contents 

was removed and cultured within 15-30 minutes, A 

flamed No. 2 bone curette (Sklar Instruments) was found 

to be reliable for measuring this amount. The 0.1 gram 

of specimen to be cultured was diluted with 9®9 ml. of 

sterile norite A charcoal water; charcoal water was 
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prepared by filtering distilled water over norite A 

(Nutritional Biochemicals Co®, Cleveland)• This first 

tube containing a Is 100 (10~2) dilution was placed on a 

vigorous shakier (General Purpose Variable Speed Eberbach 

Shaker) for five minutes to evenly disperse the particles 

of organic material. The resultant emulsion was then 

serially diluted by adding 1 ml® from the first tube to 

9 ml. of charcoal water, and so on, until five tubes 

were prepared® The first tube prior to serial dilution 

was a IslOO dilution, and the last tube represented a 

1:1,000,000 (10"6) dilution. 

A loopful from each tube selected for analysis was 

then streaked on the appropriate solid bacteriological 

media® The 4mm loop delivered .01 ml. of fluid; there¬ 

fore, growth at the streak taken from the first tube 

represented a 10"^(10”2 x 10“2) dilution of the total 

number of colonies, and growth from the last tube 

represented a 1Q"^(10"6 x 10"2) dilution® The first, 

third, and fifth tubes were selected for streaking, 

and final counts were respectively 10 , 10 -, and 

-7 
10 ' dilutions of the original specimen. If 3 colonies 

were found on a plate representing a 10 dilution, the 

bacterial count for this specimen would be recorded as 

3 x 10} organisms per gram of stool* When bacterial 

counts increased, higher dilutions were used so that 

the number of colonies per petri dish never exceeded 

200. 
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At the same time, approximately 0.1 gram of 

each organ was sliced open longitudinally, placed in a 

tube of sterile norite A charcoal water, and shaken 

vigorously for five minutes. From previous experiments, 

we had determined that one washing with five minutes of 

shaking was sufficient to lift away the mucus overlying 

the intestine without damaging the tissue itself. The 

washed specimen was removed and weighed to three decimal 

places on a semi-automatic balance.(Sartorius-Werke, 

Gottingen). The wash water was then serially diluted 

and cultured on the appropriate media. 

The washed specimen was diluted to lOcc, with sterile 

norite A water and homogenized by a motorized teflon 

pestle in a grinding tube (TRI-R STIR-R, Model S63G, 

TRI-R Instrument Co.). Serial dilutions of this homo¬ 

genate were streaked on the appropriate media. 

Five selective media were employed for each 

specimen; they have been described previously (137)• 

Medium A was employed for total counts, and two plates 

were streaked; one was incubated aerobically and the 

other anerobically. Medium C was used for the isolation 

of Bacteriodes species and Clostridia, species, medium G 

for Lactobacilli. and Enterocc-occus M medium for Gram- 

positive cocci; each of these was incubated anerobically. 

Medium E was used to isolate conform organisms and was 

incubated aerobically 





A standard incubator (Precision Scientific Co.) 

was employed for aerobic incubation; aerobic organisms 

were incubated for twenty four hours• For obligate 

anerobes, we used an anerobic incubator (National 

Instrument Co.) which was maintained at anerobic con¬ 

ditions by bringing it to a negative pressure of 21 

inches of mercury with a standard vacuum pump and then 

flushing it five times with equal parts of carbon 

dioxide and nitrogen. .An iron pad soaked in copper 

sulfate solution served as an oxygen scavenger within 

the incubator. The incubator was maintained at a neg¬ 

ative pressure of nine inches of mercury and at a 

o 
temperature of 37 for 48 hours. 

Colony counts for total aerobic and total an¬ 

erobic growth were made from medium A. These were 

correlated with counts from the other, more selective 

media. For this initial experiment, bacterial ident¬ 

ification was accomplished primarily by comparing colony 

morphology on each medium with that of known specimens 

on simila.r media in our laboratory. Gram stains, blood 

agar subcultures, and sugar slants were employed on a. 

spot-check basis to assess the accuracy of our ident¬ 

ifications . 

Bacterial counts (bacteria/gram of feces or tissue 

homogenate or bacteria/cc. wash water) were determined 





for each specimen and converted to their logarithmic 

equivalent® The logarithm of ea.ch bacterial count was 

key-punched onto a. separate computer data card along 

with such information as the presence or absence of 

irradiation, the time of sacrifice and the type of 

specimen (eg® stoma.ch contents, jejunal wash, colon 

v-homogenate, etc.)® When no bacteria were found on a 

given plate, it was necessary to record a small constant 

(10 or 101) to avoid the imaginary expression log 0. 

A programmed factorial analysis of variance was performed 

on an IBM 7094 computer; and, mean bacterial counts, 

marginal means, F ratios, and significance levels were 

calculated. 

Throughout the course of the experiment, the mice 

were housed ten per cage in plastic- wiretop cages with 

sawdust litter. There were two pint-sized water bottles 

and one feeding bln per cage. The diet consisted of 

unrestricted quantities of water and Purina Laboratory 

Chow. The cages were cleaned and the water bottles 

were changed every three to four days. No attempts were 

made to prevent fighting, cannibalism, or coprophagy. 

Experiment III 

One hundred adult (90 day old) white mice of the ICR 

strain were employed, 40 in the initial phase of the 

experiment. Ten were untreated and served as controls. 

Ten were given 1200 rads (with the techniques mentioned 
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above) of whole-body x-irradiation. Ten were started 

on oral antibiotics and then given 1200 rads; and ten were 

given antibiotics only. Two mice from each group were 

sacrificed one day, three days, five days, seven days, 

and ten days after the day of irradiation. With the 

sterile techniques described in the previous experiment, 

the abdomen was entered, a segment of mid-colon was 

saved for histological purposes (as described in Ex¬ 

periment II), and 0.1 gram of colonic feces was serially 

diluted and cultured. 

Incubation proceeded as described previously, but 

greater attention was paid to bacterial identification. 

Gram stains were made from each type of colony that could 

be harvested from the C,E,G, and Enterococcal media. 

From the C media, Clostridia were identified as Gram 

positive rods with or without spores; whenever present, 

their growth was confirmed on anerobic, blood agar sub¬ 

culture. The Bacteroldes species were thin, pleomorphic, 

fusiform, or small Gram negative rods which grew only 

anerobically on blood agar (as small, clear or gray 

colonies). Gram stains from the G medium revealed the 

large, pleomorphic, or thick short Gram positive 

laetobacilli• As these colonies aged, they lost their 

ability to retain the crystal violet stain; they could be 

seen as Gram positive, mottled with patches of Gram 

negative staining, or entirely as Gram negative 

organisms. In these instances, characteristic morphology 
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appeared after "blood agar subculture® Colonies from the 

Enterococcus-M medium were stained to identify Lactobacilli, 

Streptococci, and the larger Gram positive cocci of the 

Micrococcus species. When identification was uncertain, 

colonies were transferred to blood agar and incubated 

anerobically and aerobically. In the antibiotic-fed 

animals. Gram staining revealed both Gram positive and 

Gram negative yeast forms and hyphae; no attempt was made 

to identify fungi more precisely. 

Data was recorded in the sam manner as above, and a 

factorial analysis of variance was performed on the 7094 

computer. Mean bacterial counts, marginal means, F 

ratios, and, significance levels were calculated. The 

tissue sections were stained by the Brown-Brenn technique 

for bacteria in tissues (140) and were studied by light 

microscopy. 

Throughout the course of this experiment, mice 

were housed ten per cage in plastic wiretop cages with 

sawdust litter. There were two pint-sized water bottles 

and one feeding bin per cage; the diet consisted of 

unrestricted quantities of water and Purina Laboratory 

Chow, For the antibiotic-fed animals, Neomycin Sulfate 

(Mycifradin Sulfate sterile powder, Upjohn) at a con¬ 

centration of 10 grams/liter and Potassium Penicillin G 

(Squibb) at a concentration of 4 million units/liter 

were dissolved in the drinking water. Antibiotics were 
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started four days prior to irradiation and were main¬ 

tained throughout the course of the experiment* At 

three to four day intervals, the antibiotic solutions 

in the drinking bottles were changed to maintain 

antibiotic activity. For all animals, the cages were 

cleaned at three to four day intervals; again, no 

attempt was made to prevent fighting, cannibalism, or 

coprophagy. 

Sixty male mice of the same age and strain were 

employed in a survival study. Ten were untreated, twenty 

were given 1200 rads of total body radiation, twenty were 

irradiated and given antibiotics, and ten were given 

antibiotics only* The mice were housed ten per cage, 

fed, and given drugs as described above. At eight 

hour intervals for thirty days, the cages were checked 

and dead animals were removed. The time of death for 

each mouse was recorded as well as the daily count of 

living and dead animals. 





RESULTS 

Experiment I 

In the small towel, Morphologic changes include 

mononuclear Infiltration of the crypts at one hour, 

pyknotic or abnormally vesicular epithelial nuclei in 

the crypts at two hours, and inclusion bodies and debris 

that stain heavily for DNA at four hours (see Fig. 1). 

These changes increase up to 24 hours and partially 

subside at 48 hours. In the colon, morphologic changes 

are more subtle; mononuclear infiltration of the gland¬ 

ular epithelium and lamina propria appears, at 2-8 hours, 

and nuclear inclusions appear in these regions at 8-24 

hours (See Fig. 2), No such changes were observed in 

unirradiated animals, 

Most striking was the immediate disappearance of 

mitotic figures from the jejunal and ileal crypt 

epithelium of all irradiated animals (See Fig, 3). The 

mitotic index dropped precipitously within one hour 

after irradiation, began to recover at 24 hours, and 

recovered completely by 48 hours, There were no 

significant differences in the mitotic indices of mice 

receiving saline after irradiation, DNA after irradiation, 

or DNA before irradiation. Unirradiated animals maintained 

a constant mitotic index of 3*0% except for a spurt of 

mitotic activity a.t two hours after the DNA injection. 
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In unirradiated animals, crypt epithelial cells 

stained more intensely for DNjA and RNA than villous 

epithelial cells. Jejunal cells stained more intensely 

than ileal or colonic glandular cells. In the jejunum 

of some irradiated animals, crypt epithelial cells stained 

as lightly for RNA as cells in the villi, implying some 

loss of crypt RNA content. 

In unirradiated mice, Cathepsin (See Tables la-lj) 

and Nonspecific Esterase (See Tables 2a-2j) activity 

was greatest at the villous tips, decreasing progressively 

down the sides of the villi toward the junction with the 

crypts. These enzymes appeared predominently in the 

supranuclear region of epithelial cells. No sustained 

changes in the content or distribution of cathepsin and 

non-specific esterases could be seen in the first 48 hours 

after irradiation, and no effect of DNA could be found. 

Experiment II 

In unirradiated weanling mice, gastrointestinal 

bacteria live in distinct, well-localized populations 

rather than in a random mixture. The stomach (See Tables 

3a-3c) contained large numbers (10 -10®) of anerobic 

/lactobacilli in close relationship.. to the gastric wall; 

these organisms were recovered in large numbers (10 7-10®) 

from gastric washes and homogenates as well, as from gas¬ 

tric contents. In contrast, the jejunum (See Tables 

3d-3f) contained, large numbers (10-10°) of a.nerobic 

lactobacilli in the lumenal contents but only a moderate 
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nftmber (10-10 ) in the washes and homogenates. 

In the unirradiated mouse of this age, the colon 

contained bacterial populations which were in a state of 

flux (See Tables 3g-3j)» The most stable organism at 

this time was the anerobic lactobacillus, which was re¬ 

covered from the stool (10^-10^), wash (10^-lC7) and 

homogenate (lO-^-lO^) „ The colonic feces contained a 

o 

large number of aerobes (10°) early in the course of 

the experiment, but these bacteria decreased to 10 

near the end. A similar decrease was observed in the 

colon wash, and practically no aerobes were recovered 

from the homogenate at any time. Conforms did. not 

appear in the stool until the fifth sampling period, 
n 

when they were recovered at 101 organisms/gram feces; 

their numbers declined to 10^ by the end of the experiment. 

Except for one occasion, no conforms were recovered 

from colon washes or colon homogenates. The number of 

Ba.cteroides in colonic feces was moderate (10u™10?) but 

highly variable. They were recovered at 10 ;~10^ in the 

colon wash and only on sporadic occasions in the colon 

homogenate. At no time were Clostridia recovered on the 

C medium nor anerobic streptococci on the Enterococcus M 

medium» 

In the colonic feces (See Tables 3g,4, and 5) of 

irradiated weanling mice, there was a significant (p 

less than o0l) increase in total aerobes on the fifth 

(10'versus 10^ for controls, seventh (10^ versus 10^ 





32 

for controls), and tenth (10® versus 10^ for controls) 

days after irradiation. In addition, coliforms were 

significantly (p less than .01) increased, especially 

Q h 

on the seventh (10 versus 10 for controls) day after 

irradiation; however, the recovery of coliform bacilli 

was erratic, and this increase did not persist to the 

end of the experiment. In a similar fashion, there were 

several other statistically significant differences 

between irradiated and control mice; however, as will be 

discussed below, such differences were within the 

variability of existing bacteriological techniques. 

There were no significant increases in bacterial counts 

for the colonic wash water (See Table °>h) or colonic 

homogenates (See Table 3j ) • Therefore, although some 

bacteria proliferated in the colonic stool of irradiated 

mice, these organisms did not invade the mucus layer 

nor the colonic wall itself. 

On microscopic examination, the mouse stomach 

(See Fig. 4) was composed of glandular and nonglandular 

portions; the non-glandular areas were lined with 

stratified squamous epithlium. Gram positive rods 

-and cocci, presumably lactobacilli^were seen in the lumen 

of the stomach and in the mucus layer overlying both 

glandular and non-glandular areas. In the jejunum (See 

Fig, 5), lactobacilli were confined to the lumenal 

debris. In the lumen of the colon small Gram negative 

rods, larger Gram-negative fusiforms, and Gram positive 
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rods could be seen. In both the small and large bowel, 

bacteria were sometimes seen in the mucus layer covering 

the epithelium and, on rare occasions, just beneath the 

surface of the epithelium. In the latter situation, 

bacteria were not clearly in the same focal plane as the 

tissue and appeared to overlie the specimen. No micro™ 

abscesses and no evidence of bacterial invasion could be 

seen histologically. 

Two ot the mice died before they were cultured. 

These deaths occurred suddenly on the eighth and 

ninth days after irradiation. In a period of 4-6 hours, 

pallor and prostration terminated in death. Upon gross 

examination of organs, black stook was found in the 

intestine, and small clots or punctate hemorrhages were 

noted in the stomach and small bowel. 

Because the gastrointestinal flora of the weanling 

mouse is not firmly established, we were not certain 

whether the radiation-induced bacterial changes seen in 

these mice c-ould be reproduced in adult animals. 

Accordingly, we undertook a study of the colonic fecal 

flora in irradiated adult mice. 

Experiment III . 

In the colonic feces of unirradiated adult mice 

(See Table 6a.), anerobic bacteria (10?-10®) greatly 

outnumbered aerobes (10°) . The most numberous 

organism was the anerobic lac-t©bacillus (10®) . Bac- 
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teroides were present in moderate numbers (10^-10?), 

and coliforms in comparatively small numbers (10^). 

In the colonic feces of irradiated adult mice 

(See Tables 6a.,?, 8), there is a significant (p less than 

• 01) increase of coliforms (up to 1019 versus 10^ for 

controls) and total aerobes (up to 10^ versus 10? for 

controls) on the tenth dav after irradiation? this agrees 

with the findings in weanling mice. In addition, there 

is an equally significant (p less than .01) but less 

Impressive Increase in total anerobes on the seventh 

(109 versus 10'’* for controls) and tenth (lO^9 versus 

O 

10 for controls) days after irradiation; this finding 

is not observed in weanling mice. 

In the antibiotic-fed animals, no bacteria were 

recovered from the time of the first culture to the 

end of the experiment, Anerobic and aerobic fungi were 

the only organisms recovered on all five media (See Table 

6b), and no significant increases (See Tables ? and 8) 

were found in Irradiated animals. No fungi were 

recovered from animals which had not received anti¬ 

biotics » 

On microscopic examination of the colon, the mu¬ 

cosal surface appeared unbroken for all animals, 

Fusiforms, small Gram negative bacilli, and Gram positive 

rods and cocci x-jere found in the lumenal debris of all 

mice which had not been given antibiotics (See Fig, 6), 

In antibiotic-fed mice (See Fig, ?), greatly reduced 
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numbers of' bacteria were seen in the lumen of the colon; 

since they were not recovered by culture, they were 

considered non-viable forms which had not yet been 

eliminated by defecation* Gram positive and Gram negative 

fungi were also found in the same location. No animal 

demonstrated fungal or bacterial invasion of the colon 

wall, 

Irradiated mice, whether fed plain water or anti¬ 

biotics, began to die on the eighth post-irradiation 

day (See Fig. 8), The mean survival time for irradiated 

mice was 10.7 days and for antibiotic-fed irradiated mice, 

11,7 days. By the Kolmogorov-Smernov two-sample test, 

antibiotics did not produce a significant (p less 

than or equal to ,05) prolongation of life (145)* All 

irradiated animals died (See Fig, 9); among the unir¬ 

radiated animals, there were no deaths for 30 days, 

and the study was terminated at that time. 





DISCUSSION 

The mice employed in these experiments were more 

resistant to x-radiation than those animals described in 

earlier studies. Previously, 1200 rads was followed by 

death in 4-5 days from the acute intestinal radiation 

syndrome (16-19); however, our mice survived, on the 

average, until eleven days after irradiation and demon¬ 

strated few, If any, gastrointestinal symptoms, Although 

clots, punctate hemorrhages, and dark stool were 

found in the gut at autopsy, there was no vomiting, 

diarrhea, raelena, or dehydration. After a review of 

earlier histological studies (22-31), small bowel damage 

in the first three days after 900-1200 rads was much 

less than expected. Nuclear vacuolation, pyknosis, and 

the suppression of mitosis occurred as previously des¬ 

cribed, but there was less extensive disruption of cells 

and disintegration of tissues. The large bowel underwent 

a similar sequence of histologic changes; however, the 

slower and less severe nature of the damage was prob¬ 

ably related to the colon’s slower-cell turnover rate 

(146), When death occurred, it was associated with 

the proliferation of colonic fecal bacteria at a time and 

in a manner consistent with the postirradiation bone 

marrow syndrome. Although the radioresistance of these 

mice is unexplained, it must be taken into consideration 

when comparing our results to those of previous investigators. 
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The mechanism by which the gastrointestinal tract 

recovers from radiation damage is not well understood,, 

Biochemical studies have shown that intestinal DNA 

synthesis is suppressed during the first day after ir¬ 

radiation (69)» Injected DNA is taken up by many tissues 

of the body, including the intestine; it is reported to 

prolong life and to reduce mortality in irradiated an¬ 

imals (122,123) •» Accordingly we undertook a study to 

discover whether the lifesaving effect of DN.A was due 

to the amelioration of gastrointestinal radiation damage* 

DNA was taken up by the jejunum, as shown by the 

mitotic overshoot in unirradiated mice at 2 hours after 

injection (See Fig, 3) . However, DNA given just prior 

to irradiation or just after irradiation had no modifying 

effect on intestinal mitotic rate or intestinal damage 

in the first 48 hours after irradiation. No significant 

differences of tissue architecture, cell integrity, DNA 

localization and content, enzyme activity, or mitotic 

activity could be demonstrated in animals receiving DN.A 

or saline and between animals receiving DNA before or 

after irradiation. 

The lack of a gastrointestinal response to injected 

DNA does not preclude a beneficial effect on other organ 

systems. Indeed, spleen and bone marrow homogenates, 

for which DNA is the active principle, have proved ef¬ 

fective against death from the bone marrow syndrome but 
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not against death from the acute intestinal radiation 

syndrome (14?,148). Uptake studies show that $0% of 

the injected DN<A is soon bound to blood cells, especially 

lymphocytes (]22). Therefore, the lifesaving effects of 

DiNTjA injections are more readily attributed to the en¬ 

hanced recovery of lymphoid tissue and circulating 

leucocytes than to enhanced gastrointestinal recovery. 

When Experiment I was performed, histochemical 

studies were considered superior to biochemical analyses 

for the localization of intestinal enzymes and nucleic 

acids. Biochemical studies were performed on whole 

organs or organ homogenates and, accordingly, measured 

the average activity of a tissue; these studies were 

unable to relate intestinal enzyme activity or nucleic 

acid content to a particular type of cell or to an in¬ 

dividual cell, Histochemical techniques, on the other 

hand, have facilitated the qualitative localization of 

these compounds within the many component cells of the 

intestinal wall. However, it has been our experience 

and that of at least one previous investigator (149) 

that quantitative interpretation of histochemical pre¬ 

parations is subject to much error. 

The quantitative assessment of a particular cellJs 

enzyme activity requires the grading of its staining 
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intensity on microscopic examination. The comparison of 

tissue sections from many animals requires fine dis¬ 

tinctions between the staining reactions of each, and it 

is questionable whether even an unbiased human eye is 

capable of such distinctions. Although some authors (27) 

have attempted to circumvent this problem by supposedly 

standardizing the treatment of all tissue sections and 

using photometric equipment, many variables (eg. fluc¬ 

tuations in the thickness of tissue sections, the efficacy 

of fixation for each 'preparation, and the variable rate 

of histochemical reactions) are unavoidable. Such 

attempts are conscientious, but the data is nonetheless 

unreliable. 

With the inadequacy of histochemical techniques, 

it is not surprising that the Bacq-Alexander enzyme 

release theory has not been confirmed to date and that 

there is much conflicting opinion regarding the effect 

of radia.tion on intestinal enzymes. Our study demonstrated 

no persistent changes in enzyme activity in the first 

48 hours after irradiation, but final comment should 

be deferred until better histochemical procedures are 

available• 

Dubos, Schaedler, and others have demonstrated that 

the flora of the mouse digestive tract changes with the 

age of the animal (137*150). The rodent fetus is essentially 

free of cultivatable microorganisms at the moment of 
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birth; however, many bacterial species become established 

throughout the gastrointestinal tract with the onset of 

nursing* Lactobacilli, anerobic streptococci, and 

flavobacteria appear within the first day after birth 

and colonize the entire digestive tract* Lactobacilli 

and anerobic streptococci, according to these authors, 

are always more numerous in the stomach and colon than 

in the small intestine; they increase in number until a 

maximum level is reached on the twelfth day of the 

animal’s life. From then on, as long as the animal is 

maintained under favorable physiologic conditions, these 

bacteria remain at nearly the same level* The flavobac¬ 

teria also colonize the entire digestive tract and reach 

their maximum number around the tenth day of life; in 

contrast to lactobacilli and anerobic streptococci, they 

are most numerous in the small bowel* Their presence 

is transient, and they disappear completely by the 

twelfth day of life. 

At this time, enterococci and slow lactose-fer¬ 

menting conforms proliferate rapidly in the colon (up 

to 10* organisms/gram of stool) and occasionally in the 

stomach and small bowel* However, this proliferation 

also is shortlived, and by the eighteenth day of life, 

their numbers have decreased to 10 ">10'’■ organism s/gra.m, 

a level at which they persist,as long as the animal 

remains under favorable physiological conditions. 

Ba.cteroides begin to proliferate exclusively in the 
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large intestine on the fifteenth day of life and multiply 

rapidly up to 10 organisms/gram, a level at which they 

persist throughout the animal's life. Thus, by the end 

of the third week of a healthy mouse's life, the colonic 

stool contains 1010 enterococci, and 10^ collforms per 

gram of specimen (13?»1.50) » This colonic flora remains 

remarkably constant, and that of the healthy adult mouse 

differs on some occasions only in the increased numbers 

of conforms (10^/gram), E, coli (10^/gram), and 

occasional Pseudomonas, Proteus, or Clostridia (138). 

Dubos and Schaedler have confirmed their barter- 

iologic data by histological studies of' the stomach, 

small intestine, and colon (130). Through the use of 

the Brown-Brenn tissue Gram stain technique (143), they 

were able to demonstrate thick Gram positive rods where 

they recovered lactobacilli, Gram positive cocci where 

they recovered streptococci, small Gram negative-rods 

where they recovered coliforms, and Gram negative fusiforms 

where they recovered bacteroides (150) . In so doing, 

they destroyed the notion that gastrointestinal bacteria 

are randomly mixed throughout the gut and established 

the concept that the gut is a "collection of distinct 

microenvironments" in which virtually pure cultures of 

a few bacterial species exist (130), These bacteria in¬ 

teract with their host and adjacent microbial populations 
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in a series of changing temporal relationships. Thus, 

the irradiation of a weanling mouse, whose gastroin¬ 

testinal flora, is not firmly established, differs from the 

irradiation of an adult mouse with a stable bacterial 

composition, 

Our mice differed from those of Dubos and Sc-haedler 

in the respect that fewer bacterial species were re¬ 

covered, In no animal could we find anerobic strep¬ 

tococci; however, this may be entirely appropriate when 

the age of the mice is considered (137)» Lactobacilli, 

total aerobes, total anerobes, bacteroides, and conforms 

occurred in the same locations and proportions as those 

described by Dubos and Schaedler; but our recovery of 

bacteroides and total anerobes was slightly less than 

theirs. In only isolated instances did we recover 

Clostridia, flavobacteria,, or Proteus, Thus, our base¬ 

line bacterial counts generally agreed with those of 

earlier studies (137,138,140), and any differences could 

be explained by the normal variation found among 

different strains of mice or among different colonies of 

the same strain. 

In previous experiments of this type, statistical 

treatment of bacteriological data has been inaccurate or 

overzealous; normal varia.tions {with existing techniques) 

of bacterial counts have been presented as statistically 
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significant events. However, the statistical significance 

of such data does not necessarily imply its bacteriolog¬ 

ical significance nor even its relevance to the experi¬ 

ment at hando Before proceeding further with the dis¬ 

cussion of results, it is necessary to review the 

difficulties with bacterial statistics. 

The greater the number of organisms counted, the 

greater also will be the chance that insignificant 

variations in bacterial counts will be interpreted as 

significant. For example, if petri dish A had one 

bacterial colony on it, if petri dish B had two, and if 

both represented identically diluted specimens, no 

bacteriologist would seriously contend that these plates 

were different. If both plates were streaked from a 

10 dilution, the variation represented by the one colony 

difference would be 100 organisms; if both plates were 

O 

streaked from a 10 dilution, the actual bacterial 

counts would differ by 100 million organisms. By most 

statistical procedures, such 'a large number would be 

interpreted as a statistically significant increase of 

B over -A. Thus, minor variations in bacterial recovery 

may be magnified when higher dilutions are Involved, and 

a higher incidence of "false positives" (statistically 

significant changes) is produced. Indeed, this problem 

was encountered in the initial statistical treatment of 

our data, and a logarithmic transformation of actual 
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bacterial counts became necessary* 

Through the use of logarithms, the number of 

bacterial colonies necessary to produce a statistically 

significant change remained the same for all dilutions 

of the. original specimen. When the actual bacterial 

count doubled, the mantissa of the logarithm increased 

by ,301 irrespective of the characteristic* The use of 

logarithms was also required by the tube dilution method 

of preparing the specimens for streaking. In any tube 

dilution procedure, a significant increase or decrease 

requires a two tube change in the reaction studied. In 

terms of this experiment, the actual bacterial count 

must increase or decrease by 100 fold for a bacterio- 

logically significant event to have taken place. Changes 

of 1 tube (10 fold) or less are not bacteriologically 

significant, and conclusions derived from such data, are 

not valid. 

In the stampede to demonstrate bacterial overgrowth 

in the irradiated animal, many authors have erroneously 

accepted the validity of their statistical methods. One 

such study was published by Klainer, Gorbach, and Weinstein 

{136)• These authors based many of their conclusions on 

poorly controlled experiments and insufficient data.. All 

of their control bacterial counts were obtained, in the 

week prior to irra.diation, and statistical tests were 

based, upon a comparison of these values with those of 
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irradiated animals 1-2 weeks later. Because there were 

no unirradiated animals for comparison throughout the 

entire course of the experiment, these authors did not 

exclude the influence of extraneous factors (i.e., other 

than irradiation) on the bacterial counts of control and 

irradiated animals alike. Of the eighteen "significant" 

ba.cteria.l changes (Table 6 in reference 136) reported, 

thirteen were based upon variations of less than two powers 

of 10 (2 tube dilutions). Four of these 13 variations 

involved changes of 1*5-1*7 tube dilutions and were 

suggestive, but not truly significant. Sampling periods 

were infrequent, usually six to nine days apart, and two 

of the 13 variations were observed only on one occasion. 

Excluding unsubstantiated claims, these authors demonstrated 

proliferation of conforms after 1050 rads, proliferation of' 

coliforms and anerobic streptococci after 1550 rads, and 

proliferation of coliforms and fungi after 2150 rads. 

Experiments II and III of this study were designed 

to avoid the unjustified acceptance of statistical 

significance as the equivalent of bacteriological 

significance. Untreated mice were used as controls 

throughout the entire experiment for comparison with 

irradiated animals. Sampling periods were frequent, 

usually every 2-3 days. Because of the many independent 

counts . , 
variables affecting bacterial^ (medium, presence or absence 

of radiation, presence or absence of antibiotics, and 
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time of sacrifice), a factorial analysis of variance was 

selected as the most suitable statistical test. 

For each particular specimen, bacterial medium, 

and treatment group, mean bacterial counts were calculated 

each time of sacrifice. For each treatment group, a 

marginal mean bacterial count was obtained by averaging 

the means from each sampling period. The F ratio for the 

effect of radiation, defined as Mean Square Radiation/ 

Mean Square Error, was calculated to test the hypothesis 

that radiation had no effect on the marginal mean bacterial 

counts. The greater the F ratio, the less likely was the 

probability (p value) that this hypothesis was correct 

(151,152-Table B3). 

Many difficulties were encountered even with this 

more sophisticated, computerized statistical analysis. 

In Experiments II and III combined, seventeen differences 

between the control and irradiated marginal mean bacterial 

counts were significant at the ,01 level (See Tables 5 

and 8); of these, twelve were due to extraneous factors. 

The F ratio compared the differences between control and 

irradiated groups of mice to the variation within each 

group. In some instances, the recovery of organisms 

in one group of mice (but not the other) was either 

nonexistent or so erratic that the comparison between 

animal groups was meaningless. In other instances, 

one group started the experiment with a higher count for 
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a. particular organism and maintained this difference until 

the end without progression or variation. Often, the 

variation within a group was so slight that any dif¬ 

ferences between the groups produced significant F ratios. 

Thus, the factorial analysis of variance was superior in 

that it was based on bacterial' counts throughout the entire 

duration of the experiment rather than on recovery at a 

single point in time? however, even this relatively 

sophisticated technique did not guarantee that a statis¬ 

tically significant event truly represented the bac- 

teriologically significant result of a particular 

treatment. 

As with previous statistical methods, the factorial 

analysis of variance included too many "false positives*". 

In order to compensate for this disadvantage, it was nec- 

cessary for us to apply stringent criteria for accepting 

a statistically significant event as real. To accept an 

increased, bacterial count as a true radiation-induced 

proliferation, we required that? l) irradiated animals 

have a marginal mean bacterial count 100 fold greater 

than that of controls; 2) the p value be .01 or less; and 

3) the increased marginal mean bacterial count for 

irradia.ted. animals be sustained for 2-3 sampling periods. 

Using such criteria, we demonstrated true increases in 

colonic fecal aerobes and conforms of irradiated weanling 

mice and in colonic fecal aerobes, anerobes and. conforms of 
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irradiated adult mice; such increa.ses occurred as agonal 

or pre-agonal events. 

The proliferation of fecal conforms and aerobes is 

consistent with the previously demonstrated Involvement 

of Gram negative bacilli in postirradiation bacteremia 

(71-78,131) * Fecal conforms also multiply after high 

meat, gluten, or casein diets (105*153,15^)* starvation 

(153), some antibiotics (155)? changes in environmental 

temperature, change of cages, fighting, laboratory 

manipulation, and other stresses (156)• In such Instances, 

and in the period after irradiation, the proliferation of 

coliforms has been associated with a suggested decrease 

in anerobic lactobacilli (136,136)• 

An antagonistic relationship between anerobic 

lactobacilli and coliforms has been observed by several 

authors (103,137,138,150,153-158) and has been attributed 

to an antibiotic-like substances, lactobacillin, secreted 

by some species of lactobaeillus (159-162). The lacto- 

bacillus was thought to be the intestinal biostat 

which limited the.size of other bacterial populations. 

According to this concept, disruptions of the gastroin¬ 

testinal tract which produce conditions unfavorable for 

the growth of lactobacilli will be followed by an 

explosive proliferation of Gram negative species• Klainer, 

Gorbach, and Weinstein suggested that the fatal proliferation 

of coliforms which they demonstrated in irradiated animals 
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was due to a reduction in lactobac-illi (136)® Through 

dietary manipulation, these authors increased coliform 

growth and suppressed lactobac-illi prior to irradiation; 

the animals died more rapidly and in greater numbers (154)• 

Surprisingly, when lactobacilli were increased by 

dietary manipulation, there was no protection against 

irradiation (134); in one study, increased numbers of 

lactobacilli were associated with increased postirrad¬ 

iation mortality (163)• 

The significance of the agonal increase in Gram 

negative bacilli remains unclear* There is no question 

tha.t such overgrowth is related to bacteremia and greater 

mortality; however, the pathogenesis of this relationship 

is still open to debate* By two independent techniques 

we demonstrated that massive bacterial invasion of the 

intestinal wall does not take place* Bacterial counts 

in tissue homogenates (See Tables Jc93f9 and 33) remained 

stable throughout the course of the experiment, and bac¬ 

teria were seen qnlv at the lumenal surface of the gut* 

Instead of a massive invasion, Osborne (17), Bond 

(18), Gordon (81), and others have suggested that small 

numbers of bacteria cross the epithelial barrier at the 

time of maximal villous damage. The spread of the organ¬ 

isms is limited at first to small clumps of bacteria 

near submucosal lymphatics and capillaries. When im¬ 

munological defenses fail in the second week after 
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irradiation, bacteria may be found in regional lymph 

nodes, liver, and spleen (79)® These organs which serve 

as a secondary line of defense, are now incompetent and 

no longer prevent hematogenous dissemination of 

bacteria. Thus, only a small number of organisms are 

sufficient to produce fatal bacteremia. 

Osborne also postulated that bacteremia and death 

could be related to copropha.gy. Mice and other animals 

are frequently infected by the fecal-oral route. When 

the host animals defense mechanisms are destroyed, in¬ 

gested bacteria may also enter the bloodstream by wa.y 

of the tonsils and cervical lymphatics (17), 

Other workers implicated endotoxemia and vascular 

collapse as the mechanism of death. They postulated that 

increased numbers of Gram negative bacteria in the stool 

resulted in a greater production of endotoxin, Although 

data, is conflicting, irradiated mice are more susceptible 

to any quantity of endotoxin (88,131). T^e susceptibility 

of these animals to the lethal effects of endotoxin usually 

requires previous sensitization to Gram negative bacteria.; 

this could occur when c-oliform bacilli multiply explos¬ 

ively in the 10 day old mouse prior to equilibration 

with the la.ctobacillus population (137*156)* The rapidly 

progressing pallor, prostration, and death is further 

evidence for endotoxic shock as an important mechanism 

of death in the second week after irradiation, 

Matsuzawa., Wilson, and others who have worked with 
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germfree mice postulate a less direct effect of intestinal 

bacteria, on postirradiation survival,, Germfree mice live 

longer than conventional mice after "bone marrow syndrome*' 

doses of radiation. This finding was attributed to the 

fact that, in germfree animals, incompetent immunologic 

defense mechanisms are not exposed to intestinal ba.cteria 

(20,132,133)• However, after “intestinal syndrome" doses 

of radiation, when death supposedly is unrelated to 

infectious processes, germfree mice continue to outlive 

conventional mice (19,164), In explanation, these authors 

have shown that the presence of intestinal bacteria 

increases the mitotic rate and shortens the lifespan of 

intestinal epithelial cells (165,167)• Because cellular 

radiosensitivity is proportional to mitotic rate, intest¬ 

inal bacteria may influence gastrointestinal damage by 

their effort on cell turnover rate. 

Invariably, all proposed mechanisms of radiation 

death in the second week: after exposure mention the 

impairment of host defenses. Because the host animal 

is immunologioally incompetent, it is unable to contain 

or regulate any of the microorganisms which it harbors. 

It is susceptible to small numbers of bacteria or to 

relatively avirulent organisms (82,86), Even the corn” 

plete elimination of recoverable bacteria from the gut 

and the substitution of noninvasive fungi does not 

necessarily prolong life or reduce mortality. Thus, 





although pathological alterations occur in the gastro¬ 

intestinal flora, it is the amount of damage to the host 

animals protoplasm which ultimately determines survival. 

For this reason, postirradiation sickness is not a 

single entity; it is the composite of a number of syn¬ 

dromes which reflect a wide spectrum of cellular radio¬ 

sensitivity (168). Each cell population of the body may 

be characterized by its degree of radiosensitivity. As 

the exposure to radiation increases, the threshhold 

for irreversible damage is exceeded for a greater num¬ 

ber of tissues. Lymphoid and hemopoietic organs con¬ 

tain the most radiosensitive cells of the body. At 

dosages below the LD-Q, damage to these organs is re¬ 

versible; antibiotics prevent death from infection until 

immunologic recovery takes place (130)• At LD^q 

dosages, lymphoid damage is irreversible, antibiotics 

will not prevent death, and some form of replacement 

therapy was impractical, and. death was inevitable after 

this amount of damage. However, the prolongation of life 

and the reduction of mortality following injections of 

bone marrow homogenates, spleen homogenates, or DNA in 

large doses (110-114,122) has prompted investigators to 

reconsider these treatments in the control of radiation 

sickness and death. 

As radiation exposure nears LD_,dosages, rever- 
100 
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sible damage to the gastrointestinal epithelium takes 

place. Therapy here requires all of the previous treat¬ 

ments plus the control of diarrhea and the careful atten¬ 

tion to fluids, electolytes, and acid-base balance® At 

higher doses of radiation, gastrointestinal damage is 

irreversible, and replacement therapy for this organ 

system is necessary. At present, no known drug therapy 

will restore the intestinal epithelium. For the future 

one potential mode of therapy for this amount of damage 

is total intestinal transplant. 

At subsequently higher doses of radiation, damage 

involves so many organ systems and death occurs so 

rapidly that transplantation is out of the question. At 

this point, and perhaps at lower dosages, the ideal 

therapy for radiation exposure would attack a basic and 

universal cytological lesion. Ultimately, Sicure,! for 

radiation sickness and radiation death will depend on 

the stimulation of intracellular recovery processes and 

the prophylaxis of subcellular radiation damage. 





SUMMARY 

The morphological, histochemical, and bacterio¬ 

logical effects of ionizing radiations on the gastro¬ 

intestinal tract of mice are reviewed in this paper? 

their relationship to postirradiation sickness and death 

is discussed. Histochemical techniques, bacteriological 

techniques, experimental designs, and statistical methods 

used in this paper and previous studies are presented 

and analyzed• 

Intraperitoneal DNA, which prolongs life and re¬ 

duces mortality in irradiated animals, had no effect on 

gastronintestinal damage. Others have attributed its 

beneficial effects to the enhanced regeneration of 

damaged hemopoietic and immunologic mechanisms. 

Bacteria proliferate in the colonic feces of ir¬ 

radiated. mice, but they do not invade the surrounding 

tissues of the intestinal wall. The suppression of these 

bacteria by antibiotics did not prolong life or reduce 

mortality after a "hemopoietic failure" dose of x-rad¬ 

iation, Accordingly, it was concluded that for the 

ultimate survival of the host animal, the extent of 

tissue damage is more important than bacterial prolifer¬ 

ation 





POSTIRRADIATION INTESTINAL ENZYME ACTIVITY 

Key to Animal Treatment Groups 

0 

S 

D 

I&D 

I&S 

D&I 

- -no treatment 

- saline injection, sacrificed without irradiation 

- DNA injection, sacrificed without irradiation 

- irradiation followed by DNA injection 

- irradiation followed by saline injection 

~ irradiation preceded by DNA injection 

Enzyme activity, which is represented by the intensity 
of the histochemical stain, has been graded from 0 (absent) 
to 4 ® 





Hepatic'Cat he ps-in Activity - control specimen 

Table 1a. 

Irradiated 

Mice 

Treatments 
OSD 

Unirra dieted Mice i 

3 3 2 

Time I&D I&S D&I- - D 

1 hr. 

3 4 3 3 

2 hrs. 
3 3 2 2 

4 hrs. 
3 2 2 2 

8 hrs. 
2 3 3 2 

24 hrs. 
2 2 2 2 

48 hrs. 
3 3 3 2 

Table lb 

Jejunal Cathepsin Activity at the 
■Villus tip 

Treatments 
0 S D 

Unirradiated Mice 

2 3 2 

Time I&D I&S D&I D 

1 hr. 
3 3 4 .4 

2 hr. 
2 4 4 3 

4 hr. 

3 3 1 2 

8 hr. 
3 3 2 2 

24 hr. 
3 2 3 • 2 

48, hr. 
2 3 4 3 

Irradiated 
Mice 
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Table 1c 

Irradiated 

Mice 

Treatments 

0 S D 

2 2 2 

Time I&D I&S D&I D 

1 hr. 
2 3 4 3 

2 hrs. 
2 3 4 3 

4 hrs. 
3 2 3 2 

8 hrs. 
3 3 2 2 

24 hrs. 
3 2 3 2 

40 hrs. 
2 3 4 2 

Jejunal Cathepsin Activity at the 
Villous base 

Table Id 

Unirradiated Mice 

Time I&D I&S D&I D 

1 hr. 
1 1 3 -1 

2 hr. 
1 2 2 2 

4 hr. 
2 1 2 1 

8 hr. 
1 2 1 1 

; 24 hr. 
1 1 1 1 

48 hr. 
1 2 1 1 

Treatments 
OSD 

0 

Irradiated 
Mice 
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Crypt glands 38 

Treatments 
Table le 0 s D 

Unirradiated Mice 

0 0 0 

Irradiated 

Mice 

Time I&D I&S D&I- . D 

1 hr. 
0 0 1 1 

2 hrs. 
0 1 0 1 

4 hrs. 
1 1 0 0 

8 hrs. 
0 0 0 0 

24 hrs. 
0 0 0 0 

48 hrs. 
__Q_ 0 0 0 

Table If 

Ileal Cathepsin Activity at the 
Villus tip 

Unirradiated Mice 

Treatments 
OSD 

Irradiated 

Mice 

Time I&D I&S D&I D 

1 hr. 
1 2 1 .2 

j 2 hr. 
1 2 2 3 

4 hr. 
2 2 2 2 

8 hr. 
2 1 2 2 

24 hr. 
3 1 1 3 

48, hr. 
-... —. . 1 2 3 2 
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Villus side 39 

Table lg 

Irradiated 
Mice 

Treatments 

0 S D 
ated Mice 

1 1 1 

Time I&D I&S D&I D 

1 hr. 
1 1 1 2 

2 hrs. 
1 2 2 3 

4 hrs. 
2 2 2 2 

8 hrs. 
2 1 2 1 

24 hrs. 
3 1 1 2 

48 hrs. 
1 2 2 3 

Ileal Cathepsin Activity at the 
Villus base * 

Table lh 

Unirradiated Mice 

Treatments 
0 s D 

0 0 0 

Irradiated 
Mice 

Time I&D I&S D&I D 

1 hr. 
0 1 1 .1 

2 hr. 
0 1 1 1 

i 4 hr. 
1 1 1 1 

8 hr. 
2 0 1 1 

24 hr. 
1 0 0 0 

48 hr. 
0 1 0 0 
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Ileal Cathepsin' Activity at the 
Crypt glands 
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Unirradiated Mice 

Treatments 

OSD 

Irradiated 

Mice 

Time I&D I&S D&I D 

1 hr. 

0 0 0 0 

2 hrs. 
0 0 0 0 

4 hrs. 
0 0 0 0 

8 hrs. 
0 0 0 0 

24 hrs. 
0 0 0 0 

48 hrs. 
0 0 0 0 

Hepatic Nonspecific Esterase Activity - control specimen 

Table 2a. 

Unirradiated Mice 

Treatments 
OSD 

Irradiated 
Mice 

Time I&D I&S D&I D 

1 hr. 
2 3 2 .2 

| 2 hr. 
2 2 2 2 

h hr. 

2 2 0 1 

8 hr. 
1 1 2 2 

24 hr. 
2 2 3 1 

48 hr. 
2 2 2 2 
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Table 2b 

Unirradiated Mice 

Treatments 

OSD 

Irradiated 

Mice 

Time I&D I&S D&I- . D 

1 hr. 

3 2 3 2 

2 hrs. 
3 2 4 3 

4 hrs. 
3 3 3 2 

8 hrs. 
2 2 3 3 

24 hrs. 
2 3 4 1 

48 hrs. 
2 2 1 2 

Jejunal Nonspecific Esterase Activity at the 
Villus side 

Table 2c 
Treatments 

0 s D 
Unirradiated Mice 

3 3 2 

Irradiated 
Mice 

Time I&D I&S D&I D 

1 hr. 
2 2 3 .*2 

2 hr. 
2 2 4 2 

4 hr. 
2 3 3 2 

8 hr. 
2 2 3 2 

24 hr. 
2 3 4 • 1 

48, hr. 
1 2 4 2 
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Table 2d 

Unirradiated Mice 

Treatments 

Irradiated 
Mice 

Time I&D I&S B&I D 

1 hr. 

2 3 3 2 

2 hrs. 
2 2 4 1 

4 hrs. 
2 2 2 2 

8 hrs. 
1 2 3 2 

24 hrs. 

1 3 4 1 
48 hrs. 

1 1 _3 1 

Jejunal Nonspecific Esterase Activity at the 
Crypt glands 

Table 2e 

Unirradiated Mice * 

Time I&D I&S D&I D 

1 hr. 
1 2 2 .1 

2 hr. 
1 1 1 1 

4 hr. 
1 1 1 1 

8 hr. 
1 1 2 1 

24 hr. 
1 2 2 1 

48 hr. 
1 1 1 1 

Treatments 
OSD 

Irradiated 
Mice 
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Table 2f 

Irradiated 

Mice 

Treatments 

OSD 
Unirradiated Mice 

Time I&D I&S D&I D 

1 hr. 
1 2 2 3 

2 hrs. 
2 2 2 3 

4 hrs. 
2 3 2 3 

8 hrs. 
2 2 3 2 

24 hrs. 
3 3 3 2 

48 hrs. 
2 3 4 4 

Ileal Nonspecific Esterase Activity at the 
Villus side 

Table 2g 

Unirradiated Mice 

Time I&D I&S D&I D 

1 hr. 
1 3 2 .2 

2 hr. 
2 2 3 3 

4 hr. 
2 2 2 3 

8 hr. 
2 2 3 2 

24 hr. 
2 3 3 1 

48 hr. 
2 3 4 4 

Treatments 
OSD 

Irradiated 
Mice 
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Ta.ble 2h 
Unirradiated Mic e 

Treatments 

Irradiated 

Mice 

Time I&D I&S D&I- . D 

1 hr. 

1 2 2 1 

2 hrs. 
1 1 3 3 

4 hrs. 
1 1 1 2 

8 hrs. 
1 1 2 1 

24 hrs. 

1 2 2 1 

48 hrs. 
1 3 4 3 

Ileal Nonspecific Esterase Activity at the 
Crypt Glands 

Treatments 
’Table 2j OSD 

Unirradiated Mice 

0 0 0 

Time I&D I&S D&I D 

1 hr. 
1 0 1 1 

2 hr. 
0 1 0 0 

Irradiated 
4 hr. 

1 0 0 1 
Mice 

8 hr. 

.1 1 0 0 

24 hr. 
0 0 0 • 0 

48, hr. 
1 1 1 1 
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Legends 

FIG. 1 

a).. Low power photomicrograph of small bowel from 
mouse sacrificed four hours after irradiation. The villus 
height appears normal, but note b) which is a high power 
photomicrograph of outlined insert in a) . 'There is an 
increase in round cell infiltrate and the arrows point to 
damaged cells in the crypts that have become vacuolated 
and contain inclusion bodies. (Reproduction Ratio X100 
and X40 0). 

FIG. 2 

High power photomicrograph of colon of mouse 
sacrificed eight hours after irradiation. Note the dis¬ 
orientation of nuclear material in the crypt cells. Tye 
arrows point to inclusion bodies within vacuoles in 
damaged cells. (Reproduction Ratio X400). 

FIG. 3 

Graphic representation of the relationship between 
small bowel crypt cell mitotic and hours after irradi¬ 
ation (I). Note the depression of mitotic counts after 
irradiation regardless of whether the animals received 
DNA before (DNA + I) or after (I + DNA) irradiation or 
irradiation plus saline (I + S), 
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Mean Bacterial Counts (Log bacteria/gram specimen) in the 
Stomach Contents of Weanling Mice 

Time of Sacrifice 

Table 3a 

Media 
1 hr 1 day 2 days 3 days 5 days 7 days 10 days Mean 

A+ 
Irr. 

4.30 6.45 7.35 4.00 3.00 1.00 7.30 4.?? 

Con. 
6.23 7.60 7.00 7.00 5.30 1.00 5.15 5.61 

A- 

9 

Irr. 
7.54 9.13 8.09 8.68 7.89 6.62 8.15 8.01 

Con. 
8.84 8.79 8.65 8.65 8.97 6.70 8.58 8.45 

C 
Irr. 

1,00 4.24 1.00 2.74 1.00 1.00 6.81 2.54 

Con, 
6.04 6.00 1.00 1.00 4.60 1.00 4.?8 3.49 

E 
Irr. 1.00 2.65 1.00 1.00 1.00 1.00 1.00 J-52L 

Con. 1.00 5.00 1.00 1.00 1.00 1.00 1.00 1.57 

G 
Irr. 7.62 9.00 8.98 8.64 7.80 5.87 10.53 8.35 

Con, 
8.00 9.00 8.81 8.81 8.08 8.34 10.04 8.73 

Ent 
Irr. 7.04 9.04 8.79 9.15 7.84 6.19 7.90 7.99 

Con. 
8.49 8.45 8 • 64 8.64 7.04 7.48 

-s - o -- 
8.85 

-O-- _ 
8.23 

Irr. = Irradiated Mice 
Con. - Control Mice 
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Mean Bacterial Counts (Log bacteria/cc.(specimen in the 
Stomach Wash of Weanling Mice 

Table 3b 
Time of Sacrifice 

Media 
1 hr 1 day 2 days 3 days 5 days 7 days 10 days Mean 

A+ 
Irr. 

3.35 6.29 5.80 3.80 2,3 5. 1.00 4.00 3.80 
Con. 

6.65 6.S4 5.70 5.70 1.00 1.00 4.00 4.37 

■ 

A- 
Irr. 

6.65 8.95 6.52 7.70 6.42 5.83 7.70 7.18 

Con.. 
8.18 8.18 6.98 6,98 7.49 5.28 8.00 7.30 

C 
Irr. 

1.00 3.06 1.00 2.50 1.00 1.00 6.18 2.25 

Con. 
4.30 4.60 1.00 1.00 1.00 1.00 4.00 2.41 

E 
irr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Con. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
-- —"TV’Ty—~~ 

G 
Irr. 

6.88 9.07 7.85 00
 3 ro 7.22 6.42 7.20 7.60 

Con. 
6.00 8.48 8.65 8.65 8.00 5.70 8.00 7.64 

Ent 
Irr. 5.44 8.18 7.46 7.87 8.08 3.77 7.20 6.86 

Con, 
6.85 7.83 8.09 8.18 7.94 6..6O 7.51 7.57 

Irr. = Irradiated Mice 
Con, = Control Mice 
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Mean Bacterial Counts (Log bacteria/gram specimen) in the 
Stomach Homogenate of Weanling Mice 

Time of Sacrifice 

Table 3c 

Media 
1 hr 1 day 2 days 3 days 5 days 7 days 10 days Mean 

A+ 

Irr. 
1.00 4.42 5.95 1.00 2., 42 1.00 6.63 3.20 

Con. 
7.00 5.73 3.83 3.83 3.89 1.00 4.43 4.24 

A- 

Irr. 
5.11 8.22 7.71 6.67 7.29 6.35 0

0
 

• o
J

 

0
 

7.09 
Con, 

8.59 7.08 7.11 7. IT 8.15 

0
 

0
 * 

0
- 6.83 7.41 

C 
Irr. 

2.50 1.00 1.00 1.00 1.00 1.00 4.89 1.77 

Con. 
8.43 5.34 1.00 1.00 3.18 1.00 5.20 3.59 

E 
Irr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

O
 

O
 • 

rH
 

Con. 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

G 
Irr. 

5.43 8.47 7.83 6.34 7.21 8.06 7.85 7.31 

Con. 
8.00 7.52 8.43 8.43 8.18 8.08 9.43 8.30 

Ent 
Irr. 

5.20 7.98 8.15 4.33 7.27 5.33 6.85 6.44 

Con. 
8.00 7.78 7.30 7.30 8.18 6.08 9.11 7.68 

Irr. - Irradiated Mice 
Con, = Control Mice 
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Mean Bacterial Counts (Log bacteria/gram specimen) in the 
Jejunal Contents of Weanling Mice 

fable 3d 
Time of Sacrifice 

Media 
1 hr 1 day 2 days 

— 
3 days 5 days 7 days 10 days Mean 

A+ 
Irr. 

6.00 6.60 6.21 

0
 

C
-s 
. 

-3- 1.00 6.93 7.30 5 • 46 

Con. 
6.30 1.00 5.30 5.30 1.00 4.00 5.78 4.10 

A- 
Irr. 

7.00 8;78 7.8 ? 7.46 7.74 7.09 8.00 7.70 
Con. 

7.38 

i 

7.60 6.15 6.15 8.23 4.00 7.90 6.77 

C 
Irr. 

1.00 1.00 1.00 1.00 2.89 1.00 1.00 1.27 

Con. 
1.00 1.00 1.00 C

O
 

V
 

O
O

 
0

 

1.00 1.00 1.00 1.26 

E 
Irr. 4.60 1.00 1.00 1.00 1.00 

h
! 

fN
 • ' 1.00 1.90 

Con. 
4.60 1.00 1.00 1.00 1.00 1.00 1.00 1.51 

G 
Irr. 

1.00 8.95 7.84 7.45 7.15 7.31 

0
 

0rN . 
C

O
 6.86 

Con. 
1.00 7.60 

0
 i 

°°j 8.30 8.72 6.48 8.60 7.00 

Ent 
Irr. 

7.78 9.00 8.17 7.94 7.49 3.42 8.30 7.44 

Con. 
7.78 . 0

0
 

0
 

8.58 8.53 8.56 4.85 6.64 7.47 

Irr, = Irradiated Mice 
Con. - Control Mice 
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Mean Bacterial Counts (Log bacteria/cc specimen) in the 
Jejunal Wash of Weanling Mice 

Time of Sacrifice 

Table 3e 

Media 
1 hr 1 day 2 days 3 days 5 days 7 days 10 days Mean 

A+ 
Irr. 

1.00 3.50 2.65 2.85 3.35 4.90 2.90 3.02 

Con. 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

A- 
Irr. 

. H
 

CO
 

■— 6.85 5.57 5.70 5.39 4.93 5-70 5.33 
Con. 

6 • 60 8.00 4.95 4.95 5.74 3.70 6.00 5.71 

C 
Irr. 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

- Con, 
1.00 s 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

S Irr. 1.00 1.00 2.80 1.00 1.00 1.00 1.00 1.26 

Con. 
1.00 5.70 1.00 1.00 1.00 1.00 1.00 1.67 

G 
Irr. 

3.37 7.80 6.05 5.63 6.26 5.49 7.70 6.07 

Con. 
4.79 6.99 6.17 5.96 6.33 5.28 6.81 6.07 

Ent Irr. 
3.10 6.76 5.78 5.57 6.45 2.59 6.23 5.07 

Con. 
6.00 6.40 6.65 6.65 6.48 1.00 5.81 5.57 

Irr. - Irradiated Mice 
Con. ~ Control Mice 
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Mean Bacterial Counts (Log bac-teria/gram specimen) in the 
Jejunal Homogenate of Weanling Mice 

Time of Sacrifice 

Table 3f 

Media 
1 hr 1 day 2 days 3 days 5 days 7 days 10 days Mean 

A+ 
Irr. 

4.63 7.81 1.00 2.89 2.41 6.18 4.96 442? 
Con. 

5.51 1.00 3.77 3.77 3.70 1.00 1.00 2.82 

A- 
Irr. 

5.33 7.03 5.76 4.91 7.00 5.91 6.96 6.13 
Con. 

6.38 6.75 5.77 5.77 5.65 5.78 6.20 6.04 

C 
Irr. 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Con. 4.60 lj.00 1.00 1.00 5.40 1.00 1.00 2.14 

E 
Irr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Con. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

G 
Irr. 5.24 7.37 6.03 4.99 5.02 5.85 6.15 5.81 

Con. 
6.15 5.65 5.72 5.72 6.85 7.88 6.08 6.29 

Ent 
Irr, 

5-45 6.93 6.14 4.53 5.63 4.09 6.28 5*58 

Con, 
6.67 

-7———y- 
6.73 

——’r.'■ ■* 

5.61 5.61 6.70 5.45 6.00 6.11 

Irr. ~ Irradiated Mice 
Con. = Control Mice 





Mean Bacterial Counts (Log bacteria/gram specimen) in the 
Colon Contents of Weanling Mice 

Time of Sacrifice 
Table 3g 

Media 
1 hr 1 day 2 days 3 days 5 days 7 days 10 days Mean 

A+ 
Irr. 

6.45 7.66 7.89 0
0

 
. 0
3

 
O

 

7.03 9.07 8.00 7.80 

Con. 
7.00 8.38 7.00 7.00 5.53 5.30 5.60 6 • 54 

A- 
Irr. 

7.22 8.63 8.32 8.66 8.02 8.69 9.38 8.42 

Con. 
9.15 8.85 8.00 8.00 8.34 8.28 8.48 8.44 

C 
Irr. 

7.13 6.34 1.00 7.92 5.31 3.60 8.08 5.63 

Con, 
6.92 6.53 1.00 ' 1.00 6.86 4.30 7.90 4.93 

E 
Irr. 1.00 1.00 1.00 5.81 5.53 7.75 1.00 3.30 

Con. 
1.00 1.00 1.00 1.00 7.00 4.00 4.90 2.84 

G 
Irr, 7.00 8.66 8.76 8.68 8.69 9.54 ^

0
 

0
0

 r 8.74 

Con. 
8.74 8.69 8.78 8.78 8.30 9.00 8.78 8.72 

Ent 
Irr, 7.00 8.65 8.60 8.32 7-95 7.15 9.11 8.11 

Con. 
9.28 -^-T ■ ■ 8.70 8.30 8.30 7.48 

0
 

0
 . 0
- 8.41 8.21 

Irr. - Irradiated Mice 
Con, = Control Mice 
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Mean Bacterial Counts (Log bacteria/ cc.. specimen) in the 
Colon Wash of Weanling Mice 

Time of Sacrifice 
Table 3h 

Media 
1 hr 1 day 2 days 3 days 5 days 7 days 10 days Mean 

A+ 
Irr. 

3.50 5.33 2.96 6.09 2.70 7.24 4.00 4.55 

Con. 
1.00 1.00 5.51 5.51 1.00 1.00 1.00 2.29 

A- 
Irr. 

7.32 5.85 5.02 5.81 5.24 6.85 5.?0 5.97 

Con. 

4.65 6.30 7.70 7.70 5.23 5.70 ' 5.26 6.08 

C 
Irr. 

4.41 1.00 1.00 1.00 1.00 1.00 1.00 1.49 

Con. 
' 1.00 2.59 1.00 1.00 4.93 3.70 5.11 2.76 

E 
Irr. 1.00 1.00 1.00 2.59 1.00 5.63 1.00 1.84 

Con. 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

G 
Irr. 

7.03 6.48 5.85 3.95 6.09 5.55 5.18 5.73 

bp ... 
Con. 

6.00 6.18 6.70 6.70 6.00 6.40 4.9-3 6.13 

Ent 
Irr. 7.21 7.24 5-65 5.69 6.15 1.00 5.26 5 • 46 

Con, 
5.59 6.18 6.30 6.30 4.93 4.00 4.90 5.46 

Irr, = Irradiated Mice 
Con, = Control Mice 
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Mean Bacterial Counts (Log bacteria/gram specimen) in the 
Colon Homogenate of Weanling Mice 

Tirae of Sacrifice 
Table 3j 

Media 
1 hr 1 day 2 days 3 days 5 days 7 days 10 days Mean 

A+ 
Irr. 4.41 6.0? 3.12 1.00 5.87 7.89 4.40 4.68 

Con. 
4.?8 1.00 1.00 1.00 1.00 1.00 3.88 1.95 

A- 
Irr. 

5.99 6.78 6.05 5.00 6.87 6.50 7.11 6.34 

Con. 
6.41 4.73' 6.72 6.7.2 5-85 5.99 6.88 6.19 

C 
Irr. 

1.00 2.?4 1.00 1.00 1.00 1.00 5.28 1.86 

Con. 
1.00 4.60 1.00 1.00 1.00 1.00 5.36 ; 2.14 

s Irr. 1.00 1.00 1.00 1.00 1.00 6.21 1.00 1.74 

Con. 
4.30 1.00 1.00 1.00 1.00 1.00 1.00 1.47 

G Irr. 6.60 8.78 5.?8 4.14 6.2.6 7.22 6.58 6 • 48 

Con. 
6.00 4.83 6.26 6.26 6.78 6.23 6.18 6.07 

Ent 
Irr. 

6.39 7.27 6.32 1.00 5.93 

O
 

O
 • 

1—1 5.84 4.82 

Con. 
6.00 4.83 6.23 6.23 5.48 1.00 5.63 5.06 

Irr, = Irradiated Mice 
Con. ~ Control Mice 
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F Ratios (Mean Square Treatment/Mean Square Error) 
for the Effect of Radiation on Bacterial Counts in 

Weanling: Mice 

Table 4 Media 

Specimen 
A+ A- C E G Ent 

Stomach 
Contents 2.1? 24.97 3.26 2.03 7.80 2.65 

Stomach 
Wash 

0.95 0.31 0.21 0.00 0.02 1.53 

Stomach 
Homogenate H

 
00

 
• o

 

1.29 23.26 0.00 8.06 43.39 

Jejunum 
Contents 7.59 35.05 0.00 1.00 0.80 0.01 

i 

Jejunum 
Wash 

11.13 1.31 0.00 2.59 0.01 ; 1.54 

Jejunum 
Homogenate 

13.77 0.22 0.00 0.00 . 2.74 1.3c 

Colon 
Contents 

25.17 0.03 1.87 8.95 0.01 0.3: 

Colon 
Wash 

18.02 0.24 30.82 7.47 0.85 0.00 

Colon 
Homogenate 

50.98 0.85 1.25 0.78 1.38 1.70 
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Significance Levels (p values) for the Effects of 
Radiation on Bacterial Counts in Weanling Mice 

Table 5 Media 

Specimen 
A+ A_ c E G Ent 

Stomach 
Contents < .25 < .01 <.10 < .25 < .05 <•25 

Stomach 
Wash 

> .25 > .25 >.25 > .25 > .25 <.25 

Stomach 
Homogenate 

< .01 >.25 < .01 > .25 < .05 < .01 

Jejunum 
Contents < .05 < .01 >.25 >.25 > .25 >.25 

Jejunum 
Wash < .01 > .25 >.25 < .25 > .25 < .25 

Jejunum 
Homogenate 

< .01 >.25 < .01 >.25 ■<.25 >.25 

Colon 
Contents 

< .01 >.25 <.25 < .01 > .25 >.25 

Colon 
Wash 

< .01 >.25 < .01 < .05 >.25 >.25 

Colon 
Homogenate 

< .01 >.25 >.25 >.25 >.25 < .25 



'V t ■ ; 
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Mean Bacterial Counts (Log bacteria/gram specimen) 
in Colonic Feces of Normally-Fed Adult Mice 

Table 6a Time of Sacrifice 

Media 1 day 3 Says 5 days 7 days 10 days Mean 

A+ 
Con, 5.50 6.95 6.24 6.15 7.08 6 ;18 

Irr. 
4.00 6.32 7.45 7.05 10.0 5 6.97 

A- 
Con. 8.02 6.50 8.42 7.57 8.30 7.76 

Xx x* » 
7.44 8.75 8.50 9.02 10.14 8.78 

C 
Con. 7.06 7.07 7.48 6.80 2.00 6.08 

Irr. 
7.44 8.78 8.26 7.42 8.96 \ 8.27 

-Ci 
Con. 

5.00 4.87 5.92 4.90 5.45 5.23 

Irr. 
3.15 5.98 7.48 6.50 10.23 6.67 

' 

C- 
Con. 

8.31 7.62 8.08 8.15 8.08 8.05 

Irr. 8.17 8.69 8.4 7 8.76 9.48 8.72 

Ent 
Con. 

8.16 6.80 8.24 8.54 8.30 8.01 

Irr. 
8.45 9.06 8.62 7.97 9.17 8.65 

Con. = Control Mice 
Irr, = Irradiated Mice 



T. 

r 
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Mean Colony Counts (Log fungi/gram specimen) . 
in Colonic Feces of Antibiotic-Fed Adult M^ce 

Table 6b 
Time of Sacrifice 

Media 
1 day 3 days 5 days 7 days 10 days Mean 

A+ 
Con. 1.00 6.31 7.35 6.00 7-75 5.68 

Irr. 
1.00 6.00 7.52 7.45 5.68 5-53 

A- 
Con. 

1.00 5.91 7.33 6.25 7.55 5.61 

Irr. 
1.00 5*87 9.00 7.84 5.75 5.89 

C 
Con. 

1.00 6.16 7.75 6.12 7.76 5.76 

Irr. 
1.00 6.19 6.00 7.25 6.10 5.31 

s 
Con. 1.00 6.07 6.81 5.95 7.36 5.44 

Irr. 1.00 6.00 5.96 6.81 3.42. 4.64 

C- 
Con. 

1.00 4.59 4.00 2.00 6.00 3.52 

Irr. 1.00 6.90 7.93 6.00 5.59 5.48 

Ent 

Con. 
1.00 2.00 2.00 2.00 2.00 1.80 

Irr, 
1.00 2.00 3.85 2.00 2.00 2.17 

Con, = Control Mice 
Irr, - Irradiated Mice 
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F Ratios (Mean Square Treatment/Mean Square Error) 
for the Effect of Radiation on Bacterial 

Counts in Normally Fed Adult Mice and Fungal 
Counts in Antibiotic Fed Ariult Mice 

Table 7 
Media 

A+ . A- c s G Eirt 

Bacteria 12.05 12.26 45*58 14.34 5.56 2.16 

Fungi 0.13 0.94 2.54 3.72 5.92 1.00 

Significance Level (p values) for the Effect of Radiation 
on Bacterial Counts in Normally Fed Adult Mice 

and Fungal Counts in Antibiotic Fed A^ult Mice 

Table 8 
Media 

A+ A- G S G 

1 

Frit 

Bacteria ^ .01 < .01 <.01 < .01 < .05 <.25 

Fungi 
> .25 > .25 < .25 A

 
. O

 

A
 

• 0
 

'v_
r\ 

>.25 
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Legend s 

FIG. 4 

a)» Oil immersion photomicrograph of a nongland alar 
area of stomach from an unirradiated weanling mouse. Brown- 
Brenn stain. Note the short pleomorphic gram-positive 
rods which are closely adherent to the stratified squamous 
epithelium and the mucus overlying it. (Reproduction ratio 
X960). 

b). Oil immersion photomicrograph of a glandular area 
of stomach from a weanling mouse sacrificed one day after 
irradiation. Brown-Brenn stain. Glandular architecture is 
intact, although mucus production has increased. Gram¬ 
positive organisms are found within the mucus layer over- 
lying the gastric glands. (Reproduction ratio X960)• 
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Legends 

FIG. 5 

a) . Low power photomicrograph of jejunum from a 
weanling mouse sacrificed three days after irradiation. 
Brown-Brenn stain. Villi are short, stubby, and edematous; 
damaged cells in the crypts are vacuolated and contain 
inclusion bodies. Compare with FIG. la.. Clumps of 
bacteria {white arrows, white outlined insert) are seen in 
the lumen but not in any of the damaged tissues* (Re¬ 
production ratio xlOO). 

b) . High power photomicrograph of a typical villus 
in FIG. 5a. • Brown-Brenn stain. Bacteria are not closely 
related to the epithelial lining as they are in the 
stomach; compare with FIG. 4b. Although the villus is 
extensively damaged 3 days after irradiation, it has not 
been invaded by bacteria from the lumen. (Reproduction 
ratio x400)• 

c) . Oil immersion photomicrograph of the clump of 
bacteria seen in the outlined insert of FIG. 5a. Short, 
pleomorphic gram-positive rods are the predominant or¬ 
ganism. (Reproduction ratio x96o). 





PIG. 6 

87 

PIG. 

j 





88 

Legend s 

FIG. 6 

Oil immersion photomicrograph of the colonic bacteria, 
from an unirradiated adult mouse. Gram-negative organisms 
(eg. white arrow) appear as gray rods; no fusiforms are 
seen. Gram-positive organisms are black. The superficial 
colonic epithelium is intact. (Reproduction ratio x960) . 

FIG. 7 

Oil immersion photomicrograph of the colonic lumen 
from an antibiotic-fed adult mouse sacrificed ten days 
after irradiation. Note the striking absence of bacteria 
when compared to FIG. 6 and the presence of yeast forms. 
(Reproduction ratio x960)• 
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Pig. 9 
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