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Abstract: 

The basis of intra-tumoral and systemic T-cell reactivity toward cancer remains 

unclear. In particular the role that peripheral stimuli play in shaping the acquired immune 

response toward cancer is still poorly understood. In this study we document the 

surfacing of systemic immunity toward a nine-residue cryptic epitope from a member of 

the Melanoma Antigen family (MAGE-12:170-178), following temporary regression of a 

single melanoma metastasis, in response to vaccination against another molecule 

(gpl00/PMell7). This emergence was unlikely to be related to unusually high expression 

of MAGE-12 by the tumor, or by the influence of analog epitopes to MAGE-12:170-178. 

Since MAGE-12 was unlikely to be expressed at sites other than the tumor, the 

demonstration of MAGE-12:170-178 reactivity in post- but not pre-vaccination 

circulating lymphocytes suggests that the systemically observed immune response was 

influenced by events induced by the vaccine at the tumor site or in draining lymph nodal 

areas. Possibly, as suggested by pre-clinical models, immunologic ignorance is the 

default response toward cancer unless unusual stimulatory conditions occur. Surfacing of 

MAGE-12 specificity occurred in association with loss of gplOO/PMel 17 targeted by the 

vaccine. This finding suggests that vaccinations might have effects beyond their intrinsic 

specificity and may trigger broader immune responses through epitope spreading by 

inducing changes within the tumor microenvironment. This may have important practical 

implication for the development of immunization strategies. 
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Introduction 

The identification of tumor antigens and the principles of immunotherapy have 

provided an excellent tool for dissecting the molecular immunology of tumor/host 

interactions (1). There has been considerable interest in the concepts of immunotherapy as 

well as multiple attempts to immunologically enhance the anti-tumor response. The 

principals of immunotherapy allow for an elegant solution to diseases for which many 

conventional treatments are non-specific and frequently inefficient. As more has become 

known about the immune system and its interactions with both self and foreign peptides, 

investigators have become more successful in shaping modalities with potential to harness 

the immune system into an effective anti-tumor response. 

Multiple vaccine-based approaches to anti-tumor therapy are currently being 

undertaken. In particular, the molecular identification of the genes encoding tumor 

antigens recognized by T cells has sparked interest in their utilization as vaccines against 

cancer. Contrary to most vaccinations, which are aimed at priming the immune system 

against future pathogens, immunizations against cancer are given as a surrogate for the 

apparent weak immunogenicity of tumors themselves (2, 3). Specific epitopes can be 

determined, frequently by isolating tumor infiltrating lymphocytes (TIL) and identifying 

the peptide/HLA complex they recognize. The specific peptide can then be synthesized, 

and injected into the patient, in the presence or absence of cytokines. These vaccines are 

simple to administer in an out-patient setting and have been shown to incur systemic 

immunity to the peptide of interest (4,5,6). Unfortunately systemic immunity does not 

always equal clinical regression of the tumor. 
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Currently used peptide vaccines are based upon two types of tumor antigens (TA); 

tumor specific antigens (TSA) and melanoma differentiation antigens (MDA). TSA are 

specific to the tumor and are generally not present in normal cells. They are frequently 

fetal antigens and are not expressed in adult cells until far along in tumorogenesis when the 

de-differentiation of the cell leads to demethylation of the genome and to expression of 

molecules which are not normally expressed (7). An example of TSA are the melanoma 

antigen family of genes (MAGE), a family of 12 genes and gene products which have been 

shown to be expressed in many melanomas. The other type of TA, MDA, are found in 

normal melanocytes and may be critical to the normal function of the cell. These 

molecules are not critical to the tumor and are frequently down-regulated as the tumor 

becomes increasingly anaplastic (11). Examples of MDA include gplOO/PMell7, and 

MART -1 /MelanA. 

Extensive trials have been undertaken using certain MDA, specifically gpl 00:209- 

217(210M), a modified form of a peptide derived from the gpl00/PMell7 molecule, 

presented in the context of HLA*A201. This peptide was analyzed on its ability to induce 

a measurable immune response, and its ability to induce tumor regression. Data from this 

study demonstrated that on the basis of in vitro immunologic assays, 91% of patients 

studied could be successfully immunized with this synthetic peptide, and 13 of 31 patients 

(42%) receiving the peptide vaccine plus IL-2 had objective cancer responses (1). Many 

patients who were HLA*A201 positive and who expressed the gpl00/PMell7 molecule 

have undergone vaccination with this peptide. 

Although gp 100:209-217(210M) vaccine has demonstrated clinical success, there 

have been many questions as to why this molecule should induce such a strong immune 
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response, and why this molecule should appear to be immunodominant over all of the 

potential antigens a cell can express. Of the millions of possible epitopes a cancer cell 

expresses, only certain ones induce specific immune responses in the host, and these 

responses can be demonstrated over and over again in a multitude of hosts (8). Questions 

about this phenomenon of immunodominance remain unanswered. Furthermore, questions 

about other antigens exist, and their potential immunogenicity if they could be expressed in 

the absence of other, more dominant antigens. 

The MAGE family of gene products became of interest to our group with the 

discovery of a TIL which recognized MAGE-12 in a melanoma metastasis of a patient 

(F001) who had been undergoing vaccinations with the gpl 00:209-217(210M) peptide 

vaccine (9). This patient’s tumor was noted to have expression of gpl00/PMell7 prior to 

vaccination, and was noted to have a good initial response to the gpl 00:209-217(210M) 

vaccine, experiencing significant shrinkage of his tumor. However, after a period of time, 

his tumor was noted to re-grow. Analysis of peripheral blood mononuclear cells (PBMC) 

demonstrated that he retained immunity to gplOO/PMell7, however, a fine needle 

aspiration (FNA) of the tumor demonstrated that it had lost expression of gpl00/PMell7 

(10). Interestingly, lymphocytes were noted to be infiltrating the patient’s tumor. Studies 

of this TIL identified MAGE-12 as the restriction element within the context of HLA 

Cw*0702. (9). 

The identification of a TSA-recognizing TIL was an unusual finding and provided 

a conceptual bridge between the MDA-directed immune reactivity commonly observed at 

tumor site and the TSA reactivity more frequently observed among circulating T cells. 

Differences in the levels of immune reactivity toward the two categories of tumor antigens 
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might be attributed to their tissue expression pattern. Some investigators, however, 

suggested that qualitative and/or quantitative differences in the way antigenic molecules 

are presented to the host might shape the immune response more significantly (2, 12, 3). 
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Statement of Purpose and Hypothesis. 

Several hypotheses attempt to explain the insurgence of reactivity toward the 

cryptic MAGE-12 epitope in this patient. First, the tumor might have been characterized by 

unusually high expression of MAGE-12 and/or HLA-Cw*0702 capable of overriding the 

commonly dominant stimulus provided by MDA (8). Second, the loss of expression of 

MDA after vaccination (10) might have allowed the unmasking of less prominent T-cell 

populations. Third, the patient’s reactivity toward MAGE-12 might have been unusually 

high due to priming by exposure to analog epitopes of MAGE-12:170-178 as suggested for 

other TA (13). Fourth, peptide analogs of MAGE-12:170-178 from other MAGE family 

genes (14) might have exerted super-agonist or antagonist action and uniquely shaped the 

immunogenicity of MAGE-12 (15). Finally, MAGE-12-specific cytotoxic T-cell (CTL) 

could have risen in response to vaccine-induced modifications of the tumor environment 

(16). These hypotheses were tested by this study. 
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Materials and Methods 

All experiments were performed by Ms. Lally with the exception of the 

experiments detailed in the sections labeled “Detection of Cw*0702 surface expression by 

complement dependent cytotoxicity” and “HLA phenotyping of patients and cell lines”. 

Cell lines. 

Two clones from the melanoma cell line 624-MEL (HLA-A*0201/0301, 

B* 1402/0702, Cw*0702/0802) characterized by identical pattern of MA and HLA allelic 

expression with the exception of HLA-A*0201 were used. One clone (624.38-MEL) 

maintains expression of this allele, while the other (624.28-MEL) does not due to aberrant 

splicing of the HLA-A*0201 transcript (17). A375 MEL, SK23-MEL and 293-HEK 

primary embryonic kidney cells were purchased from the American Type Culture 

Collection, Rockville, MD. 397-MEL, 537-MEL, 836-MEL, 888-MEL, 938-MEL, 1102- 

MEL, 1123-MEL, 1280-MEL, 1359-MEL, 1495-MEL are archival cell lines derived from 

surgically removed melanoma metastases (18). F001-MEL, F002-MEL and F010-MEL 

consist of early passage (<5 passages) cell lines derived from FNA of melanoma 

metastases. The B-lymphoblastoid cells, F001-EBV, were transformed from patient F001 

PBMC. All cell lines were maintained in complete medium (CM) consisting of RPMI 

1640 (Biofluids, Rockville, MD) with 10 mM hepes buffer, 100 U/ml penicillin- 

streptomycin (Biofluids), 10 pg/ml Ciprofloxacin (Bayer West Haven, CT), 0.03% L- 

glutamine (Biofluids), 0.5 mg/ml amphotericin B (Biofluids) and 10% heat-inactivated 

fetal bovine serum (Biofluids). F001-MEL cells were maintained in Iscoves (Biofluids) 

supplemented as described for CM. 293-HEK cells were maintained in DMEM (Biofluids) 

supplemented as described for CM except 7.5% FBS. Normal human epithelial 
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melanocytes (NHEM) generated from human foreskin were donated by Dr. Mernhard 

Herlyn (Wistar Institute, Philadelphia, PA) and expanded in melanocyte growth medium 

(MGM, Clonetics, San Diego, CA). The F001-TIL culture recognizing MAGE-12:170-178 

was generated from patient F001 (10, 9) and expanded in CM supplemented with 10% 

human AB serum (Biofluids) and 6,000 lU/ml IL-2. 

Peptides. 

Peptides were produced by solid phase synthesis techniques and solubilized in 

sterile water or dimethylsulfoxide (DMSO, Sigma, St Louis, MO) according to their 

biochemical characteristics. Peptide identity was confirmed by mass spectral analysis. The 

following peptides were used: MAGE-12:170-178 (VRIGHLYIL) and analog peptides 

from other MAGE family genes (MAGE-1: DPTGHSYVL; MAGE-2: VPISHLYIL; 

MAGE-3: DPIGHLYIF; MAGE-4a: DPASNTYTL; MAGE-6: DPIGHVYIF), MART- 

1:27-35 (AAGIGILTV, abbreviated as MART-1), gpl00:209-217 (ITDQVPFSV, 

abbreviated as g209), the modified gp 100:209-217(210M) (19) (IMDQVPFSV, 

abbreviated as g209-2M), FluMl:58-66 (GILGFVFTL, abbreviated as FluMl) and Histone 

H3.3:40-48 (RYRPGTVAL). 

TCR V p PCR analysis. 

A previously described set of 35 primers was selected to amplify 45 functional 

V|3 (10). Each primer mix was composed of 10 x PCR buffer, 1.5 mM MgCfi, 200 pM 

dNTP, 1.25 U of AmpliTaq Gold, 0.5 pi of cDNA, 0.5 pM Vp primer, 0.5 pM TC-1 

constant region primer (AYACCAGTGTGGCCTTTT), and water up to 20 pi final 
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reaction volume. PCR was run using the following protocol: initial activation of the 

enzyme at 94°C for 9 min; 10 high-stringency cycles of 94°C for 30 sec for denaturation, 

65°C for 1 min for annealing and 72°C for 1 min for elongation; 20 low-stringency cycles 

of 94°C for 30 sec, 60°C for 1 min, and 72°C for 1 min; final extension at 72°C for 10 min. 

After PCR, 6 pi of the product and 6 pi of BPB-loading buffer were mixed and run on a 

1% agarose gel for 45 min. at 150 V. The gel was stained with Vistra Green (Amersham 

Life Science Inc., Arlington Heights, IL) 1:10000 dilution in lx TBE for 50 min and 

analyzed on a Fluorlmager 595 (Molecular Dynamics, Inc. Mountain View, CA). 

Analysis of MAGE 1-12 mRNA expression in cell lines. 

Expression of MAGE 1-12 gene products was evaluated by standard RT-PCR using 

published primer sequences (14). Two pi cDNA from each cell line were PCR amplified at 

a final volume of 50 pi and overlaid with mineral oil. The final reaction mix contained 2.5 

units of AmpliTaq Gold DNA polymerase (Perkin-Elmer, Branchburg, NJ, USA) and 10 

pM of each primer in a 50 nM KCL, 1.5 mM MgCb, 25 mM Tris HCL pH 8.9 and 200 pM 

of each dNTP solution. The reactions were carried out in a Perkin-Elmer Thermocycler 

Model 9600 using the following parameters: one cycle at 96°C for 15 minutes, 30 cycles at 

96°C for 30 seconds, 62°C for 30 seconds, 72°C for one minute. Eight pi of each PCR 

product were electrophoresed through a 2% Agarose gel containing ethidium bromide and 

a 100 bp ladder (Gibco, BRL Gaithersburg, USA). The fluorescent DNA bands were 

observed on a 302-nm UV transilluminator. 

Quantitative assessment of MAGE-12 mRNA expression was evaluated with the 

ABI Prism 7700 Sequence Detection System (Perkin-Elmer) utilizing uniplex real time 





9 

quantitative RT-PCR (qRT-PCR). Each tube contained a TaqmanK probe that targeted a 

single gene of interest. Each probe consisted of an oligonucleotide with a 5’-reporter and a 

downstream, 3’-quencher dye. Reporter/quencher dyes were analyzed by dual analysis 

based upon the different emission wavelength maxima. Uniplex qRT-PCR was performed 

utilizing different reaction tubes for the target gene of interest and for the endogenous 

reference ((3-Actin). Probes were labeled with a reporter dye, 6-carboxyfluorescein (6- 

FAM, A,max=518 nm) quenched by 6-carboxytetramethylrhodamine (TAMRA). Cycling of 

cDNA involved denaturation at 95° C for 15 sec., and annealing/extension at 60° C for 1 

min. for a total of forty cycles. Absolute measurement of mRNA copy number was 

performed with a standard curve for each gene of interest and for (3-Actin mRNA, dividing 

the test gene amount by the housekeeping gene amount. The final value represented the 

absolute number of mRNA copies per l(f copies of P-Actin mRNA. The sets of primers 

and labeled probes used for qRT-PCR have been previously published (20) with the 

exception of MAGE-12 for which we designed the forward primer (5’- 

TGGCATCGAGGTGGTGG-3’), the reverse primer (5’-CCCAGGCAGGTGACAAGG- 

3’) and the probe (6FAM-TGGTCCGCATCGGCCACTTGTAC-TAMRA). 

Screening of normal human tissues for MAGE-12 expression. 

A 96 well plate containing IX, 10X, 100X and 1000X concentration of various 

normal tissues was analyzed (IX is approximately equal to 1 pg). The following tissues 

were studied: brain, heart, kidney, spleen, liver, colon, lung, small intestine, muscle, 

stomach, testis, placenta, salivary gland, thyroid gland, adrenal gland, pancreas, ovary, 

uterus, prostate, skin, PBL, bone marrow, fetal brain, fetal liver. The dried cDNAs were 
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dissolved in the following reaction mix: 10 pmol of each primer, 50 nM KC1, 1.5 mM 

MgCL , 25 mM Tris HC1 pH 8.9, and 200 pM of each dNTP solution and PCR reactions 

were carried as for the tumor cell lines. 

Generation of CTL by in vitro stimulation ofPBMC 

PBMC were separated from the peripheral blood of HLA-A*0201/Cw0702 

expressing patients with melanoma by centrifugation of Ficoll-Hypaque gradients and used 

as cyropreserved samples. PBMC were thawed and their systemic reactivity against 

various epitopes was assessed by repeated stimulation with 1 pM peptide administered to 

the cultures after an overnight rest (21). Twenty-four hours after cognate stimulation 600 

IU/ml of interleukin-2 were added to the cultures. Cultures were replenished of IL-2 every 

other day. Stimulation with peptide was repeated at weekly intervals by exogenous loading 

of irradiated autologous PBMC (30 gy) as antigen presenting cells with 1 pM peptide. 

Irradiated, exogenously pulsed peptides were then co-cultured with responding cells at a 

1:1 ratio. 

Tumor-reactive CTL were also generated using HLA matched cell lines as 

previously described (22), PBMC were cultured in CM supplemented with 10% heat- 

inactivated human AB serum. Either irradiated (5,500 rads) tumor cells (1:10 

stimulator/responder ratio) or peptide (1 pM) were added to 4 x 106 PBMC in 24 well 

Costar plates. The following day and every other day thereafter 300 IU/ml IL-2 (Chiron 

Co., Emeryville, CA) were added. CTL cultures were re-stimulated weekly either with 

irradiated (3,000 rads) autologous PBMC (2 x 106 cells/ml) pulsed with IpM peptide or 

irradiated tumor cells at responder/stimulator ratios ranging between 1:3 and 1:10. 





Assessment of antigen recognition by CTL 

Epitope specificity of CTL was determined by IFN-y mRNA production in 

response to 2-hour stimulation with relevant or irrelevant epitopes. cDNA from each 

culture was assayed for IFN-y production by quantitative real-time PCR (23). Absolute 

measurement of mRNA copy number was performed with a standard curve for each gene 

of interest. In each sample IFN-y mRNA levels were normalized per ICE copies of CD8 

mRNA. 

Inhibition of MAGE-12 by other MAGE peptides 

Exposure to potential agonists or antagonists was provided by 3 x 10*1 293-HEK 

cells treated with IFN-a for 24 hours to enhance HLA-Cw*0702 surface density (24) and 

pulsed for 2 hours at 37 C with 1 pM peptide. Cells were washed of excess peptide and 

exposed to 3 x 106 F001-TIL. Aliquots containing 2 x 105 TIL were removed at time zero 

and every two hours up to 6 hours and tested for IFN-y release by qRT-PCR. After 24 

hours each culture was split into two cultures. 293-HEK cells (106) pulsed with MAGE- 

12:170-178 or the irrelevant HLA-Cw*0702 binding histone H3.3:40-48 peptide were 

added to each culture. Aliquots containing 2 x 10^ TIL were removed at time zero and 

every two hours up to 6 hours from each culture and tested for IFN-y transcript level by 

quantitative real-time PCR. 
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Detection of Cw*0702 surface expression by complement dependent cytotoxicity. 

HLA*Cw0702 levels of expression were judged by Complement Dependent 

Cytotoxicity (CDC) of cell lines previously cultured with or without IFN-a(500 mg/ml) for 

48 hours. 

HLA phenotyping of patients and cell lines. 

Molecular and serological analysis of patient and cell line HLA phenotypes was 

performed by CDC, sequence-specific primer PCR or automated sequencing as appropriate 

(9). 
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Results 

Identification of MAGE-12 reactivity in TIL and circulating lymphocytes from patient 

F001 who experienced temporary regression of cancer in response to MDA-specific 

vaccination. 

F001-TIL and F001-MEL have been previously characterized (9). These lines were 

expanded simultaneously from a FNA of a melanoma metastasis that had originally 

regressed in response to vaccination with the HLA-A*0201-associated gpl 00:209- 

217(210M) peptide administered subcutaneously in incomplete Freund’s adjuvant. F001- 

MEL lacked expression of gplOO/PMell7 and other MDA and retained expression of TSA 

of the MAGE family. Twelve identical clones from that FNA (combined here as F001- 

TIL) recognized the HLA-Cw*0702 associated MAGE-12:170-178 epitope. In this study 

we tested whether the immune reactivity against MAGE-12 observed within the tumor was 

associated with detectable systemic reactivity toward the same epitope. PBMC obtained 

from the patient at the time of the FNA were stimulated with MAGE-12:170-178, MART- 

1, gpl00/PMell7 (abbreviated as g209 in the figures and text) or gpl00:209-217(210M) 

(abbreviated as g209-2M in the figures and text). The immune reactivity elicited toward 

the various TA was compared by documenting the kinetics of specific IFN-y transcription 

by various cultures in response to relevant stimulation (23) (Figure 1A). No TA-specific 

reactivity could be detected directly in PBMC. One week after the first stimulation, CTL 

cultures elicited by stimulation with g209 or g209-2M demonstrated specific expression of 

IFN-y mRNA. Specific reactivity toward either MAGE-12 or MART-l/MelanA appeared 

only after two weeks and one re-stimulation. This is not surprising since the patient had 

recently received g202-2M-based vaccine. Interestingly, the reactivity toward MAGE-12 
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paralleled reactivity toward MART-l/MelanA. Phenotypic characterization of the CTL 

induced by stimulation of PBMC with MAGE-12:170-178 demonstrated selective 

expansion of a V(37s2 identical to the Vp expressed by F001-TIL (10). This suggested that 

systemic and local responses were mediated by expansion of an identical T-cell clone. 

Expression ofTA on HLA class I alleles by F001-MEL. 

F001-MEL expressed most MDA including gp 100/Mel 17 and MART-l/Melan A 

below the threshold of recognition by high-avidity TA-specific CTL (20). However, this 

tumor cell line retained expression of most TSA (9, 10) and could be still recognized by 

F001-TIL. Here we further characterized the level of expression of MAGE family genes in 

this and other tumor cell lines (Table IA). Notably, F001-MEL expressed most of the 

MAGE family genes. The only MAGE genes not expressed by F001-MEL (MAGE-5, 7 

and 8) were not expressed by any other melanoma cell line suggesting that these genes are 

uncommonly expressed in the context of metastatic melanoma. Since the amount of 

expression of a given TA might influence its potential immunogenicity, we used 

quantitative real-time PCR to test whether F001 expressed unusual amounts of MAGE-12 

compared with other melanoma cell lines (Table IB). F001-MEL did not appear to express 

unusually high amounts of MAGE-12 transcript compared with other melanoma cell lines, 

suggesting that levels of MAGE-12 expression were not, by themselves, a factor 

responsible for the development of MAGE-12 reactive TIL in this patient. 

Since the level of HLA class I expression modulates T-cell recognition of tumor 

cells (25), it is possible that F001-MEL expressed unusually high levels of HLA-Cw*0702 

associated with the MAGE-12:170-178 recognition. CDC suggested that HLA-Cw*0702 





15 

surface expression was relatively higher in F001-MEL than most melanoma cell lines since 

it could be detected without preconditioning with IFN-a or IFN-y (24). However, this did 

not appear to play a critical role in eliciting F001-TIL reactivity. Other melanoma cell 

lines, characterized by undetectable levels of HLA-Cw*0702 expression by CDC could 

elicit similar IFN-y release. Of six cell lines tested, three (624.28, 624.38 and SK-23) had 

HLA-Cw*0702 surface density below the threshold of detection by CDC without pre¬ 

treatment with IFN-a and became susceptible to CDC after such a treatment. The other 

three (938-MEL 1280-MEL and F0Q1-MEL) were susceptible to CDC independent of 

IFN-a pre-treatment. However, all cell lines triggered similar levels of IFN-y expression 

when co-cultured with F001-TIL. Thus, the most significant functional difference between 

this tumor cell line and other archival cell lines was the reduced expression of MDA. 

The expression of MAGE-12 in a panel of normal tissues revealed only trace levels 

of transcript in lungs and high levels in the testis at the highest concentration of cDNA 

(approximately 1 ng). At 0.1 ng MAGE-12 expression was barely identified in lung tissue 

but was still clearly identifiable in the testis. MAGE-12 expression was not observed in 

any other normal tissue including brain, heart, kidney, spleen, liver, colon, small intestine, 

muscle, stomach, placenta, salivary gland, thyroid gland, adrenal gland, pancreas, ovary, 

uterus, prostate, skin, PBL, bone marrow, fetal brain and fetal liver (data not shown). 

Effect of antigen presentation by tumor cell lines on MAGE-12 recognition. 

To evaluate whether loss of expression of MDA by F001-MEL might have 

facilitated the detection of MAGE-12:170-178 reactivity, we repeatedly stimulated in vitro 

post-vaccination PBMC from patient F001 with allogeneic tumor cells as previously 
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described (22). PBMC received repeated stimulation in vitro with a melanoma cell line 

expressing MAGE-12, MART-l/MelanA and gpl00/PMell7 and HLA-A*0201/Cw*0702 

alleles (624.38-MEL). Parallel PBMC cultures were also performed with 624.28-MEL, a 

clone from the same cell line with identical pattern of expression of TA and HLA- 

Cw*0702 but that had lost expression of HLA-A*0201, the molecule associated with the 

presentation of the MDA-derived immunodominant epitopes. The purpose of this 

experiment was to test whether lack of stimulation with supposedly “immunodominant” 

epitopes of gplOO or MART-1 could facilitate the identification of other cryptic epitopes. 

Since MART-1 and gplOO immune dominance has been principally associated with 

peptides presented in the context of HLA-A*0201, we selected two clones, 624.28 and 

624.38, that express identical amounts of MART-1 and gplOO. Both were derived from 

624-MEL, however 624.28 has lost expression of HLA-A*0201 and cannot present 

peptides in the context of this molecule(17). In our opinion this model has the advantage of 

subtracting the expression only of the gpl00-HLA-A*0201 and the MART-l/HLA- 

A*0201 associated epitopes maintaining the immunogenic potential of these two antigens 

in association with other HLA alleles shared with the patient’s PBMC (HLA-B*0702 and 

Cw*0702). In three separate experiments, stimulation of PBMC with 624.28 allowed 

detection of MAGE-12-specific, but not MART-l/MelanA-specific, CTL that could 

recognize the parental 624-MEL cell line (Figure 2, gray bars). In parallel experiments 

PBMC stimulated with 624.38 failed to demonstrate MAGE-12 specificity, developed 

MART-l/MelanA reactivity and could also recognize 624-MEL (Figure 2, white bars). 

The recognition of 624-MEL by the 624.28-MEL induced, but not the 624.38-induced, 

CTL could also be enhanced by pulsing with MAGE-12:170-178. Thus, the lack of 
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induction ot HLA-A*0201 -associated activity in 624.28-elicited cultures might have 

facilitated the detection of reactivity toward MAGE-12:170-178, most often masked by the 

coexistence ot HLA-Cw*0702 and HLA-A*0201 within the same ancestral haplotype (26). 

Immune reactivity toward MAGE-12 in HLA-Cw*0702 bearing individuals with metastatic 

melanoma. 

MAGE-12:170-178 immune reactivity in patient F001 was then compared to that of 

three other HLA-A*0201/-Cw*0702-expressing patients with advanced melanoma who, 

unlike patient F001, were vaccine-nai've. PBMC from F001 and the other patients were 

repeatedly stimulated with MAGE-12:170-178 and the HLA-A*0201 associated Flu 

Ml:58-66 epitope, an irrelevant peptide (Figure 3). Although it was possible to elicit brisk 

FluMl-specific responses in all patients, MAGE-12:170-178-specific responses could be 

detected only in patient F001. 

Epitope spreading following successful vaccination with a MDA-specific epitope induces 

MAGE-12:170-178 reactivity. 

To evaluate whether the unusual detection of a MAGE reactive TIL was related to 

the recent vaccination, we compared MAGE-12 recognition by PBMC obtained from 

patient F001 before and after the treatment had induced temporary tumor regression. This 

was done by comparative in vitro stimulation of pre- and post-vaccination PBMC with the 

MAGE-12:170-178 peptide. In three consecutive experiments we could not induce 

MAGE-12 reactivity in PBMC obtained before vaccination. However, we consistently 

identified MAGE-12:170-178-specific reactivity in PBMC obtained after two vaccinations 





18 

with g209-2M that had caused a dramatic, although temporary, shrinkage of the tumor 

(Figure IB). This data suggests that during the period lasting from when the pre¬ 

immunization sample and the post-immunization samples were obtained, a stimulus 

secondary to the vaccination induced an increase in circulating precursor T-cells capable of 

responing to in vitro stimulation with MAGE-12:170-178. Since only the tumor tissues 

expressed MAGE-12, it is reasonable to suggest that the enhancement of MAGE-12 

reactivity in circulating T-cells was related to events occurring within the tumor 

environment in response to the vaccine. 

MAGE-12:170-178 analog peptides from other MAGE-1 genes do not interfere with 

MAGE-12:170-178 immunogenicity. 

We then tested whether various MAGE family genes encompassing peptide 

sequences analogous to MAGE-12:170-178 could interfere in MAGE-12 immunogenicity. 

All of the members of the MAGE family have sequences which are homologous to 

MAGE-12:170-178. In particular, MAGE-2 and MAGE-3 have sequences which differ in 

only two to three residues from MAGE-12:170-178 and these differences are compatible 

with the HLA-Cw*0702 binding motif (9). Assuming similar binding affinity of these 

homologous sequences to HLA-Cw*0702, it is possible that these natural analogs might 

exert agonist or antagonist effects on MAGE-12:170-178 stimulatory properties, as has 

been shown for other artificial analog peptides in the context of MART-l/MelanA (13, 15). 

As a consequence, different patterns of MAGE gene expression by various tumors might 

contribute to global differences in immune reactivity toward determinants sharing 

sufficient homology. To test the possibility of interference of these epitopes with F001-TIL 
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reactivity, we co-cultured this TIL with 293-HEK cell line (pretreated with IFN-a to 

induce HLA-Cw*0702 expression) which was pulsed with 1 pM concentrations of analogs 

from MAGE-1, MAGE-2, MAGE-3, MAGE-4a and MAGE-6. Lack of interference in 

recognition of MAGE-12:170-178 would exclude competitive or synergistic effects of the 

peptides whether due to lack of binding to HLA or to direct agonistic/antagonistic effects. 

None of the analogs could stimulate F001-TIL. To test for MAGE-12:170-178 antagonism, 

F001-TIL was exposed to various analogs pulsed onto IFN-a treated 293-HEK cells for 24 

hours. TIL were then re-exposed to MAGE-12:170-178 or an HLA-Cw*0702-associated 

control epitope (histone H3.3:40-48). No modulation of IFN-y transcription in response to 

stimulation with the cognate MAGE-12:170-178 was produced by any of the analogs (data 

not shown). Thus, it is unlikely that competing analogs from other MAGE family gene 

products play a significant role in modulating MAGE-12 responses in this or other 

patients. 
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Discussion. 

The frequent identification of MART-l/MelanA and gpl00/PMell7 reactive CTL 

from patients with metastatic melanoma expressing HLA-A*0201 suggests that these TA 

may play an “immune dominant” role in the context of this HLA class I restriction 

element. In particular, MART-l/MelanA immune dominance is restricted to a unique 

epitope (MART-1:27-35) and the molecular basis for this phenomenon remains unclear 

(8). Conflicting theories have been evoked to explain the predominant role that this TA 

seems to play. We noted that MART-l/MelanA reactivity is more readily elicited in 

patients with melanoma compared with normal individuals (27). This finding suggested 

that tumors can prime the host immune reactivity and, since MART-l/MelanA is also 

expressed by normal melanocytes, that the tumor microenvironment might provide a 

quantitatively and/or qualitatively stronger stimulus for the host immune system than the 

epidermis. Others confirmed this finding and suggested that differences in immune 

reactivity between normal and melanoma bearing individuals correlate with a respective 

predominance of naive and memory CTL in the two populations (28, 29). 

Loftus et al. (13) suggested that MART-1:27-35 immune dominance might be 

explained by biochemical commonalties shared by MART-1:27-35 and analog epitopes to 

which individuals might become repeatedly exposed during their life time. Others have 

suggested a central explanation for MART-l/MelanA immune dominance. MART-1:27-35 

is a peptide sequence characterized by low affinity for HLA-A* 0201 and, therefore, 

negative TCR selection toward this epitope might be less strictly enforced during 

embryogenesis (21). 





21 

It is now clear that immune reactivity toward cancer can be influenced by 

peripheral stimuli artificially provided in the form of wild type or modified epitope 

determinants (25, 30). This is well illustrated by the acquisition of gpl00/PMell7 

reactivity by patient F001 in response to vaccination. However, evidence that human 

tumors can naturally shape the host immune reactivity has remained indirect (8, 28, 29). 

Pre-clinical models suggest that epitope spreading occurs in association with tumor 

rejection following vaccination with a single immunodominant CTL epitope (16). Thus, 

under immune-mediated perturbations of the tumor microenvironment, an additional signal 

is induced that complements the weak signal ordinarily provided by TA-bearing cancer 

cells (2). Antigen spreading, however, has never been demonstrated to occur in response to 

anti-cancer treatments in humans. This study documents the positive conversion of a 

patient’s immune reactivity toward a TSA (MAGE-12) following successful vaccination 

utilizing a single epitope from another TA (see Figure 1 b). Since MAGE-12 is not 

expressed in normal tissues (31), this finding can best be explained by priming of the 

immune system by vaccine-induced inflammatory reactions within the tumor. 

Alternatively, tumor antigens shed by dying tumor cells could have been transported to 

regional lymph nodes where this induction could have occurred. Since it is not known 

whether MAGE-12 was expressed by the tumor before vaccination, it cannot definitively 

be concluded that the only change occurring during treatment was related to co-stimulatory 

factors. However, MAGE-12 is expressed in approximately 80% of melanoma metastases 

and the short-term kinetics of its expression in response to immune manipulation appears 

to be extremely stable (32). The expression of the associated HLA-Cw*0702 allele might 

have played a role in the emergence of this unusual reactivity. However, increases in the 
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constitutive expression of HLA alleles are unusual in cancer unless an altered cytokine 

microenvironment (i.e. increased IFN-y levels) could have been induced by immune cells 

accrued by the vaccine. 

The most significant implication of this study is that tumor microenvironment or 

the draining lymph nodes can influence, under appropriate conditions, the host immune 

reactivity and that systemically documented immune reactivity is a vestige of a past 

immunogenic eruption. CTL elicited from PBMCs shared TCR utilization with F001-TIL 

suggesting a common origin for the tumor-reactivity seen in this patient (10). It remains 

unclear how the tumor cells, whose immunogenicity resounded systemically, could escape 

the immune effects they created. To the best of clinical testing, this patient was the bearer 

of only this tumor mass suggesting that the immune reactions caused by the vaccine 

converged in the lesion studied. It is possible that upon temporary disappearance of the 

lesion the priming conditions created by the vaccine extinguished and failed to sustain a 

clinically effective immune reactivity. Exogenous sustenance of such reactivity by 

vaccines might provide the continuity of stimulation that the tumor microenvironment 

seems to lack. The demonstration of epitope spreading may have also practical 

implications because it suggests that alternatives are available when loss of TA targeted by 

vaccines occurs. In particular, the identification of MAGE-12:170-178 might be of broader 

significance than previously suspected as this epitope has recently been shown to play a 

role as antigen in cancers other than melanoma (33). 
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Figure legends 

Figure 1. A. Detection of epitope-specific IFN-y transcript by quantitative real-time PCR 

in PBMC (time 0) and CTL cultures (at various time points) obtained from patient F001 

after two subcutaneous administrations of g209-2M peptide in incomplete Freund’s 

adjuvant. CTL were sensitized in vitro by repeated weekly exposure to 1 pM MAGE- 

12:! 70-178, MART-1:27-35, g209 or g209-2M peptides and interleukin-2 (300 IU/ml). 

Epitope-specificity was tested by exposing the T-cell cultures to relevant and irrelevant 

(Flu Ml :58-66) 1 pM peptide for two hours before preparation of cDNA for assessment of 

IFN-y transcript by quantitative real-time PCR. The labels describe the peptide used for 

PBMC induction / peptide used for specificity testing. Data are presented as average of 

four experiments + SEM. Student t-test p-value for data after a second and third in vitro 

sensitization are all < 0.001 when relevant (solid symbols) stimulation is compared to the 

respective irrelevant (open symbols) stimulation with Flu. B. Detection of epitope-specific 

IFN-y transcript by quantitative real-time PCR in PBMC obtained from patient F001 

before and after vaccination with g209-2M peptide in incomplete Freund’s adjuvant as in 

panel A. PBMC were sensitized in vitro by repeated weekly exposure to MAGE-12:170- 

178, g209 and g209-2M peptides and interleukin-2 (300 IU/ml). Epitope-specificity was 

tested by exposing the T-cell cultures to 1 pM peptide for two hours before preparation of 

cDNA for assessment of IFN-y transcript. In both panels, results are normalized as IFN-y 

mRNA copies per 106 CD8 mRNA copies (23). Data are presented as average of four 

experiments ± SEM. Student’s t-test p-value for pre- vs. post-vaccination culture results < 

0.001 for all specificities presented. 
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Figure 2. Modulation of epitope-specific T-cell induction by stimulation with melanoma 

cells expressing different HLA class I alleles. Patient F001 PBMC were stimulated weekly 

in presence of IL-2 (300 IU/ml) with the HLA-A*0201 and Cw*0702 expressing cell line 

clone 624.38 MEL (white bars) or a clone (624.28 MEL) characterized by HLA-A*0201 

allelic loss (17) but retaining expression of Cw*0702 (gray bars). These clones have been 

previously characterized and express similar amounts of MART-l/MelanA and MAGE-12. 

After three stimulation the cultures were tested by two-hour exposure to 1 pM MART- 

1:27-35, lpM MAGE-12:170-178 or to 624-MEL pretreated with IFN-a (500 pg/ml x 48 

hours) to enhance HLA class I molecule expression. In addition, 624-MEL was pulsed 

with lpM MAGE-12:170-178 (624-MEL + MAGE). Results are presented as ratio of 

IFN-y mRNA copies per 106 CD8 mRNA copies in tested sample over the same parameter 

in cultures not exposed to peptide. Data are presented as average of three experiments + 

SEM. Student t-test p-value comparing cultures induced with 624.28 with those induced 

with 624.38 are as follows: <0.05 for MART-1, <0.001 for MAGE-12, non-significant for 

624-MEL and <0.01 for 624-MEL exogenously loaded with 1 pM MAGE-12:170-178 

peptide 





MACE 





34 

Figure 3. Induction of MAGE-12:170-178 reactivity in PBMC from four HLA-Cw*0702 

expressing patients with metastatic melanoma. PBMC from four patients with metastatic 

melanoma expressing HLA-Cw*0702 (as well as HLA-A*0201) were stimulated weekly 

with lpM MAGE-12:170-178 peptide or lpM Flu ME58-66 peptide and interleukin-2 

(300 IU/ml). Patient # 1 is F001. Epitope-specificity was tested by exposing the T-cell 

cultures to lpM MAGE-12:170-178 or Flu ME58-66 peptide for two hours before 

preparation of cDNA for assessment of IFN-y transcript by quantitative real-time PCR. 

Results are presented as IFN-y mRNA copies per CD8 mRNA copies in tested sample 

over the same parameter in cultures not exposed to peptide. Data are presented as average 

of three experiments ± SEM. 
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Table I 

Quantitative and qualitative assessment of MAGE gene expression in melanoma cell lines 

A e 
Cell Line 

1 2 3 4a 

MAGE protein 

5 6 7 8 9 10 11 12 
MAGE 12 

NHEM 1 
F001-MEL + + + + + - - + + + + 590 
F001-EBV 4 
F002-MEL + + + + + - - - + + + 4700 
F010-MEL - + + - + n.d. n.d - - - + 1200 
397-MEL + + + - + - - + + + + 3800 
537-MEl + + + + + - - - + - + 1500 
624.28- + + + + + - - + + + + n.d. 
624.38- + + + + + - - + + + + 1500 

836-MEL + + + + + - - - + + + 1100 
888-MEL + + + - + - - + + - + n.d. 
938-MEL + + + + + - - + + + + 1000 
1102-MEL - + + + + - - - - - + 550 
1123-MEL - - + - - - - - - - - 15 
1280-MEL - + + - + - - - - - + 15 
1359-MEL - + + - + - - - - - + 51 
1495-MEL + + + + + - - + + + + 1850 
A375-MEL + + + + + - - - + + + 250 

SK-23- - + + - + - - - - - + 1200 

A. The identity of amplified products was confirmed by sequencing using PCR products from 

F001-MEL. (n.d. = not done) 

B. Expression of MAGE-12 mRNA copies was measured quantitatively by real-time PCR as 

MAGE-12 mRNA copy number over p-Actin mRNA copy number. Data were further normalized 

by providing a ratio of MAGE-12/p-Actin transcript levels in cell lines over that of normal human 

epithelial melanocytes (NHEM). Each sample was analyzed in duplicate and average values are 

presented. 
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