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ABSTRACT 

STUDIES IN THE NEUROPHYSIOLOGY 

OF TWO IDENTIFIED POPULATIONS OF CELLS 

AND THEIR COMMON SYNAPSE IN 

APLYSIA CALIFORNIA 

William Davis Gaillard 

1985 

I. Receptors to putative transmitters on A and B cells of Aplysia 
calicornica were identified and characterized. Each cluster of neurons 
exhibited receptors to acetylcholine, dopamine, GABA, glutamate, 
histamine, and serotonin, but not to octopamine or phenylethanolamine. 
Glutamate, histamine, and serotonin produced depolarizing responses on B 
cells. The proportion of ionophores associated with each transmitter 
receptor was characteristic for each cell cluster examined. The A cell 
receptor profile appeared to be more uniform than that of the B cells. 

II. Studies of the A to B synapse did not demonstrate any effect by the 
sodium and chloride channel blockers curare and strychnine or by the 
histamine antagonists burimamide and pyrilamine. Bufotenine, a 
serotonergic antagonist, at high concentrations affected the psp by 
secondary effects on the membrane. Desipramine, the serotonin re-uptake 
inhibitor, did not affect the psp, nor did serotonin, glutamate, or 
aspartate desensitize the synaptic receptor. The study concludes that 
neither acetylcholine, serotonin, histamine, or glutamate are the 
transmitters at the A to B synapse. 

III. Glycine-induced biphasic hyperpolarizations and a slow 
depolarization on Aplysia neurons were identified and characterized. 
The hyperpolarizing responses were mediated by increased permeability to 
chloride and potassium ions, respectively, which were reversibly 
abolished by strychnine. These responses, however, could not be 
elicited during the winter months. The ubiquitous slow depolarization 
was not associated with a change in membrane conductance. The response 
was sodium dependent, abolished my metabolic inhibitors, and unaffected 
by the glycine antagonist strychnine. The depolarization failed to 
desensitize, but was mimicked by application of the neutral amino acids 
histidine and glutamine. The glycine-induced depolarization shares many 
characteristics with sodium coupled cotransport; it does not appear to 
be mediated by a classical neurotransmitter receptor. 
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INTRODUCTION 

Aplysia californica, a marine mollusc indigenous to the American west 

coast has played a crucial role for neurophysiologists interested in 

elucidating the mechanisms underlying neural activity. Aplysia is 

blessed with a relatively "simple" nervous system; not only are 

individual neurons identifiable, in a reproducible fashion from animal 

to animal, but they are accessible to experimental recording (34,55,64 

84,96,200). Since the neurons are large, many electrodes can be 

inserted into any given cell facilitating intracellular recording and 

making more detailed pharmacological and physiological receptor studies 

possible. Synaptic pathways can be traced with similar ease. Thus, an 

understanding of "simple" behaviors of Aplysia has grown as its 

elementary circuits have been mapped (95). 

During the previous twenty years the tools available for studying 

neurotransmitter pharmacology and synaptic physiology have grown. 

Single cell biochemical analysis of endogenous levels of transmitter 

• C ' 
candidates can be carried out, synthetic enzymes can be detected, uptake 

of precursors can be measured, while the metabolic processes of 

synthesis and release can be monitered (13). Perfusion or ionophoresis 

of neurotransmitters, and their agonists and antagonists, has expanded 

the practicability of receptor pharmacology. Microelectrode techniques 

have been invaluable for measuring changes in membrane potential, 

membrane resistance and conductance, and ionic basis of response (207). 

1 





The limited spectrum of behavior available to sea slugs has 

attracted the attention of neurobiologists interested in studying basic 

elements of behavior. An Aplysia can feed, be it on food to continue 

a 

self existence, or on another Aplysia to perpetuate the species. 

Alternatively, an Aplysia can flee to preserve the self while making 

possible future attempts at procreation (76). With currrent methods of 

electrophysiological research it is possible to analyze the neural 

mechanisms and synaptic organization underlying these behaviors. 

\ 
Knowledge has been collected, ranging from reflexes -- such as tentacle, 

tail, gill and siphon withdrawal (57,166;196,197;18,115), mucous release 

(164), and inking (22) -- up to the more sophisticated activities of 

eating (92,93,205) and locomotion (61,76). 

The cerebral ganglion neurons of Aplysia are intimately associated 

with the reception of sensory information, principally from the head and 

tentacles, and are implicated in the initiation, maintenance, and 

modulation of the basic behaviors of feeding, locomotion, and defensive 

withdrawal. The present study focuses on these neurons. It examines 

how neurotransmitters interact with their receptors on two populations 

of neurons, the A and B cells of the cerebral ganglion, and attempts to 

identify the neurotransmitter at their common synapse. Both clusters of 

cells play a major role in the reception and integration of information 

essential to Aplysia decision making. By elucidating the physiology of 

this synapse greater light will be shed on the neural mechanisms that 

allow for the plasticity, flexibility, and integrative capacity that is 

crucial to behavior. 
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To preserve perspective on the ultimate goal of this study, I will 

begin with a review of the neural organization underlying behaviors 

associated with the cerebral ganglia. The principal level of this 

investigation is the neurotransmitter receptor; thus current knowledge 

of transmitter and receptor identity in Aplysia will be briefly 

presented as well. A more detailed discussion regarding A and B cluster 

neurons and the A to B synapse, the subject of this study, is provided 

to complete the review of the background material. 

The experimental results are organized in three sections: first, a 

survey of receptors found on A and B cells; second, results from studies 

designed to identify the transmitter at the A to B synapse; and third, 

characterization of previously undescribed glycine-induced alterations 

of membrane potential which were encountered during the preliminary 

receptor survey. 
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NEURAL BACKGROUND OF BEHAVIOR IN APLYSIA 

Organisms exist in and interact with their environment which, in 

turn, influences being in some manner. They react to the continuous 

stream of stimuli, for to survive all creatures must constantly strive 

to affect and alter the environment in which they live. react to the 

constant stimulus of the environment against which they constantly 

strive to influence and alter. Aplysia, for example, respond to their 

surroundings in a number of ways — generally as variations on common 

themes. The uniqueness of response, however, is determined by 

individual experience; this is behavior. Positive action ranges from 

the simple reflex, generally defensive in nature, to the far more 

complicated goal directed behaviors, such as feeding and sex, that 

involve varied levels of arousal, motivation, and satiation (166). 

An Aplysia must base its decisions to act on information gleaned 

from the environment; the interface between animal and world is tenuous, 

resting on limited means of sensory input. There are sensors for 

detecting chemical, proprioceptive, coarse visual, tactile, and noxious 

stimuli (34, 85). Behaviors are centrally mediated; they all have their 

basis in hard neural circuitry that must, however, be organized with 

sufficient plasticity to meet an incessant stream of new demands (20, 

57, 61, 76, 85, 86, 92, 93). 

The importance of chemical stimuli will illustrate the point. The 

anterior tentacular grooves of Aplysia contain a dense collection of 

chemoreceptors. These sensors relay information to clusters of neurons 

in the cerebral ganglion where it is processed to initiate the 
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appropriate behavior. If proline is presented to the tentacles of an 

Aplysia it will initiate sex seeking behavior. On the other hand, 

alanine, cystine, or leucine, dissolved in seawater, will cause the 

-6 ~7 ~5 
animal to withdrawal. Glutamate (10 to 10 M), or aspartate (10 to 

10 ^ m) , will arouse food seeking behavior (81), whereupon the animal 

will begin to search, will move toward the direction of the stimulus, 

and then will begin to masticate (81, 93, 92). If the threshold to 

commence a series of eating related motor programs is lowered, arousal 

is hightened. Activated metacerebral giant cells alter the excitability 

of buccal motoneurons and buccal muscle; B cell receptivity to 

mechanosensory input is heightened (57, 205). Motoneurons in the 

cerebral and buccal ganglia begin to fire synchronously and in 

repetitive fashion until the food is consumed (81, 92, 93). 

Locomotion is a far more complicated behavior (or a pattern central 

to many behaviors) which has been studied in great detail. The foot, 

and locomotion, are utilized for a number of goal directed behaviors. 

To find food, the animal must search, move toward, and reach out to the 

object of the mouth's desire. Eating requires action of the foot, too 

(76, 85, 89). It plays an essential role in sexual orientation and in 

other endeavors that need only be imagined (76). Suction, the means by 

which Aplysia attach themselves to various objects, also requires the 

foot as does withdrawal and flight (76, 85, 86, 89). 

Goal oriented movement can be initiated by any of the stimuli listed 

earlier (76, 90). Nociceptive stimuli, salt or an electric shock, 

applied to the tail will evoke creeping, if not a gallop (76, 90, 191, 
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198). On the other hand, a nasty stimulus to the head, or satiation, 

will inhibit locomotion (76, 191). 

Locomotion is stereotyped; it consists of a repetitive and rhythmic 

series of movements that are invariable regardless of the original 

stimulus or the final objective (86, 76). Initially the head detaches 

and extends forward to reattach to the surface. A wave of extension and 

retraction then moves posteriorly bringing caudal portions forward (76, 

87, 89). Associated movements include pulling of the head, parapodial 

contractions and gill withdrawal (85, 86). This series of muscular 

contractions can propel an animal at the remarkable maximum speed of 30 

cm per minute (76). 

The neural organization necessary to achieve the coordination of 

events is great. Decisions must be made to initiate the pattern, and to 

set the velocity of movement (61, 89, 90). Once the pattern is 

generated it must be maintained and concomitantly modified to fit 

current positional requirements (60, 61, 90). All decisions and 

commands, which are generated centrally (58, 61, 87, 76), do not depend 

on peripheral feedback other than for proprioceptive input necessary for 

making minor adjustments (60, 90). The principal motor innervation 

arises from the pedal ganglion, although the A and B cells provide some 

innervation of the foot and parapodia (76, 85, 86, 87). 

Three paired pedal nerves carry mixed sensory and motor fibers 

between the foot and the pedal ganglion. Motor fields are ipsilateral, 

never cross the midline, but do overlap at their longitudinal borders. 

The motoneurons either excite or inhibit foot muscles, thus changing the 
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tone of muscle when fired (76, 87). Motoneurons do not form 

monosynaptic connections with each other, instead they often share 

common synaptic input (60, 76). The presynaptic neurons are organized 

to achieve coordinated common firing and inhibition of the respective 

agonistic and antagonistic muscle groups (90, also 92, 93). 

The pedal wave, generated centrally, passes caudally without fail. 

Indeed, the wave will propagate beyond a denervated region without 

losing its proper timing (76, 85). Muscular contractions are 

bilaterally coordinated by neurons presynaptic to the motoneurns via the 

pedal commissure (76, 85, 89, 91). It is clear that the pattern 

requires time locked coordination of phasic movement; reflexes 

contribute little to the sequence (60, 76, 85). 

Only some of the higher level organization necessary for controlling 

locomotion is known. Ablation studies provide crude insight into the 

key features of the system (87, 89, 90). Without the cerebral ganglion 

an Aplysia can not initiate locomotion. Without the pleural 

connectives, the rate of the pedal wave can not be regulated, nor can 

escape behavior be initiated. The isolated pedal ganglia, the apparent 

site of the pedal wave generating system, are able to engender limited 

and weak pedal waves. The control of movement has been made more clear 

by the discovery of apparent "command neurons" in the cerebral ganglion 

by Jahan-Pawar and Fredman (6). 

Four neurons, located in the C clusters, are able to initiate 

generation of the pedal wave. Any one of the neurons when fired will do 

so, while simultaneously inhibiting its fellow command neurons. Not 
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only does firing one of these neurons evoke locomotion, but they are 

active throughout the duration of the behavior. It is not clear, 

however, if locomotion is not possible without these neurons. Finally, 

the rate of bursting corresponds to the rate of the pedal wave. An 

additional set of neurons were found that proved less potent but which 

have similar effect (6). 

In the grand scheme it appears that the cerebral ganlion is 

essential for the initiation and maintenance of locomotion -- after all 

that is where the initial sensory information arrives. The numerous 

connections between the cerebral, pleural, and pedal ganglia in 

association with analysis of proprioceptive feedback, provide the 

network responsible for modulating the behavior (6). 

NEUROTRANSMITTERS IN APLYSIA CALIFORNICA 

The neurons of Aplysia are arranged in multilayered fashion within a 

ganglionic sheath where clusters of cells are separated by walls of 

connective tissue. The neurons are large, often one hundred to one 

hundred fifty micrometers in diameter. Their axons reach into the core 

of the ganglion whereupon they branch to form axo-axonal synapses hence 

creating the neuropile. Synaptic terminals, lying deeply embedded in 

glial enfoldings, are filled by many types of vesicles (64, 96). With 

the exception of GABA and acetylcholine, neurotransmitter receptors are 

located on narrow and discreet regions of the axon and axon hillock (8, 

29, 118). The following section reviews identified receptors on Aplysia 

neurons and at known synapses. The discussion begins with the 

definition of a transmitter, and, more importantly, how a substance may 

be identified as the messenger at a synapse. 
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Werman addressed the problem of definition in great detail (207). 

He reviewed the criteria that need to be met before a substance may be 

considered to be a neurotransmitter. First, identity. The application 

of the candidate to the postsynaptic membrane must — classically -- 

induce alterations in voltage and conductance that mimic the response 

evoked by presynaptic stimulation. The pharmacological sensitivity of 

the induced and evoked responses must match. There are other criteria, 

too. The candidate must be available at the presynaptic terminal — 

this is generally understood to be presence in the neural soma, or in 

reserve in the neuron, but in fact it may be synthesized only in the 

terminal on demand. Clearly, the neuron must be able to manufacture the 

transmitter; this requires the ability to take up precursors and the 

T 
availability of synthetic enzymes. A mechanism for release must exist, 

as must a method of inactivation -- be it by enzymatic degredation, 

diffusion, or re-uptake. Theoretically, the substance should be 

collectible following presynaptic stimulation if the inactivating system 

can itself be inactivated (207). 

Demonstration of each criterion is not always feasible, yet the 

guideline remains necessary. The corollary is to establish guidelines 

for identifying the neurotransmitter at a given synapse. The candidate 

must be available, on demand, in the presynaptic neuron; the precursors, 

synthetic enzymes, and an inactivating system must be present as 

well(109). Physiological investigation must demonstrate receptors 

specific for the transmitter candidate on the postsynaptic neuron. Once 

identified, the induced ionic sensitivities, membrane conductance 

changes, and reversal potentials must match. Similarly, the 
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pharmacological properties must be identical: the effects of agonists 

and antagonists, and the secondary effects of inhibiting the 

inactivation system, must mimic each other. At times, ultrastructural 

studies may be of use. Collection of the candidate from the bath 

perfusate following presynaptic stimulation provides supportive 

evidence. 

Receptor Physiology And Pharmacology 

The number of neurotransmitters and the multiplicity of responses 

they elicit in Aplysia is most conveniently addressed where the common 

and distinctive features of receptor pharmacology and physiology may be 

considered. Ionophoretically induced shifts in membrane potential, 

usually associated with an increase in membrane conductance, have been 

described for many substances: acetylcholine (103), dopamine (5, 6, 26, 

30, 179), GABA (211, 214), glutamate (64, 107, 211, 212), histamine (27, 

30, 75), serotonin (68), aspartate (64, 107, 211, 212), octopamine (25, 

30), and phenylethanolamine (26, 169). 

The most common response resulting from the binding of transmitters 

to their receptors is to increase the permeability of sodium, chloride, 

or potassium ions across the cell membrane. The membrane potential at 

which a voltage dependent response will flip, the reversal potential, 

reflects the equilibrium potential for the ion that mediates the 

response. For example, the chloride reversal potential is approximately 

-55 to -60 mv, that of potassium is -75 to -80 mv, and that of sodium is 

between +10 and +30 mv. 
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The similarity of the time course, the changes in membrane 

conductance, and the ionic sensitivities of the commonly found responses 

that may be generated by all transmitters in Aplysia led Swann and 

Carpenter to propose the Ionophore Theory (23, 30, 179, 213). Based 

upon receptor and ion channel antagonists they argue that individual 

neurotransmitter specific receptors are coupled to prefabricated 

ionophores -- the ion specific channels that penetrate the membrane. 

Any one transmitter receptor may be linked with any ionophore. Thus, 

one transmitter may evoke multiple responses mediated by different ions; 

and, conversely, any ionic response may be generated by any number of 

transmitters. Given the prevalence of transmitters with a similar 

spectrum of response, it makes sense, etiologically, that different 

receptors should be bound to standard ion gates. 

Other, less common, receptors have been identified, as well. 

Carpenter et al. described two slow depolarizations produced by GABA -- 

one mediated by a simultaneous sodium and chloride conductance increase, 

the other by a decrease in potassium ion permeability (211, 214). 

Atypical slow depolarizing responses have also been described for 

histamine (129, 138, 200, 206), acetylcholine (101, 103, 104), and for 

serotonin (68). 

Gerschenfeld studied three atypical serotonergic responses in detail 

which are distinguished by differences in membrane conductance and ionic 

currents (68). A depolarizing alpha response is mediated by a decrease 

in potassium ion permeability (reversal potential -75 mv). A 

hyperpolarization generated by decreased permeability of sodium and 
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potassium ions, resulting in a reversal potential between -20 and -30 

mv, is a beta response. In addition, a second slower depolarization, 

called an A1 response, is associated with increased membrane conductance 

and is generated by a sodium current. 

Pellmar et al. characterized a serotonin-induced voltage dependent 

calcium conductance increase response that is not cAMP dependent, 

although other serotonin responses that are voltage dependent have been 

reported to use cAMP as a second messenger (147, 148, 149 and 146 for a 

contrary view). Serotonin may be responsible for a form of presynaptic 

facilitation observed by Kandel et al. where the messenger probably 

acts by decreasing a voltage dependent resting potassium permeability. 

This prolongs the action potential which, in turn, allows more 

transmitter to be released at the terminal (17, 31, 49, 113). 

Serotonin also excites cardiac tissue and enhances buccal muscle 

contraction (38, 100, 109; 204, 205). On the other hand, acetylcholine, 

which inhibits cardiac tissue, is an important excitatory transmitter at 

the neuromuscular junction (109, 124; 187, 205). Dopamine may act as a 

transmitter for some motoneurons, and may also modulate gill muscle 

contractions — possibly through cAMP (180, 182, 183, 184, 187; 181). 

Glutamate excites muscles at discreet locations (187). 

Although the ionic mechanisms may be identical among different 

neurotransmitters, specific pharmacological agents reveal common and 

unique receptor properties (179, 23). Curare blocks all sodium and 

chloride channels (30); so too strychnine, save for the gates guarded by 

GABA receptors where steric hinderance created by GABA receptor and 
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ionophore interaction prevents strychnine binding (23, 51, 214; 

Carpenter, personal communication). Penicillin appears to block 

chloride responses generated by acetylcholine, dopamine, GABA, and 

serotonin (150). Bicuculine antagonizes acetylcholine and GABA chloride 

mediated responses (213). 

Receptors manifest distinctive characteristics that define their 

identity. For example, any receptor activated by one neurotransmitter 

binding to it can not be activated by a different transmitter. Cross 

sensitivity, on the other hand, is one of the criteria for agonist 

activity. Hexamethonium specifically antagonizes the acetylcholine 

generated sodium response, and no other; TEA and PTMA block the 

potassium response; there is no specific antagonist for the chloride 

ionophore-receptor complex, however (103). 

There are specific antagonists for the many serotonin responses as 

well: 7-methyltryptamine (7-MT) specifically blocks A receptors (which 

mediate the common fast depolarizing responses generated by increased 

sodium ion permeability); 5-methoxygramine (5-MG) closes receptors 

guarding potassium ionophores; neostigmine blocks receptors linked with 

chloride channels. Bufotenine eliminates A, A1, and chloride responses; 

curare does not affect either A' or potassium responses (68). Ergots 

block dopamine receptors which are bound to potassium ionophores(5, 6, 

26, 30). Picrotoxin abolishes GABA dependent chloride 

hyperpolarizations (155, 213; blocks sodium responses only, 214). 

Cimetidine and burimamide selectively block histaminergic potassium 

responses. The histamine antagonist pyrilamine eliminates sodium 

mediated responses (27, 30, 75). 
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Some transmitters and their receptors do not have specific 

antagonists — this makes studies of their receptors more difficult. 

The example of one transmitter, important for this study, will convey 

many of the difficulties encountered in characterizing receptors while 

demonstrating some of the pitfalls associated with generalizing from 

analogous preparations. Glutamate is a well defined neurotransmitter in 

the mammalian central nervous systems (137), and also at the 

neuromuscular junction in crustations and arthropods (137; crayfish, 

123; lobster, 62; locust, 4). In the latter systems glutamate increases 

permeability of sodium and potassium ions; evidence also exists for 

distinct junctional and extrajunctional receptors. 

For molluscs, however, the evidence is less clear. Responses have 

been reported for Onconidium, but the study is not as rigorous as one 

would wish (99). More extensive investigation in Helix identified the 

following reseponses and characterized some of their receptor 

properties: a depolarization caused by increased permeability to sodium 

ions that easily desensitizes; a fast hyperpolarization mediated by an 

increased chloride current that exhibits variable vulnerability to 

desensitization; and a potassium subserved hyperpolarization associated 

with increased membrane conductance that desensitizes with difficulty. 

We have seen the same basic responses before; this is not a surprise 

(66, 67, 122, 195). 

The material for Aplysia is far more scarce. In addition to the the 

responses mediated by receptors similar to those described in Helix, 

Kehoe identified a fourth response subserved by sodium that is unmasked 
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by concanavalin A (64, 107, 211, 212). Receptors have been observed at 

discreet sites on buccal muscle as well as on gill muscle (181, 187). 

Unlike their counterparts in Helix, glutamate receptors readily 

desensitize (64, 211). Even though abundant evidence exists supporting 

glutamate's candidacy as a neurotransmitter, no glutaminergic synapses 

have been identified. 

Further study of these receptors is hampered by lack of consistently 

effective agonists and antagonists (134). What work exists is limited 

to the neuromuscular junction and to Helix -- work that is not 

applicable to, or reproducible in, the Aplysia central nervous system. 

In Helix , quisqualic acid and L-aspartate are agonists at receptors 

which activate sodium ionophores. Other agonists include DL ibotenic 

acid for chloride responses and DL-amino-adipic acid which has greater 

agonist activity on chloride than on sodium or potassium responses; 

DL-ibotenic acid and quisqualic acid also activate receptors linked to 

potassium ionophores. Curare, as is expected, eliminates sodium and 

chloride mediated responses. Dinitrophenyl-alpha-aminobutyrate is a 

more or less effective sodium receptor antagonist. 

DL-alpha-aminopimetic acid is a mixed agonist and antagonist for all 

glutamate responses. The efficacy of L-glutamic-gamma-methylester is 

disputed (30, 137). 

The only proven antagonist for Aplysia glutamate receptors is the 

non-specific curare (211). In contrast to Helix the following compounds 

appear to be specific agonists for the responses generated by increased 

permeability of thefollowing ions in Aplysia: sodium, D-glutamate 
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chloride, DL-ibotenate; and, potassium, quisqualic acid (64, 107, 211, 

212). 

Aspartate interacts with glutamate receptors, and, in the lobster, 

is released with glutamate at the neuromuscular junction where it acts 

to potentiate the glutaminergic response. (62, 137). Aspartate has 

distinct receptors in Aplysia, some of which cross desensitize with 

glutamate (29, 133, 134, 212). Glutamate generated responses are 

potentiated by aspartate at low concentrations (10 ^ M), which 

interferes with glutamate re-uptake, and also acts by directly 

interacting with the receptor (134). 

Atypical responses associated with decreased membrane conductance 

are not sensitive to any known antagonists. As for transmitter and 

hormone receptors elsewhere, most receptors on Aplysia neurons show 

desensitization (68, 103, 211). The serotonergic A' receptor, which 

does not desensitize, is an exception. 

From the culmination of data regarding putative neurotransmitter 

receptors and their agonists and antagonists a reference chart may be 

constructed (Table 1). The matrix of pharmacological sensitivities 

allows the investigator to work backwards: the nature of a postsynaptic 

potential can be ascertained by determining its pharmacological profile 

which is unique for any given receptor. 

16 





TABLE Is Receptor Antagonists. Chart demontrating the matrix of 
pharmacological sensitivities of the known receptors in Aplysia. Sodium, 
chloride, and potassium ionophores are common to all messengers. A1 
receptors only exist for serotonin; serotonergic A receptors are listed 
as "Na+". Receptors for less common responses (associated with 
decreased membrane conductance) are not shown as they do not have any 
known antagonists. Antagonists specific for transmitter receptors that 
guard potassium ionophores are not shown: TEA for actylcholine; 
5-methoxygramine for serotonin; and ergometrine for dopamine. ACH = 
acetylcholine, DA = dopamine, GLUT = glutamate, HIST = histamine, 5HT = 
serotonin, ASP = aspartate, OCT = Octopamine, PEE = phenylethanolamine 
7-MT = 7-metyltrptamine. (#) denotes full receptor antagonism, (0) 
denotes no effect, (#/-) denotes mixed effect. Compiled from references 
5,6,23,26,27,51,68,69,74,75,102,103,104,130,155,169,170,211,212,213,214. 





RECEPTOR ANTAGONISTS 

ANTAGONIST 

CURARE 
Na+ 
Cl- 

K+ 
A' 

STRYCHNINE 
Na+ 
Cl- 
K+ 
A' 

BURIMAMIDE 
Na+ 
Cl- 
K+ 

PYRILAMINE 
Na+ 
Cl- 

K+ 
BUFOTENINE 

Na+ 
Cl- 

K+ 
A' 

7-MT 
Na+ 
Cl- 
K+ 
A' 

NEOSTIGMINE 
Na+ 
Cl- 
K+ 
A1 

HEXAMETHONIUM 
Na+ 
Cl- 
K+ 
A' 

DESENSITIZATION 
Na+ 
Cl- 

K+ 
A' 

ACH 

# 
# 
0 

# 
# 
0 

0 
0 

0 
0 

0 
0 
0 

0 
0 
0 

# 
0 
0 

# 
# 

#/- 

DA 

# 
# 
0 

# 
# 
0 

0 

# 
#? 

#/- 

GABA GLUT HIST 5HT 

# 
# 
0 

# 
# 
0 
0 

# 
# 
0 

# 
0 
0 

# 

0 

#(?) 
0 

# 

# 
0 
0 

# 
0 

# 
# 

# 
0 
0 
0 

0 

# 
0 
0 

# 
#/- 
#/- 

0 
0 
0 
0 

# 
# 
# 
0 

ASP OCT PEE 

# # # 
# # # 
0 0 0 

TABLE 1 
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Biochemical And Monosynaptic Studies In Aplysia 

Numerous studies have determined the presence of proposed and 

putative neurotransmitters in nervous tissues as well as in individual 

neurons. Glutamate (15, 218), aspartate (131), GABA (36), and 

phenylethanolamine (52, 127) are found unevenly distributed in nervous 

tissue, but in greater concentrations than in non-nervous tissues. For 

some substances the levels are uniformly high, as for glutamate, 

aspartate, and GABA, or are not all that remarkable, as for 

phenylethanolamine. Octopamine, too, is found throughout the nervous 

system, but the significance of the quantities found in individual 

neurons is disputed (52, 127, 168). Far more knowledge exists for 

acetylcholine, serotonin, histamine and dopamine -- each been found in 

individual cells and identified at known synapses. A discussion of 

cellular biochemical analysis and identification of these messengers at 

known synapses by use of pharmacological and electrophysiological 

studies follows -- for these investigations provide models for the 

present study. Evidence regarding glycine as a neurotransmitter is 

considered in the final section of this thesis. 

Acetylcholine. Acetylcholine is the best studied of the putative 

transmitters. Not only can acetylcholine be isolated from identified 

neurons, but the principal synthetic enzyme, choline acetyltransferase, 

can be found as well (70, 128, 132). Even though choline, the precursor 

to acetylcholine, is ubiquitous, choline acetyltransferase is not (70, 

132). Intracellular injection of tritiated choline results in the 
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production of labeled acetylcholine (48). Identified cholinergic 

neurons include R2, LPGC, L10, Lll, RB(he), LV(vc), numerous buccal 

cells, and the LD motoneurons to the gill and heart (70, 109, 128, 132). 

Once liberated from the presynaptic terminal, acetylcholine is 

inactivated by the ever present acetylcholine esterase (201). 

Kandel and co-workers, working in the abdominal ganglion, identified 

Interneuron I to be the cholinergic cell L10. When activated, L10 

increases heart rate while decreasing vasomotor tone (114, 124). This 

particular neuron monosynaptically innervates at least fourteen cells. 

It excites R9, R15, and RB(he) [R17] through an increase in sodium 

permeability. Most follower cells, including LI through L6, L8, and 

Lll, are inhibited, usually by a chloride mediated psp. Many neurons 

exhibit biphasic psps generated by increased permeability of chloride 

and potassium ions. Curiously, L7 is excited when L10 is stimulated at 

low frequencies; this response desensitizes at higher frequencies to 

unmask a chloride dependent ipsp. L24 also innervates L7 and acts in a 

similar fashion (20). Finally, L10 inhibits LD(hi)(l-2) and LB(vc)(l-3) 

in addition t'6 exhibiting electrotonic synapses. These deductions 

concerning ionic basis of synaptic activity are generally confirmed by 

ion exchange studies, and by receptor sensitivity to curare and 

hexamethonium when appropriate (13, 95A, 192, 193). Similar results are 

found in the buccal ganglion (63). 

Kehoe provided a model for determining pharmacological synaptic 

identity. In the pleural ganglion one presynaptic neuron forms 

monosynaptic connections with four cells. Postsynaptic potentials 
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include biphasic iipsps and triphasic eiipsps mediated by increased 

permeability to sodium, chloride, and potassium ions. Detailed study of 

the iipsp demonstrates ionic dependence on chloride and potassium ions; 

ionophoresed acetylcholine produces responses which mimic that of the 

synapse. The matching pharmacological sensitivities of the induced and 

evoked potentials to curare, hexamethonium, and other selective 

antagonists support the suspicion that acetylcholine is the synaptic 

messenger (101, 102, 104). 

Serotonin. Comprehensive investigation identified serotonin to be 

the resident neurotransmitter of the metacerebral giant cell (MGC) of 

Aplysia and its analogue in Helix. Intra-ganglionic concentrations of 

serotonin vary, but the MGC contains high amounts of the substance (24, 

36, 202). Tritiated serotonin has been radioautographically identified 

in the MGCs and in two other cerebral cells (12, 65), and confirmed by 

fluorescence studies (64). Uptake of precursors, synthesis of 

serotonin, transport to the periphery, and collection of labled 

serotonin following presynaptic stimulation can be demonstrated in Helix 

(38, 144). Reserpine depletes serotonin stores,- tricyclics inhibit the 

uptake of liberated serotonin which suggests that re-uptake, rather than 

extracellular enzymatic degradation by ubiquitous monoamine oxidases, is 

the principal method of inactivation (24, 38, 65, 103; 64). 

The MGC makes multiple monosynaptic connections with buccal 

interneurons, motoneurons, and buccal muscle (39, 69, 145, 209). Of the 

follower cells, nine respond with epsps, three with ipsps, and one with 
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an atypical ipsp. Ionic sensitivities, and alteration of membrane 

resistance, suggest mediation by sodium and potassium currents. 

Pharmacological investigations indicate that the epsp is generated 

through A and A1 receptor activation since it is abolished by 

bufotenine, partially blocked by curare, and insensitive to 

hexamethonium; the ipsp is produced by increased potassium ion 

permeability since it is eliminated by bufotenine and 5-MG, and is 

unaffected by curare, 7-MT, and hexamethonium; the atypical ipsp is a 

beta response which is insensitive to known pharmacological agents. 

Ionophoretic studies compliment the pharmacological work at each 

respective postsynaptic membrane. Imipramine and desipramine, serotonin 

uptake inhibitors, augment the amplitude and duration of postsynaptic 

potentials as well as those of ionophoretic responses. 

Buccal muscle, including the accessory radula closer, is innervated 

by the MGC. Stimulation of the MGC, however, does not induce muscle 

contractions; rather, it augments buccal muscle contractions evoked by 

motoneuron stimulation (204, 205). MGC stimulation also enhances firing 

of its postsynaptic motoneurons, effects which are also mimicked by 

serotonin (49, 58). 

Histamine. Recent single cell biochemical analysis found high 

histamine concentrations in LC2 and RC2 of the cerebral E cluster, in 

addition to neurons in the D and L clusters (138, 203). The synthetic 

enzyme histidine decarboxylase is also present in these neurons (129). 

McCamen identified many monosynaptic follower cells of neurons LC2 and 
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RC2; one neuron has ten follower cells. Ion replacement studies, 

measurements of ionic conductance changes and reversal potentials 

suggest the following combinations of response: an epsp mediated by 

increased sodium ion permeability; an eepsp generated by a similar 

sodium current and an uncharacterized slow depolarization; an iipsp 

mediated by chloride and potassium ions associated with increased 

membrane conductance; and, a number of electrical synapses. Although 

ionophoretic application of histamine mimics these responses, 

pharmacological studies have not been performed (129, 138, 200, 206). 

Similar results are found for RC3 and LC3 (206). 

Dopamine. Dopamine is found in high quantities in the ganglia, gill 

muscle, and walls of the branchial vein, but, unlike acetylcholine, not 

in the cardiac tissue of Aplysia (24, 181, 182). The synthetic enzyme, 

aromatic acid decarboxylase, is ubiquitous as is COMT (64, 202). 

Inactivation is probably achieved by re-uptake, which is antagonized by 

tricyclic compounds (64, 143). The giant cell of Planorbis corneus 

contains high levels of dopamine where precursor label studies 

demonstrate synthesis of dopamine (10, 38, 157). Synaptic studies, 

however, have only been performed in Planorbis. Epsps, ipsps, and 

eipsps have been identified in three follower cells of the giant cell; 

ionophoretically applied dopamine mimics these responses. As the epsp 

is sensitive to curare, but - not hexamethonium, and as the ipsp is 

decreased by 6-hydroxydopamine and ergometrine, but is unaffected by 

either curare or hexamethonium, dopamine is thought to be the 

neurotransmitter at the synapse (10, 38). 

22 





Dopamine is also a proposed neuromuscular transmitter. It causes 

direct contraction of muscle, which is blocked by ergometrine, and also, 

perhaps independently, increases levels of cAMP in gill tissue. 

Dopamine acts either directly at the neuromuscular junction or modulates 

acetylcholine induced contractions (178, 180, 181, 182, 183, 184). 

THE CEREBRAL GANGLION: ANATOMY 

The highest ordered collection of neurons in Aplysia, the cerebral 

ganglion, forms a loop about the eosophogus by its connections with the 

pleural and pedal ganglia. It neighbors the important primary sensory 

areas of the head: the eyes, statocysts, lips, and the anterior and 

posterior tentacles (84, 167). In return for what they receive, 

cerebral neurons send many of their processes to the nearby ganglia as 

well as to the tentacles and to the eyes. There are also numerous, if 

not intimate, connections with the buccal ganglion (84). The cerebral 

ganglion is an important integrative station for the reception of 

sensory information and for the initiation and modulation of behaviors 

essential to the well being of Aplysia: feeding, locomotion, and 

procreation (61, 166). The function of the cerebral ganglion may be 

compared to the role of the abdominal ganglion and its regulation of 

gut motility, respiration, circulation, inking, and mucous release (20, 

22, 114, 124, 164). 

Just as clusters of neurons have been identified in the abdominal 

ganglion, so, too, have the cells of the cerebral ganglion been 

described (55, 96; 84). Individual, and populations of, neurons may be 

identified by morphological and electrophysiological criteria. The 
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constellation of position, color, appearance, size, and location when 

considered with firing pattern, evoked synaptic input, response, and 

axonal output defines a nerve cell. Jahan-Parwar and Fredman described 

seven pairs of neural clusters, the A through G cells, and one unpaired 

cluster, the H cells in the cerebral ganglion [Figure A] (84). 

Initially the cells did not appear to be organized into restricted 

functional areas. Since Jahan-Parwar's original observations additional 

groups of cells and their connections have been described that are 

relevant to the study at hand: the paired J, K, L, and M clusters (138, 

166). Identification of sensory afferent and motor efferent 

connections, as well as the functional purpose of some neurons, has 

accompanied recent morphological work. 

The eyes form numerous monosynaptic connections with cerebral 

neurons (167, 14), as do the statocysts (89). The anterior tentacles 

relay chemosensory information to second order sensory cerebral neurons 

(81, 82). There are also two sets of mechanosensory neurons about the 

head and tentacles that relay data to the ganglion. Of these cells, the 

J cluster, located laterally and ventrally to the A cells , have 

specific, small, and narrowly defined tactile receptive fields which 

partially overlap along their longitudinal axes. There are twenty small 

neurons, twenty to sixty micrometers in diameter, in each group. They 

may well be the Av neurons described by Jahan-Parwar and Fredman, which 

are of similar size, position, and electrophysiological silence (166, 

58). In similar fashion, the K neurons, ventral to the B cells, have 

touch receptive fields about the lips which are small, specific, and 

overlap with one another. They are the same in size, number, and in 
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FIGURE A: Diagram of the cerebral ganglion showing locations of neuron 
clusters, connectives, and nerves. C-P, cerebral - pleural connective; 
C-Pl, cerebral - pleural connective; AT, anterior tentacular nerve; PT, 
posterior tentacular nerve; 0, optic nerve; ULAB, upper labial nerve; 
ULAB, lower labial nerve; MGC, metacerebral giant cell. Dorsal view 
from Jahan-Parwar and Fredman (84); ventral view from Ono and McCamen 
(138). 
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electrophyiological behavior to the J cells. Both J and K cells form 

monosynaptic connections with the nearby B cells; however, the 

relationship is not reciprocal (166). Just rostral to the B neurons lie 

the B' cells, which, like the B cells, receive second order 

mechanosensory and chemosensory input. Unlike the B cells, however, 

they burst irregularly (58). 

The cerebral ganglion contains a number of motoneurons. The A and 

B cells innervate the foot and parapodia (86). Some C cells are 

presynaptic to foot motoneurons (61). The B cells also encompass large 

motor fields in the anterior tentacles (57). The extrinsic buccal mass 

receives the bulk of its motor innervation from E, G and B neurons. 

E2, described by Jahan-Parwar and Fredman, corresponds to Weinreich's C2 

histaminergic neuron (92). In addition to the motoneurons, the 

metacerebral giant cells of the G cluster modulate the receptive tone 

and excitability of motoneurons of the buccal ganglion, which innervate 

the intrinsic buccal mass (205), and, also, enhance the contractility of 

buccal muscle (205). 

The command function of the cerebral ganglion is becoming 

increasingly evident. Some cerberal neurons are able to initiate the 

rhythmic stereotyped motor patterns of chewing and locomotion (61, 93, 

92). Undoubtedly, there is much integration of information at the 

synapse and at higher organizational levels of which we are unaware. 
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MATERIALS AND METHODS 

Experimental Design 

The purpose of this thesis is to identify the transmitter at the A 

to B cell synapse. First, receptors on A and B cells for putative 

neurotransmitters where identified, and then characterized, in order to 

determine potential synaptic messenger candidates. Then, specific 

antagonists and agonists of the candidates were selected to assess their 

affect on the A to B postsynaptic potential (psp). Finally, experiments 

were performed to characterize glycine-induced alterations of membrane 

potential found on A and B neurons during the course of the preliminary 

receptor survey. 

The Cerebral Ganglion Preparation 

For each preparation a cerebral ganglion of Aplysia californica, 

supplied by the Pacific Biomarine Supply Co. of Venice, California, was 

excised and then pinned dorsal surface up, with stainless steel insect 

pins, to the bottom of a lucite perfusion chamber, volume 3.5 ml, lined 

with Sylgard 184 silicone elastomer. The preparation was continuously 

bathed in artificial seawater at a constant rate of 1.5 ml/min,- the 

volume of seawater in the chamber was kept constant by continuous 

suction. The composition of the artificial seawater (ASW) was as 

follows: 
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[ NaCl KCl CaCl2 MgCl2 MgS04 NaHC03 TRIS MANNITOL 
| -2H20 -6H20 -7H20 BASE 

ARTIFICIAL 
SEA WATER 

1 
| 480 
1 

10 10 20 30 2.5 — — 

NA FREE ASW 
(TRIS) 

1 
1 

[ 
1 

10 10 20 30 -- 480 -- 

NA FREE ASW 
(MANNITOL) 10 10 20 30 _ _ 480 

TABLE 2 : Composition of artificial seawaters used in these 
studies. All values are mM. PH of ASW ranged from 7.9 to 8.0 
Tris base ASW was titrated to pH 8.0. 

Antagonists and agonists for perfusion application were dissolved in 

-3 
ASW in concentrations never greater than 10 M as needed. A RTE Neslab 

refridgerated circulation bath maintained the temperature at 15 degrees 

centigrade for the receptor and perfusion studies. 

The connective tissue sheath enveloping the ganglion, visualized 

through either a Zeiss OPMI or Wild Heerbragg microscope, was surgically 

removed with a Gibson's breakable razor blade to expose the neural 

clusters. A and B cells were identified according to the criteria 

established by Jahan-Parwar and Fredman (56,84). 

Fiber filled micropipets were pulled on Kopf 700c or Narishige 

vertical pipet pullers. Recording and current electrodes (4 to 8 

megaohm resistance), filled with 2 M potassium acetate, were inserted 

into half cells filled with 3 M potassium chloride. The indifferent 

electrode was filled with Sigma agar impregnated by 3 M potassium 

chloride. Microelectrodes, directed by Prior manipulators, were 

inserted into target neurons. Signals recorded by BAK, Livengood, and 
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Dagan 8500 or 8700 preamplifiers were displayed on a Textronex 5111 

storage oscilloscope (Livengood preamp design from Livengood, personal 

communication). Permanent copies of data were made on a Honeywell 1858 

Visirecorder, or on either a Gould Brush 481 or 220 pen recorder. 

Receptor Profile And Characterization 

The membrane potential of A or B cells was monitered by the first of 

two microelectrodes inserted into the cell through a Livengood or BAK 

preamp. A second electrode was used to pass current into the cell, in 

order to alter the cell's membrane potential, by a Dagan 8700 preamp. 

Membrane resistance was periodically determined by passing a constant 

square current pulse through the current electrode from a WPI pulse 

generating system composed of a Stimulus Isolater 1850A, an Interval 

Generator 1830, and a Pulse Module 1831. 

Selected neurotransmitters were expressed onto the neural surface by 

a Loess 74 Ionophoretic Stimulator, designed to control the total charge 

passed, or by pressure ejection. Five-barrelled ionophoretic pipets 

were pulled on the Narishige pipet puller; single-barrel fiber filled 

pipets were pulled on the Kopf 700c puller. Neurotransmitter 

candidates, dissolved in distilled water in concentrations ranging from 

0.5 to 1 M and placed in the micropipets, were passed as cations except 

for glutamate and aspartate which were released as anions. Pulses 

varied from 100 to 1000 nc; a backing current prevented unwanted leaking 

of transmitter from the pipet tip. 
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Fiber filled electrodes used for pressure ejection were pulled on 

the Kopf 700c puller and filled with a neurotransmitter previously 

dissolved in distilled or artificial seawater. Fast green was added to 

the solution to assist visualization of the pipet and efficacy of the 

pressure ejection. Compressed carbon dioxide was relayed to the pipet 

by the necessary assortment of regulators, tubing and a half cell. The 

duration of the pressure pulse was controlled by the WPI pulse 

generating system. 

Transmitter generated responses were measured at different membrane 

potentials, set by the Dagan 8700 preamp through the current electrode, 

to determine reversal potentials. A pulse of current was also passed 

through the cell at the peak of the induced response to assess 

alterations in membrane conductance. At times, the preparation was 

perfused with specific antagonists or agonists dissolved in ASW to 

discern their affect on the induced response. The results of these 

experiments were then compared with the results of the synaptic 

perfusion experiments described below. Ideally the effect of the 

antagonist on ionophoretic response and on the A to B psp could be 

studied simultaneously. 

Criteria For Determining The Ionic Basis Of Response 

These studies identified and characterized the receptors, activated 

by various transmitters, found on A and B cells. After a response was 

found -- a voltage dependent change in resting membrane potential -- 

information was gathered to define the receptor and ionophore: the 

conductance change, reversal potential (reflecting the equilibrium 
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potential of the ion mediating the response), direction of voltage 

change from resting membrane potential, and, when necessary, 

pharmacological sensitivity were determined. There are a limited number 

of ionic pathways described for Aplysia (see introduction) that hold 

true for all neurotransmitter induced voltage changes: 

ION CONDUCTANCE REVERSAL POTENTIAL VOLTAGE CHANGE 

Na+ increase ( + ) depolarization 

Cl- increase -50 to -60 hyperpolarization 

K+ increase -75 to -80 hyperpolarization 

Na+ decrease ( + ) hyperpolarization 

K+ decrease -75 to -80 depolarization 

It is clear from viewing the table that determination of voltage 

change, reversal potential, and alteration of membrane conductance will 

define the receptor and the ionic basis of response. Actually any two 

are sufficient; documentation of altered conductance changes argues 

against the possibility of artifact. Characterization of atypical or 

previously undescribed responses receives more detailed analysis in the 

presentation of experimental data below. 

Synaptic Circuitry And Perfusion Experiments 

Synaptic potentials were studied by placing an electrode in the 

presynaptic cell which recorded membrane potential through a BAK or 

Livengood preamp and by placing a pair of electrodes into the 

postsynaptic cell. Axon spikes were elicited by passing a depolarizing 

current pulse from the WPI pulse generating system through the recording 

electrode. Follower cell membrane potential was recorded by a 
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microelectrode that relayed its signals to a Dagan or Livengood preamp. 

A current electrode was also inserted into the postsynaptic cell in 

order to adjust membrane potential and to assess membrane resistance. 

The monosynaptic nature of the A to B synapse has been described 

previously (56, 44, 77). The criteria used here were a one-to-one 

relationship of presynaptic spike to the psp at a constant latency. By 

stimulating many neurons while recording from numerous follower cells 

synaptic connections could be demonstrated among clusters of neurons. 

Characterization of the A to B synapse was achieved by altering 

presynaptic stimulation frequency, as well as by bathing the preparation 

with agonists or antagonists specific for selected neurotransmitter 

receptors or ionophores while constantly monitering the psp and follower 

cell membrane resistance. Agonists and antagonists, listed below, were 

—6 -3 
dissolved in ASW ranging in concentrations from 10 M to 10 M and 

then fed into the constant perfusion system of the experimental 

apparatus. With the exception of bufotenine, membrane resistance was 

not significantly altered by any of the compounds used in these 

experiments. Comparison could then be made between known or 

demonstrated effects of each agonist or antagonist on the 

ionophoretically induced response and on the concomitantly evoked psp. 

Glycine-Induced Response Characterization 

Initial studies of a glycine induced response on current clamped A 

and B cells were made according to the methods outlined above: 

measurement of reversal potentials, conductance changes, and the effects 

of perfusion with antagonists and with sodium free ASW. Further studies 
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were undertaken with voltage clamped neurons. A neuron was impaled with 

two microelectrodes: one measured membrane voltage while the other 

passed current to maintain a constant voltage through a Dagan 8500 

Intracellular Preamp Clamp. Membrane resistance was determined by 

passing square wave pulses, generated by the WPI system, through the 

current electrode. Pressure ejection of glycine and perfusion of 

antagonists was performed as described above. One series of experiments 

was performed on Dr. Norman T. Slater's microperfusion apparatus, with 

an electrical system identical to the system described here, which 

enabled rapid perfusion of seawater, agonists, and antagonists directly 

onto neurons in a 1 ml chamber. Glycine 0.001 M dissolved in ASW was 

rapidly perfused over A cells to study response desensitization. 

Chemicals And Compounds 

All substances were supplied by Sigma unless noted to the contrary. 

NEUROTRANSMITTERS: Acetylcholine Chloride, Adenosine, 
Gamma-Aminobutyric Acid (GABA), 3-Hydroxytyramine (Dopamine), Glutamine, 
Glycine, Histamine Hydrochloride, L-Histidine Monochloride, 
5-Hydroxytryptamine (Serotonin), Phenylethanolamine, Octopamine 
Hydrochloride. Sodium L-Glutamate and Sodium L-Aspartate were supplied 
by K and K Labs. ' 

AGONISTS AND ANTAGONISTS: Bufotenine Hydrogen Oxalate, Burimamide, 
Desipramine (supplied by USV Laboratories), 2,4-Dinitrophenol, 
5-Methoxygramine (5-MG), 7-Methyltryptamine (7-MT), Pyrilamine Maleate, 
Strychnine Nitrate, Strychnine Sulfate, D-Turbocurarine Chloride, Cobalt 
II Dichloride (2H20). 

OTHER: Fast Green, Isethonic Acid Sodium Salt, Sodium Chloride, 
Sodium Bicarbonate, Tris Base, Manntol, Potassium Chloride, Calcium 
Chloride (2H20), Magnessium Chloride (6^0), Magnessium Sulfate (7H20), 
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I. CHARACTERIZATION OF NEUROTRANSMITTER RECEPTORS ON A AND B NEURONS 

A And B Neurons: Morphology And Electrophysiology 

This section provides necessary morphological and 

electrophysiological background before identification and 

characterization of the receptors on the A and B cells may be 

considered. Much of the material here is equally relevant for section 

II where the question of identifying the transmitter at the A to B 

synapse is addressed. 

The B cells are darkly pigmented neurons approximately one hundred 

micrometers in diameter. They are formed into paired clusters numbering 

twenty cells each, and lie in the dorsal, caudal, and medial portion of 

the cerebral ganglion. Each cell sends forth multiple axonal processes 

which generally extend ipsilaterally through the cerebral-buccal 

connective, and out the optic, anterior and posterior tentacular, and 

the upper and lower labial nerves. Although usually silent 

electrically, most of the spontaneous input is excitatory (84). For all 

appearances, the B cells are homologous, a sense reinforced by knowledge 

of their afferent connections. 

The bulk of input to the B cells is sensory. All B cells are second 

order sensory neurons, for they receive chemosensory and mechanosensory 

information from the head (59, 166). Chemical stimuli presented to the 

anterior tentacles causes tonic firing of B cells that is proportional 

to the stimulus strength (57, 166). Activation of B cells by chemical 
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stimuli may also make them more sensitive to later sensory input. 

Mechanosensory stimuli elicit a phasic response that rapidly adapts; 

increasing the stimulus strength does not lead to an increase in B cell 

firing (151, 166). This phenomenon is best seen at the J or K to B cell 

synapses. These two clusters of first order tactile sensory neurons of 

the head also make monosynaptic connections with B cells (166). 

Repeated stimulation of either J or K cells decreases the epsp which, 

however, is restored by rest. The habituation of the synaptic potential 

is paralleled by the habituation of the anterior tentacular withdrawal 

reflex. This circuit exhibits heterosynaptic summation, but not 

heterosynaptic facilitation: the greater the number of J or K cells 

that are stimulated, the greater is the B cell response (166). In 

addition, B cells receive secondary sensory information from the eyes 

(167). Although there have not been any studies of B cell nociceptive 

response, examination of Aplysia tails indicates that primary 

nociceptive neurons do not exist (18). The organization of B cell input 

at this level creates an ability to distinguish among different types of 

sensory input, subsequently encoded in firing frequency for relay to 

other neurons. Some forms of input alter B cell resting membrane 

potential which serves as a memory influencing the integration of 

forthcoming information. 

B cells receive information from other, non-sensory, cerebral 

neurons. B' cells, also second order sensory cells, send axons to B 

cells (58). So too the Av cells mentioned above (58). Each B cell 

makes a synapse with every ipsilateral B cell, and, most likely, forms 

synapses with their contralateral neighbors (56, 58, 77). Of course. 

34 





each A cell forms synaptic connections with most, if not all, B cells. 

The character of this synapse will be discussed in far greater detail 

below. All identified cerebral synaptic input is excitatory. 

The final series of known afferent connections arises from the 

pleural ganglion. B cells receive excitatory input from pleural cell 6 

(PI 6), PI 12, and Pi 14. Pi 6 and Pi 14 also make excitatory 

connections with the left giant cell (LGC) of the pleural ganglion. And 

then there is inhibitory input from Pi 3, Pi 5, Pi 7, Pi 9, and Pi 11. 

It is interesting to note that Pi 5 simultaneously excites the LGC and 

Pi 9 elicits an iepsp on B cells (58). In general, neurons which excite 

B cells inhibit presynaptic neurons that are B cell inhibitors (58). It 

is readily seen that there is much synaptic exchange between the 

cerebral and pleural ganglia. 

Knowledge of B cell output is more limited. B cells do not form 

synapses with A, Av, J, or K cells (56, 58, 77, 166). There appears to 

be a neuron that lies between the A and the B cells: B cell excitation 

of this interneuron, at least at low to medium frequencies, results in 

inhibition of A cells (56, 58). Two B cell excitatory synapses on 

pleural cells have also been identified (58). 

The remainder of B cell output is motor. Whether B cells are 

primary motor neurons or not is unclear, as neuromuscular potentials 

have never been recorded, but if they are not motoneurons then they are 

presynaptic to peripheral motoneurons (57, 86, 92). B cells have large 

ipsilateral motor fields in the anterior tentacles. They appear to be 

the neurons that mediate the anterior tentacular withdrawal reflex (57, 
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166). Before a contraction can be elicited, however, many B cells must 

be driven (57). Similarly, stimulation of B cells results in 

contraction of large foot and parapodial motor fields (86). Finally, 

one B cell in each cluster innervates the extrinsic ventrolateral 

protractor of the extrinsic buccal muscle mass (92). Although similar 

in many regards, B cells may be defined by their efferent connections. 

The general appearance of B cell output is excitatory -- to fellow 

neurons as well as to muscle. 

The twenty darkly pigmented neurons, one hundred to one hundred 

twenty micrometers in diameter, of each paired A cluster lie in the 

dorsal, caudal and lateral portion of the cerebral ganglion. A cells 

are adjacent to the cerebral-pleural connective and are lateral to the B 

cells. They, too, have multiple axonal processes that are generally, 

but not uniformly, ipsilateral projections extending through the 

cerebral-buccal connective as well as into the optic, anterior 

tentacular, upper labial and lower labial nerves (84). Electrically 

they are silent, although the bulk of spontaneous input, unlike the B 

cells, is inhibitory (84, 58). Their resting membrane potential lies 

between -50 and -60 mv (88). 

Input to the A cells is not as clearly defined as for the B cells. 

There does not appear to be any primary or secondary sensory input into 

the A cells, rather, they are fourth order sensory neurons. Sensory 

information is passed to the A cells via the B cells and the mysterious 

interneuron described above (56, 58, 59). Given a weak tactile 

stimulus, the A cells will be inhibited; they will often exhibit a slow 

36 





and long lasting hyperpolarization that pulls the resting membrane 

potential below the chloride equilibrium potential (88). This 

phenomenon is important because much of the rapid and spontaneous input 

then becomes excitatory, revealing that chloride currents provide the 

ionic basis for much of this activity (88). Strong tactile stimuli 

usually excites A cells. The remaining known input arises from the 

pleural ganglion: PI 2 excites both A cells and the LGC, and Pi 3 

inhibits both A and B cells (58). In contrast to B cells, A cells do 

not form synaptic connections with each other. 

A cells make many connections with pleural cells; there are no fewer 

than five identified excitatory monosynaptic connections, including Pi 

7. In addition, A cells form ipsilateral and contralateral excitatory 

connections with the LGC. The low amplitude, rapidly decrementing epsps 

evoked by A cells on the LGC are very much like the A to B synaptic 

response (58). In a fashion analogous to the B cells, A cells also 

appear to be motoneurons. They innervate either the foot or the 

parapodia and exhibit small, well defined motor fields (86). However, 

these motoneurons do not fire unless there is a very strong tactile 

tentacular stimulus. It is interesting to observe that the output here, 

as with the B cells, is all excitatory. 

The precise function of the A and B circuit remains a bit of a 

puzzle. These neurons are second and fourth order sensory neurons, and 

are both motoneurons, yet it is unclear if the latter property is their 

primary function. They mediate tentacle withdrawal, pedal and 

parapodial movement, and buccal chewing (57, 58, 86, 92, 166). Thus 
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motor output and sensory input is involved with motor control of the 

anterior body for headwaving, eating, and moving in response to chemical 

and tactile stimuli (56, 57). The intimate connections with the buccal 

and pleural ganglia suggest an important relationship to locomotion and 

feeding. Yet A and B cells are not command neurons as was once thought 

(61). Perhaps, then, they play a role in arousal for these important 

functions (57, 88, 166). 

In sum, the B cells receive chemosensory and mechanosensory 

information from the anterior tentacles which is then encoded and 

relayed to various regions of the nervous system including the A cells. 

The B cells innervate muscle in the tentacles, foot, parapodia, and 

mouth of Aplysia. A cells relay their input to B cells, pleural cells 

and to some muscles of the foot and parapodia. 

A And B Cell Receptors 

Reports from two groups of investigators note diverse, but not 

identical, receptor populations on B cell somata. Hinzen and Davies 

found acetylcholine generally induced a depolarization of membrane 

potential, although an occaisonal inhibitory response could be found 

(77). McCamen, to the contrary, did not find any excitatory responses 

(130). Ionophoresed dopamine and GABA evoked uncharacterized 

hyperpolarizing alterations of membrane potential. Octopamine 

generaterd an excitatory response that failed to appear when repeated in 

high Mg++ artificial seawater (77). Only glutamate and serotonin -- of 

43 unlisted compounds in one account -- gave rise to depolarizing 

responses which were both caused by an increase in sodium ion 
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permeability (77, 130). The serotonergic response, however, proved more 

difficult to elicit as the receptors were located deep in the neuropile 

(77). Receptors have not been described for histamine or aspartate (77, 

130). 

The receptor pharmacology of A cells is better studied. All cells 

respond to acetylcholine; a biphasic inhibition is most commonly 

elicited, although monophasic inhibition is also seen (7, 75). The 

faster component is mediated by increased permeability to chloride ions, 

while potassium subserves the slower phase. Host cells display dopamine 

receptors the vast majority of which guard potasium channels (7, 75). 

Closer analysis discerned a fast sodium mediated depolarization either 

found alone, or as the initial component of a biphasic response coupled 

with the slow hyperpolarization (7, 33). This discrepancy is a matter 

of localization of receptors on the neuron soma -- the receptors linked 

to sodium ionophores are far more restricted. Although Ascher (7) could 

find only a monophasic potassium based hyperpolarization induced by 

histamine, Gruol (75) found twenty percent of his responses were 

generated by chloride currents. Rarely could the fast chloride 

component (less than 5 seconds) be completely isolated from the slower 

potassium response (8 to 20 seconds) (7, 75). All identified responses 

were associated with increased membrane conductance. 
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RESULTS 

A And B Cell Membrane Properties 

Immediately following penetration of the soma with a microelectrode 

A cells gave off a series of action potentials after which the membrane 

stabilized to attain a resting membrane potential of approximately -55 

mv. A cells remained silent, although occaisonally spontaneous ipsps 

appeared. A cell membranes exhibited marked delayed and anomalous 

rectification with the peak resistance occuring at -65 mv (Graph 1). 

The membrane rectification, in part accentuated by current clamp 

recording techniques used here, affects the interpretation of the change 

in potential induced by a ionophoretically applied transmitter. At 

membrane potentials above and below the point of peak resistance, 

responses appeared to be smaller for the same degree of conductance 

change. 

B cells unleashed a series of action potentials, too, when a 

microelectrode penetrated their soma whereupon the cells assumed a 

resting membrane potential close to -50 mv. Spontaneous background 

activity was greater than for the A cells; epsps occured often and more 

frequently than ipsps -- occaisonally B cells spiked. These cells also 

exhibited delayed and anomolous rectification (Graph 2), but to a lesser 

extent than A cells. Peak resistance occured at -60 mv. 

B Cell Receptors 

Numerous responses to many transmitters were found for individual 

cells as well as for the population of B cells. Tables 3 and 4 , at the 
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GRAPH 1: A representative current clamped A cell which manifested 
delayed and anomalous rectification. Ordinate: cell membrane potential 
(mv). Abscissa: pulse amplitude of a constant current pulse (mv) passed 
through the current electrode. Note the peak resistance near -70 mv. 
Resting membrane potential (RMP) was -52 mv. 
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GRAPH 2: A representative current clamped B cell which manifested 
delayed and anomalous rectification. Ordinate: cell membrane potential 
(mv). Abscissa: pulse amplitude of a constant current pulse (mv) passed 
through the current electrode. Note the peak resistance near -60 mv. 
Resting membrane potential (RMP) was -42 mv. 
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end of the section, summarize the receptor data results for both the A 

and the B cells. 

Acetylcholine evoked alterations in membrane potential that were 

universally inhibitory, and were usually mediated by an increased 

permeability to chloride ions. Occaisonally an inhibitory response 

mediated by increased permeability of potassium ions could be brought 

forth. Figure 1 portrays a response that had a reversal potential at 

-50 mv. Figure 2 shows a similar hyperpolarization, with a similar 

reversal potential, that demonstrated decreased resistance even though a 

voltage change induced by acetylcholine was not apparent (by 

definition, the reversal potential). Together these figures define a 

response mediated by an increase in chloride permeability. Figure 3 

shows a response that hyperpolarized the cell at a resting potential of 

-70; assessment of membrane resistance revealed increased conductance, 

thus it was a response mediated by potassium. 

Glutamate, when applied to the surface of a B cell, resulted in 

varied changes in membrane potential. A response mediated distinctly by 

one ion rarely could be found, rather most responses were multiphasic or 

were generated by combined ionic currents. In the analysis of ten 

potential changes associated with an increased conductance, sodium 

mediated six responses, chloride seven, and potassium five. A pure 

chloride mediated hyperpolarization, similar to the acetylcholine 

response, is shown in figure 4. The more common mixed response, seen in 

figure 5, began with an initial depolarization which was then partially 

masked by the chloride current that had a later peak response and a 
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FIGURE Is 

activated 

Ionophoresis of 100 nc acetylcholine onto a B cell which 

a chloride ionophore. Reversal potential -50 mv, peak 

response at 5 seconds. 









FIGURE 2: 

activated 

Ionophoresis of 1000 nc acetylcholine onto a B cell which 

chloride ionophore. Decreased membrane resistance, reversal 

potential at -60 mv, peak response at 4 seconds. 
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FIGURE 3: Iontophoresis of 1000 nc acetylcholine onto a B cell which 

activated a potassium ionophore. Decreased membrane resistance, 

reversal potential less than -70 mv, peak response at 8 seconds. 
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FIGURE 4: Ionophoresis of 1000 nc glutamate onto a B cell which 

activated a chloride ionophore. Decreased membrane resistance, reversal 

potential -56 mv, peak response at 2 seconds. 
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FIGURE 5: Ionophoresis of lOOOnc nc glutamate onto a B cell which 

activated a series of ionophores for sodium, chloride, and potassium 

ions, sodium: reversal potential greater than -40 mv, peak response at 

2 seconds; chloride: reversal potential approximately -50 mv, peak 

response at 5 seconds; potassium: reversal potential less than -70 mv, 

peak response at 12 seconds. 
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reversal potential between -50 and -55 mv. The chloride current and the 

effects of membrane rectification probably dampened the degree of 

depolarization brought forth in the -40 mv range. The late, and weak, 

contribution of a potassium current, which had a reversal between -70 

and -80 mv, occured at twelve seconds. Other cells revealed increased 

membrane resistance associated with similar responses (figure 6). 

Aspartate never gave rise to a response on a cell that did not 

display similarly appearing glutamate-induced potentials. In fact, 

aspartate-evoked depolarizations were always weaker reflections of their 

glutaminergic counterparts (compare figure 7 with figure 5, both from 

the same cell). 

Serotonin elicited a wide spectrum of responses many of which, in a 

fashion akin to glutamate, proved to be multiphasic. A preliminary 

survey evoked nine uncharacterized depolarizations. Definitive 

experiments identified A, A', chloride, potassium, and alpha responses. 

Figure 8 portrays one of the more complex sequence of alterations in 

membrane potential seen. The initial depolarization, an A response, 

generated a spike within the first two seconds. The rapid 

hyperpolarization which followed was mediated by chloride whose reversal 

potential was -54 mv. At eighteen seconds a depolarization occured 

which resulted in an action potential -- this was an A1 response. 

Later, the faint suggestion of the end of a hyperpolarization could be 

•discerned which was mediated by potassium. The final figure 

demonstrates that all the components were associated with increased 

membrane conductance. A and A1 receptor mediated depolarizations may be 

42 





FIGURE 6: Ionophoresis of 1000 nc glutamate onto a B cell which 

elicited a typical depolarization. Note the decreased membrane 

resistance. 









FIGURE 7: lonophoresis of 1000 nc aspartate onto a B Cell which 

elicited a depolarizing response mediated by sodium and chloride, 

compare with the depolarizing responses generated by glutamate. Note 

the similar configuration but weaker response. 
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FIGURE 8: lonophoresis of 1000 nc serotonin onto a B Cell which 

elicited a multicomponent response mediated by A, chloride ionophore 

linked, A1 , and potassium ionophore linked receptors, all associated 

with decreased membrane resistance. A receptor: reversal potential 

greater than -45 mv, peak response at 2 seconds; chloride receptor; 

reversal potential -50 to -54 mv, peak response at 7 seconds; A1 

receptor; reversal potential less than -45 mv; potassium receptor: 

reversal potential at -70 mv, peak response at 25 seconds. 
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distinguished by the longer latency, duration, and insensitivity to both 

curare and desensitization characteristic of the A1 response; both 

receptors are blocked by bufotenine. 

Pharmacological tools were used to discriminate among different 

receptors. On one cell 10 5 M bufotenine reversibly eliminated A, A' 

receptor and potassium mediated currents to unmask a chloride component 

(figure 9). As expected, curare only eliminated the A and chloride 

-4 
responses. Perfusion of the preparation with 3 x 10 M serotonin 

desensitized the A, but not the A' receptor. 

Histamine brought forth a variety of coupled and mixed responses: 

chloride ions subserved the commonly elicited fast hyperpolarizations; 

sodium channel activation occured frequently; and a rare potassium 

current could be found. A peculiar depolarizing response often elicited 

by histamine was similar to the glutamate generated depolarization 

(figure 10). The response may be dampened by either pronounced membrane 

rectification, or by the simultaneous contribution of a chloride or 

potassium current to the predominant flow of sodium. A typical biphasic 

chloride and potassium mediated hyperpolarization is shown in figure 11; 

occaisonally a lone chloride response was seen. 

GABA almost always brought forth an increase in chloride 

permeability (figure 12): a hyperpolarization mediated by potassium was 

rarely observed. Dopamine invariably resulted in increasing potassium 

ion permeability. A representative response is shown in figure 13; note 

the conductance change as well as the low reversal potential and long 

latency. Glycine induced a slow depolarization that could induce an 
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FIGURE 9: B cell exhibiting A, chloride ionophore linked. A1, and 

potassium ionophore linked receptors activated by ionophoresis of 1000 

nc serotonin. Perfusion of bufotenine (10 ^ M) reversibly abolished the 

A, A1, and potassium receptor mediated responses, without affecting the 

chloride current. 
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FIGURE 10: Ionophoresis of 1000 nc histamine onto a B cell which 

elicited a depolarizing response mediated by sodium ions, perhaps 

coupled with a chloride current. Reversal potential was greater than 

-35 mv with a peak response at 2 seconds. Similar responses on other 

cells were associated with increased membrane conductance. Note the 

rapid decrement of response amplitude with higher membrane potentials. 
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FIGURE 11: Ionophoresis of 1000 nc histamine onto a B cell which 

elicited a biphasic hyperpolariztion mediated by chloride and potassium 

ions, respectively. Peak chloride response at 2 seconds with a reversal 

potential of -55 mv. Peak potassium response between 15 to 18 seconds. 
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FIGURE 12: Ionophoresis of 100 nc GABA onto a B cell which elicited a 

hyperpolarization mediated by increased conductance of chloride ions. 

Reversal potential between -56 and -59 mv with peak response at 5 

seconds. 
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FIGURE 13: Ionophoresis of 500 nc dopamine onto a B cell which elicited 

a hyperpolarization mediated by increased conductance of potassium ions. 

Reversal potential less than -67 mv with peak response between 17 and 20 

seconds. 
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action potential: the nature of this depolarization is discussed in a 

later section (figure 14). Evidence for Octopamine and 

phenylethanolamine receptors was not found. 

B cells displayed a number of different receptors on their 

membranes. Any given cell, then, might respond to a number of different 

transmitters in various ways; one neuron was found to have receptors for 

acetylcholine, dopamine, GABA, glutamate, aspartate, histamine, and 

serotonin. Acetylcholine opened chloride channels; dopamine gave rise 

to an increase in potassium ion permeability; GABA elicited a 

hyperpolarization mediated by chloride; glutamate evoked a mixed 

response subserved by sodium, chloride, and potassium; aspartate-induced 

changes in voltage were similar to those of glutamate; serotonin gave 

rise to A , A', and potassium responses; histamine brought forth a 

biphasic hyperpolarization wrought by chloride and potassium. 

A Cell Receptors 

The A cells displayed a different set of receptors on their somata 

that were also uniformly more consistent than those on their B cell 

colleagues. Acetylcholine receptors were ubiquitous; responses were 

usually biphasic hyperpolarizations produced by increased permeability 

to chloride and potassium ions -- an isolated potassium response could 

rarely be found (figure 15). 

Glutamate generally evoked depolarizing changes of membrane 

potential which were probably mediated by an increased conductance to 

sodium ions (figure 16). The unremarkable degree of depolarization at 
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FIGURE 14: Ionophoresis of 500 and 1000 nc glycine onto a B cell. 

Reversal potential greater than -40 mv, peak response between 5 to 8 

seconds. Note the generation of an action potential following 

application of glycine. 
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FIGURE 15: Ionophoresis of acetylcholine onto an A cell which elicited 

a biphasic hyperpolarization mediated by increased permeability to 

chloride and potassium ions respectively. All responses generated by 

application of 250 nc acetylcholine, except for the response seen at -72 

mv when 750 nc was released. Chloride component reversal potential at 

-60 mv with peak response at 2 seconds. Potassium component reversal 

potential less than -72 mv with peak response at 10 seconds. 
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FIGURE 16: Ionophoresis of 1000 nc glutamate onto an A cell which 

elicited a depolarization mediated by sodium ions and perhaps by 

chloride ions as well. Note the increased membrane conductance and the 

reversal potential which was greater than -43 mv. 
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lower membrane potentials may reflect a mixed, but not separate, 

chloride component (figure 17). On the other hand, this may also be a 

property of the marked membrane rectification which A cell membranes 

exhibit. Aspartate-induced responses, when found, were identical to 

those produced by glutamate, and invariably occured on cells that 

manifested glutamate receptors (see figure 18 from the same cell as 

figure 17). 

A mixed collection of depolarizing and hyperpolarizing responses 

occured when serotonin was applied to A cells. The hyperpolarizing 

component, frequently accompanied by a depolarization, was mediated by 

increased permeability to potassium (figure 19). The strong potassium 

current, associated with increased membrane conductance, partially 

obscured the earlier depolarizing response. The weak showing of the 

early component and pronounced rectification of the cell membrane 

precluded discerning its underlying nature. Diligent searching 

identified a single alpha response (figure 20). 

One example of a biphasic adenosine induced voltage change was 

observed. In a fashion reminicent of aspartate, all adenosine evoked 

responses were identical to the serotonin responses and were found only 

on the same cells (figure 21). 

GABA commonly brought forth biphasic chloride and potassium 

responses. Of nine cells studied, eight revealed biphasic 

hyperpolarizations, and one, the exception, produced a potassium 

generated response (figure 22). Dopamine reliably evoked a potassium 

dependent hyperpolarization (figure 23). One third of the cells 
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FIGURE 17: Ionophoresis of 1000 nc glutamate onto an A cell which 

elicited a depolarization mediated by sodium ions and perhaps chloride 

ions. Reversal potential is greater than -42 mv, but the response 

exhibited marked decreased amplitude with greater depolarization of 

membrane potential. Peak response at 3 to 4 seconds. Associated 

increase in membrane conductance is not shown for this cell. 
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FIGURE 18: 

elicited a 

Ionophoresis of 1000 nc aspartate onto an A cell which 

depolarization. Compare to the glutamate response, figure 

17. 
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FIGURE 19: Ionophoresis of 1000 nc serotonin onto an A cell which 

elicited a depolarizing response as well as a more pronounced 

hyperpolarizing response. The reversal potential of the first component 

is greater than -52 mv with a peak response at 4 seconds, but there is 

insufficient information to distinguish between sodium and chloride ion 

currents. The late component, with peak at 17 seconds, had a reversal 

potential lower than -70 mv, and was thus mediated by potassium ions. 

All responses were associated with increased membrane conductance. 
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FIGURE 20: Ionophoresis of 1000 nc serotonin onto an A cell which 

elicited an alpha response. Note the decreased membrane conductance, 

the late peak response and duration. Reversal potential between -67 and 

-85 mv. 









FIGURE 21: Ionophoresis of 1000 nc adenosine onto an A cell which 

elicited a biphasic response. The initial depolarization had a reversal 

potential greater than -52 mv with a peak response at 1 second. The 

hyperpolarization had a reversal potential lower than -75 mv with a peak 

response at 6 seconds. Compare to the serotonergic responses seen on A 

cells (figure 19). 
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FIGURE 22: lonophoresis of 100 nc GABA onto an A cell which elicited a 

biphasic hyperpolarization generated by increased conductance to 

chloride and potassium ions. The early component reversed between -57 

and -65 mv with a peak response at 3 seconds. The latter component, 

with a peak response at 10 seconds, had a reversal potential below -80 

mv. 
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FIGURE 23: Hyperpolarizing responses evoked by dopamine and histamine 

mediated by increased permeability to potassium ions. Dopamine, 425 and 

1000 nc; histamine 425 and 100 nc. Note the marked difference in peak 

response and decay. 
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examined, however, exhibited a fast depolarizing response subserved by a 

sodium conductance increase,- this response was rarely seen by itself 

(figure 24, an A cell upon which dopamine elicited a series of action 

potentials). Ubiquitous and unvarying, histamine never failed to 

generate a hyperpolarization of A cell membranes through an increase in 

potassium ion permeability (figure 23). 

Glycine, on the other hand, gave rise to a number of unusual 

alterations of membrane potential. Briefly presented here, for this 

matter will be discussed in greater detail below, a slow depolarization 

could always be found which usually was not associated with an increase 

in conductance. Occaisonally a biphasic hyperpolarization, subserved by 

chloride and potassium, was elicited (figure 25, see section III). 

Evidence for octopamine and phenylethanolamine receptors could not be 

found. 

As with the B cells, individual A cells exhibited a variety of 

receptors specific for numerous transmitters. For example, one neuron 

displayed the following distinct collection of responses: acetylcholine 

and GABA each evoked biphasic hyperpolarizations mediated by chloride 

and potassium ions; glutamate and aspartate both generated depolarizing 

responses subserved by sodium, and perhaps chloride; serotonin brought 

forth a complex series of alterations in membrane potential wrought by 

increased permeability of sodium, chloride, and potassium ions; 

adenosine evoked a response similar to that of serotonin; dopamine 

elicited standard currents mediated by sodium and potassium; histamine 

gave rise to a potassium generated hyperpolarization; and, finally, 
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FIGURE 24: Ionophoresis of 500, 500, 50, and 50 nc dopamine onto an A 

cell which elicted a depolarization mediated by increased permeability 

to sodium ions. Reversal potential greater than -43 mv, peak response 

between 3 to 5 seconds. At higher membrane potentials greater 

quantities of dopamine were needed to generate similar peaked responses 

or action potentials, an effect of marked membrane rectification which A 

cells exhibit. 
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FIGURE 25: Pressure ejection of glycine onto two different locations on 

an A cell soma which elicited two different responses. At one location 

a biphasic response, most likely generated by chloride and potassium 

ions, was produced (note membrane potential was at -70 mv). At a 

different patch of membrane the slow depolarizing response was seen -- 

see section III for discussion of the nature of these responses. 
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glycine drew out a slow depolarization and a biphasic chloride and 

potassium mediated hyperpolarization. 

The receptor and ionophore profiles were consistent from cell to 

cell. The reproducible spectrum of these responses is shown in Table 5 

where results from four of the more thoroughly examined cells are 

presented. 

DISCUSSION 

A And B Cell Membrane Properties 

Both A and B cells manifest delayed and anomalous rectification -- a 

phenomenon made apparent by using current clamp techniques, and a 

difficulty that can be avoided by using a voltage clamp. The finding is 

significant for the analysis of the receptor data since membrane 

rectification dampens the strength of response at increasingly positive 

membrane potentials. It is unclear what effect this characteristic of 

Aplysia membrane has on their ability to receive and process 

information. Certainly properties of the membrane, and not just the 

receptor, are crucial to how a given cell will respond to a stimulus 

(188, 98). It is curious that the peak resistance occurs at a potential 

midway between the chloride and potassium equilibrium potentials, and 

that membrane rectification is more pronounced on the more silent and 

inhibited A cells. This phenomenon may belie the nervous system's 

penchant for emphasizing the inhibitory message. 
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B CELL RECEPTORS 

TRANSMITTER NA CL- K OTHER MULTIPHASIC 

ACH 4 1 

DOPAMINE 11 

GABA 8 1 

GLUTAMATE 6 7 5 5 

ASPARTATE 1 1 1 

HISTAMINE 3 6 1 3 

SEROTONIN A: 5 1 1 A1:3;Alpha:1 4 

TABLE 3: Table presenting summary of receptor mediated alterations 
of ionic conductance. For Na+, Cl-, and K+ conductance was increased. 
GLYCINE results are presented in section III. Table does not 
include uncharacterized depolarizing or hyperpolarizing responses. 

A CELL RECEPTORS 

TRANSMITTER NA CL- K OTHER MULTIPHASIC 

ACH 5 6 5 

DOPAMINE 3 9 3 
GABA 8 9 8 

GLUTAMATE 5 5 5 
ASPARTATE 3 3 3 
HISTAMINE 12 
SEROTONIN 3 Alpha: 1 

TABLE 4: Table presenting summary of receptor mediated alterations 
of ionic conductance. For Na+, Cl-, and K+ conductance was increased. 
GLYCINE results are presented in section III. Table does not 
include uncharacterized depolarizing or hyperpolarizing responses. 
There were four depolarizing responses induced by serotonin that 
were either A responses or mixed Na+ and Cl- responses. 

48 





TRANSMITTER 

ACH 
Na+ 
Cl- 

K+ 

DOPAMINE 
Na+ 
Cl- 

K+ 

GABA 
Na+ 
Cl- 

K+ 

GLUTAMATE 
Na+/Cl- 
K+ 

ASPARTATE 
Na+/Cl- 
K+ 

HISTAMINE 
Na+ 
Cl- 

K+ 

SEROTONIN 
A/Cl- 
A1 
K+ 

SINGLE A CELL RECEPTOR PROFILES 

CELL 1 

0 

# 
# 

# 
0 

# 

0 

# 
# 

# 
0 

# 
0 

0 
0 

# 

# 
0 
0 

CELL 2 

0 

# 
# 

# 
0 

# 

0 

# 
# 

# 
0 

# 
0 

0 
0 

# 

# 
0 

# 

CELL 3 

0 

# 
# 

# 
0 

# 

0 

# 
# 

# 
0 

0 
0 

0 
0 

# 

# 
0 
# 

CELL 4 

0 

# 
# 

# 
0 

# 

0 

# 
# 

# 
0 

# 
0 

0 
0 

# 

0 
0 

# 

TABLE 5 : Profile of receptors for putative neurotransmitters 
found on four A cells. {#} denotes presence of receptor mediating 
the ionic response for the listed transmitter; {0} denotes the 
response was not elicited. GLYCINE data presented in a later 
section. There were no receptors found for responses not shown. 
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A And B Cell Receptors 

The spectrum of receptors on B cells sets the limits for the range 

of action as well as the candidacy of effective presynaptic 

neurotransmitters -- this knowledge is essential for the identification 

of the transmitter at the A to B synapse, discussed in the following 

section, as well as for the messengers at the other B cell synapses. 

The results of this study also shed light on the nature of the receptors 

and the responses they mediate. 

The interpretation, or identity, of response needs to be addressed. 

The depolarizations generated by glutamate and histamine on B cells, and 

serotonin and dopamine on A cells demonstrate that difficulty: the 

potential changes produced by these transmitters at higher membrane 

potentials should be more pronounced. Either a property of the membrane 

or the receptor is responsible. The contribution of membrane 

rectification minimizes potential change across the membrane the more 

depolarized the membrane becomes. If this is the explanation then all 

depolarizing responses should be affected uniformly and to a greater 

degree on A cells than on B cells. Histamine and glutamate were equally 

affected on B cells, serotonin less so, but affected nevertheless. On 

the A cells, the glutamate, dopamine, and serotonin potential changes 

were markedly affected (the serotonergic response may also be attenuated 

by a possible biphasic chloride component). 

The other possibility is that some responses are not mediated by a 

single ion or even by two ions utilizing two different channels -- an 

event which should appear biphasic— but by multiple ions traversing the 
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membrane simultaneously. Glutamate and histamine appear to evoke 

monophasic responses in some cells even though other receptor linked 

ionophores are known to exist on the same population of cells. The 

response may be mixed, generated simultaneously by sodium and chloride, 

or by sodium and potassium. In this instance the reversal potential 

would rest between the equilibrium potentials of the ions depending upon 

the mixture of the actors mediating the current. Dual component 

responses have been described for GABA and serotonin (68, 214). Ion 

exchange experiments would clarify the matter. 

Another question of identity arises when analyzing the adenosine and 

aspartate responses. Distinct aspartate receptors have been described 

before yet most aspartate and glutamate receptors cross desensitize (29, 

133, 134, 212). Aspartate clearly has the ability to interact with 

glutamate receptors in other preparations (62, 137, 211). On the cells 

examined in this study the aspartate responses may not be distinct: 

they are only found on cells that exhibit glutamate receptors, while 

they manifest weaker versions of glutamate induced responses. A similar 

situation has been found for most neurons of the buccal ganglion (134). 

One assumption of the ionophore theory is that all ionophores and 

the currents they mediate should be the same. The different time 

course, peak latency, and decay of the histamine and dopamine evoked 

potassium currents in A cells are markedly different (figure 23). If 

the dopamine receptors are deeper in the neuropile than their 

histaminergic counterparts, then the rate of diffusion may account for 

the observed differences. If not, then the A cells present a convenient 
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preparation for studying the kinetics of different potassium responses 

(see 7, 33). 

Gruol and Weinreich described a histamine induced chloride current 

on twenty percent of the A cells they examined (75). This study, along 

with Ascher, did not find the chloride mediated component (7). The 

differences may be due to the low sample number here, or to the narrow 

localization of this histamine receptor. Discreet localization is not 

uncommon, as the dopaminergic sodium receptors described here are only 

found on small patches of membrane. 

The pharamacological sensitivity of serotonin A, A', chloride and 

potassium responses to curare, bufotenine and desensitization was 

confirmed (68, 69). 

The most relevant finding of this study concerns the association of 

receptors found on Aplysia neurons. This study reports the existence 

of two separate populations of neurotransmitter receptors on two 

distinct populations of cells. In fact, the spectrum of receptors 

defines the cell, in addition to anatomic and other physiological 

criteria (55, 96). A and B cells are unique not only in the 

neurotransmitter receptors they carry, but also in the mixture of 

ionophores linked to those receptors displayed on postsynaptic membrane. 

Table 6 summarizes the differences found between the A and B cells. 

Receptor mediated responses on A cells tend to be more biphasic- than 

their B cell counterparts. Acetylcholine, dopamine, and GABA activate 

chloride and potassium channels on A cells, whereas these transmitters 
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B CELL RECEPTOR PROFILE 

TRANSMITTER PREPONDERANT FREQUENT RARE 

ACH Cl K 

DOPAMINE K 

GABA Cl K 

GLUTAMATE Na Cl K 

ASPARTATE Na (Cl) 
HISTAMINE Cl Na K 

• SEROTONIN A A' Cl K 

OCTOPAMINE -- -- -- 

PHENETHAM -- -- -- 

A CELL RECEPTOR PROFILE 

TRANSMITTER PREPONDERANT FREQUENT RARE 

ACH 
DOPAMINE 
GABA 
GLUTAMATE 
ASPARTATE 
HISTAMINE 
SEROTONIN 
OCTOPAMINE 
PHENETHAM 

Cl K 
K 

Cl K 
Na (Cl) 

K 

Na 

Na (Cl) 

A/Cl K K (g dec) 

TABLE 6 : Receptor profiles for A and B cells. All responses 
were associated with increased membrane conductance unless noted 
to the contrary. () denotes a contributing component to the 
primary response, "g dec" denotes decreased conductance. Precise 
identity of the serotonin A/Cl response is not known. PHENETHAM 
is phenylethanolamine. ACH is acetylcholine. 

open chloride, potassium, and chloride gates, respectively, on B cells. 

Some receptors are held in common, as for glutamate and serotonin 

excitatory receptors -- although glutaminergic potassium ionophores are 
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more common on B cells. The other principal difference occurs with 

histamine: on B cells histamine gives rise to sodium and chloride 

currents, however on A cells only hyperpolarizing potassium gates are 

opened. 

Uniformity of transmitter profile is greater on A cells than on B 

cells. This may be because B cell receptors are less accessible, lying 

more deeply in the neuropile. Or, it may be that B cells are less 

homogeneous than previously thought. The receptor profiles reflect the 

function of these cells in Aplysia. A cells are silent, most input is 

inhibitory (56, 58), and almost all A cell receptors mediate 

hyperpolarization. There is a preponderance of potassium receptors on A 

cells not found on B cells. In addition, many receptors are linked to 

chloride ionophores. Curiously the A cell resting membrane potential is 

close to the chloride equilibrium potential as is the peak resistance of 

the cell membrane. Jahan-Parwar and Fredman described input that 

brought the membrane potential to rest under the chloride equilibrium 

potential for substantial periods of time; they also noted that much of 

the spontaneous synaptic input to the A cells activated chloride 

channels (88). It all fits. Chloride is the means by which a cell may 

be brought to moderation, a means by which the general state of 

excitability is dampened, and, hence, receptivity to input is modulated. 

On the other hand, mixed input is sent to B cells, and B cell receptors 

are a mixed lot. One would expect this, however, as B cells are 

generally more excitable. The general preponderance of inhibitory 

receptors on A and B cells belies one of the essential priniples of 

neural organization and function. Brains are inhibitory by nature. 
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One striking feature of receptor organization demonstrated on A and 

B cell somata is the multiplicity of neurotransmitters that generate the 

same response by the same changes in permeability to the same ions. Are 

all these receptors on A and B cells physiological? The evidence 

suggests they are, for if the same receptors were produced by all cells 

then all cells should carry the same complement of receptors. The 

variety of receptors reflect the many different messengers used by the 

presynaptic neurons which are unique for each type of cell. 

Research over the previous twenty years has reshaped the early work 

of Dale and his successor, Eccles. Dale postulated that neurons release 

the same transmitter at all terminals. Eccles then proposed a series of 

postulates that defined cellular function and ionic specificity: first, 

the presynaptically released transmitter will mediate the same action at 

all synaptic terminals,* second, the transmitter will open one type of 

ionic gate (63). These postulates did not prove to be true for 

molluscs, or for mammals either. 

One presynaptic neuron, releasing one neurotransmitter, can elicit 

multiphasic psps; indeed. that same neuron may evoke different 

combinations of response at different terminals onto different 

postsynaptic neurons (13, 69, 103, 104, 193, 204, 205). This is 

possible because distinct receptors for the same transmitter may guard 

many ionophores, a fact known since Kandel and then Kehoe presented 

their work-on acetylcholine receptors more than ten years ago (95A, 103, 

104). The A cells may be added to the other known presynaptic neurons 

which elicit multiphasic psps: L10, the MGC, LC1, LC2, and numerous 

pleural cells. 
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Ionic and, hence, functional specificity resides on the postsynaptic 

membrane -- the presynaptic neuron simply releases the transmitter. It 

is the complement of receptors, and the ionophores to which they are 

bound, that is relevant (13, 38, 69, 95A, 113). Therefore, postsynaptic 

membrane - receptor studies gain in significance. 

Not only may one neuron display multiple responses to one 

transmitter, but the same neuron may respond to many transmitters in 

numerous ways. R15 is known to have receptors for seven different 

substances mediating three different ionic responses (29). The MGC, 

examined in Aplysia and Helix, carries receptors activated by three 

transmitters (185). Many neurons respond to two subtances (see 213, for 

example). Here, two populations of neurons each exhibiting a distinct 

set of responses evoked by numerous transmitters are described. The 

responses are consistent: A cells repeatedly respond to eight 

messengers! Although A and B cells respond to the same transmitters, 

what IS distinctive is the proportional representation of the different 

ionophores for each neural population. It follows that the anatomic and 

temporal spacing of receptors results in unique integration of input (8, 

29). 

Postsynaptic specificity explains, in part, why there are a 

multitude of receptors on nerve cells. It explains a striking feature 

of molluscan and mammalian nervous systems: the number of transmitter 

candidates and the plethora of responses generated by each messenger. 

It would seem that variation and integration of neural signals could 

take place with fewer transmitters given the diversity of receptors. 
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Yet, the number of messengers and ionophores greatly extends the realms 

of information processing and the spectrum for modulation. The variety 

of receptors also allows one neuron, utilizing one transmitter, to 

supervise more readily regulation of antagonistic follower neurons. 

Economy of purpose and economy of space is achieved (157). Conversely, 

a greater number of higher order neurons may utilize a common population 

of follower neurons for completely different purposes (see also 124, 

114). The possibilities and the flexibility inherent in the system is 

fantastic. 

As more and more inputs onto the A and the B cells are discovered, 

and as the transmitters serving at those synapses are identified, a 

greater understanding of the events that occur on the membrane will be 

attained. As events at the membrane are understood, the underlying 

organizational properties will become more clear, and the essence of 

behavior will be discerned. 
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II. IDENTIFICATION OF THE TRANSMITTER AT THE A TO B CELL SYNAPSE 

The A to B cell circuit meets the criteria established by Berry and 

Penreath often used to define a monosynaptic connection (11). There is 

a one-to-one relationship at constant latency between the presynaptic 

stimulus spike and the postsynaptic potential (psp). The psp persists 

in elevated Ca++ sea water, and is enhanced by injection of TEA into the 

A neuron (43, 56, 77, 130). 

The postsynaptic potential is excitatory, although occasionally a 

biphasic eipsp is found (43, 44). Voltage clamp experiments, difficult 

because the synapse is a fair way from the soma, suggest that the 

excitatory response is mediated by sodium (130). The epsp fatigues 

readily, albeit not completely, with repeated stimulation (43, 44). 

Preliminary microchemical analysis of the A neurons failed to detect 

significant quantities of acetylcholine, serotonin, GABA, histamine, or 

octopamine. Concentrations of glutamate, aspartate, taurine, and 

glycine are the same as found in other pigmeilted neurons (130). The 

biochemical data does not support the candidacy of any single messenger, 

nor does it preclude synthesis of the transmitter in the terminals. 

Agonist and antagonist perfusion studies present mixed findings. 

The psp was not sensitive to curare, atropine, hexamethonium, 

_3 
strychnine, eserine, 7-methyltryptamine (7-MT), LSD-25 (all at 10 M), 

TEA (2 x 10 4 M), PTMA (5 x 10 4 M), or LSD-25 in prior studies (43, 44, 

77). Nor did the psp respond to quisqualic acid, a glutamate agonist in 
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Helix (30, 137), or to glutamate (10 to 10 M), whereas these 

compounds desensitized the ionophoresed response to glutamate (130). 

Unfortunately, specific glutamate antagonists do not exist against which 

the sensitivity of the psp could be tested. Perfusion of serotonin, 

7-MT and LSD-25 had neither an effect on the psp, or on ionophoresed 

serotonin (77). Hinzen and Davies found bufotenine decreased both the 

psp and the ionophoretically induced serotonin depolarization thus 

suggesting that the epsp reflects A' serotonin receptor activation. 

They concluded that serotonin is the neurotransmitter at the synapse; 

McCamen, however, could not reproduce their results, and thus did not 

support their conclusions (43, 44, 77, 130). 

-3 
Hinzen's and Davies' results were achieved at concentrations of 10 

M bufotenine, orders of magnitude greater than those reported by 

Gerschenfeld and Paupardin-Tritsch (69, 145). They also claim they 

achieved their results after 10 to 15 minutes perfusion and without any 

-4 
changes in membrane resistance (77). 10 M bufotenine reportedly 

augmented the psp and the ionophoretic response evoked by serotonin 

(44). On the other hand, McCamen observed that the same concentration 

of bufotenine blocked the ionophoretic response without affecting the 

psp (130). 

In sum, there is little evidence to support acetylcholine as the 

transmitter. Serotonin, by activating A' receptors, is a disputed 

candidate. And the evidence against glutamate is not overwhelming. 

This study attempts to resolve the controversy. 
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RESULTS 

A And B Cell Synaptic Connections 

A brief survey of A and B cell monosynaptic connections was made 

which confirmed previous reports (56, 58, 77). The criteria were 

similar to those used by Jahan-Parwar and Fredman (56): constant 

latency and a one to one following of presynaptic spike to postsynaptic 

potential. Of 147 A to B synapses examined a positive connection was 

found on 83 occaisons, a synaptic response could not be elicited 56 

times, and in 8 preparations responses were ambiguous. With greater 

experience the vast proportion of cells examined were found to have 

synaptic connections. A cells innervated many B cells; conversely, B 

cells received input from many A cells. Contralateral studies were not 

performed. 

Of 54 B to B synapses tested confirmation of a synaptic connection 

was found on 9 occaisons, no response could be discerned between 40 

pairs of cells, and results were unclear 5 times. Of the 6 B to A 

circuits tested, one synapse was found and the other 5 were negative. 

Both of two A to A tests were negative; both of two Av to B tests were 

positive (Table 7). 

A To B Synapse Characteristics 

The monosynaptic nature of the A to B synapse has been ambly proved 

by Hinzen and Davies (77) as well as by Jahan-Parwar and Fredman (56); 

no further discussion is needed. The postsynaptic potential was 
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SYNAPTIC CONNECTIONS 

PRESYNAPTIC POSTSYNAPTIC NEURON 

NEURON 
A B 

“ 

A 0/2. 83/139 

B 1/6 9/49 

Av — 2/2 

TABLE 7 : Monosynaptic connections among A, B, and Av 
cells. Number Positive Results/ Total Number Tested 
Ambiguous data is not included. 

invariably excitatory; initially biphasic eipsps were often encountered, 

but the inhibitory component rapidly disappeared by the third or fourth 

stimulus. The excitatory potential also decreased from 40 to 60% of its 

initial amplitude. After the initial decrement the epsp did not fatigue 

further (figure 26). The magnitude of the excitatory potential and the 

appearance of the inhibitory potential were restored by rest. Rapid 

stimulation resulted in excitatory summation of synaptic potentials 

(figure 27). 

A To B Synapse Perfusion Experiments 

The cerebral ganglion was perfused with a series of agonists and 

antagonists to ascertain the pharmacological identity of the receptors 

mediating the psp at the A to B cell synapse. All compounds tested, 

with the exception of bufotenine, did not affect synaptic transmission. 

Curare, the "non-specific" fast sodium and chloride channel blocker 

-4 
in concentrations as high as 3 x 10 M, did not have any affect on the 
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FIGURE 26: The presynaptic neuron is an A cell, the postsynaptic neuron 

is a B cell (A to B synapse). Note the initial eipsp which rapidly 

fatigued to become an epsp; note, too, the ensuing partial fatigue of 

the epsp. 
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FIGURE 27: A to B synapse. Note the fatigue of the epsp as well as the 

temporal summation of synaptic potentials. 
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psp. Nevertheless, curare effectively eliminated serotonin A and 

chloride mediated responses and failed to affect the A' depolarization. 

-4 
Strychnine (5 x 10 M), another "non-specific" fast sodium and chloride 

channel blocker, also did not affect the psp. The histamine antagonists 

-4 -4 
burimamide (3 x 10 M) and pyrilamine (3 x 10 M) never altered the 

psp. 

In similar fashion, the specific serotonin antagonists 

-4 -4 
7-methyltryptamine (3 x 10 M) and 5-methoxygramine (3 x 10 M) did 

not attenuate the synaptic potentials. Desipramine, reported to inhibit 

the uptake of serotonin and thus potentiate postsynaptic responses (65), 

also did not alter either the amplitude or duration of the psp when 

perfused at concentrations ranging from 10 ^ to 10 ^ M (figure 28). 

Bufotenine, on the other hand, influenced the psp in a bizarre fashion. 

Bufotenine, 10 ^ M, abolished ionophoretically induced A, A' and 

potassium ionophore linked receptor responses without altering membrane 

resistance, yet did not modify the A to B psp. However, bufotenine, 

-4 
10 M, in four of five experiments, caused noisy baseline membrane 

potential, and concomitantly increased the membrane resistance. At the 

same time, psp amplitude was augmented, and frequently became a 

pronounced eipsp (figures 29 and 30). The alteration in magnitude and 

character of the psp occured after ten to fifteen minutes of perfusion; 

-4 
only once, following one hundred minutes of perfusing bufotenine 10 M, 

did the psp become smaller (figure 30). Perfusing the synapse with 

-3 
higher concentrations of bufotenine (10 M) gave similar results with a 

more rapid sequence of effect. Alterations in membrane resistance and 
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FIGURE 28: 

not affect 

A to B synapse. Perfusion of desipramine (DMI) 10 M did 

the psp or membrane resistance. The tracings which record 

resistance pulses were run at 2 cm/min. 
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FIGURE 29: A to B synapse. Perfusion of bufotenine (10 * M) which, at 

30 minutes, markedly increased membrane resistance and concomitantly 

brought forth the compound nature of the epsp and augmented background 

activity. Prior resistance pulse tracing at 5 cm/min. 
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>4 
FIGURE 30: A to B synapse. Perfusion of bufotenine (10 M) which, at 

25 minutes, increased membrane resistance, brought forth a biphasic psp, 

and augmented background activity. After 100 minutes of perfusion (!) 

the resistance decreased as did the psp. Prior resistance pulse tracing 

at 2 cm/min. 
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background activity were typically more pronounced. During one 

experiment, the effect on membrane resistance was a slight increase 

without any real affect on the psp. 

-4 
Bathing the ganglion with 3 x 10 M serotonin did not have any 

affect on the psp even though this desensitized A, but not A' responses. 

The glutamate response desensitized as well, as demonstrated in figure 

31. Perfusion of glutamate attenuated a glutamate evoked 

-4 
depolarization, yet did not desensitize the psp (3 x 10 M). 

Aspartate, at low concentrations , augments glutamate mediated 

responses; at higher concentrations aspartate cross desensitizes 

glutamate receptors (211). No affect could be found on the psp by 

perfusing the preparation with aspartate in concentrations ranging from 

-6-4 
5 x 10 to 3 x 10 M. Table 8 summarizes the results of the agonist 

and antagonist perfusion experiments. 
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FIGURE 31: Upper tracing: A to B synapse. Perfusion of glutamate (3 x 

.4 
10 M) did not desensitize the psp. Lower tracing: Ionophoresis of 

100 nc glutamate onto a B cell elicited a typical depolarizing response 

-4 
that was desensitized by perfusion of glutamate (3 x 10 M), or by 

repeated ionophoresis of glutamate (not shown). 
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EFFECTS OF AGONIST AND ANTAGONIST PERFUSION ON THE A TO B CELL SYNAPSE 

ANTAGONIST/ CONCENTRATION N EFFECT ON EFFECT MEM 

AGONIST (M) PSP RESISTANCE 

CURARE 2.5 TO 3 X 10 4 6 NONE NONE 

STRYCHNINE 3 TO 5 X io"4 3 NONE NONE 

5-MG 1.3 TO 3 X 10-4 2 NONE 

1 X io-5 1 NONE 

7-MT 3 X io"4 1 NONE 

BURIMAMIDE 3 TO 3. 5 X io"4 3 NONE 

PYRILAMINE 3 X io“4 2 NONE 

DESIPRAMINE 1 X io'5 3 NONE 

1 X io”6 3 NONE 

BUFOTENINE 1 X io-3 2 AUGMENTED (2) INCREASED 

BIPHASIC (2) 

1 X io"4 6 AUGMENTED (5) INCREASED (5) 

BIPHASIC (5) DECREASED (1) 

DECREASED (1) 

1 X IO'5 1 NONE NONE 

SEROTONIN 3 X io“4 3 NONE 

GLUTAMATE 3 X io"4 4 NONE 

ASPARTATE 3 X io"4 1 NONE 

1 X io'5 1 NONE 

1 X io-6 2 NONE 

TABLE 8 Summary of agonist and antagonist perfussion 
experiments for the A to B Synapse preparation 
5“MG = 5 methoxy gramine; 7*MT = 7 methyltryptamine 
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DISCUSSION 

A And B Cell Connections And Synaptic Characteristics 

The results of this study confirm the findings of Jahan-Parwar and 

Fredman (56, 58) and those of Hinzen and Davies (77) concerning the 

properties and connections of A and B cells. Both groups of 

investigators found that all A cells formed synapses with all B cells. 

Although not found to occur for every set of cells tested, these 

discrepancies are explained by technique and health of the cells 

studied. Greater experience with the dissection resulted in greater 

success in tracing monosynaptic connections. The survey was not 

undertaken with strict criteria, and thus the results are only 

supportive. They were designed only as a quick survey of the potential 

extent of synaptic organization. 

This investigator was not as successful as Jahan-Parwar and Fredman 

in finding B to B synapses -- though a healthy number were identified. 

These studies did not attempt to determine whether or not contralateral 

connections exist -- a point of controversy between Jahan-Parwar1s and 

Hinzen's groups. B to A synapses have not been described in the 

literature: the sole finding here merits further investigation. As 

previously noted, no researcher has ever found evidence for an A to A 

cell synapse. The success of demonstrating Av to A cell connections is 

promising; the small size of the Av cells, however, makes study of this 

synapse difficult (see also 58). 
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McCamen is the only investigator who has previously mentioned the 

existence of an initial eipsp at the A to B cell synaps’e -- an 

observation confirmed by this study (130). The A to B synapse joins a 

growing selection of multiphasic postsynaptic potentials found in 

Aplysia -- perhaps it is the rule (39, 69, 102, 103, 104, 114, 124, 145, 

205, 206). The strength of the initial psp coupled with the biphasic 

nature of the potential emphasizes the importance placed on the first 

incoming signal. It also means that the transmitter is acting at two 

receptor ionophores on the postsynaptic membrane. The partial fatigue 

of synaptic potentials is similar to the character of the J and K cell 

to B cell synapses (166). The fatigue of this message is thought to 

underlie habituation of the tentacle withdrawal reflex (166). 

The A To B Cell Synapse Messenger 

Of the numerous neurotransmitters found in the Aplysia nervous 

sytem, many may be dismissed as the messenger of the A cells. 

Octopamine and phenylethanolamine either do not evoke responses on B 

cells, or do not exist in suspiciously high concentrations in A cells 

(130). Dopamine and GABA, are also not found in significant quantities 

in A cells (130), and, more importantly, do not evoke excitatory 

responses on B cells. 

Acetylcholine, too, can not be the transmitter. This study failed 

to find any excitatory induced responses by acetylcholine. McCamen 

could not find either excitatory responses on B cells, or acetylcholine 

in A cells (130). Perhaps the depolarizing responses described by 

Hinzen and Davies (77) are mediated by chloride since many of their 
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experiments were conducted at -70 mv, a membrane potential below the 

chloride equilibrium potential. Debate aside, 

the acetylcholine antagonist studies by Hinzen and Davies together 

with the negative results of curare and strychnine perfusion presented 

here eliminate acetylcholine from contention. 

Histamine is a potential candidate as it gives rise to varied 

responses some of which are sodium mediated depolarizations. Yet, the 

psp is unaffected by the histamine antagonists pyrilamine and 

burimamide. In addition, the non-specific channel blockers curare and 

strychnine would abolish a histamine mediated synaptic potential. 

Histamine, too, is not found in high concentrations in the presynaptic 

neuron (130). 

There is much evidence to support serotonin. Both A and A1 

excitatory responses can be found. Since strychnine and curare do not 

have any effect, and because the psp does not desensitize when washed 

with serotonin, then if the response is due to serotonin the psp must be 

mediated by an A' receptor. The only evidence favoring serotonin comes 

from Hinzen and Davies who observed an augmentation of the psp by 

-4 -3 
bufotenine at 10 M, and the abolition of the psp at 10 M (44, 77). 

A repeat of their studies here, however, has not given all the same 

results. 

The results of bufotenine perfusion are disputed. McCamen could 

-4 
not demonstrate an effect with 10 M bufotenine (130). The results of 

this study find only a decrement of the psp, not abolition, and then 

-3 
only rarely; more often, no effect can be discerned even at 10 M. The 

67 





-4 
most common effect of bufotenine, usually at 10 M, is enhancement of 

the psp. In fact, the augmentation is so great that the biphasic nature 

of the synaptic potential is brought forth. Nevertheless, such effects 

are accompanied by greater excitability of the postsynaptic neuron, and 

an increase in membrane resistance. The effects of bufotenine, then, 

may be explained by secondary effects on the membrane rather than on the 

receptor. The extrasynaptic events may be a product of direct 

interaction between bufotenine and the membrane, or, alternatively, they 

may be a consequence of altered synaptic activity throughout the 

ganglion caused by the antagonist. These experiments were not performed 

in high Mg++ seawater which would guard against the latter possibility. 

This phenomenon demonstrates how important secondary membrane effects 

may be in modulating synaptic reception of signals. 

Additionally, the results of Hinzen and Davies, and some of those 

here, were achieved at tremendous concentrations of bufotenine and over 

considerable time. Although the A1 receptors are located deep in the 

neuropile, and such synapses are often snugly enfolded by layers of 

tenacious glial sheath, Gerschenfeld et al. succeeded in abolishing 

serotonin mediated synaptic potentials in Aplysia with concentrations of 

-4 -6 -5 
bufotenine orders of magnitude less than 10 M [10 to 10 M (69, 

145)]. Those same receptors deep in the neuropile, which are activated 

-5 
by lonophoresed serotonin are inhibited rapidly by bufotenine 10 M 

(see also 69, 145). 

There are two other pieces of evidence that argue against serotonin. 

First, desipramine, which augments serotonin generated potentials (38, 
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69, 144), did not affect the psp. Second, McCamen was unable to isolate 

serotonin from the A cells in quantities that approach those found in 

proven serotonergic neurons (87). 

There remains to consider glutamate, a candidate supported by the 

presence of a depolarizing response on B cells. Glutamate exists in 

fair quantities in A cells (130) -- similar to those found in most 

Aplysia neurons, which is not sufficiently high to strongly suggest a 

neurotransmitter function. It would be just that the one component of 

seaweed most able to fire the chemoreceptors and arouse the B cells to 

make Aplysia feed should also be the transmitter at the synapse, but 

such is not to be. The glutamate receptors on B cells, not the 

receptors at the A to B synapse, desensitize with repeated application, 

or perfusion, of glutamate. In similar fashion, aspartate did not have 

any effect. At low concentrations aspartate augments glutaminergic 

synaptic potentials; and, at higher concentrations aspartate cross 

desensitizes glutamate mediated responses (211). The failure of these 

experiments argues agaianst glutamate as the A cell transmitter. 

Additional support comes from McCamen who found that quisqualic acid 

blocked glutamate induced responses, but did not have any affect on the 

psp (130). The argument surrounding glutamate as a neurotransmitter, at 

this synapse and in the Aplysia nervous system, is constrained by its 

ubiquitous presence and by the lack of selective antagonists and 

agonists (64). 

A few other messengers need to be briefly considered. Glycine, a 

neutral amino acid, was found to induce a slow depolarization in B 
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cells. Further studies, presented below, indicate that the 

depolarization is generated by sodium coupled cotransport, a mechanism 

of neutral amino acid uptake common among neurons, and thus is not a 

viable transmitter candidate. Recently, Carpenter and Hall have 

described a depolarizing response on A and B cells evoked by enkephalin, 

a possibility which merits further consideration (28A). 

If the neurotransmitter can not be identified to be any one of those 

currently known to neurophysiologists, then either the methods are 

inadequate, the synapse is inaccessable, or the transmitter is as yet 

unknown. Access in the A to B synapse may be a problem since the 

synapse appears to be deeply embedded in the neuropile where it is 

difficult to place electrodes, and may prove difficult for antagonists 

to diffuse toward. The pharmacological methods are inadequate for 

studying glutamate. Not that much is known of the interaction of most 

poisons with postsynaptic membrane. It is entirely conceivable that the 

transmitter is not glutamate, but is a similar compound. Debate raged 

for years over the identification of the messenger in the rat lateral 

olfactory tract. Aspartate and glutamate both had their advocates based 

upon ambiguous experimental data (77A). It now appears that 

N-acetylaspartylglutamate (NAAG), a glutamate-like substance, is the 

culprit. NAAG and the lateral olfactory tract epsp are specifically 

inhibited by aminophosphonobutyric acid but other amino acid responses 

are unaffected by this antagonist (53, 54). 

The final possibility is a previously undescribed substance. This 

is not surprising: given the complexity of the nervous system and the 
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simplicity of the human cortex, the natural instinct is to ascribe all 

mechanism of action to what is known. In this instance, the few of the 

known transmitters are given credit for all the work done by the myriads 

of undiscovered messengers and their cousins. It remains to be known. 

Whatever it is, it must meet a few conditions. It must be present 

in the A cells, unless it is produced only in the terminals. It must 

induce depolarizing responses in B cells that are immune from the action 

of curare and strychnine. It must evoke an excitatory response that 

decreases somewhat in amplitude with repeated application, and is able 

to induce a rapidly disappearing hyperpolarization. Finally, if the A 

cells are primary motoneurons, then it must also be effective at 

inducing muscular contractions. 
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III. CHARACTERIZATION OF GLYCINE INDUCED-ALTERATIONS OF MEMBRANE 

POTENTIAL 

Glycine is an acknowledged transmitter in the mammalian central 

nervous system (41A, 42, 136, 189, 208, 209). Early studies 

demonstrated the inhibitory action of glycine in the spinal cord, an 

effect specifically antagonized by strychnine (41, 41A, 117, 215, 216, 

217). There is little direct evidence, however, for glycine receptors 

in "simpler" systems such as molluscs. 

One set of receptors have been described by Oomura ej: al. on two 

identified cells in the eosophageal ganglion of Onchidium (112, 139, 

140). They elicited a depolarizing response, generated by increased 

permeability to sodium ions (equilibrium potential +25 to +30), by 

perfusing the preparation with 1.3 mM glycine -- raising the 

concentration to 13 mM caused the cells to fire. Oomura discerned two 

phases: the first, found at lower concentrations of glycine, was 

mediated by a decreased permeability to potassium ions; the second, 

predominant at higher concentrations, was generated by a conductance 

increase to sodium ions. Replacing sodium from the seawater, and not 

potassium, decreased the magnitude of response. Curiously, strychnine 

partially antagonized the sodium component, as expected, but augmented 

the potassium component. Also unusual, the receptors failed to 

desensitize. Nevertheless, tetrodotoxin, ouabain, and 2, 4 

dinitrophenol did not haVe any affect on the depolarization. 
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Although receptors for glycine have not been identified on neurons 

in Aplysia there is much evidence to suggest that glycine may be a 

messenger in this noble mollusc -- the result of the extensive work of 

McAdoo, Price, and Sawada et al. (79, 80, 125, 158, 159, 160, 161, 162, 

165, 172). Glycine is found in much higher concentrations in the 

ganglion than in the hemolymph; Cells R3 through R14 of the abdominal 

ganglion -- the ganglion with the highest concentration of this amino 

acid -- contain great amounts of glycine (R3-13: 600 picomoles; R14: 

1400 picomoles) exceeded only by the bag cells (1500 picomoles) which 

are known to be involved with protein synthesis (80). This is also 

greater than their content of aspartate and glutamate (105, 190). 

Perhaps significant, the same R cells synthesize a 6000 dalton 

polypeptide (80). 

These same neurons utilize a rapid and specific system for glycine 

uptake which is distinct from the means common to all neurons for 

neutral amino acid membrane transport (125, 158, 161). 

Autoradiographically and biochemically determined uptake rates are 

greater than four times that for other neurons (125, 158). The system 

is specific for glycine since alanine, leucine, and serine are not 

affected, nor do glial cells display preferential uptake. The process 

is sodium, and not energy, dependent; it is abolished in sodium free 

water but is unaffected by either ouabain or 2, 4 dinitrophenol. 

Free glycine is moved about by a rapid axonal transport mechanism 

that is specific for the amino acid (162). Tritiated glycine is found 

in vesicles located at the axon terminals of these cells (160); it is 

- 73 - 





not shunted for protein synthesis (125, 158, 161). Collection of 

perfusate reveals tonic release of glycine, however when the nerve 

containing the R3-14 axons is stimulated the release of glycine is 

greatly increased (165). 

The axons of this group of neurons extend down the branchial nerve 

to the pericardial region to surround the efferent gill, and vein, and 

also to the heart where the terminals end blindly in sheath bathed by 

hemolymph. In addition, R14 sends axon processes to the major arterial 

branches of the aorta to make contact with the arterial wall smooth 

muscle. The terminals, free of glia, unlike the extensive glial sheath 

which surrounds the axons, are filled with dense core vesicles (159, see 

also 79, 171). 

Stimulation of R14 does not cause direct contraction of the vessel 

muscles, nor does local application of glycine. There is no affect on 

junctional potentials or on membrane permeability. Stimulation of R14 

does, however, enhance the force of muscular contraction; bathing the 

preparation with 0.5 mM glycine similarly enhances serotonin induced 

muscle contraction. These effects are not produced by alanine, serine, 

taurine, or histidine (79, 172). Thus, R14 appears to act on arterial 

muscle in much the same way as the metacerebral giant cell affects 

buccal muscle contractility (204, 205). 

It is not known how glycine enhances muscle contraction. Nor is it 

clear if glycine is a neurotransmitter rather than a modulator, for 

distinct receptors have not been identified. Glycine may be a 

neurohormone, although the low concentrations of glycine found in the 
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hemolymph argue against this possibility (11). The role of the 7000 

dalton peptide also is not clear since Lloyd described a similar 

polypeptide that enhances cardiac tissue contractility in Helix (121, 

119, 120). 

In sum, glycine is found in identified neurons which contain 

mechanisms for the rapid uptake and axonal transport of glycine. The 

amino acid, found in vesicles at axon terminals, is released following 

neural stimulation. The neurons, which release glycine, innervate 

cardiac and arterial muscle. Glycine mimics the modulation of muscular 

contractility produced by stimulation of glycine containing neurons 

although glycine receptors have never been identified. The role of an 

accompanying polypeptide is unclear. 

During the course of surveying the identity of receptors on A and B 

cells in the cerebral ganglion of Aplysia a nearly ubiquitous slow 

depolarization induced by glycine was found. Less commonly a biphasic 

hyperpolarization could be elicited. A series of experiments were then 

performed to characterize the nature of these glycine generated 

responses. 

RESULTS 

Fast Hyperpolarizations 

Biphasic and triphasic responses were found on many, but not on all, 

A cells. The early biphasic hyperpolarizations of membrane potential 

appear to be generated by increased permeability to chloride and 
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potassium ions. Characterization of the third component, a slow 

depolarization, is discussed below. Clear evidence of fast sodium 

subserved depolarizations was not found. 

An example of the more typical complex triphasic response found on a 

current clamped A cell is shown in figure 32. Since the first phase of 

the response reversed between -55 and -60 mv and occured while membrane 

conductance was increased, the hyperpolarization must be mediated by 

chloride. The second phase of the hyperpolarization, also accompanied 

by increased membrane conductance, reversed between -70 and -80 mv and 

was thus mediated by potassium. The final, slow depolarization neither 

reversed between -45 to -80 mv or was associated with an alteration in 

conductance. 

Isolated biphasic or single component responses were occaisonally 

encountered (figure 33); on a rare cell the slow depolarization could be 

separated from glycine evoked hyperpolarizations (figure 25). Both the 

chloride and potassium mediated hyperpolarizations generated by glycine 

-4 
were completely and reversibly abolished by strychnine (10 M) (figure 

34). 

All told, seven chloride responses and eight potassium responses 

were found. Two uncharacterized depolarizations were found at moderately 

hyperpolarized membrane potentials — they were probably generated by 

chloride currents. One response typical of a vonductance decrease of 

potassium was found but could not be reproduced. Glycine induced 

hyperpolarizations were not ubiquitous -- rather, they were often 

restricted to localized regions of cell membrane. 
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FIGURE 32: Pressure ejection of glycine (dissolved in distilled water) 

onto a current clamped A cell which elicited a triphasic response. The 

first component with a peak response at 1 second and a reversal 

potential of -59 mv was generated by increased chloride ion 

permeability. The second component, peak response at 5 seconds and 

reversal potential between -75 and -78 mv, was generated by increased 

permeability to potassium ions. A slow depolarization was seen at 20 

seconds that had a reversal potential greater than -50 mv. NOTE: 

vertical scale is 10 mv. Tracing below each recorded response indicates 

timing and duration of pressure ejection pulse. 
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FIGURE 33: Pressure ejection of glycine (distilled water) onto current 

clamped A cell which elicited a hyperpolarization mediated by 

ions, and associated with increased membrane resistance, 

potential -95 mv, peak response 10 seconds. 

potassium 
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FIGURE 34: Pressure ejection of glycine (distilled water, pH 3.5) onto 

a current clamped A cell which elicited a biphasic hyperpol'arization 

-4 
mediaited by chloride and potassium ions. Perfusion of strychnine (10 

M) rapidly and reversibly abolished both components of response. Note, 

the tip of the pressure ejection tip was leaking, thus the pipet was 

brought away from the cell after each pulse. 
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Many of the initial experiments were conducted with glycine 

dissolved in distilled water or in water with a low pH. Curiously, most 

of the biphasic responses were found when distilled water was the 

solvent. However, pressure ejection of distilled water never resulted 

in biphasic hyperpolarizing responses associated with increased membrane 

conductance. Similarly sucrose, (1.0 to 0.1 M) did not have any effect 

on A cell membrane potentials. The experiments which identified the 

hyperpolarizing responses were undertaken during the summer; the 

following winter, when the experiments were repeated using 1.0 to 0.01 M 

glycine dissolved in seawater with a pH between 6.5 and 7.8, only two 

weak hyperpolarizing responses, one generated by chloride, the other by 

potassium, were found. 

GLYCINE-INDUCED RESPONSES 

RESPONSE A CELL B CELL OTHER 

Na+ 1? 
Cl- 7 
K+ 8 2 

Slow Depol 32 12 1 
K (g dec) 1 

TABLE 9 : Glycine induced changes in membrane potential. 
Results using glycine in low pH solution are : not shown. 
"g dec" denotes conductance decrease. Responses mediated by 
Na+, Cl-, and K+ were associated with increased conductance 

Slow Depolarization 

A slow depolarizing response generated by glycine of similar latency 

(peak 8 to 12 seconds), and similar duration (40 to 90 seconds) was 
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found on nearly every cell examined: 32 A cells and 12 B cells. 

Occaisonally the response was obscured by a preceding potassium mediated 

hyperpolarization. Rarely, ionophoresis of glycine was sufficient to 

evoke the depolarization (figure 14); pressure ejection, however, proved 

to be universally effective and which generally elicited responses on 

any portion of neural membrane. At times a neuron could be stimulated 

sufficiently to generate an action potential [figure 14 (ionophoresis), 

35 (pressure ejection), both cells were current clamped]. 

Figure 35 demonstrates a typical depolarization found on a current 

clamped B cell -- note the absence of a change in membrane conductance, 

a characteristic feature of this response. Only one cell of forty-four 

examined demonstrated an increased membrane conductance. Figure 36 

reflects the depolarization seen on a voltage clamped neuron; the 

reversal potential for this response was -15 mv (Graph 3). Also, note 

that an alteration in conductance could not be demonstrated in this cell 

either. Other voltage clamped neurons manifested pronounced 

depolarization at -20 mv. Perfusing the preparation in sodium free 

(Tris) seawater markedly decreased the magnitude of response (figure 

39). 

Microperfusion of 0.001 M glycine for three minutes revealed a 

constant plateau depolarization that did not desensitize (figure 37); on 

one occaison no change occured in the degree of depolarization for 

-4 
fifteen minutes. Strychnine, as high as 2.5 x 10 M, failed to affect 

the slow depolarization on either A or B cells (figures 38 and 39). 

-4 
Bathing the preparation in 2, 4 dinitrophenol (5 x 10 M) abolished the 
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FIGURE 35: Pressure ejection of glycine (ASW) onto a current clamped B 

cell which elicited a slow depolarization (peak response 12 seconds) and 

generated an action potential. The response was not accompanied with an 

alteration of membrane conductance. 
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FIGURE 36: Pressure ejection of glycine (ASW pH 7.8) onto a voltage 

clamped A cell which elicited a typical depolarization with a peak 

response at 22 seconds. Determination of the reversal potential for 

this response is presented in graph 3. Note the absence of an 

alteration of membrane potential. 









GRAPH 3: Reversal potential of a typical glycine-induced slow 
depolarization determined from a voltage clamped A cell (see figure 36). 
Ordinate: amplitude of response (na) evoked by pressure ejection of 
glycine onto an A cell. Abscissa: membrane potential of the A cell 
(mv). 
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FIGURE 37: Microperfussion of 0.001 M glycine (ASW) onto a voltage 

clamped A cell. Arrows denote beginning and end of perfusion. Each 

response failed to desensitize. 









FIGURE 38: Pressure ejection of glycine (ASW) onto a current clamped A 

cell which elicited a typical slow depolarization. Perfusion with 

-4 
strychnine (2.5 x 10 M) did not affect the response. 
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FIGURE 39: Pressure ejection of glycine (ASW pH 7.8) onto a voltage 

clamped A cell which elicited a typical slow depolarization sequentially 

perfused (and then washed) with strychnine, Na+ free (Tris) ASW, and 2,4 

-4 
dinitrophenol (2,4 DNP). Strychnine (2.5 x 10 M) did not affect the 

response. Na+ free (Tris) ASW markedly decreased the amplitude of 

depolarization. 2,4 DNP (5 x 10 M) reversibly abolished the response. 
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glycine induced depolarization. Both the effects of sodium free 

seawater and 2, 4 dinitrophenol perfusion were reversible (figure 39). 

Perfusion of Cobalt II, a calcium channel antagonist, did not have any 

effect on the response (figure 40). 

Pressure ejection of the neutral amino acids histidine and glutamine 

caused depolarizing responses similar to those elicited by glycine and 

that were also not associated with an alteration of membrane 

conductance. The configuration, latency, and time course of response 

were remarkably similar even though the histidine and glutamine 

responses were weaker than the glycine-induced counterpart (figure 41). 

Table 10 summarizes the effects of perfusion and ion exchange 

experiments on the slow depolarization brought forth by glycine. 

Pressure ejection of artificial seawater, distilled water, 1 M 

sucrose (a hypertonic solution), or artificial seawater with low pH did 

not reproduce the glycine-induced slow depolarization. 

I 

DISCUSSION 

Hyperpolarizations 

That glycine-induced hyperpolarizations are mediated by chloride and 

potassium ions is suggested by alterations in membrane conductance and 

reversal potentials; it is an effect seen by all neurotransmitters in 

Aplysia. Strychnine abolished both components. Although it is unusual 

for strychnine to block potassium channels (51, 179), strychnine is a 
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FIGURE 40: Pressure ejection of glycine (ASW) onto a current clamped A 

cell which elicited a typical slow depolarization. Perfusion of the 

-3 
Ca++ current antagonist cobalt II (5 x 10 M) did not affect the 

response. 









FIGURE 41: Pressure ejection of histidine, glutamine, and glycine 

(ASW) onto a voltage clamped A cell. All substances generated similar 

slow depolarizations, with similar latencies, peak responses, and decay, 

that were not associated with alterations of membrane conductance. Note 

the histidine and glutamine responses were weaker than those of glycine, 

although this may have been a function of pipet placement. 
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GLYCINE INDUCED SLOW DEPOLARIZATION: PERFUSION AND ION EXCHANGE EXPERIMENTS 

AGONIST/ 
ANTAGONIST 

CONCENTRATION (M) 
(IF RELEVANT) 

EFFECT 

GLYCINE 0.001 M Microperfusion No Desensitization 

NA FREE(TRIS) ASW 

STRYCHNINE 

2, 4 DNP 

COBALT II 

Decreased Response (R) 

No Effect 

Abolished Response (R) 

No Effect 

HISTIDINE Pressure Ejection Mimicked Response 

GLUTAMINE Pressure Ejection Mimicked Response 

TABLE 10: Effect of agonists and antagonists on the slow 
depolarization induced by glycine. (R) denotes reversible; 
2, 4 DNP is 2, 4 dinitrophenol. 

well known glycine receptor antagonist in other preparations (41, 117, 

135 139, 140, 215, 217; may act only on chloride channels in mammals 

216). The biphasic hyperpolarizing responses evoked by glycine, 

however, were not reproduced the following winter. The question arises 

whether or not the elicited responses were artifact. 

Four factors are important: use of pressure ejection, high 

concentrations of glycine (1.0 to 0.01 M), pH , and solvent. It is 

unusual that glycine induced responses could only be found with pressure 

ejection, a technique that dumps a large amount of substance onto a cell 

-- even if the receptors are located deep in the neuropile encased in 
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glia it is possible to bring forth responses induced by other 

transmitters with greater ease. One molar glycine was initially used 

for pressure ejection; if the response can only be evoked by using 

fantastic amounts of a substance it may not be physiologically relevant. 

Yet, pressure ejection alone does not create an artifactual response, 

nor do hypertonic solutions of sucrose (1 M). PH of seawater ranging 

from 6.5 to 8.0 did not have any independent effect, either. 

Nevertheless, a low pH may alter the charge of glycine and thus have a 

secondary effect. Most of the hyperpolarizing responses were found 

early in the studies when distilled water was used as the solvent, 

however pressure ejection of distilled water , by itself, did not elicit 

a similar response. Perhaps, though this is unlikely, the pipets were 

contaminated with other transmitter substances. More important, the 

response was not universally found, as would be expected for an 

artifact, rather biphasic hyperpolarizations were found only on 

localized and narrow regions of the cell. 

Another possibility may be that glycine interacts with other 

receptors much as aspartate activates glutamate receptors, but this does 

not account for the paucity of later findings (68, 105, 156). There is 

one other alternative explanation. The initial findings occured during 

the summer, when the animals were young; the second series of 

experiments were performed in the winter, when the Aplysia were in the 

twilight of their lives. As Aplysia age their neurons undergo changes 

in their electrophysiological properties; perhaps, with time, the 

receptor profiles on their neurons are altered, too (152, 153). 
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The solution will come with a continued search for glycine 

receptors, during the summer months, and, when found, they can be 

properly characterized by the necessary ionic exchange and antagonist 

studies suggested by these results. 

Slow Depolarization 

The glycine-induced slow depolarization described here shares a few 

characteristics with conventional putative neurotransmitter receptor 

evoked responses, yet there are a number of features that are atypical. 

The depolarization can be generated by the little amount of substance 

delivered to a cell soma by ionophoresis. The configuration of the 

response -- latency, peak, and duration -- is typical of classical 

transmitter generated changes in membrane potential. Also, sufficient 

depolarization can be generated to initiate an action potential. 

The unusual characteristics, however, outnumber superficial 

similarities. Pressure ejection, which produces very high 

concentrations of substance outside the cell, is needed to elicit the 

depolarizations on most neurons. The response does not densensitize 

unlike most transmitter generated responses -- although there are 

exceptions, for example, the serotonin A1 receptor (68). Most unusual 

is the failure to discern any change in conductance across the membrane. 

Either the receptors are a far ways away from the recording electrode 

or, indeed, there is no change in conductance. Although the 

depolarization is sodium dependent it is unaffected by strychnine, a 

fast sodium channel blocker and a specific glycine receptor antagonist 

for sodium mediated depolarizations in Onchidium and inhibitory 
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responses in mammals (41, 112, 117, 135, 139, 140, 215, 217). Unlike 

common transmitter evoked responses subserved by increases in sodium ion 

permeability, the glycine response is sensitive to the metabolic 

inhibitor 2, 4 dinitrophenol (106). Nor is the response completely 

specific: the neutral amino acids histidine and glutamine evoke similar 

responses -- the only possible analogy here is for activation of 

glutamate receptors by aspartate (62, 137, 211). 

The glycine induced depolarization is best compared to, and 

contrasted with, the responses generated by glycine that are described 

by Oomura in Onchidium, the depolarization of membrane potential evoked 

by neutral amino acids investigated by Kehoe, and the glycine uptake 

systems analyzed by McAdoo et al. (112, 139, 140; 106; 125, 158, 161). 

Kehoe described a depolarization induced by neutral amino acids; in 

particular histidine and glutamine, in Aplysia pleural neurons (106). 

The depolarization was generated by bathing the preparation with high 

concentrations of amino acid -- 0.5 to 2.0 mM; the response maintained a 

constant level of depolarization and did not desensitize, just like that 

seen in figure 37. There was minimal dose dependent response. Kehoe 

never mentioned the generation of an action potential, however. Like 

the responses described here, the depolarization was sodium dependent, 

had a reversal potential that ranged between -7 and +54 mv, and was 

unaccompanied by a change in conductance. Other neutral amino acids had 

the same effect -- similar Km's.-- on the same cells. It was sensitive 

to 2, 4 dinitrophenol and cooling, but not to ouabain. Although one 

must be careful in analyzing the effects of metabolic inhibitors, the 

response described by Kehoe suggests a nonspecific energy and sodium 

dependent system of neutral amino acid transport (106). 
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Oomura's glycine induced depolarization exhibits some peculiar 

features, too. He had to use very high concentrations of glycine; the 

response did not desensitize; nor did he demonstrate a clear change in 

conductance (139, 140). Neutral amino acids evoked similar but weaker 

responses, the amplitude of which proved to be a function of side chain 

length. On the other hand, the response was partially antagonized by 

strychnine and not affected by 2, 4 dinitrophenol, unlike the responses 

described here and by Kehoe. And, similar to the depolarization 

characterized here, an action potential could be generated, albeit with 

greater amounts of glycine (139, 140). 

There are many features characteristic of sodium dependent 

cotransport, the means by which many neutral amino acids and sugars are 

carried across membranes. These mechanisms are not specific, they do 

not alter membrane conductance, nor do they desensitize. A sodium 

gradient is necessary to rush material into the cell, and thus the 

system is usually energy dependent. Typically, the cell is minimally 

depolarized, although there is usually an initial peak depolarization 

that then partially subsides (3, 47, 110, 116, 174). 

McCadoo et al. described a glycine specific uptake system peculiar 

to cells R3 through R14 of the abdominal ganglion. Their system is 

sodium dependent, is sensitive to mercury, but is unaffected by 2, 4 

dinitrophenol or ouabain (and is partially decreased by cold). Whereas 

the non-specific glycine uptake system is not sensitive to mercury, 2, 4 

dinitrophenol or ouabain (125, 158, 161, 162). Glycine uptake in 

mammals, however, is dependent on sodium, is sensitive to mercury. 
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ouabain, cold, AND 2, 4 dinitrophenol -- but not to strychnine (45, 94, 

116, 136). Curiously, application of glycine to cardiac tissue in 

Aplysia enhances contraction without altering membrane conductance (79). 

The glycine induced slow depolarization shares many features of 

sodium coupled cotransport -- certainly many characteristics of 

classically evoked changes in membrane potential are lacking. Yet the 

phenomenon described here does not fit the uptake systems described by 

McAdoo et al. Rather it compares most favorably, but not perfectly, with 

the response described by Kehoe. Some of the features of the Onchidium 

glycine response do not match the classical neurotransmitter model 

either, and, in fact, share some common characteristics with the 

responses described here, by Kehoe, and by McAdoo et al. If such great 

amounts of glycine are needed to generate an action potential then the 

response measured by the recording electrodes may not by 

electrophysiologically significant. Application and recording 

techniques may have made more evident the means by which necessary 

nutrients are picked up. There is much room, and need, for further 

clarification. The search for the elusive glycine receptor in Aplysia 

continues. 
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CONCLUSION 

This study examined the physiological properties of the A and B 

cells of the cerebral ganglion, mapped their synaptic connections, 

determined their receptor profiles, and performed experiments designed 

to identify the transmitter at the A to B synapse. 

A brief survey of A and B cell synaptic connections support the 

previous reports of Jahan-Parwar and Fredman and of Hinzen and Davies 

(56, 58, 77). A cells form synapses with nearly all B cells; A cells do 

not form synapses with each other. The A to B synaptic potential is 

initially a biphasic eipsp. The inhibitory component rapidly disappears 

while the remaining exitatory component partially fatigues with 

continued stimulation. The potential also exhibits temporal summation. 

The neurotransmitter receptor profiles of two populations of cells 

in Aplysia californica are described here for the first time. A and B 

cells each exhibit a different spectrum of receptors that is 

characteristic; indeed, they define the cell. A cells appear to be more 

homogeneous in regards to their receptor population than do the B cells. 

Inhibitory responses are predominant, more so for A cells than for B 

cells; this profile correlates with the dominant activity of, and input 

onto, each cell cluster. 

Serotonin, glutamate, and histamine produced excitatory responses 

on the B cells, thus limiting the possibilities of the A cell 

transmitter -- the messenger at the A to B cell synapse. Perfusion 
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studies of the A to B synapse preparation indicate that neither 

serotonin, histamine, or glutamate, however, is the transmitter at the 

synapse. The "non-specific" ionophore antagonists curare and strychnine 

are without effect on the synaptic response, as are the histamine 

antagonists pyrilamine and burimamide. Bufotenine, the serotonin A and 

A' receptor blocker, does not directly affect the psp. Apparent 

augmentation of the synaptic potential, and the appearance of a biphasic 

-4 
eipsp, at 10 M bufotenine probably results from secondary effects on 

the membrane. Further, the psp can not be desensitized by serotonin or 

glutamate, nor does aspartate have any effect on the synaptic potential. 

In part, investigations of this nature are restricted by the paucity of 

adequate antagonists. Clearly, the identity of the messenger remains 

unknown. The transmitter will most likely prove to be an as yet 

unidentified neurotransmitter, for surely there are many synaptic 

messengers and modulators that await discovery. 

A series of alterations of membrane potential are found with 

pressure ejection and ionophoresis of glycine. A biphasic response, 

mediated by increased conductance of chloride and potassium, 

respectively, was identified. Both components were reversibly 

eliminated by the classical glycine antagonist strychnine. However, a 

repeated search for these responses during the winter months failed to 

reproduce the initial findings made during the previous summer. 

A nearly ubiquitous slow depolarizing response, that is not 

accompanied by an alteration of membrane conductance, is also found. 

The response proved to be energy and sodium dependent, but is not 
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sensitive to strychnine. Nor does the depolarization ever desensitize. 

Application of the neutral amino acids histidine and glutamine evoke 

weaker responses that share many characteristics of the glycine-induced 

response. This response shares many features with energy dependent 

sodium coupled cotransport of neutral amino acids that is common to many 

neurons; it does not appear to be generated by activating a classical 

neurotransmitter receptor. 

The spectrum of receptors on Aplysia neurons is vast and the 

complexity of synaptic integration is great. Moluscan behavior may be 

"simple" and limited in scope, yet it must remain plastic, and at the 

same time maintain economy of function and purpose. That is, after all, 

one of the features that makes the study of the nervous system 

fascinating. In time, greater information will be gathered concerning 

the myriad transmitter receptors on a given collection of cells, such as 

the B cells, that underlie a particular behavior; the inputs to the 

cells will be completely mapped and the transmitters at each synapse 

will be identified. Neural organization and integrated activity at the 

synaptic level will provide the basis on which behavior at higher levels 

will be understood. With time, as more becomes known, the elegance of 

the nervous system will become increasingly evident. 
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