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Abstract 

Plasma levels of 8-methoxypsoralen (8-MOP) and photosensi¬ 

tivity to long wave ultraviolet irradiation (UV-A) have been 

simultaneously measured over a time scale from 1-8 hours in 20 

non-fasting volunteers undergoing photochemotherapy for psoria¬ 

sis with 8-MOP and UV-A (PUVA). Five 4 cm^ patches of skin on 

the buttocks were irradiated (365 nm, 2-28 joules) with fluor¬ 

escent lamps (Sylvania FR72T12) at each of four times from 

2-6 hours after ingestion of the 8-MOP. The skin reaction was 

measured as the minimal phototoxic dose (MPD) for each of the 

four exposures at 48 hours after irradiation. Four patients' 

8-MOP plasma profiles were studied under fasting conditions. 

8-MOP was extracted from plasma by a benzene extraction method. 

8-MOP plasma levels were determined by UV absorbance after 

seperation by high pressure liquid chromatography (HPLC) in 

a silica particle column eluted with methylene chloride:aceto¬ 

nitrile (95:s 5). 

Two volunteers displayed unusual biphasic time course 

patterns under the non-fasting conditions. Monophasic patterns 

were observed for both patients under fasting conditions. Two 

volunteers under fasting conditions demonstrated reproducible 

time course patterns on 4 occasions each. All subjects received 

approximately the same 8-MOP dose (mg/kg), but absorption patterns 

and peak plasma levels of the drug varied widely from person to 

person. There was no correlation between dose and peak plasma 





level. Elimination rates obeyed first order kinetics and were 

consistent in the population for fasting and non-fasting subjects. 

For each subject there was a correlation between 8-MOP plasma 

level and MPD such that an inverse proportionality existed. In 

our population of 20 volunteers no erythema was observed in four 

patients whose peak 8-MOP plasma levels were below' 30 ng/ml. 

In ten patients maximum sensitivity to irradiation occurred 

simultaneously with development of peak levels of 8-MOP observed 

with time. On the average there was a 0 to 1 hour delay between 

peak 8-MOP plasma concentration and maximum sensitivity to 

irradiation. Knowledge of a patient’s 8-MOP plasma profile 

over time is a valuable tool for evaluating patients who respond 

poorly to PUVA therapy. 
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Introduction 

Treatment of psoriasis with psoralens (furocoumarins) and 

long wave ultraviolet light (PUVA) has been a well recognized 

and effective therapeutic modality (1,2,3»4,5,6). The first 

reported medical use of furocoumarins was documented in the 

ancient Indian scriptures, the Atharva Veda (circa 1400 B.C.). 

Extracts from Psoralea corylifolia applied topically in 

conjunction with exposure to sunlight were used in the treatment 

of vitiligo (7). This regimen was found to induce repigmentation 

of the whiter pigmentless patches of skin which characterize the 

disease. Egyptian medical lore describes a similar treatment. 

The Arab physician Ibn El-Bitar documented the use of an extract 

from the plant Ammi majus in the treatment of vitiligo in the 

thirteenth century A.D, (8). 

In 1948, A.M. El Mofty (9) reported the clinical use of 

pure extracts from Ammi majus in the treatment of patients with 

vitiligo. These extracts were isolated and described by Fahmy 

and Abu-Shady (10) as the furocoumarins psoralen, the parent 

molecule, and its derivatives 8-methoxypsoralen (8-MOP), 5-methoxy- 

psoralen (5-MOP) and 8-isoamyleneoxypsoralen(Ammidin) (Fig.l). 

Over 28 naturally occurring furocoumarins from five major plant 

families have been isolated (7). The synthesis of new derivatives 

of psoralen generally involves methylation of the parent molecule. 

4,5',8-trimethylpsoralen (TMP) is one such compound. 

In 1953 Lerner, et. al. (11) described the use of 20-50 mg. 
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of oral 8-MOP and GE sunlamp therapy in the treatment of nine 

patients with vitiligo with overall good results. This regimen 

was noted to induce erythema 48-72 hours after administration 

with induction of pigmentation after repeated treatments. Long 

wave ultraviolet light (UVA) alone will not produce erythema 

except at very high intensity (12). Stegmaier (13) employed 

20 mg. of oral 8-MOP followed by exposure to sunlight in 

25 fair skinned people for induction of tanning and protection 

against sunburn. Both authors suggested the use of this thera¬ 

peutic modality on an experimental basis in the treatment of 

"those disorders in which ultraviolet light acts therapeutically, 

such as psoriasis."(11) 

Furocoumarins have been found to exert their skin photo¬ 

sensitizing properties in a unique manner. The erythema produced 

by most photosensitizing dyes appears immediately after irradi¬ 

ation while the erythematous response with psoralens occurs 48-72 

hours after irradiation. Most photodynamic drugs operate through 

a singlet oxygen mechanism. They absorb radiant energy and trans¬ 

fer it to a metastable excited state of oxygen. This is a 

potent oxidizing agent which acts to inactivate and disrupt normal 

metabolic processes. In 1957 Musajo, et.al.(14) found that furo¬ 

coumarins possessed no photooxidative activity in several chemical 

and biologic systems. Oginsky, £t.aJL.(15) showed that the 

presence of oxygen actually decreased the lethal effectiveness 

of 8-MOP and UV irradiation in bacterial cultures. 

DNA has been shown to be the primary molecular target of 

psoralen photoreactivity. In 1965 Musajo, et. al.(l6) noted a 
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strong modification of the fluorescence spectra of native DNA 

irradiated in the presence of psoralen. They suggested that 

psoralens formed a covalent linkage with DNA. Furocoumarins 

have been shown to intercalate between base pairs in the DNA double 

helix and form covalent crosslinks with pyrimidine bases (17,18). 

A C4 cyclobutane ring is formed between furocoumarins either 

at the 3»4 pyrone double bond (Fig. 2A) or with the 4'5’ furan 

double bond (Fig 2B) and the 5»6 double bond of the pyrimidine 

bases. The occurrence of these DNA crosslinks have been verified 

in vitro by electron microscopy visualization in chromatin (19) 

and in cells from PUVA treated psoriatic patients (20). 

The combination of psoralens and UVA irradiation has been 

shown to inhibit nucleic acid synthesis in vitro (21,22,23) and 

to inhibit macromolecular synthesis in vivo (24). The relative 

photoreactivity of a broad range of furocoumarins with nucleic 

acids was shown to correlate with the relative ability to 

inhibit nucleic acid synthesis in a DNA virus (25). 

Relative furocoumarin photoreactivity correlated with relative 

photosensitization in guinea pig skin (26). The reaction of 

psoralens with DNA explains many of the biological effects of 

the light active furocoumarins. 

Psoriasis has been characterized as a disease in which 

abnormal epidermal cell proliferation occurs (27). Numerous 

cytotoxic, chemotherapeutic agents have been employed in the 

treatment of severe psoriasis. Nitrogen mustard (28) and 

5-fluorouracil (29) have been used topically. Methotrexate (30) 

hydroxyurea (31) and azaribine(32) have been used systemically. 
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Methotrexate is known to be particularly effective in inhibiting 

epidermal cell proliferation. As a folate antagonist it kills 

cells during the S phase of the cell cycle, during the peak of 

DNA replication. It is much more effective when cells are in 

the logarithmic phase of growth (33)* Methotrexate has been 

shown to inhibit DNA synthesis in psoriasis (34). 

Because of its ability to inhibit DNA synthesis, the combi¬ 

nation of psoralens and UVA irradiation were employed in the 

treatment of psoriasis. Initial trials with topical psoralens 

and UVA irradiation by Tronner and Schule (35)» Walter and 

Voorhees (36) and Weber (37) demonstrated that this method 

could improve psoriatic lesions. Parrish, £t. al. (1) and 

Wolff, et. al. (2) demonstrated that oral methoxsalen in combi¬ 

nation with UVA irradiation was effective in complete clearing 

of severe psoriasis. The term "photochemotherapy" was coined 

to describe the crucial interaction of light and drug which 

resulted in the beneficial cytotoxic effects of this regimen. 

Multicenter clinical cooperative studies in the U.S. (4, 5) 

and in Europe (6) have shown conclusively the effectiveness 

of PUVA photochemotherapy. 

The standard PUVA protocol (38) calls for irradiation two 

hours after oral ingestion of the drug. Oral doses range from 

.5 "to .7 nng/kg body mass. Special fluorescent lamp systems 

which emit in the UVA range (320 - 400 nm) are designed for 

whole body, uniform irradiation. Initial irradiation doses 

are determined by skin type (4) or by minimal phototoxic dose 

(MPD) (38). Six skin types (types I - VI) are defined (Table I). 
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These are based on tanning histories and assessment of skin 

pigmentation. The MPD is determined by phototesting. The 

phototoxic reactions of PUVA include erythema, edema and 

blistering as an extreme reaction. These reactions peak at 

48 to 96 hours after exposure; the most severe reactions peak 

later. The MPD represents the individual's minimally detectable 

erythematous response to irradiation at sensitive sites. It 

is expressed in joules/cm , Phototesting is performed by 

irradiating a series of small patches of skin with gradual 

increments of known amounts of UVA irradiation (Fig. 3)* The 

patches are read at 48-72 hours. The initial UVA dose is the 

patient’s MPD. The clearing phase requires from two to four 

treatments per week. Tolerance to irradiation develops with 

the increased pigmentation which occurs during therapy. Gradual 

increments (0.5 to 2.0 j/cm ) in UVA exposure are made in the 

course of therapy. Relapses frequently occur within weeks to 

months following initial clearing. A maintenance phase of 1 to 

4 treatments per month is often employed. 

In three major clinical cooperative studies (4,5,6) PUVA 

has resulted in complete clearing in 70-90% of psoriatic 

patients. Most patients cleared in 20 to 30 treatments. Some 

patients showed only moderate improvement and/or required a 

significantly greater number of treatments. Three to ten 

percent failed to clear altogether. Some patients exhibited 

flares during therapy (Kobner reaction). Patients with plaque 

or guttate psoriasis responded better than those with erythro- 

dermic psoriasis. From 40 to 50/ of patients had relapses 
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within one year. The efficacy of maintanance therapy in the 

prevention of recurrences has been questioned (5,6). 

Side effects from PUVA therapy included erythema, nausea, 

pruritus, headache, dizziness and the Kobner reaction. Irrever¬ 

sible lenticular binding of 8-MCP following UVA exposure has 

been demonstrated in vitro. This could be a hypothetical factor 

in cataract development(39). Case reports of systemic lupus 

erythematosus (40, 4l), discoid lupus (42), bullous pemphigoid (43), 

epidermal dystrophy (44) and multiple basal cell epitheliomas 

over non-sun-exposed areas (45) have been associated with PUVA 

therapy. An increased risk of basal cell and squamous cell 

carcinoma of the skin has been documented in the U.S. cooperative 

clinical trial (46). This risk was associated with a history of 

previous exposure to ionizing radiation and previous cutaneous 

carcinoma. Many of the patients undergoing photochemotherapy 

have had other forms of ther^Dy which leave them at high risk 

for developing cutaneous neoplasms. It was not clear from this 

initial report what role if any PUVA therapy may play as an 

initiator or promotor of carcinogenesis in humans. It has been 

suggested that psoralens plus ultraviolet irradiation may act 

as promotors by inhibiting the immunologic surveillence for 

neoplastic cells which has been hypothesized to occur in skin (47). 

PUVA has been shown to cause abnormal cell mediated immunity 

reactions in the skin (43) and to affect circulating lympho¬ 

cytes (49, 50, 51). 

Minimal psoralen intake and radiation load without compro¬ 

mising therapeutic benefit would be desirable in preventing any 
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possible loig term side-effects from PUVA therapy. Knowledge 

of the pharmacokinetics of 8-MOP and of the relation of skin 

response to 8-MOP plasma concentration would be important in 

achieving maximal therapeutic effect with minimal quantities 

of drug and UVA exposure. Such knowledge would also be useful 

in evaluating the wide variety of therapeutic responses to 

photochemotherapy. 

Numerous methods have been developed for determination of 

8-MOP plasma or serum concentration. All of these involve 

extraction of the drug in an organic phase. Separation and 

resolution of the extract and detection of 8-MOP has been 

performed using a variety of systems. Thin layer chromatography 

(TLC) and scanning fluorometry (52, 53» 54); gas-liquid chroma¬ 

tography (C-LC) and flame ionization detection (55) or electron 

capture detection (56, 57); and high pressure liquid chroma¬ 

tography (HPLC) and UV absorption spectrometry (58, 59» 60, 

61, 62) have been employed. One extremely sensitive and complex 

system involves HPLC followed by glass capillary GLC and mass 

spectrometry detection (63). Many of these methods are unsuit¬ 

able for rapid and repeated determinations of 8-MOP plasma 

profiles because they are time consuming, expensive, require 

excessive sample size or lack sensitivity. A rapid and inex¬ 

pensive HPLC system which is able to measure 8-MOP plasma 

concentrations of 10 ng/ml from one ml. of plasma has been 

developed at the Yale Department of Dermatology by Ljunggren, 

Carter and Albert (64). This technique has been further 

refined with the use of an Altex model 330 HPLC to achieve a 

sensitivity of 4 ng/ml. 
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In this study minimal phototoxic doses (MPD's) and 8-MOP 

plasma concentrations have been simultaneously measured at several 

times during an 8 hour period following drug ingestion in 20 

psoriatic patients. The sensitivity of the skin to UVA irradi¬ 

ation in the presence of 8-MOP may provide a relative estimation 

of 8-MOP levels in the skin over a given time course. The 8-MOP 

absorption patterns have been analyzed for correlation with skin 

sensitivity to irradiation. The pharmacokinetic behaviour of 

8-MOP has been evaluated. Four patients have been studied under 

fasting and non-fasting conditions to determine the effect of 

food on 8-MOP absortion patterns. 
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Materials and Methods 

Patients: Twenty-two volunteers with severe psoriasis 

currently undergoing PUVA therapy were studied after informed 

consent had been obtained. The experimental protocol had prior 

approval of the Human Investigation Committee, Yale University 

School of Medicine. (HIC no. 946) The patients ranged in age 

from 26 to 72. Ten patients were males, twelve vere female. 

Twenty patients were studied for the correlation between skin 

photosensitivity and 8-MOP blood levels. Eleven volunteers 

were of skin type III, seven of skin type II and two of skin type 

I (Table I). All patients were advised to follow their normal 

diet preceding a PUVA therapy session. Most patients ingested 

a small amount of bland food with their 8-MOP capsules to off¬ 

set the nausea-producing effect of the drug. Four patients 

fasted for 10 hours preceding ingestion of the drug. All 

patients ingested 8-MOP (Oxsoralen, Paul B. Elder Co., Bryan, 

Ohio) in 10 mg capsules. Dosage levels ranged from .40 to .82 

mg of 8-M0P/kg body mass with an average dose of .62 mg/kg. 

One exception is a patient with an extreme dose at 1.77 mg/kg. 

This patient mistakenly ingested a second 60 mg dose two hours 

after ingesting the first dose. 

Irradiation: Twenty volunteers were irradiated beginning 

2,3,4 and 6 hours after ingestion of the 8-MOP. At each irradi- 

2 
ation five patches each 4 cm of plaque free skin on the buttocks, 
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thighs or lower back were exposed to progresseve increments of 

UVA irradiation (Fig. 3). The irradiation doses varied from 2 to 

28 joules/cm in the population. The dosage for each patient was 

chosen on the basis of skin type and current treatment levels so 

as to assure erythema in at least the highest energy patch. The 

dose increments progressed semi-logarithmically. For example, one 

2 
typical patient who had type III skin and v/as receiving 12 j/cm 

for psoriasis treatment was phototested with 7» 10, 14, 19 and 25 

J/cm . All other area of the body were shielded from irradiation. 

We used a bank of 8 fluorescent lamps (Sylvania FR72T12). The 

output of the lamp was constant during each session as monitored at 

5 minute intervals with the International Light model IL441 UVA 

detector (reading at 365 nm). Output decreased slightly from 13 

2 
to 10 milliwatts/cm with aging of the lamps. Duration of irradia¬ 

tion and distance from the lamps were adjusted to produce the 

desired energy exposure. Erythematous response was judged at 

48 hours after exposure. 

Materials: Benzene employed for the extraction was analytical 

reagent grade (Fisher Scientific, Fairlawn, N.J.). The methylene 

chloride and acetonitrile were HPLC grade (Burdick & Jackson, 

Muskegon, Mich.). For the borate buffer 61,8 gm boric acid (H^BO^) 

and 74.6 gm potassium chloride (KC1) were mixed in 1 L distilled 

water (solution #1); and 106 gm of sodium carbonate (Na^CO^) 

v/as dissolved in 1 L distilled water (solution #2). One liter 

of the 1M borate buffer v/as made by combining 630 ml of the H^BO^ - 

KC1 solution #1 with 370 ml of the Na2C0^ solution #2. The mixture 

was buffered up to pH 9.0 with the Na2C0^ solution #2. 
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Standards: The 8-MOP used as external standard in the HPLC 

analysis was obtained from Sigma Chemical Co., St. Louis, 

Missouri and was recrystallized twice from methanol. Ammidin, 

a psoralen derivative (Fig. 1), was employed as internal 

standard and external standard in each analysis and was a gift 

provided by AB Draco, Lund, Sweden. Standard solutions were 

made from lmg 8-MOP or ammidin/10 ml methylene chloride stock 

solutions. Methylene chloride: acetonitrile (95’ ’5) was added 

to 100 ul of the stock solution in a 10 ml volumetric flask 

up to volume. All standard solutions v/ere 1 ng/ul. Standard 

solutions were made fresh every 2 to 3 days and stock solutions 

were replaced every month owing to the volatility of the solvents. 

All solutions were stored refrigerated. 

Glassware: All glassware was cleansed with Alconox deter¬ 

gent (Scientific Products, McGaw Park, Illinois) and rinsed 

thoroughly with tap water followed by tv/o rinses with distilled 

water. Tv/o 100fo ethanol rinses and one methylene chloride 

(scientific grade) rinse guaranteed the removal of all organic 

residues. The extraction was performed in 13 ml conical glass 

centrifuge tubes with ground glass stoppered tops (Kimble Kimax 

6945-B). Teflon stoppers v/ere used for a tight seal during 

extraction. These tubes were treated with polyethylene glycol 

(PEG). This was found to enhance 8-M0P recovery (64). The 

tubes v/ere filled with a 2# PEG/chloroform solution (2 gm 

PEG 6000/100 ml chloroform) for 5 minutes and the solution 

was poured back for repeated use. The tubes were then baked 

in an oven (150°- 200°C) for two hours. 
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Extraction: Blood samples were obtained at 1, 2, 3* 4, 

6 and 8 hours after ingestion of the 8-MOP. All blood samples 

were obtained by venipuncture in heparinized tubes and the plasma 

v/as seperated immediately. The extraction procedure was modi¬ 

fied in this laboratory by Ljunggren, et. al. (64) from a tech¬ 

nique originally described by Fuglisi, et. al. (58). To 1 ml 

samples of plasma were added: 200 ng of ammidin as internal 

standard and 2.5 ml of the 1 M borate buffer. Samples were 

then extracted with 8 ml of benzene at room temperature on a 

reciprocating shaker for 20 minutes at 60 cycles per minute. 

The samples were then centrifuged at 5°C for 15 minutes on a 

Sorvall General Lab Centrifuge (model GLC 2B) at 2000 RPM. 

The organic layer was removed by glass pipette and evaporated 

at 45*C under dry nitrogen. Approximately 95/£ of the benzene 

v/as removed after cold room centrifugation. Drying time v/as 

30 minutes. The residue was placed under vacuum for an additional 

30 minutes. The residue was redissolved for chromatographic 

analysis in 200 ul of 95ss5 minture of methylene chloride: 

acetonitrile. 

Chromatographic procedure: The high pressure liquid 

chromatograph (Altex, model 330» Berkeley, California) was 

equipped with an Altex 254 nm UV detector and a Laboratory 

Control Data recorder. The stationary phase in the system 

v/as a microparticulate silica gel column (Partisil 10, I.D. 

4.6 mm, length 250 mm, V/hatman Inc, Clifton, New Jersey). 

The mobile phase was the 95::5 mixture of methylene chloride: 

acetonitrile. The flow rate v/as 2.2.ml/min. Best results were 
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obtained with pressures below 2000 psi. A 20 ul sample of 

the redissolved sample was injected onto the column. 

Calculations; Calculations of 8-KI0P plasma concentrations 

were based on the relative peak heights from the chromatogram: 

of the plasma 8-MOP and the ammidin internal standard, and of 

20 ng of 8-MOP and ammidin as external standard. The external 

standard peak heights were determined daily. Calculations are 

based on the formula: 

o ,-np /ng\ _ External Std, Ammidin y Patient 8-MOP y pon ) 
” ‘lU 'ml' Internal Std. Ammidin External Std. 8-MOP '‘ml' 

plasma peak peak internal 
cone. heights heights std. cone. 

The internal standard accounted for any loss of the patients’ 

plasma 8—HOP during the extraction procedure. The validity of 

this approach was tested with known amounts of 8-M0P and ammidin 

that were added to control plasma samples (64). 

Elimination half lives of 8-MOP time courses were calculated 

by the method of least squares linear regression analysis using 

a Hewlett-Packard computer (model 9810A) and plotter (model 

(9862A). 
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Results 

Plasma levels of 8-HOP as low as 4 ng/ml were measured 

using 1 ml of plasma. The extraction and chromatography 

could be performed on 10 to 20 samples in 2 to 3 hours. 

Retention time was approximately 2’45" for ammidin and 3'45" 

for 8-MOP (Fig. 4). A broad band of plasma impurities had an 

elution time of 1 to 2 minutes. The 8-HOP peak height was 

generally 75f° + 10°5 the peak height of ammidin for equal 

concentrations. This ratio was constant over a wide range of 

controlled plasma concentrations as shov/n in the standard 

curve (Fig. 5)* 

A total of 31 8—MOP time courses were obtained in 22 

volunteers (Tables II & III). There was marked variability in 

absorptive patterns. Peak concentrations ranged from 13 ng/ml 

to 782 ng/ml. Time of peak concentration varied from 1 to 6 

hours after ingestion. There was no correlation between oral 

dosage of 8-MOP as adjusted for body mass and peak levels of the 

drug (Table IV, Fig. 6). 

Elimination rates obeyed first order kinetics. All half- 

lives (Table IV) were calculated from either 3» 4 or 5 data 

points from each patients time course. Several patients had 

inadequate correlation coefficients (P > 0.10) or failed the 

95% confidence limit (z = 1.96) for a normal population. In 

the non-fasting population the 13 valid half lives ranged from 

1.3 to 2.8 hours with an average of 2.1 + 0.5 hours. In fasting 
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subjects half lives ranged from 1.3 to 2.3 hours with an 

average of 1.7 + 0.3 hours. 

Twenty one patients were studied under non-fasting 

conditions. Two patients demonstrated unusual biphasic 

absorption patterns (Pts, 8 & 13, Fig. 7). When these two 

patients were studied under fasting conditions, they both 

exhibited the typical monophasic time course with greater peak 

levels of the drug. Three additional non-fasting patients had 

less pronounced biphasic patterns (Pts. 5» 18 & 19). Two 

patients v/ere studied under fasting conditions on four successive 

occassions (Pts. 15 & 22). Both patients demonstrated consis¬ 

tent 8-MOP patterns (Fig. 8). There was one hour variation in 

time of peak levels, 0.2 hour variation in half life and a 

135-206 ng/ml and a 108-217 ng/ml variation in peak plasma 

levels respectively. 

Twenty patients v/ere irradiated to determine minimum 

phototoxic dose (MPD) v/hile 8-M0? plasma concentrations v/ere 

monitored (Table II). Four patients (Pts. 1-4) with peak 

8-MOP concentrations below 30 ng/ml demonstrated no erythema 

at any of the energy levels irradiated (Group I). The remaining 

sixteen patients with peak 8-MOP concentrations between 48 and 

782 ng/ml developed erythema. The lowest MPD for each patient 

(LMPD) was the time of greatest skin sensitivity to irradiation. 

Ten patients demonstrated simultaneous peak 8-MOP plasma con¬ 

centration and an LMPD (Group II). Seven of these patients 

maintained maximum skin sensitivity one hour after peak levels 

had fallen off. Three patients with rapid 8-MOP absorption 
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demonstrated 1 to 3 hour delays in maximum skin sensitivity 

(Group III). Maximum skin sensitivity preceded peak 8-MOP 

levels in three patients with slow 8-MOP absorption (Group IV). 

The data from thirteen patients with complete profiles at all 

times of irradiation was summarized (Table V). The lowest 

average MPD and the greatest number of LMPD's for these patients 

occurred at 3 hours after ingestion. The greatest average 8-MOP 

plasma concentration occurred at 2 hours after ingestion. 

There was no correlation between peak 8-MOP levels and LMPD's 

for the population as a whole. A general trend in all the time 

courses was the inverse relation between 8-MOP plasma concentra¬ 

tions and MPD's. The cumulative data from the 13 patients (Table V) 

demonstrated that the 8-MOP level falls as the MPD rises. With 

adjustment for delays in distribution the converse also held. 

This relation was best described as an inverse proportionality 

between the log (MPD) and the log (8-MOP) ,o . The product of 
0 0 plasms, 

these two parameters yielded a constant at time t after 

ingestion and an average value K,p over all times: 

log0 MPD 
loge (8. 

1 
■MOPj 

olasma 

Kt = logeMPDt X loge(8-M0P)t 

Each patients plasma profiles were evaluated on an individual 

basis (Table VI). In instances where peak 8-MOP concentration 

did not correspond with an LMPD time curves were shifted so as 

to account for variations in distribution time. 
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Discussion 

This HPLC analysis of 3-MOP plasma concentration has been 

previously discussed by Ljunggren, et. al. (64). A simple one 

step extraction of the 8-MOP with benzene was sufficient for 

excellent recovery. Multiple organic phase extractions (54, 55). 

acidification for release from plasma proteins (54, 57) and 

complex clean up procedures (56) were not necessary. The thin 

layer chromatography systems with fluorodo-Eitometric determination 

could be sensitive to within 5ng/ml with as little as 1 ml of 

serum (53). but all such systems (52, 53. 5^) lacked specificity 

for detection of 8-MOP alone. The gas chromatography systems 

required purification steps (55. 56) and all had detection 

limits of 10 ng/ml (55. 56, 57). The sensitivity of this HPLC 

system was comparable to others (59. 60, 6l, 62). Multiple 

venipunctures in one patient were possible as only 1 ml of 

plasma was required for each determination. 

Treatment of glassware with polyethylene glycol was found to 

be necessary to prevent possible binding of 8-MOP to glassware. 

Ammidin was added as an internal standard before the extraction. 

It accounted for any variations in extraction efficiency between 

samples. Ammidin is an isoamylene derivative of 8-oxypsoralen 

(Fig. 1) with UV absorption characteristics similar to 8-MOP 

(Fig. 9). but it has a more rapid elution time on this HPLC 

system. It was ideally suited as an internal standard. Plasma 
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extraction of 8-MOP has been shown to be slightly more efficient 

than serum extraction using this technique (64), 

There was great variability in 8-MOP plasma profiles, 

peak 8-MOP levels and time of peak level. The recommended oral 

dosage from the U.S. cooperative clinical trial protocol is 

.50 to .70 mg/kg body mass (38). The majority of the patients 

in this study fell within this range. Drug dosage has been 

based on a dose response experiment on 5 subjects which had shown 

that 40-60 mg oral doses were required to produce a perceptible 

erythematous response, but 80-100 mg oral doses resulted in 

edema and blistering. (65). Steiner, £t. al.(52) has shov/n in 

37 patients that there is no correlation between 2 hour 8-MOP 

serum levels, oral dose or response to irradiation. Wagner, 

et. al. (66) performed complete 8-MOP plasma profiles on 21 

patients ingesting comparable amounts of drug and could not 

account for variations in peak 8-MOP levels or area under the 

curve (AUC) measurements. The oral dose of 8-I.10P cannot be 

used to predict what plasma levels of the drug will be achieved. 

Elimination rates of the parent molecule obeyed first order 

kinetics. Average elimination half lives ranging from 1.1 to 

1.9 hours (62, 67, 68) have been reported on populations of 

4 or 5 patients. The ingestion of food had no statistically 

significant effect on elimination rate, as in agreement with 

Ehrsson, et. al. (68). Busch, et. al. (69) studied radiolabelled 

8-I.10P elimination and found that the decline of radioactivity 

was first order and biphasic with a rapid initial half life and 

a terminal half life of about 200 hours. Small quantities (^Ifb) 
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of 8-KOP metabolites may linger much longer than the parent 

molecule (67, 69). Organ distribution studies of radiolabelled 

8-MOP in rats (70) have shown a high concentration in liver, 

kidney and adrenals soon after oral or intravenous administration. 

This coincides with the predominant organ damage distribution 

when lethal 8-MOP doses are given to guinea pigs (11). Psoralens 

are extensively transformed to polar metabolites by hydroxy- 

lation and glucuronidation (69, 71, 72). In man 80# of orally 

administered 8-MOP is excreted in the urine within 8 hours (71)* 

but lesser quantities of polar metabolites are eliminated in the 

urire and feces over several days (69). 8-MOP is rapidly 

metabolized following absorption with relatively consistent elimi¬ 

nation rates in the population. 

Absorption patterns show great variation in the population. 

The time course patterns for two individuals may be markedly 

different even though oral dose and elimination rates are 

similar (Fig. 10). Other investigators (53» 62, 64, 66, 67, 68, 

73, 74) have also observed wide variation of absorption patterns. 

Food intake may account for some of this variation. Five 

patients in this study and subjects in other studies (69, 74) 

demonstrated biphasic absorptive patterns. When food intake 

was restricted in two of the patients in this study absorption 

patterns were monophasic, with earlier and greater peak levels 

of the drug, Tv/o patients repeatedly demonstrated consistent 

absorption patterns under fasting conditions. Gazith, et. al. 

(67) reported that fasting subjects had significantly greater 

overall 8-MOP levels than non-fasting subjects ingesting the same 

amount of drug. Ehrrson, et. al. (68) reported that food ingestion 
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enhances absorption of the drug in five subjects. Food intake 

is often practiced with 8-MOP administration in order to counter 

the nausea associated with ingestion of the drug. A consistent 

plasma profile would be crucial in order to insure a favorable 

therapeutic response. This study would suggest that minimum 

food intake and consistent dietary habits be maintained. 

Individual differences in ability to dissolve the drug 

formulation may account for some of this variation in absorption 

patterns. Thune and Volden (59) suggested that dissolution 

rate may affect the plasma level of the drug. Absorption rate 

constants have a much greater variation than elimination rate 

constants in the same population of patients (68). Food content 

of the upper gastrointestinal tract would be likely to affect 

dissolution rates. Several studies (57, 7^, 75) have shown that 

liquid preparations of 8-MOP have greater and more rapid absorp¬ 

tion than crystalline preparations. Busch, et. al. (69) have 

shown in man that a course crystalline preparation of radio- 

labelled 8-MOP has a much greater fecal elimination than a 

similar amount of liquid preparation. Seventy percent of 

ingested 8-MOP was absorbed in the liquid preparation, whereas 

only 30$ was absorbed in the crystalline preparation as 

measured by urinary elimination. The fecal radioactive content 

was found to be predominantly polar metabolites of 8-MOP. 

Dissolution and opening of the lactone ring occurs in basic 

solutions (56, 57). Such conditions exist in the small intestine 

and may account for this finding. Variable GI transit times 

may cause much of the variation in absorption patterns seen in 
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this and other studies. Variations in the bioavailability of 

different manufacturers’ crystalline preparations ha\e been 

shown in this (64) and other laboratories (76). Investigators 

in numerous countries using different 8-MOP crystalline prepa¬ 

rations report wide differences in 8-1,iOP plasma concentrations 

(52 -62). A preparation which insures rapid and consistent 

dissolution and absorption of 8-MOP v/ould be most desirable. 

The roles of early metabolism and drug distribution in 

accounting for inter-individual variations of absorption 

patterns have not been clarified. Substantial concentrations 

of 8-MOP and its metabolites have appeared in the plasma within 

15 minutes of ingestion (69). Both the metabolites and the 

parent molecule followed a parallel absorption and elimination 

pattern (67, 69). This suggested a first pass phenomenon for 

8-MOP metabolism. Stolk, et. al. (74) suggested that the 

significantly greater bioavailability of the liquid vs. solid 

capsules may be due to greater first pass liver metabolism of 

the latter because of longer dissolution times in the GI tract. 

No studies have yet been published documenting individual differ¬ 

ences of metabolism of the drug. 8-MOP was preferentially 

distributed to liver, kidney, adrenal, skin and blood in that 

order in laboratory animals (70, 71). Skin has been shown to have 

1.5 X the blood concentration of 8-MOP, though this factor was 

variable as a function of time after ingestion (70). Herfst, 

et. al. (6l) has compared 8-MOP serum concentrations to suction 

blister concentrations obtained just after irradiation in 20 

PUVA psoriatic patients. Serum to suction blister fluid ratios 
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of 8-M0P concentration ranged from .06 to 1.54. Individual 

differences in skin and perhaps other organ distributions may 
of 

account for some these variations in 8-MOP plasma profiles. 

Psoralens reversibly bind to plasma proteins in vitro (77, 78). 

8-MOP was 75 to 84MJ reversibly bound to serum albumin with 2.4 

(77) and 0.7 (78) binding sites per albumin molecule reported. 

Chakrabati, £t. al. (54) acidified all plasma samples inorder 

to release 8-MOP from plasma proteins prior to extraction. 

Investigators in this (64) and all other laboratories which 

performed 8-MOP analysis found almost complete 8-MOP extraction 

from plasma or serum into the organic phase without performing 

such a step. Individual differences in plasma protein binding 

may affect drug distribution but it cannot account for differences 

in plasma profiles. 

In twenty patients a profile of skin response to irradiation 

was obtained while 8-MOP plasma concentrations were monitored. 

Four patients (Pts. 1-4, Group I, Table II) with peak 8-MOP 

concentrations below 30 ng/ml demonstrated no erythema at any 

of the energy levels irradiated. Patients 5 and 6 with peak 

8-MOP levels of 48 and 68 ng/ml did develop a skin response 

at all times of irradiation. This suggests that a peak level 

of 8-MOP between 30 and 50 ng/ml is required to produce an 

erythematous response. Such a threshold might vary for each 

individual as a function of skin type, degree of pigmentation 

and the extent of metabolism and distribution of the drug. All 

four patients were maintained on an oral dose of 8-M0P that 

was adequate by current standards. These patients did not 
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respond to sensitizing doses of irradiation, and they gave a 

history of poor response to therapy. Low plasma levels may be 

the norm in these individuals and the reason for their poor 

theiapeutic response. Herfst, £t. al. (53) found that patients 

with peak levels greater than 65 ng/ml had a history of a good 

therapeutic response, whereas one patient with a peak 8-MOP level 

of 29 ng/ml had a moderate therapeutic response. One patient 

with little to no absorption had totally failed PUVA therapy. 

Wagner, et. al. (66) found lower-than-average 8-HOP plasma 

levels and low area under the curve (AUC) values in PUVA 

problem cases with psoriasis. This suggests that the 8-MOP 

threshold for an erythematous response may approximate the 

8-MOP therapeutic threshold. Analysis of 8-MOP plasma profiles 

may be useful in evaluating patients who respond poorly to 

PUVA therapy. 

Of the sixteen patients v/ho demonstrated erythema, thirteen 

had complete skin response profiles. The summary data from these 

patients (Table V) shows that the skin response to irradiation 

was greatest at 3 hours and significant at 2 hours, whereas 

the 8-HOP plasma levels were greatest at 2 hours. Thune(76) 

found that skin response maxima occurred at 1 hour and 8-HOP 

plasma maxima occurred from 1/2 to 1 hour in 8 patients on a 

new formulation of the drug. The time of greatest skin 

sensitivity may reflect the time of greatest skin concentration 

of the drug. For the population as a whole a 0 to 1 hour delay 

in 8-LIOP plasma-to-skin equilibrium can be expected. 

Inorder to maximize therapeutic response each patient must 

25 





be evaluated on an individual basis. Ten patients demonstrated 

simultaneous peak 8-MOP plasma concentration and at least one 

LMPD (Group II, Fig. 11). Seven of these patients had maximum 

skin sensitivity one hour after peak levels, as would be expected 

for a 0 to 1 hour delay in plasma to skin equilibration. Patients 

16 and 6 with peak 8-MOP concentrations at 1 hour after ingestion 

demonstrated 2 and 3 hour respective delays in maximum skin 

sensitivity. In some patients plasma-to-skin equilibration 

may be significantly slower than 8-MOP absorption (Group III, 

Fig. 11). Three patients had LMPD's which preceded maximum 

plasma levels of the drug. When slow, steady absorption of 

8-MOP occurs over a period of several hours plasma-to-skin 

equilibration may precede maximum plasma concentration of the 

drug (Group IV, Fig. 11). 

Only seven of the sixteen patients who developed photo¬ 

sensitive reactions demonstrated maximum skin sensitivity at 

2 hours. Only eight of the sixteen patients had peak 8-MOP 

levels at one or two hours. Two hours after 8-MOP ingestion is 

the recommended time for irradiation in the PUVA protocol (38). 

The wide variation of 8-MOP absorptive patterns and plasma-to- 

skin distribution times may account for many of the poor responses 

to PUVA therapy observed in clinical trials. Wagner, e_t. al. (66) 

found 8-MOP plasma maxima at 2 hours in most patients with a 

history of an adequate therapeutic responses; whereas ? of 14 

PUVA problem cases had significant time deviations in plasma 

profiles. Stevenson, et. al. (62) found that 3 out of 6 poor 

responders to PUVA therapy had abnormal plasma profiles with 
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later peak levels (5.1 to 8 hours). Determination of 8-1.10? 

plasma profiles or analysis of MPD profiles may be useful in 

evaluating patients who respond poorly to therapy because of 

rapid or slow absorption and distribution of adequate plasma 

concentrations of drug. Wagner, e_t. al. (66) found that 

improvement in some PUVA problem cases could be achieved by 

shifting the therapeutic UVA irradiation to the peak of the 

8-MOP plasma level. As a consequence of this study several 

patients were irradiated at later times after ingestion with 

beneficial results. 

In accordance with other investigators (52, 53)there was 

no correlation between 8-I.iOP peak levels and the amount of 

radiant energy required to produce an LMPD in the population 

as a whole. The variation in skin type and in absorption and 

distribution of the drug may account for this. A general trend 

in all the profiles is the inverse proportionality between 

8-MOP levels and MPD’s. Swanbeck, e_t. al. (79) noted a signifi¬ 

cant negative linear correlation between the logarithm of serum 

concentration and MPD in the cumulative profile data from 5 

volunteers. To account for variations in skin response this 

inverse relation was examined for each patient on an individual 

basis. This relation was best described as a direct inverse 

proportionality between the log (MPD) and the log (8-MOP). 
e e 

The product of these two parameters yielded a constant at 

each time t, which was averaged over all times K^,. It was 

necessary to shift the profiles of 6 patients such that peak 

8-MOP levels corresponded to an Li.I PD. This accounted for time 
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variations in absorption and distribution of the drug. The 

value of K varied from individual to individual. The average 

value of Krp in the population is greater for darker skin 

types: values averaged 11.9 for skin type III patients, 

9.4 for skin type II patients and 8.4 for skin type I patients. 

K values would be expected to deviate with changes in pigmen¬ 

tation. The value of K describes a relation between 8-I10P 

plasma levels and skin response to irradiation for each 

individual that would be useful in predicting one parameter 

from a knowledge of the other. 
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TABLE I: Skin types and criteria.* 

Skin type Criteria 

I 

II 

III 

IV 

V 

VI 

Always burn, never tan 

Always burn, sometimes tan 

Sometimes burn, always tan 

Never burn, always tan 

Moderately pigmented patients 

Heavily pigmented patients 

* The criteria for patients with skin types 
I, II, III, and IV, generally of European extrac¬ 
tion, are based on the history of the usual 
reaction to the first hour of full sun exposure 
in early summer. Skin type V generally includes 
patients of Asiatic, American Indian, Mexican, 
and Puerto Rican extraction. Skin type VI 
generally includes patients of African extraction. 
From reference (4). 
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TABLE IV* * Elimination rate half lives under non-fasting and fasting conditions 

peak cone. time of dose # of significant 

Ek (ng/ml) peak Oars.) (mg.kg) tH R observations 

NON-FASTING 

i 13 4 0.68 — 2 
2 14 2 0.76 — — 1 
3 16 4 0.57 2.1 .9925 3 
4 28 * 2 0.60 2.0 .9999 3 
5 48 4 0.60 •— — 2 
6 68 1 0.40 "2.8 .9940 4 
7 79 4 0.64 1.5 .9722* 3 
8 85 6 0.53 —— —- 0 
9 103 3 0.63 1.3 .9917 3 

10 110 3 0.69 1.6 .9494* 3 
11 129 3 0.73 2.0 .9786 4 
12 137 2 0.74 1.9 .9993 4 
13 144 2 0.50 —— 1 
14 163 2 0.79 1.4 .9875 4 
15 167 3 0.69 2.8 .9900 4 
16 171 1 0.48 2.4 .9807 4 
17 179 2 0.48 1.7 .9747 5 
18 200 2 0.58 3.7 .9993+ 3 
19 222 1 0.82 2.4 .9917 3 
20 347 2 0.61 1.7 .9473 4 
21 782 5 1.77 2.3 .9998 3 

13 174 2 

FASTING 

0.50 1.5 .9799 5 
A 178 2 0.53 2.3 .9719 4 
T5 (day 1) 206 2 0.69 1.5 .9895 5 
15 (day 2) 145 3 0.69 1.3 .9995 4 
1 b (day 3) 147 3 0.69 1.5 .9970 4 
15 (day 4) 135 3 0.69 1.5 .9993 3 
22 (day 1) 108 2 0.64 1.9 .9834 5 
22 (day 2) 180 2 0.64 2.0 .9908 5 
22 (day 3) 217 1 0.64 1.8 .9906 5 
22 (day 4) 157 2 0.64 1.8 .9952 4 

calculated by method of least squares linear regression assuming first order elimination rates. 
For P < 0.10: R > .9880 for 3 observations 

R > .9000 for 4 observations 
R > .8050 for 5 observations 

* indicates insufficient correlation coefficient 
+ indicates failure of 95% confidence limit (z=1.96) for a normal population 

distribution. 
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TABLE VI i Product of log MPD x log (8-MOP) plasma at 2, 3, 4 and 6 hours after ingestion (K^) 
and average value of product over all times (K-J 

Skin 
Patient Type K2 K3 

Group II 

K4 K6 kt 

7 m 63 10.8 11.2 7.9 9.0+2.3 
8 I " - — 9.3 8.0 8.6+ 

10 m — — 13.3 12.3 12.8+ 
11 m 13.0 12.1 12.7 10.8 12.1+1.0 
12 n 10.8 10.5 11.2 7.7 10.0+1.6 
14 i 8.2 8.2 9.0 7.7 83+0.5 
15 m 9.6 10.0 9.2 9.7 9.6+03 
17 m 12.9 11.5 10.4 9.8 11.1+1.4 
18 m 103 13.0 13.2 12.3 12.2+1.3 
20 n 15.8 13.7 133 9.5 13.1+2.6 

6 n 

Group in 

8.8 9.0 8.9+0.2 
16 n — 5.6 5.4 9.4 6.8+2,3 
19 m 13.0 13.2 14.7 15.8 14.2+1.3 

5 n 8.9 

Group IV 

7.5 8.3 7.9 8.2+0.6 
9 m 11.0 10.2 10.2 9.5 10.4+0.6 

21 m — 163 153 15.6 15.7+0.5 

Constant is based on the observation of the inverse relation between minimal phototoxic dose 
(MPD) and 8-MOP plasma concentration for each individual: 

log MPD ~ 
1_ 

log (8-MOP) plasma 

log MPD x log (8-MOP) plasma = constant K 





PSORALEN 

5-METH0XYPS0RALEN 

OCH2CH-CH(CHj)2 

AMMIDIN 

4, 5'8-TR I METHYL PSORALEN 

Figure 1: Molecular structure of psoralen 
8-methoxvpsoralen, 5-niethoxypsoralen, ammi- 
din and 4,5'8 trimethylpsoralen. 

3,4 Photoadducts 
4,5 Photoadducts 

A B 

Figure 2: Molecular structure of the 3#4 (a) and 4'5' (B) 
photoadducts between psoralen and a pyrimidine base. 





Figure 3* Determination of the mini¬ 
mum phototoxic dose (MPD) on the but¬ 
tocks . 
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Figure 4s A sample chromatogram. 
Plasma impurities elute from 1 to 
2 minutes after injection (arrow). 
Ammidin retention time: 2'45" (I). 
8-MOP retention time: 3,45"(II). 
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Figure $t Standard curve for 8-methoxy- 
psoralen and ammidin, 8-MOP (10-400 ng) 
was added to 1 ml of human plasma with 
200 ng ammidin as internal standard. 
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Figure 6: Scatter plot of 8-M0P plasma concentra¬ 
tion as a function of 8-M0P oral dose. No correla¬ 
tion was observed. 





Figure 7: Biphasic time course studies in 2 PUVA patients under 
non-fasting conditions and monophasic patterns in the same patients 
under fasting conditions. 

pt 15 Pt 22 

TIME AFTER INGESTION (hr») TIME AFTER INGESTION (hrs) 

Figure 8* Repeated 8-MOP profiles in 2 patients under fasting 
conditions. Each individual displayed similar patterns. 
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Figure 9: Absorption spectra 
of 8-methoxypsoralen (8—MOP) 
and 8-isoamyleneoxypsoralen 
(ammidin). 





TIME AFTEJR INGESTION (hrs) 

Figure 10: Time course studies of 2 patients 
with similar elimination rates and markedly 
different plasma levels. 
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Figure 11: LMPD and peak 8-MOP occurred 
simultaneously in 10 patients (Group II). 
LMPD occurred 2 or 3 hours after Ihr peak 
8-MOP levels in 3 patients (Group III). 
LMPD preceded peak 8-MOP levels by 1 hour 
in 3 patients with delayed absorption 
(Group IV). Representative profiles at 
right. Note: Four patients did not 
develop any phototoxic reaction (Group I). 
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