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ABSTRACT 
1 

Neurodegeneration (cell death) is a feature of many neurological 

diseases including human temporal lobe epilepsy (TLE). Recently, it has been 

suggested that excitotoxicity, a process by which neurons are killed by 

prolonged or excessive exposure to glutamate or its analogs, may contribute to 

neuronal injury observed in many diseases characterized by 

neurodegeneration. Thus, in a model of TLE, the potent glutamate analog 

kainate has been shown to induce seizures and subsequent cell death in rat 

hippocampus. Although the pathology produced with this model resembles 

that observed in human TLE, it does not completely replicate it. 

Accumulating evidence now suggest that activity of the Na+/K+-ATPase 

enzyme (Na+/K+ pump), the ion pump responsible for neuronal ionic 

homeostasis, may be compromised or insufficient in many 

neurodegenerative diseases, particularly in TLE. In this thesis project, the 

hypothesis that a reduction of Na+/K+ pump capacity will reduce neuronal 

survival of excitotoxicity and produce a pathology in young adult rats similar 

to that observed in human TLE was investigated. 

To test this hypothesis, brain Na+/K+pump capacity was partially 

inhibited in young adult rats treated with subtoxic dose of kainate. Seizure 

activity in these animals was verified by electroencephalography (EEG) and 

damage to the hippocampus was documented by a silver staining method for 

dead/dying neurons. Control animals were treated with either kainate or the 

Na+/K+ pump inhibitor, ouabain, alone. 
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In further studies, the chronic pathological and behavioral consequences of 

these treatments were determined. The following features of human TLE 

were studied in these animals: 1) a pattern of cell death in the hippocampus 

described as Ammon's horn sclerosis; 2) spontaneous, recurrent seizures; and 

3) evidence of hippocampal remodeling. 

Results of these experiments revealed that partial inhibition of the 

Na + /K+pump in young adult rats with ouabain was not itself neurotoxic. 

This treatment, however, markedly potentiated ordinarily subtoxic doses of 

the glutamate analog, kainate. Thus, rats treated with intraperitoneal (i.p.) 

injections of kainate (5 mg/kg; i.p.) followed by intraventricular (i.c.v) 

ouabain (3 nmoles) experienced behavioral and EEG recorded seizures. 

Subsequent silver staining of the brain of these animals showed hippocampal 

damage. In contrast, ouabain alone or kainate alone did not produce seizures 

or hippocampal damage (p < 0.001; chi-square analysis). These results were 

replicated with intraperitoneal injections of both kainate (7 mg/kg; i.p.) and 

ouabain (1 mg/kg; i.p.). Furthermore, Na+/K+pump impairment was found 

to be associated with kainate treatment in producing seizure activity and 

subsequent neuronal death. Thus, when ouabain (3 nmoles; i.c.v) was 

delayed (90 min instead of 30 min) after kainate (5 mg/kg; i.p.), seizure onset 

was also delayed and seizure duration was reduced. Finally, treatment with 

the combination of ouabain and kainate produced features commonly 

observed in human TLE: i) acute limbic type seizures; ii) a pattern of cell 

death in the hippocampus replicating that observed in the human disease; iii) 

a chronic epileptic state characterized by spontaneous, recurrent seizures; 
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iv) evidence of plasticity and hippocampal remodeling. 

The results of this study demonstrated a critical role for the Na+/K+ 

pump in neuronal survival of excitatory stimuli. The hypothesis that 

reduction of Na+/K+ pump capacity decreases neuronal threshold for 

hyperexcitability and injury was supported, producing a seizure syndrome 

and pathology in adult rats closely replicating human TLE. 
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INTRODUCTION 

Neurodegeneration and Temporal Lobe Epilepsy 

Human Epilepsy is a significant public health problem affecting 

approximately 2/1000 persons (Booss, 1995). This illness is particularly 

frequent in children where convulsions may lead to brain damage and 

subsequent seizure activity in adulthood. In the adult population, temporal 

lobe epilepsy (TLE) is the most common and devastating form of epilepsy. 

Synonyms of this type of epilepsy include limbic seizures, psychomotor 

epilepsy and complex partial seizures, deriving from the fact that it originates 

from the limbic structures of the brain, i.e., hippocampus, amygdala, and 

other limbic structures. Clinical manifestations of TLE include sensory 

symptoms, visual or auditory hallucinations, visceral symptoms such as 

chewing and salivation, and somatomotor symptoms including tonic-clonic 

movements. The disorder is often extremely resistant to currently available 

anticonvulsant drugs. When uncontrolled, attacks may predispose to bodily 

injuries and sometimes life-threatening situations (DeLorenzo, 1991). 

In 1880, Sommer (Sommer, 1880) published a landmark paper 

entitled "Disease of Ammon's Horn as an Aetiological Factor in Epilepsy." 

This paper carried the description of the pattern of histological damage now 

known as Ammon’s horn sclerosis or hippocampal sclerosis. In the brain of 

these patients, principal pyramidal neurons of hippocamapus CA1 - CA4 

subfields as well as dentate hilar cells (Figure 1; next page) were variably 

destroyed. More recent studies of surgically obtained brain specimens have 
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A. Human Hippocamous 

B. Rat Hippocampus 
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Figure 1: A. Schematic drawing of transverse section of human hippocampal 
formation. 

Pyramidal cells of area CA1 - 4 are depicted in the pyramidal layer 

(py). Dendrites of the pyramidal cells radiate into the stratum 

oriens (or), stratum radiatum (rad), stratum lacunosum (lac), and 

stratum moleculare (mol). The dentate hilus is the area of cells 

circumscribed by the granule cells in the dentate gyrus. The mossy 

fibers (mf; axons of granule cells) making synaptic connection with 

pyramidal cells of area CA3 are shown. Synaptic connections also 

exist between pyramidal cells via the Schaffer collaterals (Sch). The 

major afferent pathway to the hippocampus is the perforant 

pathway (pf). This pathway is excitatory and synapses with granule 

cells. Efferent fibers leaving the hippocampus in the fornix (fo) are 

axons of pyramidal cells. 

B. Transverse section through rat hippocampus. 

The overall organization of the rat hippocampus is very similar to 

that of human. Areas CA1 - 3 are shown. The hilar region 

corresponds to area CA4 in human hippocampus. Afferent and 

efferent pathways (not shown) are also similar. (Other 

abbreviations: Dentate hilus (Hi). (Brodl, 1980; Paxinos and Watson, 

1986). 
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confirmed Sommer's findings (Margerison and Corsellis 1966; Corsellis and 

Bruton, 1983; Babb et al., 1984; de Lanerolle et al., 1992). This type of 

irreversible neurodegeneration is not a feature of TLE alone; it has been 

reported for many other chronic neurological conditions such as 

Huntington's chorea, Alzheimer's disease, and Parkinson's disease 

(Margerison and Corsellis, 1966; Babb et al., 1984; Meldrum, 1985; Rothman 

and Olney, 1987; Choi, 1988b; Lees, 1991; de Lanerolle et al., 1992). Whether 

the neurodegeneration observed in the brain of patients suffering from TLE is 

the cause or effect of this disease is a century-old debate. More recently, 

however, there has been considerable effort to understand the pathogenesis of 

cell death in TLE. It is hoped that elucidation of such mechanisms would 

provide means to prevent or ameliorate this potentially debilitating disease. 

In 1980, the work of Wyllie and his colleagues suggested that most cell 

death could be separated on the basis of morphology into "apoptosis" and 

"necrosis" (Wyllie et al., 1980). Apoptosis is characterized by an initial 

condensation of cellular and nuclear elements. This is followed by a process 

of cytoplasmic vacuolization. Membrane permeability and organelle integrity 

are preserved, but cells become detached from adjacent cells and form 

apoptotic bodies. Examples of apoptosis include normal programmed cell 

death, glucocorticoid-induced death of immature thymocytes, and radiation 

cytotoxicity. Wyllie and his co-workers suggested that the pathophysiology of 

apoptosis might involve endonuclease digestion of nuclear chromatin. On 

the other hand, necrosis describes cell death that is marked in the early stages 

by chromatin clumping, progressing with swelling of mitochondrial matrix, 

and terminating with eventual rupture of nuclear, organelle, and plasma 

membranes. Examples of necrosis include cell death induced by hypoxia- 

ischemia, toxins, or complement. It has been suggested that the 
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pathophysiology of necrosis involves loss of cellular volume homeostasis 

secondary to altered membrane permeability, as evidenced by abnormal 

permeability to dyes or chromium (Wyllie et al, 1980). 

EXCITOTOXICITY 

An interesting discovery of modern neuroscience research is that 

excitatory amino acids (EAA) such as glutamate and its analogs (e.g. kainate) 

can kill neurons after brief, intense exposure (Rothman, 1985; Choi et al., 

1987). This phenomenon has been termed excitotoxicity (Olney, 1986). The 

exact morphological features of the cell death induced by this mechanism 

remains to be classified either as necrotic, apoptotic, or a combination of both; 

however, there is increasing evidence to suggest that this mechanism 

participates in the pathogenesis of many neurodegenerative conditions 

including stroke, epilepsy, and Parkinson’s disease (Choi, 1992), 

The first in vivo evidence of excitotoxicity were noted more than 20 

years ago. In these studies, characteristic pathological changes were noted in 

the circumventricular regions of young monkeys and rodent brains treated 

with high systemic doses of glutamate (Olney, 1969; Olney et al., 1972). 

Within 30 min of glutamate administration, acute neuronal swelling was 

noted by electron microscopy. Subsequently, neurons became necrotic and 

underwent phagocytosis by macrophages over the next several hours. 

Similarly, kainic acid, literally meaning the ghost of the sea in Japanese 

(Takemoto, 1978), is a potent analog of glutamate (Shinozaki and Konishi, 

1980; Shinozaki, 1981) that has been shown to produce "axon-sparing lesions" 

in rat brain (Coyle et al., 1978). The use of kainate to circumvent the 

destruction of fibres de passage (axons which were destroyed by conventional 

electrolytic lesions) led to studies that have provided several experimental 





6 

models of human diseases such as hemiballism (Hammond et al., 1979), 

Huntington's chorea (Coyle et al., 1981), and human TLE (Ben-Ari et al., 1981). 

The association between excitotoxicity and neuronal death in human 

neurodegenerative diseases has come mainly from indirect evidence 

(Meldrum, 1985; Rothman and Olney, 1987; Choi, 1988). In one particular 

study, brain extracellular concentrations of excitatory amino acids were 

sampled by microdialysis in conscious epileptic patients. This study 

demonstrated that extracellular glutamate levels increased significantly prior 

to seizure episodes and remained elevated during seizure activity, reaching 

potentially neurotoxic concentrations in the hippocampus (During and 

Spencer, 1993). 

Transmembrane ion imbalances created by excitotoxicity kills neurons 

In vitro experiments using cultured cells and patch-clamp 

methodology have helped to elucidate the interaction between EAA's and 

cortical cells during excitotoxicity. When neurons are exposed to glutamate 

or its agonists, there is an immediate depolarization accompanied by Na+ 

influx and K+ efflux. Additionally, a Ca++ influx is detected on prolonged 

neuronal exposure to glutamate. These and other studies have led to the 

identification of two components of excitotoxicity. During the first phase, 

there is an influx of Na+ that is accompanied passively by influx of Cl" and 

water, leading to cell swelling (Rothman, 1985; Choi et al, 1987). This phase 

need not be toxic to the cell; volume homeostasis may be regained if the 

excitatory insult is removed (Choi, 1992). If cells continue to be exposed to 

glutamate, a second set of events occur that is marked by delayed neuronal 

disintegration beginning several hours after initial exposure. This phase is 
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most likely triggered by excessive Ca++ influx into the cell, since it is 

dependent on the presence of extracellular Ca++ (Choi, 1985). 

In summary, profound and potentially toxic ionic changes take place 

both inside and outside the cell milieu after brief or prolonged intense 

exposure to glutamate and other excitatory amino acids. Excessive or 

repetitive stimulation may lead to cell death (Lowe, 1971; Choi, 1985; 

Rothman, 1985; Mayer and Westbrook, 1987; Rothman and Olney, 1987). 

These observations have suggested that neuronal mechanisms for ionic 

homeostasis may be overwhelmed during excitotoxicity. 

THE Na+/K+ PUMP 

The sodium/potassium ATPase (Na+/K+-ATPase; Na+/K+pump) is a 

transmembrane protein of ubiquitous distribution in mammals. Both 

human and rat brains are especially enriched with this pump ( Brines et al., 

1991; Mata et al., 1991; Watts et al., 1991; Brines and Robbins, 1993). Even 

under resting conditions, at least 60% of the energy released by respiration is 

consumed by brain ATPase, compared with about 5% in liver and striated 

muscle (Lowe, 1971; Ritchie and Straub, 1980; Astrup et al., 1981; Choi, 1985; 

Hansen, 1985; Rothman, 1985; Mayer and Westbrook, 1987; Rothman and 

Olney, 1987). 

The Na+/K+-ATPase is a heterodimeric enzyme (Figure 2; next page) 

consisting of a large catalytic (a) subunit (-115 kD) and a smaller glycoprotein 

((3) subunit (-45 kD). Currently three catalytic isoforms (al, a2 and a3) with 

two glycoprotein isoforms ((31, (32) are recognized (Shull, 1986; Shull, 1987; 

Young, 1987). Tissue-specific isoform distribution exists for some isoforms of 

this pump. Thus, the a3 isoform is virtually exclusive to the nervous system 
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FIGURE 2: The Na+/K+-ATPase enzyme 

This enzyme consists of a large catalytic (a) subunit (~ 115 kD) and a smaller 

glycoprotein ((3) subunit (~45 kD). Currently three catalytic isoforms and two 
glycoprotein isoforms are recognized (Young et al., 1987; Shull et al., 1986). 

Ouabain binds reversibly to the K+ binding site. 
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and is expressed at very high levels by neurons (Schneider et alv 1988; Filuk et 

al., 1989; Brines et al., 1991; Watts et al., 1991). Regional as well as cell type- 

specific distribution also exist for pump isoforms (Caspers et al., 1987; Brines 

et al., 1991). The olfactory nuclei, dentate gyrus, hippocampus are among 

brain regions expressing the highest levels of the Na+/K+ATPase enzyme. 

The large neurons of the olfactory bulb and pyriform cortex express high 

levels of a3 and lesser levels of al mRNA. Principal cells of the 

hippocampus express all three isoforms; however, the a3 mRNA 

predominates. Finally, the distribution of functional Na+/K+ATPase enzyme, 

as localized by [3H] ouabain binding, is highest in the neuropil of 

hippocampus and cerebral cortex and lower over perikarya and white matter, 

reflecting higher expression of pump activity by neurons. 

The Na+/K+ pump provides several critical functions for the cell 

(Figure 3; next page), (reviewed by Skou, 1988). This pump is responsible for 

restoring transmembrane gradients of Na+ and K+ after neuronal excitation. 

In experiments on vagus nerve energy metabolism, the increased glucose 

metabolism resulting from stimulation of the nerve is largely used for 

restoring the ionic gradient across the cell membrane. This increase in 

glucose utilization is blocked by the Na+/K+-ATPase inhibitor ouabain 

(Yarowsky and Ingvar, 1981). The pump also provides the energy required for 

driving other transport mechanisms including Na+/Ca++ exchange and 

uptake of many small molecules such as glucose and excitatory amino acids 

(e.g. glutamate). In a recent study with glial cultures and rat brain 

synaptosomes, uptake of glutamate was sodium-dependent, driven by the 

transmembrane gradient established by the Na+/K+pump. (Barbour, 1988; 

Erecinska, 1989). Further evidence also supports a role for both glia and 
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FIGURE 3: Multiple ionic homeostatic mechanisms of the Na+/K+-ATPase 
enzyme family: The Na+/K+-pump buffers effects of stimulation (e.g., by 
glutamate) via direct (uptake of K+ and extrusion of Ma+) and indirect 
(maintainance of sodium gradient for glutamate uptake and extrusion of 
Ca++) mechanisms. 
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neuronal Na+/K+ATPase in buffering potential glutamate toxicity in rodent 

cultures (Rosenberg, 1991; Rosenberg et al., 1992). Lastly, but not least, this 

pump plays the important role of maintaining cellular integerity by 

regulating cell volume (Lowe, 1971; Ullrich, 1979; Stahl, 1986; Skou, 1988; 

Horisberger et al., 1991). 

An interesting feature of the Na+/K+-ATPase is that it holds 

tremendous reserve capacity such that it is able to compensate for increased 

requirement for Na+ transport by increased enzymatic activity. The exact 

mechanisms of this upregulation are still being investigated. However, 

unlike the sodium-impermeable glia, neurons possess a significant sodium 

permeability at rest (Kuffler et al., 1984) and, not surprisingly, express the 

majority of brain Na+/K+ pump (Brines et al., 1991; Mata et al., 1991). At 

resting metabolic activity the extracellular K+ site of the pump is saturated 

and intracellular Na+ is present at non-saturating concentrations (Jorgensen 

and Skou, 1969; Skou, 1988). Under these conditions, the pump operates at 

~20 - 25% of its maximum capacity (Vmax) (Skou, 1988). Experiments in 

synaptoneurosomes have demonstrated that maximum Na+/K+ capacity is 

only half achieved when maximum demand for ion transport is imposed. 

Thus, when the sodium ionophore, monensin, was used to increase 

intracellular Na+ to levels equivalent to that in the extracellular milieu, a less 

than 50% increase in ouabain-inhibitable rubidium pumping (a measure of 

ATP-ase-regulated K+ influx) was observed (Swann, 1991). Further evidence 

from membrane experiments suggest that Na+/K+-ATPase response to small 

increases in intracellular Na+ concentrations may occur on the order of 

seconds (Skou, 1988). Despite the tremendous ionic homeostatic mechanisms 

subserved by the Na+/K+ ATPase, neuronal injury is a constant consequence 





12 

of excitotoxicity. One possibility is that Na+/K+ pump capacity may be 

insufficient or compromised during excitotoxicity. 

Evidence for reduced Na+/K +ATPase capacity in epilepsy and other energy-deficient 

states. 

In the past, it has been argued that the regional increase in blood flow 

accompanying seizure activity precludes ischemia that would significantly 

decrease cellular ATP concentrations (Meldrum, 1983; Ben-Ari, 1985; Auer 

and Siesjo, 1988). More recently, studies by Brines and co-workers have 

revealed that reduced levels of cytochrome c oxidase activity may be present 

in epileptic hippocampi (Brines et al., 1995) . This enzyme is the main source 

of energy substrate for the Na+/K+-ATPase (Dagani and Erecinska, 1987). It is 

estimated that ATPase activity is significantly reduced when ATP 

concentration declines below 0.4 mM (ibid). Thus, intrinsic defects in cellular 

energy metabolism, rather than external factors such as ischemia alone, may 

adversely impact Na+/K+ ATPase activity in epileptic hippocampi. 

Arachidonic acid, other long-chain fatty acids, lysophospholipids and 

prostaglandins accumulate during seizure activity (Siesjo et al., 1982). All 

these compounds are known potent inhibitors of the Na+/K+pump (Baran et 

al., 1987); arachidonate being the most potent. At concentrations of 0.1 - 0.4 

mM this fatty acid is sufficient to cause over 90% inhibition of the Na+/K+- 

ATPase in the cortex (Chan et al., 1983; Swann, 1984). During seizure activity 

free fatty acids including arachidonate increase to a level enough to inhibit 

-40% of total brain Na+/K+ pump capacity (Siesjo et al., 1982; Yoshida et al., 

1987). 
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An integral component of the Na+/K+-ATPase is a phospholipid 

moiety that binds with high affinity to calcium and is required for pump 

activity (Charnock et al., 1975; Abeywardena and Charnock, 1983). It is 

reported that up to 10% of cellular phospholipids are degraded during seizure 

activity. In particular, phosphotidylinositol and polyphosphoinositide, the 

major phospholipids essential for pump activity, are most vulnerable (Eiselet 

et al., 1984; Yoshida et al., 1986; Abe et al., 1987). Arguably then, several 

mechanisms including those described above may contribute to the neuronal 

death associated with seizure activity by directly or indirectly impairing 

Na+/K+-ATPase activity. 

Hypothesis 

It has been suggested that the Na+/K+pump is probably the single most 

important ion pump in the cell (Lees, 1991), playing the critical homeostatic 

role of maintaining the transmembrane ion gradient responsible for 

excitability and integrity of the neuron. Yet, the role of the Na+/K+ pump in 

modulating nervous system activity and, particularly, in seizure generation 

and maintenance is only poorly characterized. 

A model of how the Na+/K+ pump may interact with the process of 

excitotoxicity is summarized in Figure 4 (next page). At resting states, 

endogenous levels of glutamate and its analogs (e.g. kainate) act via specific 

receptors to depolarize neurons. Such depolarization leads to Na+ influx 

(followed passively by CL) and K+efflux. Ordinarily, the Na+/K+ pump 

functions to maintain transmembrane ionic equilibrium by rectifying these 

disturbances. When chronic hyperstimulation occurs due to chronic or 

intense exposure to EAA, Na+/K+ pump capacity may be overwhelmed. 

Sodium may accumulate in the cell, cell swelling results, and irreversible cell 
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Na+/K+ pump 
EAA 

Na+, Cl", Ca++ 

h2o 

/ Cels \ 

\ Death | 

FIGURE 4: EXCITOTOXICITY 

Ordinarily, the Na+/K+ pump rectifies ion imbalance due to innocuous levels 
of excitatory amino acids (EAA). However, prolonged or intense stimulation 

may overwhelm the Na+/K+ pump and cell swelling may ensue with eventual 
cell death. 
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injury ensues. Based on this model, it was hypothesized that: 

Impairment of brain Na+/K+ pump capacity will decrease neuronal 

survival of excitatory stimuli. 

Some experimental evidence exists in support of this hypothesis. 

Novelli and co-workers (Novelli et al., 1988) examined glutamate 

neurotoxicity using cultured neonatal cerebellar granule cells. Specifically, 

they examined the ATP dependence of glutamate toxicity and observed that a 

variety of treatments, including 1 pM ouabain, potentiated subtoxic 

concentrations of glutamate. However, this experiment has limited 

application to excitotoxicity for several reasons. First, their experimental 

model consisted of a single neuronal type which is relatively insensitive to 

glutamate. Also, Na+/K+ pump mRNA mapping studies suggest that 

cerebellar cells may possess only the al isoform of the pump which is 

relatively insensitive to ouabain at 1 pM concentrations. 

Brines and co-workers have also tested this hypothesis in vitro . Using 

fetal telencephalic cultures, a2/a3 isoforms of the Na+/K + pump were 

inhibited with low concentrations of ouabain (1 pM). Under these 

conditions, total sodium pump activity was reduced by 65% as accessed by 

rubidium-uptake (Brines and Robbins, 1992). This treatment was not 

neurotoxic under basal conditions. However, when cultures were 

subsequently subjected to the additional stress of normally non-toxic levels of 

glutamate (100 pM), neurons were preferentially destroyed. 





16 

THESIS PROPOSAL 

Although evidence from in vitro studies lend support to the concept 

that the Na+/K+-ATPase is critical to neuronal survival of excitotoxicity, 

several obvious limitations exist in trying to understand human pathological 

processes on the basis of in vitro findings. First, cultured cells derived from 

fetal tissue may behave differently from adult cells. Furthermore, 

experiments in vitro are conducted in isolated systems and therefore do not 

account for the complex interactions that may take place with other systems 

in vivo. 

The principal goal of this project was to test the hypothesis that 

reduction of Na+/K+ pump capacity will limit neuronal survival of excitatory 

activity in vivo and produce a pathology in young adult rats similar to that 

observed in human TLE. The kainate rat model was conveniently adopted 

for this purpose. The seizure syndrome and subsequent pathology induced by 

the potent glutamate analog, kainate, in rat has been extensively studied and 

shown to possess some features of human TLE: 1) The hippocampus, 

amygdala and other limbic structures play a central role in the seizure 

syndrome induced by kainate acid (Schwob et al., 1980; Ben-Ari et al., 1981; 

Lothman and Collins, 1981). 2) Spontaneous, recurrent limbic type seizures 

are reproducibly observed after parenteral (Tremblay and Ben-Ari, 1985) or 

intracerebral administration of kainic acid (Cepeda et al., 1982; Cavalheiro et 

al., 1983). 3) Anticonvulsants are weak against the seizures generated by kainic 

acid (Stone and Javid, 1980; Clifford et al., 1982). However a number of 

important differences exist between the kainate model and the human 

pathology. Pyramidal cells of hippocampus subfield CA1 are destroyed in the 

human pathology (Margerison and Corsellis, 1966; Corsellis and Bruton, 1983; 
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de Lanerolle et al., 1992 and 1994). These are not routinely destroyed in the 

kainate model. Damage to these cells is achieved only with very high doses 

of kainate, leading to high animal mortality. Moreover, unlike the human 

pathology in which neuronal damage is mostly confined to the hippocampus, 

kainate induces extrahippocampal damage in the amygdala, pyriform cortex, 

entorhinal cortex, and thalamus. 

Thus, several potential benefits existed for testing the above stated 

hypothesis in the kainate rat model. First, it allowed verification of results of 

previous in vitro investigations of this hypothesis (Novelli et al., 1988; 

Brines and Robbins, 1992). Second, successful reproduction of the human 

pathology by impairing Na+/K+pump capacity in the kainate model would 1) 

provide experimental, in vivo support for Na+/K+-ATPase insufficiency or 

dysfunction in the neuropathology of human TLE, and 2) provide an animal 

model which may be used as a tool for further investigation of human TLE. 
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METHODS AND MATERIALS 

EXPERIMENTAL DESIGN 

This study consisted of two parts: A direct test of the experimental 

hypothesis was carried out in three steps in part one. First, a subtoxic dose of 

kainate (a dose of kainate not producing seizures and/or neurotoxicity in 

young adult rats) was determined. Subsequently, conditions for partial 

impairment of brain total Na+/K+pump capacity were established. In a final 

step to test the hypothesis, Na+/K+ capacity was impaired after treating rats 

with a subtoxic dose of kainate. In part two, the behavioral and pathological 

consequences of Na+/K+pump inhibition in kainate-treated animals were 

characterized. 

PARTI 

1) DETERMINATION OF A SUB-TOXIC DOSE OF KAINATE 

Response to the glutamate analog, kainate, is very variable in different 

animals and even within animals of the same species (Ben-Ari, 1985; Sperk, 

1994). Factors such as species of animal, commercial breeder, inter-species 

variations (e.g. sex, age and weight) and route of drug administration may 

influence response to kainate. Therefore, to establish a subtoxic dose of 

kainate it was necessary to derive this from a dose-response curve. This 

curve was achieved by administering a wide range of experimentally reported 

doses of kainate (3 - 12 mg/kg body weight) intraperitoneally (IP; i.p.) and 

observing animals for overt behavioral seizures. Twenty-four hours after the 

start of experiments, animal brains were sacrificed and their brains were 
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removed and examined for cell death in the hippocamapus, using a 

technique of silver staining that stains for dead/dying neurons. 

2) PARTIAL IMPAIRMENT OF TOTAL BRAIN Na+/K + PUMP CAPACITY 

The Na+/K+ ATPase is essential for the maintenance of cellular 

integrity of neurons and glia. Therefore, complete inhibition of the Na+/K+ 

pump with high concentrations of ouabain is toxic to neurons (Lowe, 1978; 

Garthwaite et al., 1986; Lees et al., 1990) . However, unlike most mammalian 

Na + /K+ATP-ase which possess high affinity (10-9 - 10*8M) for glycosides, 

rodents al isoform has a low affinity (10-4 - 10'3M) for ouabain, and thus is 

less sensitive to ouabain inhibition (Sweadner 1989; Brines and Robbins 1992). 

Consequently, it is possible to titrate glycoside concentrations to achieve 

partial inhibition of the Na+/K+ pump. 

Previous experiments in cultured telencephalic cells by Brines and co¬ 

workers have shown that -65% reduction of total Na+/K+ pump activity (as 

assessed by rubidium up-take studies) is achieved with ouabain (1 pM) 

(Brines and Robbins, 1992). Assuming a uniform distribution throughout the 

volume of brain extracellular fluid (Kuncz et al., 1990), it was estimated that 

ouabain (3 nmoles) attains -0.5 - 1 pM ambient brain concentrations. 

However, ouabain crosses the blood-brain barrier (BBB) very poorly (Dutta 

and Marks, 1966; Dutta et al., 1977). Therefore, to ensure that ouabain reaches 

the brain at desired concentrations it was administered intracerebrovascularly 

(ICV; i.c.v) through surgically implanted infusion ports (cannula). The level 

of Na+/K+ pump inhibition achieved with ouabain was assessed by [3H] 

ouabain binding studies. Potential epileptogenic effects of ouabain were 

monitored by intrahippocampal electroencephalographic (EEG) electrodes 

implanted at time of surgery for cannula placement. Animals were sacrificed 
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24 hours after the start of experiments and potential neurotoxic effects of 

ouabain were studies using the silver stain technique. In control 

experiments, animals were treated with artificial cerebrospinal fluid (CSF). 

3) DOES PARTIAL IMPAIRMENT OF Na+/K+-ATPase AMPLIFY KAINATE 

NEUROTOXICITY? 

After establishing steps 1 & 2 above, these conditions were combined to 

test the proposed hypothesis. Animals were treated with a sub-toxic dose of 

kainate (i.p.) followed later by ouabain (i.c.v.). Since ouabain was 

administered directly into the brain, it was delayed by 1/2 h to allow adequate 

CNS penetration by kainate. Intrahippocampal EEG was recorded to 

document seizure activity. Subsequently, animal brains were examined for 

neuronal damage. Control animals received either kainate or ouabain alone. 

In additional experiments, the time of ouabain administration after kainate 

injections was varied from 1/2 h to 11 /2 h to further investigate the 

association between ouabain and kainate in producing seizures. 

Experiments were repeated using intraperitoneal injections of both 

kainate and ouabain. According to estimates of volume of body distributions 

in young rats, ouabain (~ 1 mg/kg; i.p.) produces plasma concentrations in the 

range of 1 jiM (Watkins et al, 1987; Tatsuji et al 1982). In experiments in 

which systemic and CSF levels of [3H]ouabain were monitored over a 60 min 

period after intravenous (IV; i.v.) administration of this drug, plasma/CSF 

ratio for ouabain remained at ~ 1: 40, although CSF appearance of the drug 

was delayed by ~ 10 min (Dutta et al., 1977). Thus in intraperitoneal 

experiments, ouabain was administered first and followed by kainate at 15 

min interval due to the less effective CNS penetration of ouabain. Even with 
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a delay in kainate administration, it was expected that kainate would attain 

appreciable levels in the brain prior to ouabain. 

PART II 

CHARACTERIZATION OF THE SEIZURE SYNDROME AND NEUROPATHOLOGY IN 

Na+/K+PUMP-IMPAIRED, KAINATE-TREATED RATS 

Three features of human TLE were investigated in Na+/K+ pump 

impaired, kainate-treated animals : 1) The pattern of hippocampal cell death 

was characterized by the silver staining method for dead/dying neurons. 2) 

The presence of a chronic epileptic state was documented by observing 

animals for spontaneous, recurrent seizures over a period of 30 - 90 days. 3) 

Histological evidence of plasticity and remodeling in the hippocampus was 

determined by the Timm stain technique at 30 and 90 days after initial 

experiments. 
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METHODOLOGICAL DETAILS 

Animals and Materials 

Adult male Sprague-Dawley rats weighing 250 - 300g were used in these 

experiments (Charles River Breeders). Animals were housed at the Boyer 

Animal Center (Yale University, School of Medicine) under 12 hr light/ dark 

cycle and provided with food and water ad lib. Animal surgery was 

performed using Kopf stereotactic frames (Kopf Instruments) and the 

coordinates of Paxinos and Watson (1986). Animals were anesthetized with a 

mixture of xylazine (20mg/ml; Butler Co.) and ketamine (100 mg/ml; Benny 

Schein). Ouabain (Sigma, Chemical Co.) was administered into to right 

lateral cerebral ventricle using a slow-infusion pump (Harvard apparatus) 

connected by tubing to a cannula system implanted into the right lateral 

ventricle of the animal. A standard infusion rate (1 pl/min) was used in all 

experiments. A stock concentration of ouabain (0.333 nmol/pl) was prepared 

in artificial CSF (NaCl: 135 mM; KC1: 3 mM; MgCl2 : 1 mM; CaCl2 : 1.2 mM; 

ascorbate: 200|iM; and sodium mono- and dibasic phosphate: 2 mM to pH 7.4) 

stored at -20 °C, and thawed freshly prior to use. Kainic acid was dissolved in 

normal saline (0.9%, w/v, NaCl in distilled H20) and administered 

intraperitoneally. 

Animal Surgery 

(i) Cannula Placement 

Five to seven days prior to experiments, animals underwent 

stereotactic cannula placement into the right, lateral ventricle (AP = -0.3, L= 

+1.4, V= - 3.0). Animals were anesthetized with a mixture of ketamine/ 

xyalzine (8/80 mg/kg; i.p.). After onset of anesthesia, animals were placed in 
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a kopf stereotactic frame, hair over the cranium was shaved, and the scalp 

was sterilized with alcohol and betadine. A subcutaneous injection of 

epinephrine/lidocaine was administered to provide local anesthesia and 

hemostasis. A longitudinal incision was then made in the scalp 

approximately 2 cm long from the coronal suture to the lambda. The 

cranium was exposed after blunt dissection of the subcutaneous tissue. After 

marking the desired stereotactic coordinates using bregma as reference, the 

skull was drilled with a 0.80 screw on a hand-held drill (Plastics One, Inc.). A 

pre-cut guide cannula was stereotactically placed approximately 2 mm above 

the right ventricle and secured to cranial screws using Loctite glue (Bearing 

Distributors). The exposed cranium was then covered with a hygenic repair 

resin (Dental Lab. Distributors) to provide additional support for the cannula 

system. The skin incision was closed with a 3-0 prolene stitch. A "dummy" 

cannula was advanced through the guide cannula into the right ventricle and 

left in place for the animals to recover from the operation (Figure 5; next 

page). Correct cannula placement was verified by serial brain sectioning. 

(ii) Electrode placement 

In experiments in which EEG monitoring of seizure activity was 

required, bilateral, intra-hippocampal electrodes were placed at the time of 

surgery for cannula implantation. Routinely, four thin (1mm) platinum- 

coated, stainless steel electrodes were placed: an active electrode in the right 

hippocampus with its tip aiming at area CA3 of the hippocampus (AP = -4.2; 

ML = +2.0; DV= -3.0), a second active electrode with a tip aiming at area CA3 

of the left hippocampus (AP = -4.2; ML = -2.0 DV= -3.0), a reference electrode 

in the left frontal area (AP = +3.0; ML = -2.0 DV= -2.0), and a ground electrode 

attached to a cranial screw. All electrodes were secured to the skull using 
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Figure 5: EXPERIMENTAL SET-UP: 

Five to seven days prior to experiments, animals underwent 

surgery and were implanted with guide cannula (right lateral 

ventricle) and electroencephalographic electrodes (intra- 

hippocampal). On the day of experiments, kainic acid was injected 

intraperitoneally (IP; i.p.). Ouabain was either injected IP or 

intraventricularly (ICV; i.c.v.) through the implanted cannula. 

Animals were observed behaviorally for seizures and hippocampal 

activity was monitored by electroencephalography (EEG). Twenty- 

four hours after experiments, animals were sacrified and their 

brains were examined for cell death using the silver staining 

method. Dead cells were identified by silver staining. Cell loss was 

assessed by Nissl staining. At 30 and 90 days after experiments, 

animals were sacrified and their brains were observed for 

hippocampal remodeling using the Timm stain (refer to text for 

detail). 
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Loctite glue and subsequently with hygenic repair resin as described above. 

All electrodes were brought into a "female nut" and left in place during 

animal recovery (Figure 5). Correct electrode placement was verified by serial 

brain sectioning. 

Tissue Preparation 

SILVER STAIN 

The silver staining method is a staining technique used to reveal dead 

and degenerating neuronal cell bodies beginning at least 8 hrs after brain 

injury. Complete characterization of brain damage is best achieved with this 

technique when animals are perfused 24 hrs after the initial brain injury 

(Nadler and Evenson, 1983). This stain was selected so as to visualize cell 

bodies primarily and not their processes. 

Animals were anesthetized with chloral hydrate (50mg/kg i.p.) and 

perfused trans-cardially with normal saline for 30 sec and then with 4% (w/v) 

paraformaldehyde in 0.1 M sodium phosphate buffer, pH 7.4, for 15 - 20 min 

(200ml). The brains were then removed and fixed further in cold, buffered 

paraformaldehyde for 3 days at room temperature. Brain specimens were 

embedded in 5% agarose (w/v) in 0.1 M phosphate buffer, cut into 40 pM 

thick sections on a Lancer vibrotome in phosphate buffer, pH 7.4. 

Details of procedure: 

Reagents: 

A. 9% (w/v) NaOH 

B. 16% (w/v) NH4 NO3 

C. 50% (w/v) Ag NO3 

D. 1.2% (w/v) NH4 NO3 
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E. Dissolve 5 g of anhydrous Na2CC>3 in 300 ml of 95% ethanol and 600 

ml of water. Dilute to 1 litre with water. 

F. Dissolve 0.5 g of anhydrous citric acid in 15 ml of 35% formalin, 100 

ml of 95% ethanol, and 700 ml of water. Add solution A with 

stirring until the pH reaches 5.8 - 6.1 then dilute to 1 litre with 

water. 

G. 0.5% (v/v) acetic acid 

Working Solutions: 

(These solutions were prepared not more than 1 hr before staining). 

1. Pretreating solution: Equal amounts of solutions A & D. 

2. Impregnating Solution: Add 1.5 volumes of solution A to each 

volume of solution B. Then add 0.5 - 0.6 ml solution C (1.5 ml) for 

each 100 ml of total volume. 

3. Washing Solution: Mix 1 ml of solution D with each 100 ml of 

solutionE. 

4. Developing Soliution: Mix 1 ml of solution D with each volume of 

solution F. 

Staining Procedure: 

Sections were washed free of fixatives by immersion in three changes 

of water for 5 min each. Sections were then transferred sequentially into two 

changes of pretreating solution for 5 min each, impregnating solution for 10 

min, and finally developing solution for at least 1 min. Sections were 

mounted from developing solution onto acid-cleaned glass slides that have 

been precoated with 0.5% (w/v) chromium potassium sulfate, 0.5% (w/v) 

gelatin. When the mounted sections have dried, they were immersed in 

three changes of solution G for 10 min each, washed with water, dehydrated 
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with a graded series of ethanol solutions, cleared with butanol and three 

changes of xylene, and covered with coverslips. 

TIMM STAIN 

The heavy metal, zinc, is released from mossy fibres (MF) of the dentate 

granule cells in the hippocampus and is also found to accumulate in injured 

neurons in the hippocampus (Sloviter, 1982). Following kainate-induced 

lesions, the MF of the granule cells send out collaterals which grow across the 

granule cell layer and form a plexus in the inner molecular layer of the 

granule cell dendrites (Laurberg and Zimmer, 1981). This type of 

hippocampal remodeling has been termed 'sprouting' and is also observed in 

human epileptic hippocampus (Babb et al., 1991; de Lanerolle et al., 1994). The 

Timm technique stains for zinc and therefore is used to identify sprouting in 

the injured hippocampus. 

To prepare rat brains for this technique, animals were anesthetized with 

chloral hydrate and perfused trans-cardially using 0.37% sodium sulphide in 

phosphate-buffered solution, pH 7.2, for 5 min and with 10% neutral buffered 

formalin (NBF) for 5 min. (Sulphide in the perfusate impregnates neurons, 

and it is later oxidized to sulphite in lysed cells, staining them black). Rat 

brains were removed and further fixed in NBF solution for at least 2 hrs, but 

not more than 3 days. Coronal sections (40 |iM) are cut on a Lancer 

vibrotome into phosphate buffer pH 7.4, collected onto subbed-slides, and 

allowed to dry at room temperature. 
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Details of Procedure: 

Reagents: 

A. Gum Arabic Solution; 50% (w/v) gum arabic in water. 

B. Citrate Solution: 9.4 g sodium citrate in water 10.2 citric acid 

monohydrate in water. 

C. Hydroquinone Solution: hydroquinone in water. 

D. Silver Nitrate Solution: (w/v) AgNC>3 in water. 

E. Developer: Mix 250 ml of solution A, 40 ml of solution B, and 120 ml 

of solution C and warm the mixture to 26°C. 2 ml aliquot of 

solution D is added just before staining. 

Staining Procedure: 

Slides are rinsed serially in 70% ethanol, 50% alcohol, and then in four 

changes of water for 3 min each. The slides are covered with developer and 

placed in a water bath maintained at 26 °C in a dark room for 45 min. Slides 

are washed in tap water in the dark for 5-10 min to terminate development. 

The sections are then dehydrated with graded ethanol ( 70%, 95%, 100%, 

100%) and xylene for 3 min each and coverslipped for viewing under the 

microscope. 

NISSL STAIN 

The Nissl stain is a basic neurological staining techniques that stains 

for nissl granules in neuron. It was used to counter stain Timm stain to help 

delineate nerve cells and neuronal architecture. 

Details of Procedure: 

Reagents: 

Toluidine blue (stock) : 0.1% (w/v) toluidine blue in distilled water. 
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Working solution: 

A: 10 ml of stock toluidine blue in 10 ml of 0.1M phosphate buffer. 

Staining procedure: 

Slides were immersed in xylene to remove coverslips from Timm 

stain procedure. Sections were then rehydrated by serial changes through 

graded ethanol (100%, 95%, 70%) for 1 min each and then washed by dipping 

in water 5-10 times. Slides were then covered with toluidine blue for 30 

seconds and washed again with distilled water. After a one-minute wash in 

70% acid alcohol, sections were dehydrated with graded alcohol changes (70%, 

95%, 100%, 100%) for 1 min each and then through two changes of xylene, 5 

min each. Finally, slides were coverslipped for viewing under the light 

microscope. 

In situ f^Hl ouabain binding studies 

Ouabain specifically binds only to sodium pump in an active 

conformation, therefore it has been used widely to assess Na+/K+ pump 

function/capacity (Hegyvary, 1976; Hootman and Ernst, 1981; Kjeldsen and 

Norgaard, 1987). In situ [3H]ouabain binding studies were carried out to 

quantitate high-affinity Na+/K+ pump active sites in hippocampal sections. 

Animals were sacrificed as above, and their brains were quickly removed, 

blocked, and flash-frozen in embedding medium on dry ice. Brain specimens 

were then stored at -70°C until use within 5-7 days. 

On the day of binding studies, coronal sections (20 |iM) of the dorsal 

hippocampus were cut on a Reichert cryostat (2800E) at -15 °C and thaw- 

mounted onto gelatin-potassium dichromate-subbed slides. Sections were 

dried for 2 min at 37 °C and then frozen at -70 °C Subsequently, sections were 
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brought to room temperature and preincubated in TM buffer (tris-HCl 50 m, 

MgCl2 10 mM, pH 7.4) for 15 mins at 27 °C to dissociate any unbound ouabain¬ 

like substances. Excess solution was blotted from each slide, and 1 ml of TM 

buffer containing 10 nM 3H-ouabain (Dupont, NAN), 100 mM NaCl, 5 mM 

ATP, with or without 1 pM cold ouabain (Sigma Chemical Co.) was layered 

over each section. Tissue was incubated at room temperature for 45 min. 

Previous studies by Brines and co-workers have shown that ouabain binding 

attains equilibrium in 30 min at 27 °C and remains constant for at least 60 

min (Brines et al., 1991). To terminate ouabain binding, slides were washed 

twice in ice-cold buffer for 5 min each, rinsed in deionized water to remove 

buffer salts, and rapidly dried within 1 min with cool air. Dried slides were 

then exposed to Ultrofilm (Reichart, Inc.) along with appropriate tritium 

plastic standards (American Radiolabeled Chemicals) and exposed for two 

weeks. 

EEC Studies 

Brain electrical activity was recorded on a Grass Model 6 EEG (Grass 

Instrument Co.) from platinum electrodes stereotactically implanted into 

hippocampi as described above. The EEG acquisition montage consisted of a 

combination of monopolar and bipolar techniques. A left frontal lobe 

electrode served as reference for both monopolar hippocampi electrodes, and 

differential activity between both hippocampi was obtained by a bipolar 

connection (Kooi et al., 1978) A frequency range of (0.3-70 Hz) was used at a 

sensitivity of 50. All electrodes were grounded from a skull screw. Routinely, 

a baseline EEG recording was obtained with artificial CSF infusion (1 pl/min) 

for 30 min prior to start of experiments. EEG monitoring were continued 

throughout experiments. 
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Data analysis 

According to a grading scale advanced by Sperk and co-workers (Sperk 

et al., 1983), grade I - II seizures are mild limbic seizures manifesting as 

immobility, staring, facial grimaces, and occasional episodes of characteristic 

torso-and-rear shakes termed wed-dog-shakes (WDS). Grade III seizures are 

moderate seizures characterized by more frequent WDS, automatism 

including head-bobbing, forelimb clonus, and some foaming at the mouth. 

Grade IV seizures comprise all the above described features of limbic features 

and include standing on rear limbs, rearing and eventual loss of balance due 

tonic-clonic convulsions. Grade V seizures are severe seizures leading to 

death of the animal. In this study, grade III - V seizures were considered 

overt, behavioral seizures. 

Cell death in hippocampus subfields CA1 - 3 and the dentate hilus was 

determined by examining high-power fields (3 - 4) under the light 

microscope. For each animal, average cell death was obtained from 6-10 

successive sections through the dorsal hippocampus. In pilot experiments, all 

dead/dying cells were clearly identifiable by the silver stain technique and no 

correction for cell loss was required. Also, the silver stain allowed 

visualization of both dead/dying neurons as well as background neuronal 

architecture, so that counter-staining was not routinely required. Statistical 

significance of the association between treatments (experimental and 

controls) and a particular outcome (cell death or seizures) was determined by 

the chi-square analysis. In these calculations, cell death was treated as a 

variable. 

[3H]-ouabain studies produced film images of exposed sections 

(autoradiographs). After development, autoradiographs were analyzed by the 

MCID densitometric System (Imaging Research, St. Catharines, Canada). 
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Densities were determined as the average of multiple small windows 

sampled from 6-10 enlarged images taken randomly from cortical and 

hippocampal regions. Statistical difference between groups was assessed by 

chi-square analysis. 

All EEG tracings were compared to baseline recording on the basis of 

amplitude, frequency and pattern of waveforms. 
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RESULTS 

The kainate dose-response curve 

The dose-response curve for young adult, male, Sprague-Dawley rats 

obtained in these experiments is illustrated in Figure 6. Kainate was given in 

the range 3-12 mg/kg (i.p.). The dose-response curve was steep, reflecting the 

drastically different behavioral responses observed for animals receiving low 

doses of kainate compared to animals receiving moderate to high doses. At 

low kainate doses of 3, 5, and 7 mg/kg (i.p.), i.e., kainate doses < 7 mg/kg, only 

2 of 19 animals experienced seizures. For a moderate dose of kainate (8 mg/kg 

i.p.), 7/8 animals experienced seizures. High-dose kainate (10 and 12 mg/kg; 

i.p.) produced severe and prolonged seizures in all animals (n= 6). 

Behavioral observations 

The behavioral response to varying doses of kainate has already been 

extensively reviewed (Ben-Ari, 1985; Sperk, 1994) and will be presented only 

briefly here. Most aninimals (17/19) treated with low-dose kainate exhibited 

Sperk grade I - II seizures (Sperk, 1983). In general, animals became restless, 

moving incessantly around the cage few minutes after kainate injection. 

Between 20 to 30 minutes after kainate injection, animals displayed repetitive 

scratching behavior interrupted by episodes of immobility and staring. 

Thereafter, between 30 - 40 min after kainate injections, animals exhibited 

WDS. WDS were the most severe behavioral changes observed in most 

(17/19) animals receiving < 7 mg/kg (i.p.) of kainate. Typically, these WDS 

increased in frequency and abated subsequently within 60 - 90 min. 





35 

Animals treated with moderate or high-dose kainate behaved similarly 

to animals treated with low-dose kainate up until onset of WDS. In moderate 

and high-dose kainate-treated animals experiencing seizures, WDS increased 

in frequency until generalized, clonic-tonic convulsions appeared (Sperk 

grade III - IV). These episodes consisted of up to 3 min of sustained seizure 

activity manifested as head bobbing, facial grimaces and foaming from the 

mouth. In severe cases, rearing and eventual standing on rear limbs with 

bilateral fore-limb clonus (pedaling) occurred, ending sometimes in loss of 

balance and falling. There was a trend to suggest that the seizure severity and 

rate of progression to ictal behavior increased with increasing dose of kainate. 

In animals receiving moderate dose kainate (8 mg/kg; i.p.; n= 8), the latency 

to onset of WDS measured 39+5 min (SEM; measured for 4/8 animals). 

Latency to onset of overt seizures was on average 112 +_ 20 min (SEM; 

measured for 2/8 animals ) and lasted on average 130 + 12 min (SEM; 

measured for 3/4 animals). At high-dose kainate (10 mg/kg i.p.), WDS 

occurred later 57 + 7 min (SEM; n=5), but seizures occurred earlier (91 min + 5 

min, SEM; n=5) and lasted longer 300 + 50 min (SEM; measured for 3/5 

animals). The mortality rate was 20% (1/5) at kainate concentration of 10 

mg/kg, death occurring within the hour (Sperk grade V). At 12 mg/kg 

kainate, the mortality was 100% (1/1). 

Histology 

Silver staining of brains from all surviving animals (31/33) used for 

the dose-response curve revealed neuronal death only in animals 

experiencing behavioral seizures. Behavioral changes progressing to and 

ending with WDS did not lead to brain damage. In the brain of animals 

experiencing seizures with moderate-dose kainate treatment (7/8), cell death 
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was observed in subfields CA2 and CA3, the dentate hilus, and the granule 

cell layer. Pyramidal cells of area CA1 were not routinely damaged by this 

dose of kainate. Although not routinely assessed, extra-hippocampal damage 

was observed in hippocampal sections containing parts of the thalamus and 

amygdala complex. The pattern of damage in the hippocampus of animals 

experiencing seizures with high-dose kainate (10 mg/kg; i.p.; 3/5 animals) was 

similar to that of animals treated with moderate-dose kainate. However, at 

high-dose kainate cells in hippocampus area CA1 were routinely damaged. 

Partial inhibition of total brain Na±/K±-ATPase Capacity with ICY ouabain 

Four animals implanted with cannula as well as intra-hippocampal 

EEG electrodes were used for these experiments (Figure 5). 

Behavioral observations 

In the first few minutes after beginning ouabain infusion (3 nmoles, 

i.c.v. over 9 min), animals generally showed irritability by walking around 

the cage in circles. Five minutes into ouabain infusion, animals became 

more restless, and circling behavior was interrupted only by brief periods of 

immobility, staring, and occasional WDS. In subsequent minutes, animals 

demonstrated increased overall level of agitation and respiration. At the end 

of injections (10 min) animals routinely exhibited vigorous running activity, 

lasting on the average ~ 60 sec. Subsequently, animals showed a variable 

period of hypotonia (up to 30 min), sporadic head or body clonus, decreasing 

respiratory rates, and eventual return to normal within an hour after 

cessation of ouabain infusion. 
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EEG Correlates 

EEG recordings during ouabain infusion revealed decrease in brain 

activity starting by the end of the first minute (Figure 7). Reduced wave 

frequency and spike activity compared to baseline was first recorded in the 

right hippocampus (the site of cannula placement) with subsequent 

progression to the left hemisphere (Figure 7 B & C). Vigorous running at the 

end of ouabain infusion was recorded as artifact on the EEG (data not shown). 

Reduced brain activity persisted for 30 - 45 min after ouabain infusion, 

reverting to baseline patterns thereafter. No epileptiform discharges were 

recorded in any animals (n = 4). 

Histology 

Silver staining revealed no evidence of brain damage in all four 

animals treated with ouabain (3 nmoles; i.c.v) (Figure 8, panel A) or in one 

control animal treated with artificial CSF (data not shown). 

Results of l3H]Ouabain Binding studies 

Densitometric analysis of autoradiographs produced in [3H]-ouabain 

binding studies revealed that the number of active pump sites in ouabain- 

treated animals (n = 3) was approximately twice that of control animals (n = 2) 

(Figure 9; p < 0.001, chi-square analysis). The concentrations of [3H]-ouabain 

(1 pM) used in this detection method allowed assessement of only high- 

affinity isoforms (oc2/oc3). Also, the limited spatial resolution of Ultrafilm 

autoradiography allowed assessement of only gross regional variation in 

Na+/K+pump density. Thus, in the brain of ouabain-treated animals and in 

control animals treated with artificial CSF, Na+/K+ density in the 

hippocampus was twice that of surrounding cortical regions (p < 0.001; chi- 

square analysis; n = 3 and 2, respectively). 
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Partial impairment of total brain Na+/K+-ATPase capacity amplifies kainate 

neurotoxicity 

From the dose-response curve, a subtoxic dose of kainate (5 mg/kg i.p.) 

was determined. At this dose of kainate, 1/10 animals were observed to 

exhibit seizures (Figure 6), and the brain of 9/10 animals not experiencing 

seizures revealed no neuronal damage (Figure 8, panel B). In preliminary 

experiments, EEG activity increased above baseline within 10 min after 

kainate (5 mg/kg i.p.), suggesting CNS access after IP administration of 

kainate within this interval. Thus, six surgically-prepared animals were 

treated with 5 mg/kg (i.p.), followed 1/2 h later by ouabain (3 nmoles; i.c.v.). 

Four control animals received ouabain alone 1/2 h after a sham saline IP 

injection. Also, six other control animals received kainate (5 mg/kg; i.p.) 

followed by a sham ICV infusion with artificial CSF. 

In control animals treated with ouabain alone, no seizure activity was 

detected either behaviorally or by EEG, in agreement with earlier 

experiments. Also, subsequent histological evaluations revealed no evidence 

of brain damage in these animals (Figure 8, panel A). Similarly, kainate (5 

mg/kg, i.c.v.) alone failed to elicit behavioral seizures, epileptiform activity 

on EEG, or cell death upon silver staining (Figure 8, panel B). 

On the other hand, all 6 animals treated with kainic acid (5 mg/kg; i.p.) 

followed by ouabain (3 nmoles, i.c.v.) exhibited behavioral seizures as well as 

epileptiform activity on EEG (Figure 10). Histological examinations of brain 

sections from these animals also revealed brain damage in all six animals 

(Figure 8, Panels C -F). 
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Behavioral observations 

Typically, animals treated with kainate (5 mg/kg i.p.) and ouabain (3 

nmoles; i.c.v) became mildly agitated and showed occasional episodes of 

immobility and staring after kainate treatment and prior to ouabain 

treatment. Behavioral changes during subsequent ouabain administration 

were initially very similar to those observed with ICV ouabain-only 

treatments. Typically, animals expressed increased levels of restlessness, 

scratching, and occasional WDS. These culminated in vigorous running 

activity at the end of injections (9-10 min). WDS appeared on the average 4 

min + 2 min (SEM; n= 4) after initiating ouabain infusion. The hypotonia 

observed after this running episode in ouabain-only experiments was not 

routinely observed in these animals. WDS returned promptly after the 

episode of running and progressed in frequency, culminating in overt seizure 

episodes. The average latency to onset of the first seizure episode was 116 + 13 

min after ouabain injection (SEM; n= 4). These convulsions were similar to 

those of high kainic acid treatment alone, were not associated with obvious 

apneic spells, and continued sporadically for 345 + 9 min (SEM; n = 4). In 

spite of the severity of seizures occurring after ouabain and kainate, no 

animal mortality was observed. 

EEG Correlates 

EEG recordings were obtained with four animals treated with kainate (5 

mg/kg i.p.) followed by ouabain (3 nmoles, i.c.v.) (Figure 10). After kainate 

injections and prior to ouabain treatment, an increase in the frequency and 

amplitude of brain waves above baseline was observed (Figure 10, panels A, 

B, C & D). The increase in brain activity correlated with increased restlessness 

during this period. Upon ouabain administration, characteristic ouabain 
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suppression of brain activity was observed beginning within the first minute 

(Figure 10, panel E). Attenuated brain waveforms were first observed in the 

right hemisphere (cannula site) and then in the left hemisphere 5-10 seconds 

later. However, unlike ouabain-only experiments, brain activity returned 

promptly (Figure 10, panel F). After the vigorous running activity observed 

at 9 - 10 min, the first set of epileptiform discharges occurred with an average 

latency of 17.5 + 2.5 min after the start of ouabain infusion (SEM; n = 4). 

Again, seizure activity was first observed in the right hemisphere (site of 

ouabain infusion) before appearing in the left hemisphere, separated by 2 - 5 

seconds. Subsequently, a variable period of 15 - 60 min intervened during 

which epileptiform discharges were observed on EEG in the absence of any 

overt behavioral manifestations of seizure activity. Some of these discharges 

corresponded with immobility and staring or facial grimaces. In general, 

these discharges became more frequent just prior to the first observed 

behavioral seizure. Epileptiform discharges were subsequently recorded on 

EEG beginning on the average 116 + 13 min (SEM; n=4), and sporadically for 

the 6 h for which animals were routinely monitored. 

Histology 

Analysis of the hippocampus of animals treated with kainate (5 mg/kg; 

i.p.) and ouabain (3 nmoles; i.c.v.) revealed widespread damage to 

hippocampal neurons. Neurons of the dorsal hippocampus were heavily 

injured, particularly neurons in CA1 and CA3 subfields (Figure 8, panel C.). 

Hilar interneurons were consistently damaged (Figure 8, panels C & D). 

Damage was not routinely observed in extra-hippocampal regions. Cell death 

was observed in the amygdala, but virtually no cell death was observed in the 
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thalamus, neocortex, or frontal lobe (data not shown). Cell death was also 

observed in hippocampal area CA2 and in the granule cell layer (Figure 8 C). 

Statistical analysis revealed that pairing of ouabain and kainate reliably 

produced seizures and neuronal degeneration (6/6 animals; p < 0.001; chi- 

square analysis). In contrast, kainate or ouabain alone did not (0 of 6 and 0 of 

4 animals, respectively; Figure 11). 

Onset and severity of seizures depend upon time of ouabain administration 

In 8 animals, ouabain was delayed by 90 min after kainate 

administrations. Of these, 3 animals were monitored by EEG. All 8 animals 

experienced seizures, albeit at different latencies compared to animals treated 

with ouabain 30 min after kainate injection. Latency of onset of seizures was 

recorded for 5/8 animals and was observed on average to be 282 + 30 min 

(SEM) after kainate treatment. This reflected an increase in latency of seizure 

onset after kainate treatment of ~70 + 15 min (SEM), compared to animals 

treated at 30 min interval. However, latency of seizure onset from ouabain 

injection did not differ significantly for both groups (Figure 12). The duration 

of overt, successive seizure episodes also shortened notably (~ 150 min) as 

determined for 6/8 animals. Notable differences between EEG recorded for 

animals treated with ouabain at 90 min versus 30 min after kainate injection 

included: i) an almost complete return to baseline of brain activity 60 - 80 min 

after kainate injection and prior to ouabain infusion, and ii) a reduction in 

the number of, and duration in which, epileptiform discharges occurred. 

When ouabain was administered at 90 min, the first epileptic discharge 

appeared on EEG 22 + 4 min (SEM; n = 3) after ouabain injection and was not 

significantly different in latency of onset compared to animals administered 

ouabain 30 min after kainate. Histological study of neuronal death in these 
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animals revealed a pattern of brain damage similar to those described above 

for animals receiving kainate and ouabain at 30 min interval. 

Intraperitoneal injections of both ouabain and kainate replicate results of 

experiments with kainate (i.p.) and ouabain (i.c.v) 

In preliminary studies, ouabain (1 mg/kg; i.p.) in combination with 

kainate (5 mg/kg; i.p.) failed to elicit any observable seizure activity (data not 

shown). Subsequently, an experimental group was treated with ouabain (1 

mg/kg; i.p.) followed by kainate (7 mg/kg; i.p.; 8 animals). Kainate control 

animals received saline followed by kainate (7 mg/kg; i.p.; n = 8). Four 

ouabain control animals received ouabain (1 mg/kg; i.p.) followed with 

saline (i.p.). Animals were then observed for behavioral manifestations of 

seizures for up to 8 hrs after kainate injection. 

Table 1 (next page) illustrates results from this experiment. Within 5 

min of injections, all 4 control animals treated with ouabain (1 mg/kg; i.p.) 

demonstrated mild agitation and increased respiration rate with return to 

normal within 1 hr. Seizures or hippocampal cell death were not observed in 

these animals. Seizures were observed in only 1 of 8 control animals treated 

with kainate (7 mg/kg; i.p.). The rest of kainate control animals not seizing 

(7/8) typically experienced WDS which appeared between 20 - 40 minutes after 

kainate injections and tapered off within an hour of onset. Six of eight 

animals receiving ouabain (1 mg/kg; i.p.) followed by kainate (7 mg/kg; i.p.) 

experienced overt limbic type seizures. 

Histological studies of neurodegeneration revealed no brain damage in 

all control animals, except in the one control animal that experienced 

seizures with 7 mg/kg (i.p.) kainate. Silver staining of animals experiencing 

seizures from treatments with ouabain followed by kainate (7 mg/kg; i.p.) 
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TABLE 1 

CONTROLS Seizures 
Neuronal 
Death 

Mortality TOTAL 

Ouabain (1 mg/kg; i.p.) 
— — — 4 

kainate (7 mg/kg; i.p.) 1 1 — 8 

EXPERIMENTAL 

Ouabain (1 mg/kg; i.p.) 
+ 

kainate (7mg/kg; i.p.) 
6 6 8 
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revealed neuronal injury in the hippocampus similar to that already 

described for animals treated with ouabain (i.c.v.) and kainate (i.p.) (Figure 

13A & B). 

Statistical analysis of these results showed that pairing of ouabain and 

kainate reliably produced seizures and neuronal degeneration (6/8; p < 0.001; 

chi-square analysis), compared to control animals treated with ouabain (0/6) 

and kainate (1/8). 

Pattern of hippocampal damage and chronic features of kainate and ouabain 

treated animals 

i) Pattern of hippocampal cell death 

The pattern of hippocampal cell damage observed for animals treated 

with kainate and either ouabain (i.c.v) or ouabain (i.p.) were essentially the 

same. All hippocampal cells were affected, including cells in subfields CA1 - 

CA3. Cell death was observed in the dentate hilus and in the granule cell 

layer. Granule and CA2 pyramidal cells were relatively spared (Figures 8, 

panels C, D, E, &F and Figure 13). 

ii) Spontaneous, recurrent seizures 

Three animals treated with ouabain (1 mg/kg; i.p.) followed by kainate 

(7 mg/kg; i.p.) were allowed to recover and observed for spontaneous 

behavioral manifestations of seizures. Two animals were observed for 30 

days and one for 90 days. Handling elicited spontaneous limbic type seizures 

in all three animals, beginning day 14, 15, and 30, respectively. These episodes 

were characterized by head clonus, facial grimaces and automatism. No overt 

tonic-clonic seizures were observed. In a control animal treated with sham 

surgery, no spontaneous recurrent seizures were observed. 
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iii) Hippocampal remodeling 

At 30 and 90 days after experiments, animals observed for spontaneous 

recurrent seizures were sacrificed and their brains were examined for 

evidence of hippocampal remodeling by Timm stain. 

Examination of the dorsal hippocampus of an animal that seized 

from treatment with ouabain (1 mg/kg; i.p.) and kainate (7 mg/kg; i.p.) 

showed sprouting of granule cells into the inner molecular layer (Figure 14 

B). Also notable was a thinning of the heavily stained outer molecular layer 

of area CA1 compared to control (Figure 14B; arrow heads). Timm staining of 

brain sections from control animals three months after the experiment 

showed no remodeling of the hippocampus (Figure 14A). 
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FIGURE 6: The kainate dose-response curve 

This graph illustrates the percentage of animals exhibiting overt behavioral 

seizures. (Numbers of animals at the dose are over black dots). 
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Figure 7: Electroencephalographic recording during ouabain (3 nmoles; i.c.v). 

Panel A shows typical, baseline, resting activity prior to injection. 

Panel B shows hippocampal activity 2 min after start of ouabain 

infusion. There is decreased EEG amplitude in the right 

hippocampus (RH) - the hemisphere containing the infusion port - 

with persistent baseline activity in the left hippocampus (LH). The 

effects of ouabain are seen ~ 5 min later in the left hippocampus 

with persistent suppression of activity in the RH (Panel C). (RH - 

LH: potential difference between RH and LH in reference to frontal 

lobe electrode). 
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Figure 8 
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Figure 8: Neuronal death in the dorsal hippocampus associated with various 

treatments. 

Ouabain (3nmoles; i.c.v.), although producing an extreme pattern of 

motor behavior did not produce neuronal death (panel A). Non¬ 

seizure producing dosages of kainate (e.g. 5 mg/kg; panel B) do not 

cause neuronal death as assessed by silver degeneration stain which 

shows dead/dying cells and their processes as black (arrow in panel 

B seperates CA2 and CA1 regions). Pairing of ouabain and kainate 

produced widespread death throughout the hilus (Hi) and 

CA1/CA3 subfields (panel C). Note fiber staining of apical dendrites 

of pyramidal cells in stratum radiatum (SR) in panel C (small 

arrows). Similar to human TLE, pyramidal neurons of the CA2 

subfield were predominantly spared. A variety of hilar neurons are 

affected (Panel D: Higher magnification and orientation reversed) 

including those of the mossy cell morphology. Panels E and F 

correspond to high power views of degenerating CA3 and CA1 

pyramidal neurons. ( ML : molecular layer of the dentate gyrus; GC: 

granule cell layer; SO, SP, and SR: stratum oriens, pyramidale, and 

radiatum , respectively). 
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Figure 9 

A B 
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Figure 9: [3H]Ouabain Binding Studies 

A. CSF controls 

B. Ouabain-treated aninals. 

Autoradiography to assess Na+/K+pump density was achieved by 

pre-incubating sections to allow bound ouabain (administered in 

vivo) to dissociate and then incubating with [3H]-ouabain to 

equilibrium. Densitometric analysis revealed that on average, 

binding density approximately doubled with ouabain pre-treatment 

compared to controls (p < 0.001; chi-square analysis; n = 3). 
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Figure 10: Representative electroencephalographic recording of ouabain and 

kainate-treated animal. 

A. Shows typical, baseline resting activity prior to drug injection. 

B. Shows hippocampal activity 10 min after a subtoxic dose of 

kainate (5 mg/kg; i.p.) was injection (note prominent spikes). Later 

recordings, panels (C & D), show progression of activity back 

towards baseline. Panel E shows ouabain (3 nmoles) injection into 

the right ventricle; note drastic suppression of bilateral 

hippocampal activity. Activity resumes promptly, displaying 

progressively higher frequencies and amplitude (panels F, G). Panel 

H and I shows two patterns of EEG activity during seizures. (RH: 

right hippocampus; LH: left hippocampus). 
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Figure 11 
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Figure 11: Ouabain potentiates sub-toxic kainic acid. 

This figure shows results of experiments to test the hypothesis that 

partial inhibiton of Na+/K+ pump capacity with ouabain increases 

kainate neurotoxicity. 1) Four control animals were treated with 

ouabain alone and none of these animals (0%) experienced seizures 

or neuronal death. 2) Six control animals were treated with kainic 

acid alone and no animals (0%) experienced seizures or neuronal 

death. 3) Six animals were treated with a combination of ouabain 

and kainate and all six (100%) experienced seizures and neuronal 

death. (Number of animals and percentage of positive outcomes 

appear in boxes below questions investigated; KA: Kainic acid). 
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Figure 12 
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Figure 12: A delay in ouabain administration increases the latency of seizure 

onset after low-dose kainate but shortens seizure duration. 

When subtoxic dosages of kainate (5mg/kg; i.p) were followed 30 

min later by ouabain (3 nmoles; i.c.v.), severe seizures routinely 

developed with an average latency of 116 + 13 min (SEM) hrs after 

kainate. These convulsions continued for a duration of 345 + 9 min 

(SEM). Delaying ouabain administration by 90 min increased the 

latency of the onset of seizures (by 70 + 15 min), and the duration of 

epileptic discharges under this paradigm shortened notably (-150 

min). (KA: Kainic acid). 
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Figure 13 
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Figure 13: Silver stain of hippocampus of animal treated with ouabain 

(1 mg/kg; i.p.) and kainate (7 mg/kg; i.p). 

A. Pyramidal cells of areas CA3 and area CA1 are heavily damaged 

(dark silver granules). Neuronal death is also present in the hilus 

(Hi). Cells of the granule cell layer (GC) and area CA2 (not shown) 

are relatively spared. 

B. Higher magnification of hilus in A, showing "selective" hilar 

damage. 





61 

Figure 14 
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Figure 14: Timm stain of rat hippocampus 

A. Control 

B. 30 days after treatment with kainate (7mg/kg; i.p.) and ouabain (1 

mg/kg; i.p). Sprouting of mossy fibers into the inner molecular 

layer of the dentate girus is present (large arrows). A prominent 

loss of staining is observed in area CA1 (small arrows), reflecting 

significant damage to cells in this area by initial treatment with 

kainate/ouabain. 
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DISCUSSION 

THE KAINATE DOSE RESPONSE CURVE 

As previously stated, the response to kainate in many animals 

including rats is not only dose dependent, but it is also influenced by age, sex, 

route of administration, and strain variations in the same species of animal 

(Sperk, 1994). Steep dose-response curves similar to the one observed in this 

study have previously been reported, albeit under different conditions. 

Lothman and co-workers (Lothman and Collins, 1981) administered 

increasing amounts of kainate (0.3 - 12 mg/kg) intravenously to albino rats 

weighing 280 - 350 g and identified three dose ranges: with a low dose range 

(0.3 and 1 mg/kg) animals exhibited staring only, without signs of seizure 

activity; animals treated with an intermediate dose of kainate (4 mg/kg) 

exhibited staring, WDS, automatisms and mild limbic convulsions, but never 

experienced severe limbic convulsions; and animals treated with high-dose 

kainate exhibited a range of seizure manifestations including severe limbic 

convulsions. 

The characteristic steepness of the dose-response curve observed may 

be partly explained by changes in BBB permeability after systemically 

administered kainic acid. Kainate penetrates the BBB poorly. Less than one 

percent of the systemically injected kainic acid reach the brain (Berger et al., 

1986). Access to the brain after systemic administration is also gradual, 

reaching plateau levels in perfused brain of 10-day old Winstar rats in 

approximately the same time as the onset of seizures (~ 20 min). Studies 
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have shown that this kinetics of CNS penetration is partly dependent on BBB 

disruption by increasing doses of kainic acid reaching the brain (Saija et al., 

1992). Thus, at sufficient doses of kainate, CNS penetration by the neurotoxin 

become synergistic, gradually enhanced by disruption of BBB, leading to the 

sigmoid shape of the dose response curve observed (Figure 6). 

OUABAIN INDUCES 2-FOLD INCREASE IN NA+/K +PUMP DENSITY 

In this study, the concentrations of ouabain used allowed inhibition of 

the high-affinity (a2/a3) Na+/K+ pump isoforms. This preferential 

inhibition, as already explained, establishes partial impairment of total 

Na+/K+ pump capacity (Brines and Robbins, 1992). Total inhibition of brain 

Na + /K+ pump would kill animals, since neurons require some Na+/K+ 

pump for cellular integrity (Garthwaite et al., 1986; Lees et al., 1990). 

In assessing Na+/K+ pump density in ouabain-treated animals, 

conditions of incubation were selected to activate the Na+/K+ pump 

uniformly by providing the required cations and sufficient ATP (Caspers et 

al., 1987; Brines et al., 1995). The paradoxical increase in the Na+/K+ pump 

density in ouabain-pretreated animals is most likely in response to 

impairment with ouabain. It is likely that complete inhibition of the high 

affinity (a2/a3) isoforms induced a near total replacement of these pump 

units. Consequently, a doubling in the population of high-affinity isoforms, 

was detected. Although the exact mechanisms of upregulation are not clear 

(via production of new protein or cell surface translocation from inactive 

pools) this type of recruitment of additional pump units may result in a net 

reduction of the total (active + dormant) Na+/K+ pump capacity. However 

Na+/K+pump inhibition could not be quantitated by the technique used here. 
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OUABAIN POTENTIATES KAINATE NEUROTOXICITY 

Our experimental results demonstrated that partial inhibition of 

Na + /K+ pump capacity decreases neuronal ability to survive otherwise 

innocuous excitatory stimuli. All experimental animals treated with kainate 

(5 mg/kg; i.c.v.) followed with ouabain (3 nmoles; i.c.v.) experienced seizures 

and subsequent brain damage, however no control animals experienced 

seizures or neuronal injury. Further experimental evidence suggested that 

neurotoxicity due to kainate (5 mg/kg; i.p.) was intimately associated with 

Na+/K+ pump inhibition. Thus time of seizure onset after kainate treatment 

was dependent on time of ouabain administration (Figure 12). The shortened 

duration of epileptiform activity observed when ouabain is administered at 

90 min, instead of 30 min after kainate, could be explained by decreasing brain 

levels of kainate with time. Such that, when ouabain is administered at 90 

min, lower brain levels of kainate are present. Indeed, the behavioral 

manifestations as well as neurotoxicity of systemically administered kainate is 

dose-dependent (Sperk et al., 1983; Ben-Ari, 1985), as supported by our dose- 

response curve. These findings were replicated by intraperitoneal injections 

of both kainate and ouabain. Thus, experimental groups treated with a 

combination of kainate and ouabain were significantly different from 

controls, producing seizures and subsequent neuronal death (p< 0.001; chi- 

square analysis). 

EEG recording after administration of kainate (5 mg/kg i.p.) revealed 

increased neuronal activity above baseline. This can be explained by the 

excitatory action of kainate, since neuronal exposure to low levels of 

glutamate or its analogs (including kainate) leads to immediate 

depolarization, influx of Na+ and efflux of K+ (Rothman, 1985). Under these 

conditions, the Na+/K+ pump is secondarily activated to rectify the resultant 
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ionic disturbance (Rossier et al., 1987; Skou, 1988). Indeed, increased 

metabolic activity correlating with systemic treatment with kainate has been 

observed with 2-deoxyglucose uptake studies. Thus, when male Wistar rats 

were treated with kainate (i.v.), increased glucose uptake was detected in the 

brain, albeit only in the hippocampus and lateral septum at low-dose kainate 

(6 mg/kg). At higher doses (12 mg/kg), increased metabolic activity was 

detected in other brain regions as well (Saija et al., 1992). However, as 

evidenced by the absence of brain damage in control animals, homeostatic 

mechanisms, most likely dependent on Na+/K+ pump activity, prevented 

neuronal injury from sub-toxic kainate (5 mg/kg; i.p.). 

The scenario, however, changes with injection of ouabain (3nmoles; 

i.c.v.) 30 min after kainate (5 mg/kg; i.p.) treatment. Impairment of Na+/K+ 

-ATPase in these circumstances may interfere with neuronal mechanisms to 

cope with an otherwise innocuous brain level of kainate. Precedence for this 

concept exists in vitro. Stimulation of CA1 pyramidal cells with impairment 

of Na+/K+pump activity markedly reduced the capacity of these cells to 

restore transmembrane gradients (Novell! et al., 1988). Also, inhibition of 

Na + /K+ -ATPase function in these neurons markedly potentiated and 

prolonged glutamate depolarization (Thompson and Prince, 1986; Fukuda 

and Prince, 1992). 

MECHANISMS BY WHICH OUABAIN MAY POTENTIATE KAINATE 

There are several potential mechanisms by which ouabain may 

potentiate kainate neurotoxicity. 

Increased endogenous levels of glutamate or its agonists 

In addition to an already higher than normal brain level of kainate 

imposed by our experimental design, endogenous extracellular levels of 
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glutamate may rise due to Na+/K+ pump inhibition. Sampling of rat brain 

extracellular milieu by microdialysis after Na+/K+ pump inhibition with 

ouabain have shown 2-3 fold increase in the release of glutamate (Jacobson et 

al., 1986; Westerink et al., 1989). Furthermore, inhibition of Na+/K+ ATPase 

may lead to a block of glutamate re-uptake mechanisms, causing an increase 

in intracellular levels of endogenous glutamate (Kanner and Sharon, 1978; 

Dagani and Erecinska, 1987). Since the Na+/K+ pump is required for 

repolarizing the cell membrane after depolarization, chronic neuronal 

depolarization (by glutamate and kainate) in the face of reduced 

Na+/K+pump capacity may lead to inadequate neuronal repolarization (Skou, 

1988). This situation would lead to increased excitability of the neuron and 

subsequent seizure generation. 

Release of other potentiating compounds 

Infusion of ouabain into rat striatum has been demonstrated to 

produce a massive release of dopamine (Westerink et al., 1989; Fairbrother et 

al., 1990). On the other hand, since dopamine may inhibit Na+/K+-ATPase 

(Bertorello et al., 1990), a vicious cycle may be created to perpetuate a spiral 

decrease in Na+/K+ ATPase activity. Other compounds released after Na+/K+ 

pump release include gamma-amino butyric acid (GABA) and acetylcholine 

(O'Fallon et al., 1981; Jacobson et al., 1986; Westerink et al., 1989). Indeed, 

GABA has been shown to accelerate cortical neuronal death in vitro (Erdo et 

al., 1991). Also, acetylcholine can potentiate glutamate toxicity of 

hippocampal cell cultures in vitro (Mattson et al., 1989). 
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Limited Na+/K+ pump reserve capacity 

The paradoxic doubling of Na+/K+ pump binding sites in the brain of 

animals treated with ouabain (i.c.v.) as observed by tritiated ouabain studies 

has already been discussed. Although the concept of neuronal recruitment of 

Na+/K+ ATPase reserve-capacity to meet increasing demand is not clearly 

understood, it is likely that the cell is unable to recruit reserve pump units 

fast enough to prevent irreversible injury. Conversely, a scenario may be 

engendered in which all recruited pumps (whether by translocation to the cell 

surface from existing stores or by de novo synthesis) are readily inhibited by 

ambient ouabain. Since ouabain was used in the micromolar range, the high 

affinity oc2/a3 isoform may be chronically inhibited, and al isoforms may in 

fact become the only recruitable Na+/K+ pump pool. Indeed it has been 

suggested that the significance of differential affinities and Km's observed for 

rodent Na+/K+ pump isoforms may be a teleological one: to allow the neuron 

to establish reserve Na+/K+ pump capacity for recruitment as needed 

(McGrail et al., 1991; Brines and Robbins, 1993). In any case, with unmatched 

demand for pump activity, the stage may be created for irreversible events of 

excitotoxicity (Choi, 1992). 

Synergistic disturbance in the neuronal ionic milieu 

As already introduced, neuronal exposure to EAA leads to disturbance 

in ionic balance resulting primarily from Na+ and Ca++ influx and K+ efflux. 

Extensive evidence has shown that the ionic changes in Na+, K+, and Ca++ 

occurring with direct or indirect inhibition of the Na+/K+ pump (Baker et al., 

1969; Goddard and Robinson, 1976; Reeves and Sutko, 1979; Ullrich et al., 

1982) are exactly those observed by excitotoxicity, albeit by different 

mechanisms (Choi, 1988; Kohr and Heinemann, 1988; Stable et al., 1990). 
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Consequently, ouabain may potentiate kainate neurotoxicity by a synergistic 

ionic disturbance. 

Excitotoxicity as a final common pathway 

Any of the above described mechanisms may eventually lead to a net 

increase in intracellular Na+ due to compromised or insufficient pump 

activity. Water may follow passively into the cell and cell swelling may 

result. This would mark the first phase of excitotoxicity. Subsequently, the 

second phase of excitotoxicity may ensue if pump capacity is continuously 

impaired. This would be marked by Ca++ influx and inevitable neuronal 

injury. (Choi, 1992). Neuronal injury resulting from Na+/K + pump 

inhibition during excitatory stimulation has been previously observed in 

vitro by Brines and co-workers. Up to a 6-fold increase in neuronal injury (as 

assessed by lactic dehydrogenase release) was observed when ouabain treated 

cultures were stimulated with glutamate (Brines and Robbins, 1992). As 

suggested by Choi, "[neuronal] insults are likely to induce cell death by several 

simultaneous injury processes (Choi, 1992)." Occasionally, some of these 

processes may act synergistically to induce cell death when the summation of 

their individual effects overwhelms the cell's primary ionic homeostatic 

mechanism, the Na+/K+ pump. 

Evidence from human epileptic hippocampi 

Results of studies from surgical specimen of epileptic hippocampi 

provide some impetus for the hypothesis tested here. Mapping of Na+/K+ 

pump density per unit of protein for various regions of epileptic and non¬ 

epileptic hippocampi revealed that hippocampal areas usually destroyed in 

epilepsy (e.g. area CA1) possessed the lowest total density of Na+/K +pump 

units, whereas those more resistant areas (area CA2, the dentate molecular 
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layer, and the subiculum) possessed the highest Na+/K+ pump density 

(Brines et al., 1995). In this same study, activity of cytochrome c oxidase, the 

enzyme producing ATP required for Na+/K+ pump function was generally 

reduced in epileptic hippocampi compared to hippocampi from autopsy 

controls. Consequently, although pump density was determined to be 

increased in vulnerable areas of the brain in epileptic patients, the capacity to 

power them was reduced. These findings suggested two things: 1) in the 

epileptic hippocampi, cells expressing lower densities of Na+/K+ pump are 

more susceptible to excitotoxicity as may occurs in seizures and 2) a defect in 

energy production may be part of the pathoetiology of epilepsy. 

NEUROPATHOLOGY 

The pattern of cell death observed after kainate/ouabain treatments, 

like that observed with high-dose kainate, is one of selective cell damage. A 

notable difference, however, include death to pyramidal cells in area CA1 

with kainate/ouabain treatments. These cells express only low levels of 

kainate receptors (Monaghan and Cotman, 1982) and this may explain their 

lower vulnerability to kainate-only treatment. However, like other cells in 

the hippocampus, CA1 cells express high levels of glutamate receptors (Sperk, 

1994). Consequently, increase in endogenous glutamate levels either from 

inhibition of re-uptake mechanism (Kanner and Sharon, 1978; Dagani and 

Erecinska, 1987) or by neuronal depolarization (Jacobson et al., 1986; 

Westerink et al., 1989) may lead to excitotoxicity of CA1 cells. Conversely, 

these cells may have been damaged by hypoxia, since they are exquisitely 

sensitive to this insult (Wasterlain et al., 1993). Although arterial oxygen 

saturation were not measured during seizures, apneic episodes were not 

observed to suggest cell death by hypoxia. 
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On the other hand, the destruction of pyramidal cells of hippocampus 

area CA3 observed with the combination of kainate and ouabain have been 

observed in several other situations. These cells are vulnerable to several 

treatment including kainate alone (Ben-Ari et al., 1981), ischemia (Johansen 

et al., 1987), and electrical stimulation of the perforant pathway into the 

hippocampus (Sloviter, 1987). The exceptional vulnerability of these cells 

may be explained by one or a combination of several factors. Cells in area 

CA3 express the highest density of kainate receptors in the hippocampus 

(Monaghan and Cotman, 1982; Berger and Ben-Ari, 1983; de Lanerolle et al., 

1992) making them more vulnerable to direct kainate excitation. Secondly, 

area CA3 is the region of the termination of a major excitatory pathway to the 

hippocampus, the perforant pathway (Figure 1). Consequently, these neurons 

may be chronically stimulated during seizures. Thirdly, the hippocampus, the 

olfactory cortex, the retina, and cerebellum are among some of brain regions 

expressing the highest level of Na+/K+ATPase. Consequently, Na+/K+ pump 

inhibition may be particularly severe in the hippocampus making these cells 

more vulnerable. It is unlikely that ouabain acts by other mechanisms such 

as modification of cerebrospinal fluid to produce neuronal injury, since the 

choroid plexus appears to express only the al (low affinity) isoform (Brines et 

al., 1991). 

Although it is believed that impairment of Na+/K+ pump capacity led 

first to seizure generation and subsequently to neuronal injury, the possibility 

that seizure activity itself contributes to the pathology observed in 

kainate/ouabain treated animals cannot be ruled-out. Parenteral 

administrations of kainic acid may not allow toxic levels of kainic acid to be 

reached in the vicinity of all neurons. Initiation of seizure activity in areas of 

low seizure threshold such as area CA3 may exert strong excitatory actions 
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upon certain neuronal pathways (Figure 1), which in turn may cause seizures 

and distant, albeit excitotoxic, brain damage in certain target neurons. The 

most direct support for this mechanism comes from the work of Sloviter and 

co-workers. These investigators demonstrated that sustained stimulation of 

the perforant path (Figure 1) in the rat results in similar damage of CA3 and 

hilar neurons of the hippocampus as observed in kainic acid induced seizures 

(Sloviter, 1983). Further support for this mechanism stems from the effect of 

anticonvulsants on kainate-induced neurotoxicity. The mode of action of 

these drugs is such that they do not interfere with kainate binding to 

neuronal cells (hence the direct interaction of kainate with neuronal cells 

persists), instead their neuroprotective action is achieved by increasing the 

seizure threshold (Bernard et al., 1980; Frandsen et al., 1990; Stone and Javid, 

1980). Thus, these agents reduce neurotoxicity by mitigating a contribution 

from seizure activity. In this respect, seizure activity itself, by establishing a 

chronic, recurrent neuronal excitation may contribute to neuronal cell death. 

A second seizure-related mechanism of kainate neurotoxicity suggests 

that brain damage may be related to hypoxia, hypoglycemia or edema. Kainic 

acid induced damage to the frontobasal as well as the temporobasal portions 

of the brain have been attributed to this mechanism. A characteristic 

incomplete parenchymal necrosis is observed in these areas (Spielmeyer, 

1927; Levine, 1960), although the pattern of cell death is still quite different 

from that observed by hypoxia or ischemia alone (Sperk et al., 1983). It has 

also been suggested that the early edema resulting from severe seizures may 

compromise venous drainage and blood supply to affected brain areas 

(Spielmeyer, 1927; Lassmann et al., 1984; Lassmann, 1984; Sperk et al., 1983). 

This mechanism may play a role in damage to extra-hippocampal brain areas; 

however, there is less support for its role in the damage to Ammon's horn 
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during seizures. Since, substantial decrease (35%) in partial oxygen pressures 

in the hippocampus during the initial phases of seizure activity is 

compensated for by at least a 3-fold increase in local blood flow in this region 

(Pinard et al., 1984). 
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TEMPORAL LOBE EPILEPSY AND ANIMAL MODELS 

The human pathology 

In the period since Sommer's qualitative description of Ammon's 

horn sclerosis (Sommer, 1880), several more elaborate and quantitative 

descriptions of the neuropathology of TLE have been presented (Margerison 

and Corsellis, 1966; Corsellis and Bruton, 1983; Babb et ah, 1984; Gloor, 1991; 

de Lanerolle et ah, 1992 and 1994; Kim et ah, 1990). The present consensus is 

that neuropathology of human TLE is mostly confined to the hippocampus 

and involves other brain regions only minimally. Also, a highly variable 

pattern of cell loss has been described (de Lanerolle et ah, 1994). Cell loss may 

be minimal, involving only hilar interneurons (Margerison and Corsellis, 

1966) or it may be pervasive throughout Ammon's horn with substantial 

(>50%) loss of CA1 - CA4 pyramidal cells and dentate granule cells (Babb et ah, 

1984; Kim et ah, 1990). Granule cells and CA2 pyramidal cells are generally 

less vulnerable, although all neuronal populations can be affected. 

Furthermore, damage to cells of the dentate gyrus is selective, with 

preferential loss of interneurons expressing somatostatin (SOM), 

neuropeptide Y (NPY) and substance P (SP) (de Lanerolle et ah, 1989). In fact, 

the selective loss of these interneurons is a reliable diagnostic feature of 

mesial TLE patient (de Lanerolle et ah, 1994). Another histological feature of 

epileptic hippocampi is neuronal plasticity and remodeling. Sprouting 

describes a process of axonal growth and establishment of new fibre systems 

in the epileptic hippocampi. Although several types of sprouting have been 

observed, mossy fiber sprouting into the dentate inner molecular layer has 

been more extensively studied. The functional consequence(s) of sprouting 

remains to be established, although it is thought that sprouting may 

participate in the pathology of human TLE (Sloviter, 1992). 
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Animal models 

There has been considerable effort to create an experimental animal 

model to study the etiology of seizures and neuronal damage in human TLE. 

To bear some relevance to the human disease, a useful animal model must 

fulfill the following criteria at least: (a) the focus of seizure generation must 

be in the hippocampus; (b) it must be chronic, reproducing spontaneously and 

repetitively; (c) the pathology must resemble that observed in the human 

disease, showing damage to pyramidal cells, granule cells, and hilar 

interneurons as described above; (d) damage to hilar interneurons must be 

selective for NPY, SP, and SOM expressing neurons; and (e) it must show 

evidence of hippocampal plasticity (sprouting). 

The kainate, rat model 

Kainic acid has been administered intraperitoneally (Ben-Ari et al., 

1981), intravenously (Lothman and Collins, 1981) intraventricularly (Nadler 

et al., 1987), and directly into the hippocampus (Ben-Ari et al., 1979; Schwob et 

al., 1980). Limbic structures, primarily the hippocampus, are the focus of 

seizure activity for kainate treated animals exhibiting seizure activity (Sperk, 

1994). Spontaneous seizure recurrence has been observed with this model 

(Pisa et al., 1980; Cronin and Dudek, 1988). Kainate-lesioned hippocampi also 

show long term remodeling (Tauck and Nadler, 1985; Cronin and Dudek, 

1988). However, as already introduced, there are several differences between 

this model and the human pathology. To adequately replicate the human 

pathology, high doses of kainate are used. This not only leads to a high 

animal mortality (Ben-Ari et al., 1981, Lothman and Collins, 1981; Sperk, 

1994), but also it leads to widespread, extra-hippocampal brain damage not 

commonly observed in the human pathology (Ben-Ari et al., 1981). 
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Moreover, cells of area CA1 which are destroyed in the human disease are not 

routinely damaged in the kainate rat model. From the data available, it 

appears that the kainate rat model does not replicate the selective hilar cell 

loss observed in the human disease. In contrast to the human situation, hilar 

SOM mRNA content was observed to decrease between 10 - 30 days after 

kainate treatment, where as NPY mRNA increased and SP content remained 

unchanged (Sperk, 1994). 

The pilocarpine model 

This model uses intraperitoneal injections of pilocarpine to induce 

severe motor limbic seizures and status epilepticus in rats (Turski et al., 1983; 

Turski et ah, 1989). Following the acute seizure episode, the animals show 

relatively normal behavior for several weeks, and then a high percentage 

develop spontaneous recurrent seizures (Leite et ah, 1990; Cavalheiro et ah, 

1991). Evidence for substantial mossy fiber recurrent sprouting has also been 

shown to occur in the hippocampus of these animals (Mello et ah, 1990). 

However, the pathology described for this model considerably falls short of 

the human scenario. Widespread, extra-limbic damage not observed in the 

human pathology, including damage to the mediodorsal thalamic nuclei, 

substantia nigra and neocortex is commonly observed (ibid). Damage of CA3 

and CA1 neurons is achieved at high levels of pilocarpine, resulting in high 

animal mortality (Turski et ah, 1986). Although, the pattern of hilar cell loss is 

not completely characterized in this model, preliminary studies suggest a loss 

of GABAergic interneurons (Obenaus et ah, 1993). This is in sharp contrast to 

the human pathology in which GABAergic interneurons are quite resistant to 

injury (Babb et ah, 1989). The status of SP, NPY, and SOM containing hilar 

interneurons remains to be established for this model. 
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The afferent excitation model 

Sloviter and coworkers (Sloviter, 1983; Sloviter, 1987) advanced the 

afferent excitation model produced by 8 - 24 hrs of intermittent stimulation of 

the perforant pathway in anesthetized rats. This method reliably results in 

selective damage of specific neurons in the dentate hilus, including SOM and 

NPY containing interneurons (Sloviter, 1991). Damage to pyramidal cells by 

this technique is more variable. Prolonged stimulation (>12 hrs) results in 

selective, but often inconsistent, damage to neurons of hippocampus area 

CA3 and CA1; however, as in the human pathology, pyramidal cells of area 

CA2 and granule cells are relatively undamaged (ibid). An increased 

excitability of granule and CA1 pyramidal cells is observed in this model after 

the period of intermittent stimulation. Although this represents 

'hippocampal remodeling' it is dissimilar to 'sprouting' as it does not 

involve the growth of new fiber systems. Moreover, convulsions and 

chronic, recurrent seizures do not occur with this model (Sloviter, 1987). 

Consequently, the afferent excitation model not only fails to adequately 

replicate the human pathology, but it also fails to reproduce the seizure 

syndrome observed in the human disease. 

The kainate/ischemia rat model 

More recently, intraventricular kainate and ischemia have been 

combined to produce a 'mesial temporal sclerosis' in rats (Franck and Roberts, 

1990). The pattern of brain damage observed here is a combination of 

ischemia-induced and kainate-induced damage. Reportedly, there is a 

selective loss of dentate hilar neurons and CA3/CA1 pyramidal cells of the 

ventral hippocampus. Like the damage observed in the human disease, 

dentate granule cells and an intermediate portion of the pyramidal cell layer 
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(presumably area CA2) are spared. This model suggests that the pathology 

observed in human TLE is partly a result of ischemia. Many authors, 

however, do not believe that the damage to hippocampal pyramidal cells is 

due to seizure-related ischemia. As discussed previously, direct evidence 

suggests that there is no mismatch between blood supply to, and metabolic 

activity in, Ammon's horn during seizure activity (Meldrum, 1983; Auer and 

Siesjo, 1988). This model remains to be adequately characterized. A seizure 

syndrome has not been described. Spontaneous, recurrent seizures as well as 

long term remodeling and immunohistochemical changes have also not 

been reported. Hilar cells containing GABA are mostly spared in the human 

disease (Babb et al., 1989). However, these cells are relatively vulnerable to 

ischemia (Ribak et al., 1985; Obenaus et al., 1993). It remains to be determined 

whether these cells are spared in the kainate/ischemia model. 

The Amygdala kindled rat model 

Kindling is a very old technique that has been used traditionally to 

induce the epileptic state in animal models of epilepsy. This technique 

involves repeated, daily use of low-voltage electrical stimulation of the 

amygdala region until a state of enhanced sensitivity is attained (McNamara 

et al., 1985). Seizure activity can then be elicited as desired with lower voltage 

electrical stimulation. Initial electrical stimulus as well as subsequent 

stimulation in amygdala-kindled rats often elicits limbic type seizures 

(Racine, 1972). Although inter-ictal spikes are observed on EEG, spontaneous, 

recurrent seizures do not occur ordinarily without stimulation in kindled 

animals. In this sense, the kindling model fails to completely replicate the 

clinical picture of the human disease (Klass, 1975). However, in more recent 

studies, extended electrical kindling has been shown to lead to the 
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development of spontaneous seizures (Milgram et al., 1995). These results 

remain to be replicated. The pattern of neuronal cell death observed in 

kindled animals is highly variable and appears to be dependent on the 

number of seizure episodes. Brain damage may be limited to interneurons in 

the dentate hilus or may evolve to include CA1 and eventually CA3 

pyramidal cells depending on the number of repeated stimulation 

(McNamara et al., 1985). Long-term hippocampal remodeling has been 

demonstrated for amygdala-kindled rats in the form of changes in dendritic 

synapses in the medial amygdaloid nucleus (Okada et al., 1993); however, this 

type of remodeling is dissimilar to the growth of new axonal systems 

observed in the human pathology. Several authors have reported increase in 

somatostatin levels in amygdala and various cortical regions in amygdala 

kindled rats (Kato et al., 1983). This is in contrast to the decrease observed in 

the human pathology. The status of NPY and SP hilar interneurons is 

unclear in either amygdala or hippocampus kindled rats. 

The ouabain-potentiated, kainate rat model 

Clearly, the limbic type behavioral seizures observed as well as 

evidence from EEG point to the hippocampus and other limbic structures as 

the focus of seizure activity in kainate/ouabain treated animals. An epileptic 

state characterized by spontaneous, recurrent seizures supervenes in these 

animals. The pattern of cell damage produced with this model closely 

replicates what is commonly observed in the human disease. As in the 

human pathology, all cells in Ammon's horn are damaged, but CA3 and CA1 

pyramidal cells are significantly more affected than the granule and CA2 

pyramidal cells. Hippocampal remodeling in the form of mossy fiber 

sprouting into the inner molecular layer is also present in this model. 
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Finally, there is significant damage to cells in the dentate hilus, although it 

remains to be determined whether this damage is selective for SOM, NPY, 

and SP interneurons. 

Unique features of this model compared to current animal models of 

TLE are: 1. With intraperitoneal injections of kainate and ouabain, this 

model is very easy to replicate. 2. This technique routinely produces damage 

to cells of hippocampus area CA1; a lesion not always observed with other 

animal models without a high animal mortality. 3. Treatment with ouabain 

and kainate yields no animal mortality, as both drugs are administered well 

below their toxicity levels. 4. Unlike many of the models described above, 

brain damage in this model is confined to the hippocampus with minimal or 

no extrahippocampal damage 5. Although not completely characterized, this 

model more closely replicates the human pathology than many existing 

models of TLE. 6. Finally, evidence from epileptic hippocampi for a role of 

the Na+/K+ pump in the neuropathology of human TLE has been presented 

(Grisar et al., 1992; Brines et al, 1995). Since this model is based on this very 

concept, it may serve as a useful tool for investigating the role of the Na+/K+ 

pump in human TLE. 

Although not extensively investigated in this model, recurrent, 

spontaneous seizure episodes after the acute phase of kainate-induced 

seizures has been well documented for most kainate rat models ( Ben-Ari et 

al., 1981; Sperk, 1994). These studies have shown that spontaneous seizures 

do not always recur after initial seizures with kainate. The reported rate is 50 

- 60% (Cronin and Dudek, 1988). Optimum monitoring for chronic epilepsy 

in these animals is best achieved by 24 hr video monitoring. This technique 

was not used in this study; a less optimum technique (handling of animals to 

induce seizures at time of observation) was used instead. This may explain 





81 

the rather low number of seizure episodes witnessed in the three animals 

followed. The latency to spontaneous seizure recurrence after kainate 

treatment is at least a weak and may be delayed for up to several weeks (Pisa 

et al., 1980; Cavalheiro et al., 1982; Tanaka et al., 1988). The first recurrence of 

epileptic attacks after kainate/ouabain treatment in three animals occurred 14, 

15, 30 days respectively, in agreement with previously published reports. 

Finally, immunohistochemistry to characterize the subset of destroyed hilar 

interneurons in this model was not successful, mainly due to technical 

problems. However, with the overwhelming damage to this region, some 

damage of interneurons expressing NPY, SP, and SOM is expected. 

Confirmation of this criteria awaits further characterization of this model. 

Anatomic basis and Pathway of Limbic seizures in rat hippocampus 

Lothman and co-workers (1981) as well as others (Ben-Ari, 1985) have 

postulated a pathway for generation and propagation of limbic seizures 

(Figure 15; p. 84). It is believed that area CA3 of the hippocampus is the 

"pacemaker" for initiation and propagation of limbic seizures. This is 

supported by the finding that cells of area CA3 possess a low seizure threshold 

(Schwartzkronin and Prince, 1978) . Cells in this area of the brain are also the 

first to show an increase in metabolic activity in the early stages of seizure 

activity (Nadler et al., 1981). It is believed that heavy projections from the 

hippocampus to the lateral septum are the first efferent projections activated 

(Figure 15; bold lines). This correlates with behavioral manifestations of 

staring in the initial stages of seizure generation (Swanson and Cowan, 1977). 

The second stage of limbic seizures is thought to involve non-hippocampal 

limbic centers including the entorhinal cortex, the amygdala, subiculum, and 

medial/lateral septum. Increase in glucose utilization and detection of 
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electrical activity in these areas correlate with automatisms and mild limbic 

convulsions. The third stage of limbic seizures is characterized by head¬ 

bobbing followed by bilateral fore-limb clonus and complete tonic-clonic 

convulsions. During this stage, electrical activity and increased deoxyglucose 

utilization have been recorded both in limbic and extralimbic areas as well as 

on surface EEG leads. It is believed that propagation of seizure activity to 

these areas is along higher-order axons from secondary centers. The 

substantia nigra, midline thalamic nuclei and some paralimbic (olfactory, 

perirhinal, periamygdaloid and cingular) cortical sites become activated. 
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Figure 15 
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Figure 15: Anatomic basis and pathway of kainic acid induced limbic seizures 

The hippocampus is considered the principal brain area and its 

afferent (dashed lines) and efferent (bold lines) are shown. Input to 

the hippocampus is shown on the left and output is shown on the 

right. During the first stage of limbic seizures, the hippocampus 

and lateral septum are selectively activated and the behavioral 

response (lower part) is staring, when epileptic activity extendes to 

non-hippocampal limbic areas (entorhinal cortex, amygdala, 

subiculum and medial septum) mild limbic convulsions develop. 

With extension along synaptic pathways from these secondary 

limbic centers, extra-limbic centers are activated and severe limbic 

convulsions appear. (Adapted from Lothman and Collins, 1981). 
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CONCLUSION 

Summary of findings: 

1) Impairment of Na+/K+ pump capacity reduces neuronal survival of 

excitatory stimuli in vivo. Thus kainate (5 mg/kg; ip) or ouabain (1 mg/kg; 

i.p) do not typically cause seizures or neuronal injury in animals. However, 

kainate (5 mg/kg; i.p.) combined with ouabain (3 nmoles; i.c.v) reliably 

induces seizure activity and neuronal injury in rat hippocampus. Similarly, 

ouabain (1 mg/kg; i.p.) or kainate (7 mg/kg; i.p.) do not ordinarily induce 

seizures or neuronal injury in animals; however, a combination of these 

treatments induces seizures and hippocampal damage. A strong association 

was observed between Na+/K+ pump inhibition and kainate treatment in 

producing seizures and subsequent neuronal damage. Thus, when ouabain 

(3nmoles; i.c.v) is delayed (90 min instead of 30 min) after kainate (5 mg/kg; 

i.p.) seizure onset is also delayed and the duration of seizures is reduced, 

although latency to seizure onset after ouabain injection remains unchanged. 

2) Treatment with the combination of kainate and ouabain induces a 

seizure syndrome and neuropathology similar to human TLE. The following 

features are produced: 

A. Acute limbic seizures originating from the hippocampus. 

B. Spontaneously recurring chronic seizures beginning 14 - 30 days (n 

=3) after initial treatments. 

C. Damage to hippocampal cells in a pattern reminiscent of the human 

pathology. 
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D. Hippocampal remodeling in the form of mossy fiber sprouting into 

the dentate gyrus. 

In conclusion, impairment of Na+/K + pump capacity decreases 

neuronal ability to survive excitatory activity and a pathology is produced 

that closely replicates human TLE. To the best of our knowledge, this is the 

first report of an animal pathology of human TLE produced by the method 

described herein. This model has been termed the ouabain-potentiated, 

kainate (OPK) model of TLE. 

Clinical relevance: 

Our observation with direct pharmacological reduction of rat total 

Na + /K+ pump capacity has implications for human disease, since cardiac 

glycosides are widely used to treat congestive heart failure and cardiac 

arrhythmia. Although these drugs penetrate the CNS poorly, neurological 

manifestations are nonetheless side-effects of treatment (Cooke, 1993). In 

contrast to rodent isoforms, all three human isoforms of the Na+/K+pump 

possess high affinity binding for cardiac glycosides (Sweadner, 1989). Thus, 

neurotoxic threshold for glycosides may be much lower for human than for 

rodents. Epileptic patients in treatment for cardiac disease with glycosides 

may be particularly vulnerable to this potential complication, as Na+/K+ 

pump activity may already be reduced in these patients (Grisar and Delgado- 

Escueta, 1986; Brines et al., 1995) 

Finally, results of the present study are consistent with existing 

evidence suggesting that Na+/K+ pump capacity may be insufficient or 

comprised in the epileptic hippocampi (Grisar, 1984; Lees, 1991; Brines et al., 

1995). Thus, it can be hypothesized that seizure generation and the sequelae 

of neuronal injury may be prevented or ameliorated by upregulating Na+/K+ 
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pump capacity in the hippocampus. Some evidence exist to suggest that 

Na+/K+ pump expression can be modulated both in vitro and in vivo. Mata 

and coworkers have demonstrated that prolonged stimulation of 

hypothalamic neurons leads to isoform specific up-regulation of Na+/K+ 

pump mRNA (Mata et al., 1980). Such isoform-specific upregulation of 

Na+/K+ pump capacity have also been reported for CA1 and CA4 pyramidal 

cells exposed to the mineralocorticoid, aldosterone (Farman et al., 1994). Also, 

up-regulation of neuronal Na+/K+ pump activity by treatment with insulin 

and insulin like growth factors (IGF) has recently been reported. This 

upregulation was associated with increased survival of glutamate toxicity in 

vitro (Swanson and Choi, 1993). This last finding suggest that further study of 

Na+/K+ pump regulation may lead to methods of ameliorating or preventing 

the hyperexcitability and neuronal damage intrinsic to the pathology of 

human epilepsy. 
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