
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

1984

Modulation of the metabolism and cytotoxicity of
thiopurines in L1210 cells by methotrexate
pretreatment
Paul M. Snyder
Yale University

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Snyder, Paul M., "Modulation of the metabolism and cytotoxicity of thiopurines in L1210 cells by methotrexate pretreatment" (1984).
Yale Medicine Thesis Digital Library. 3183.
http://elischolar.library.yale.edu/ymtdl/3183

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/3183?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3183&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu






Digitized by the Internet Archive 
in 2017 with funding from 

The National Endowment for the Humanities and the Arcadia Fund 

https://archive.org/details/modulationofmetaOOsnyd 









MODULATION OF THE METABOLISM AND CYTOTOXICITY OF 

THIOPURINES IN L1210 CELLS BY METHOTREXATE PRETREATMENT 

Paul M. Snyder 

A thesis submitted to 

The Yale University School of Medicine 

in Partial Fulfillment of the Requirements 

For the Degree of Doctor of Medicine 

- 1 - 



COfcd ub- 



Acknowledgments 

I would like to thank all the members of the Cadman lab for their help, 

instruction and encouragement, especially Joan Gesmonde for technical assistance, 

and Hillary Raeffer for typing. Dr. R. Douglas Armstrong was especially patient 

and helpful in the design, execution, and documentation of these experiments. 

Finally, I am very grateful to Dr. Ed Cadman for his unswaying encouragement, 

generosity and patience, as well as his skill and commitment to teaching. 

- 2 - 





Table of Contents 

Page 

Introduction 4 

Materials and Methods 5 

Chemicals 5 

Cells 5 

Cloning 6 

6-TG Metabolism 6 

Cesium Sulfate Gradients 7 

Results 8 

Cytotoxicity 8 

Cellular Uptake of 6-TG 9 

Metabolism of 6-TG 10 

Incorporation of 6-TG into RNA and DNA 10 

Discussion 11 

References 15 

Table 16 

Figure Legends 17 

- 3 - 





Introduction 

Methotrexate (MTX) and 6-thioguanine (6-TG) are antimetabolites used both 

singly and in combination for the treatment of various forms of leukemia and other 

neoplasms (1,2). The mechanism of action of MTX has been extensively 

investigated. By inhibition of the cellular enzyme, dihydrofolate reductase, MTX 

causes a depletion of reduced folates which are necessary for a number of 

biosynthetic reactions including de novo purine and thymidylic acid synthesis (1); 

Figure 1 illustrates this effect. In the cell this depletion of the thymidine and 

purine deoxynucleotides leads to suppression of DNA synthesis and ultimately to 

cell death. If cells are provided with an exogenous source of purines such as 

inosine or hypoxanthine and with exogenous thymidine, the cytotoxicity of MTX is 

circumvented. Another indirect metabolic consequence of MTX treatment is an 

increase in the intracellular concentration of phosphoribosylpyrophosphate (PRPP) 

due to the suppression of purine biosynthesis. By itself, the expansion of PRPP 

pools is of little consequence, but it can increase the rate of metabolism of other 

molecules which utilize PRPP as a cofactor. In the case of 5-fluorouracil (FUra), a 

cytotoxic agent which is activated by conversion of FUra to FUra-ribosephosphate 

using PRPP and ©rotate phosphoribosyltransferase, it has been shown that 

pretreatment of cells with MTX leads to increased activation of FUra and 

enhanced cytotoxicity (3,4). Thus MTX treatment, in addition to its inherent 

toxicity, can metabolically increase the effectiveness of certain other agents 

leading to synergistic cytotoxicity. 

The mechanism of 6-TG toxicity is much less well established. It is 

converted in the cell to 6-TG ribosephosphate (6-TGRP) by the enzyme 

hypoxanthine-guanine phosphoribosyltransferase using PRPP as the cofactor; this 
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conversion is apparently necessary for the cytotoxic action of 6-TG. While 

6-TGRP has been shown to inhibit a number of enzymes involved in purine 

biosynthesis, it has been reported that the primary mechanism of cytotoxicity of 

6-TG is via its incorporation into DNA (5). Incorporation of 6-TG into RNA has 

been reported, but no connection between this incorporation and cell toxicity has 

been shown. Since 6-TG, like FUra, is activated by reacting with PRPP(1,2), it 

seemed possible that 6-TG and MTX might have a synergistic interaction analogous 

to that already demonstrated between MTX and FUra. 

The present study characterizes cytotoxic and metabolic interactions 

between MTX and 6-TG in L1210 mouse leukemia cells in culture. It is shown that 

there is indeed a modulation of 6-TG activity by MTX. 

Materials and Methods 

Chemicals. (^C)6-TG was purchased from Moravek Biochemicals (City of 

Industry, CA). MTX was purchased from Lederle Laboratories (Wayne, NJ). All 

other biochemicals were obtained from Sigma Chemical Co. (St. Louis, MO). 

Tissue culture supplies (unless otherwise designated) were obtained from Gibco 

Laboratories (Grand Island, NY). 

Cells. L1210 murine leukemia cells were maintained in suspension culture with 

Fischer's medium supplemented with 10% heat-inactivated horse serum at 37°C in 

a 5% CO2 atmosphere. All experiments were performed using logarithmically 

growing cells (1 to 5 x 10^ cells/ml) which had been initially seeded at 1 to 3 x 10^ 

cells/ml. Cell density was determined with the use of a model ZBI Coulter Counter 

(Coulter Electronics, Hialeah, FL). 
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Cloning. Cell viability and drug toxicity were determined using the soft-agar 

cloning assay as described by Cadman et al. (3). Following the indicated single 

drug exposure to logarithmically growing cell cultures, the second drug was added 

for the specified time. The drug-containing medium was then removed after 

centrifugation at 1000 x g for 5 min at 37°C. The cells were resuspended in 

drug-free medium and recentrifuged as before. This washing procedure was 

repeated twice to remove any extracellular drug before cloning. Fifty cells 

contained in 2 ml of liquified agar 37°C and 3 ml of drug-free Fischer's medium 

plus 15% horse serum were pipetted into 10 ml culture tubes. The tubes were 

capped, placed in an upright position and incubated at 37°C in a 5% CC>2 

atmosphere. The amount of agar in the culture medium was 88 mg/100 ml; the 

consistency of this mixture allows cell growth without cell settling. Cells that 

remain viable after drug exposure, as defined by the capability to divide and 

produce progeny, will form individual cell colonies after 10 days of incubation. All 

clones were counted with an inverted microscope. Single cells, which can be 

visualized in suspension cultures were not observed in the cloning medium after the 

10 day incubation, indicating that all viable cells had developed into clones. The 

percent viability is the ratio of clones formed from drug-treated cultures to clones 

formed from untreated cultures, multiplied by 100. The cloning efficiency of 

L1210 cells in this system was 85 to 90%, All data shown are the mean of 

triplicate experiments performed on 3 separate occasions. The variation between 

experiments was less than 10%. Drug concentrations were measured by 

spectrophotometric analysis and drug solutions were prepared the same day of use. 

6-TG Metabolism. Cells were exposed to (^C)6-TG for time periods from 1 to 

180 min. At the specified time, iced saline containing 50 jjM dipyridamole was 

added; the cell pellet was immediately isolated by centrifugation and then 

disrupted by the addition of ice-cold 0.2 N HCIO^. To a tube which contained the 
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iced cells (^C)6-TG was added as a control to determine the amount of 

non-specific radioactivity that would persist during the following DNA and RNA 

isolation procedures. The acid-soluble fraction was isolated for HPLC analysis of 

intracellular 6-TG nucleotides. The RNA and DNA were isolated from the 

acid-precipitate as follows: The acid-precipitate was washed twice with iced 

0.2 N HCIO^, followed by the addition of 3 ml of 0.3 N NaOH to the washed pellet. 

The precipitate was then digested for 1 hour at 37°C. After cooling on ice, DNA 

and protein were precipitated by the addition of 300 pi 5.2 N HCIO^. Five hundred 

microliters of the isolated supernatant (containing the RNA fraction) was measured 

or radioactivity. This process was repeated twice to insure complete removal of 

all RNA from the remaining precipitate. Following removal of the RNA-containing 

supernatant, the precipitate was washed twice with iced 0.2 N HCIO^, resuspended 

in 3 ml of 0.5 N HCIO^, and incubated at 70°C for 30 min to solubilize the DNA 

fraction. After cooling on ice, the sample was centrifuged and 500 pM of the 

supernatant (containing the DNA fraction) was measured for radioactivity. The 

precipitate was then washed twice with 0.5 N HCIO^ and digested for 1 hour at 

70°C in 3 ml of 0.5 N KOH. Five hundred microliters of the supernatant 

(containing the protein fraction) was neutralized with 1 N HC1 and measured for 

radioactivity. Total RNA was quantitated by the orcinol reaction, and total DNA 

was quantitated by a standard diphenylamine procedure (6). HPLC analysis of acid- 

soluble pools was carried out on a SAX anion-exchange column using a 60 min 

linear gradient from 0.01 M potassium phosphate (pH 5.7) to 0.75 M potassium 

phosphate (pH 4.7). 

Cesium Sulfate Gradients. Incorporation of (^C)6-TG into nucleic acid was 

studied using the method of Kufe et al. (7) for quantitative separation of RNA and 

DNA by Cs^SO^ equilibrium gradient centrifugation. After the indicated drug 

exposures to exponentially growing cultures, iced saline containing 50 pM 
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dipyridamole was added and the cell pellet was isolated by centrifugation. Cells 

were resuspended at a density of 10^ cells/ml in PBS, and 1 ml of the suspension 

was added to 2 ml of a solution containing 1.25 mg/ml pronase B (self-digested for 

15 min at 37°C), 0.01 M Tris, pH 7.4, 1 mM EDTA, and 0.5% SDS. The mixture was 

allowed to digest for 3 hours at 37°C and the total nucleic acid was isolated by 3 

cycles of phenolchloroform extraction. Nucleic acid was precipitated at -20°C 

overnight in 2 volumes of absolute ethanol in 0.4 m NaCl. The pellet isolated by 

centrifugation was resuspended in 0.5 ml of 10 nM Tris, pH 8.0, 10 mM EDTA; and 

equal volume of formamide was added and the mixture was incubated 15 min at 

80°C. To the mixture was then added 4.14 ml saturated Cs2SO^, 3.36 ml 5 mM 

EDTA; the resulting solution was then centrifuged in a Beckman 50 Tri rotor at 

40,000 rpm for at least 60 hours. The gradients were collected in about 50 

fractions of equal volume from the bottom of the tube; the trichloroacetic 

acid-precipitable material in each fraction was collected using a MASH 

multi-sample processor (Microbiological Associates, Walkersville, MD) and the 

radioactivity measured in a Packard Tricarb liquid scintillation spectrometer. 

Results 

Cytotoxicity. The cytotoxicity of 6-TG alone and in combinations with MTX was 

studied and the results are summarized in Figure 2. This graph shows the clonal 

growth of L1210 mouse leukemia cells following either a 3 hr exposure to 6-TG, a 

3 hr exposure simultaneously with 1 pM MTX and 6-TG, or a 3 hr exposure to 6-TG 

following a 3 hr pretreatment with 1 pM MTX. Treatment with 1 pM MTX alone 

for 3 hr resulted in a 52% inhibition of clonal growth compared to control, as 

depicted in Figure 2 by the horizontal dotted line. Exposure of L1210 cells to 6-TG 
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for 3 hr led to a dose-dependent inhibition of clonal growth with an LD^q of 

0.8 jjM. Pretreatment of cells for 3 hr with 1 pM MTX followed by a 3 hr 

treatment with 6-TG resulted in a synergistic inhibition of clonal growth at all 

concentrations tested; the LD^q for 6-TG was about 10 nM with 1 pM MTX 

pretreatment. In contrast, when L1210 cells were exposed simultaneously to 6-TG 

and 1 pM MTX for 3 hr, there was no enhancement of 6-TG cytotoxicity. At low 

concentrations of 6-TG (1-10 nM), the inhibition of clonal growth was at best 

additive; at higher concentrations of 6-TG (0.1-1 pM), the 1 pM MTX was actually 

antagonistic to 6-TG cytotoxicity. Thus, the modulation of 6-TG cytotoxicity can 

be either positive or negative. When 6-TG exposure follows MTX pretreatment, 

there appears to be a synergistic enhancement of 6-TG cytotoxicity, but with 

concurrent MTX and 6-TG exposure there is an apparent negative modulation or 

antagonism of 6-TG cytotoxicity. 

Cellular Uptake of 6-TG. To determine the effect of MTX pretreatment on total 

cellular uptake of 6-TG into acid-soluble intracellular pools, cells were exposed to 

1 pM (^C)6-TG either with or without pretreatment of the cells with 1 pM MTX; 

samples were removed from each culture at times ranging from 1 to 150 min, and 

the PCA-soluble radioactivity was determined as described in Methods. The 

results, normalized to the amount of ribose (as RNA) in the acid-precipitable 

fraction of each sample, are shown in Figure 3. The uptake of (^C)6-TG into 

L1210 cells is rapid, with apparent equilibration of the acid-soluble pool in less 

than five minutes; since the only earlier sampling was at one minute, no statement 

can be made comparing the relative rates of 6-TG uptake in MTX-pretreated 

versus control cells. There was a small difference in the steady-state 

concentration of 6-TG in acid-soluble intracellular pools. It is important to keep 

in mind that the acid-soluble fraction contains not only free 6-TG but all the small 

metabolites of 6-TG, including 6-TG nucleotides. MTX-pretreated cells had a 
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steady-state level of about 2.9 pmol 6-TG per pmol cellular RNA ribose, compared 

to about 2.5 pmol 6-TG per pmol cellular RNA ribose in control cells. 

Metabolism of 6-TG. As demonstrated above, MTX pretreatment resulted in 

increased uptake of 6-TG into the acid-soluble fraction. The composition of the 

acid-soluble pools was further characterized by HPLC analysis as follows. Cells 

were exposed to 0.5 pM ( C)6-TG for 60 min with and without a 3 hr pretreatment 

with 1 pM MTX. The acid-soluble fraction of the cells was isolated and anlayzed 

using HPLC as described in Methods. This allowed determination of the 

intracellular levels of free 6-TG as well as the mono-, di-, and triphosphate 

metabolites. These results are shown in Table 1. While the intracellular 

concentration of free 6-TG was almost identical in MTX-pretreated and control 

cultures, there was a substantial difference in the levels of nucleotide metabolites. 

TGMP, TGDP, and TGTP levels were all higher in MTX-pretreated cells than in 

control cells. The total 6-TG nucleotide concentration, in pmol per 10^ cells, was 

2,40 in the MTX-pretreated culture, compared to 1.55 in the control cells. MTX 

pretreatment appears to result in an enhancement of the intracellular conversion 

of 6-TG into its nucleotide derivatives. 

Incorporation of 6-TG into RNA and DNA. The effect of MTX on 6-TG 

incorporation into cellular nucleic acids was investigated. Two standard methods 

were used to quantitate the relative incorporation of 6-TG into RNA and DNA. 

The first method distinguished RNA and DNA incorporation on the basis of 

differential hydrolysis by mild alkaline and hot acid conditions. The second 

method, used to confirm the results obtained by the chemical procedure, separated 

DNA from RNA using cesium sulfate density gradients (see Methods). Figure 4 

shows the time course of incorporation of ( C)6-TG into RNA, with and without a 

3 hr pretreatment with 1 pM MTX, using the chemical method. As expected from 

the higher levels of 6-TG nucleotides measured in MTX-pretreated cells, there was 
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14 
a marked increase in the rate of ( C)6-TG incorporation into RNA when cells 

were pretreated with 1 pM MTX. The effect of MTX pretreatment on 6-TG 

incorporation into DNA was quite different. There is a dramatic suppression of 

6-TG incorporation into DNA after a 3 hr pretreatment with 1 pM MTX, as shown 

in Figure 5. 

The results obtained in experiments of similar design which used cesium 

sulfate equilibrium density gradients as the technique for separating RNA from 

DNA are shown in Figures 6 and 7. The results are qualitatively similar to those 

obtained by the differential hydrolysis procedure: MTX pretreatment at 1 pM for 

14 
1 hr leads to enhanced incorporation of ( C)6-TG into RNA while suppressing 

incorporation of (^C)6-TG into DNA. While there are quantitative differences in 

the results which are probably attributable to the inherent differences in the 

technique, there is good qualitative agreement. This lends independent support to 

the conclusions drawn using the other technique. 

Discussion 

These experiments have demonstrated that MTX can modulate the cytotoxic 

activity of 6-TG in mouse L1210 cells, and that this modulation depends on the 

schedule of drug administration. By characterizing some of the biochemical 

interactions of MTX and 6-TG in L1210 cells, these studies provide evidence for 

the metabolic basis of the drug interaction and suggest a mechanism to explain the 

synergistic cytotoxicity found under some conditions. 

Pretreatment of L1210 cells with MTX synergistically enhanced the cytotoxic 

activity of 6-TG as measured by the soft-agar cloning assay. The same MTX 

pretreatment was found to result in somewhat increased uptake of 6-TG into cells, 
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increased conversion of free 6-TG to 6-TG nucleotides, and markedly increased 

incorporation of 6-TG into RNA. Simultaneous treatment with MTX and 6-TG 

resulted in an antagnostic interaction between the drugs. An analogy can be drawn 

between these results and those already reported describing the interaction 

between MTX and 5-FU (3,4,8). The cytotoxicity of 5-FU is synergistically 

enhanced by MTX pretreatment of murine LI210, human colorectal tumor line 

HCT-8, and human breast carcinoma line 47-DN (3,8); in L1210 cells, simultaneous 

MTX and FUra treatment antagonizes the FUra cytotoxicity. It was shown (4) that 

the enhanced FUra toxicity in MTX-pretreated cells was due to increased 

intracellular levels of PRPP, the co-substrate of orotate-phosphoribosyltransferase 

which activates FUra in the cells; the increased availability of PRPP leads to 

enhanced activation of FUra to FUra-nucleotides and thus greater cytotoxicity. A 

3 hr treatment wtih 1 pM MTX, the regimen used in these experiments, was found 

to result in a 4- to 5-fold expansion of PRPP pool size; this was associated with a 

marked increase in the level of FUra-nucleotides and in the rate of FUra 

incorporation into RNA. These experiments with 6-TG are less complete in a 

number of ways, but nevertheless they demonstrate important points. The effect 

of a varying MTX dose on cytotoxicity or on the various biochemical parameters 

was not examined; we cannot say that the dose of 1 pM was optimal or that the 

pretreatment interval of 3 hr was ideal for modulation of 6-TG activity. 

Therefore, a dose-response relationship has not been established between MTX 

pretreatment (thus by inference cellular PRPP levels) and cellular 6-TG nucleotide 

levels or 6-TG incorporation into RNA. Noteworthy, however, is the recent 

report (9) of other work in this laboratory that a 3 hr exposure of L1210 cells to 

1 uM MTX increased intracellular PRPP levels from 4.1 to 125 ngm/10^ cells. This 

demonstrates a correlation between elevated PRPP levels and the increased 

activation of 6-TG, reported here, following pretreatment for 3 hrs with 1 pM 
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MTX. In the present report, 6-TG concentration was held constant in all 

experiments except the cytotoxicity assays, so the effect of varying 6-TG 

concentration or treatment interval is not known. These provisos notwithstanding, 

we have demonstrated schedule-dependent modulation of 6-TG activity by MTX 

and have provided strong evidence that the mechanism of modulation is analogous 

to that more thoroughly worked out for the MTX-FUra interaction. 

It is less clear what is the biochemical basis for 6-TG cytotoxicity. It has 

been reported (5) that the toxic effects ot 6-TG derive from its incorporation into 

cellular DNA. The results of the present study, while not conclusive, suggest that 

6-TG incorporation into RNA, rather than DNA, is the most important event 

contributing to drug toxicity. Both the selective hydrolysis and the cesium sulfate 

gradient techniques gave the result that, under conditions where MTX potentiates 

the cytotoxic effects of 6-TG, there is a marked increase in the rate of 

incorporation of 6-TG into RNA and a dramatic suppression of 6-TG incorporation 

into DNA. It is possible that incorporation of abnormal bases into RNA could cause 

alterations in RNA function. This type of effect has been observed with other 

antimetabolites such as 5-azacytidine and FUra (10,11), though the contribution of 

6-TG incorporation into RNA to cytotoxicity has not been previously established. 

While the increased 6-TG incorporation into RNA is understandable in terms of 

elevated levels of 6-TG nucleotides, the decreased incorporation of 6-TG into DNA 

is not as simple to explain. The suppression may, at least, be partly due to the 

inhibition of DNA synthesis caused by MTX; only direct measurements of the rate 

of DNA synthesis will reveal whether the differential rate of 6-TG incorporation 

into DNA is altered by MTX treatment. It is also interesting to note that 6-TGRP 

has been reported to inhibit several enzymes involved in de novo purine 

biosynthesis (2). This could provide an explanation not only for the decreased 

incorporation of 6-TG into DNA but also for a synergistic cytotoxicity with MTX 
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and 6-TG. The present experiments have not addressed this issue, and further work 

will be needed to clarify the relative contributions of the various effects of 6-TG 

to the ultimate lethality of the drug treatment. 
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Table 1 

Metabolism of 6-TG to 6-TG-Nucleotides 

L1210 cells both with and without pre-exposure to 1 pM MTX were exposed 

14 
to 0.5 pM ( C)6-TG for 60 min, and the cellular levels of 6-TG and 6-TG- 

nucleotides determined as described under "Materials and Methods."^ 

pmol/10^ cells Total 
Drug 6-TG TGMP TGDP TGTP Nucleotide 

6-TG 3.43 0.90 0.28 0.37 1.55 

MTX-+6-TG 3.36 1.60 0.32 0.48 2.40 

Results are representative of 4 separate experiments. The variation 
between experiments was less than ten percent. 
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Figure Legends 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

The effect of methotrexate (MTX) on purine synthesis and 

5-fluorouracil (5-FU) metabolism. Because of the depleted folates, 

purine synthesis ceases allowing the phosphoribosylpyrophosphate 

(PRPP), which would have been utilized for de novo purine biosynthesis, 

to be used for the conversion of 5-FU to 5-FUMP. 

Cytotoxicity of 6-TG in L1210 cells. L1210 leukemia cells were 

exposed for 3 hr to 6-TG either alone (•), simultaneously with 1 pM 

MTX (A), or following a 3 hr pre-epxosure to 1 pM MTX (o), and 

percent clone growth determined. Clonal growth of cells exposed to 

1 pM MTX alone for 3 hr is illustrated by the dotted line. Results 

represent the mean of 4 separate experiments. 

Accumulation of 6-TG in intracellular acid-soluble pools. L1210 cells 

were exposed to 1 pM (^C)6-TG for 1 to 180 minutes and the acid- 

soluble intracellular radioactivity measured. Cells were exposed either 

to 6-TG alone (•) or 6-TG following a 3 hr pretreatment with 1 pM 

MTX (o). Results are representative of 4 separate experiments. 

Incorporation of 6-TG into RNA: selective hydrolysis assay. L1210 

cells were exposed to 1 pM (^C)6-TG for 1 to 180 minutes and alkali- 

hydrolyzable, PCA-precipitable radioactivity determined (see Methods). 

Cells were exposed to 6-TG alone (•) or to 6-TG following a 3 hr 

pretreatment with 1 pM MTX (o). Results are representative of 4 

separate experiments. 
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Fig. 5 Incorporation of 6-TG into DNA: selective hydrolysis technique. LI210 

cells were exposed to 1 pM (*^C)6-TG for 1 to 180 minutes, and PCA- 

precipitable, hot acid-hydrolyzable radioactivity determined (see 

Methods). Cells were exposed to 6-TG alone (•) or to 6-TG following a 

3 hr pretreatment with 1 pM MTX (o). Results are representative of 4 

separate experiments. 

Fig. 6 Incorporation of 6-TG into RNA: cesium sulfate gradient technique. 

L1210 cells were exposed to 1 pM (^C)6-TG for 10 to 180 minutes, the 

nucleic acid isolated and separated into DNA and RNA fractions by 

cesium sulfate density gradient centrifugation, and the corresponding 

radioactivity determined (see Methods). Cells were exposed either to 

6-TG alone (•) or to 6-TG following a 3 hr pretreatment with 1 pM 

MTX (o). 

Fig. 7 Incorporation of 6-TG into DNA: cesium sulfate gradient technique. 

L1210 cells were exposed to 1 pM (^C)6-TG for 10 to 180 minutes, the 

nucleic acid isolated and separated into DNA and RNA fractions by 

cesium sulfate density gradient centrifugation, and the corresponding 

radioactivity determined (see Methods). Cells were exposed to either 

6-TG alone (#) or to 6-TG following a 3 hr pretreatment with 1 pM 

MTX (o). 
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5FU Purine Synthesis 
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