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ABSTRACT 

EFFECTS OF CALCIUM CHANNEL BLOCKADE 

ON 

CATECHOLAMINE CARDIOMYOPATHY 

Virginia Shau Shen Huang 

1985 

The catecholamines have long been known to cause car¬ 

diac injury when delivered in high concentrations. Patho¬ 

genetic mechanisms have been much debated and remain unre¬ 

solved. Those receiving most attention include ischemic 

injury resulting from coronary vasoconstriction or excessive 

metabolic demand, and direct membrane injury causing break¬ 

down of critical ion exchange mechanisms. Excessive calcium 

accumulation within the myocyte is frequently found and 

viewed as a lethal consequence of this process. Whether it 

is causal, or the result of other pathways leading to mem¬ 

brane damage is presently unresolved. To provide further 

insight into the role of calcium exchange as a significant 

factor in myocyte injury, experiments were undertaken to 

determine if a recognized calcium channel blocking agent 

(verapamil) was capable of altering the pattern of myocar¬ 

dial damage known to result from norepinephrine administra¬ 

tion in a rabbit model. 
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New Zealand white rabbits were anesthetized with pen¬ 

tobarbital (30 mg/kg), and cannulas placed in the femoral 

artery and vein. They were then subjected to various 90 

minute infusion protocols. These included norepinephrine, 2 

or 3 ug/kg/min (NE-2, NE-3). Other groups were given a 50 

ug loading dose of verapamil (VE), followed by infusions of 

NE-2 or NE-3 with concomitant infusions of verapamil, 1 or 2 

ug/kg/min (VE-1, VE-2). Two to three days later, the rab¬ 

bits were sacrificed, the hearts examined microscopically 

and assigned a histologic score. Administration of verapa¬ 

mil simultaneously with norepinephrine significantly reduced 

the histologic injury score from 1.24 _+ 0.10 (NE-2) to 0.59 

+ 0.13 (NE-2 + VE-1, p<0.01) and 0.65 + 0.10 (NE-2 + VE-2, 

p<0.01). VE-2 infusion was also protective against a higher 

dose of norepinephrine at 3 ug/kg/min (NE-3), reducing the 

histologic score from 1.44 + 0.13 (NE-3) to 0.69 + 0.21 (NE- 

3 + VE-2, p<0.01). A higher dose of verapamil did not 

result in a substantial increase in protection as the histo¬ 

logic scores of the VE-1 and VE-2 groups were not signifi¬ 

cantly different. Administration of verapamil did not sub¬ 

stantially lower the pressure-rate product (an index of 

metabolic demand) during norepinephrine infusion nor did it 

significantly diminish the norepinphrine-induced rise in 

systemic blood pressure. Thus, afterload reduction was not 

a significant mechanism. Arterial pH, arterial blood gases, 

plasma glucose, and hematocrit were unaltered by verapamil 
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infusion. It is concluded that verapamil significantly 

reduces myocardial damage produced by norepinephrine infu¬ 

sion in the rabbit and the mechanism of protection probably 

does not involve verapamil-induced reductions in afterload 

or cardiac metabolic demand. Verapamil may act by preven¬ 

tion of norepinephrine-induced coronary vasoconstriction, 

inhibition of myocardial alpha receptor activation, or pre¬ 

vention of lethal calcium accumulation within the myocyte. 
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INTRODUCTION 

It has been known since the early 1900's that catechol¬ 

amines can injure the heart. The agents that have been 

studied most extensively are epinephrine, norepinephrine, 

and isoproterenol. Epinephrine was the first one to be 

found to have cardiotoxic effects. In his review of cate¬ 

cholamine-induced cardiomyopathy, Haft (1) describes a clas¬ 

sic 1905 study in which Ziegler (2) found intramyocardial 

hemorrhage, edema, patchy areas of myofibrillar damage, 

round cell infiltration, and proliferation of fibrous tissue 

in the hearts of rabbits injected with epinephrine. Fleisher 

and Loeb (3) in 1909 produced myocarditis in the rabbit with 

epinephrine alone or in combination with sparteine or caf¬ 

feine. Similar cardiac lesions were reported by Christian 

et al in 1911 in studies involving the effects of epineph¬ 

rine injections on the production of renal and cardiac 

injury (4). 

Following these earlier studies, numerous investigators 

have been able to confirm the cardiotoxicity of epinephrine 

(5-10). It is interesting to note that although the pharma¬ 

cological properties of norepinephrine were described by 

Barger and Dale in 1910 (11), and its presence in tissues 

demonstrated in 1946 when Von Euler (12) isolated it from 

adrenergic nerve fibers, it was not until 1958 that norepi¬ 

nephrine was demonstrated to be cardiotoxic. Szakacs et al 

(13) infused norepinephrine into dogs and found large suben¬ 

docardial and myocardial hemorrhages in both ventricles, the 

right atrium, and the mitral valve. There were also multi- 
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pie focal lesions without apparent preferential distri¬ 

bution. The myocardial lesions were identical to those 

caused by epinephrine in rabbits and manifested edema, endo¬ 

cardial fibroblastic proliferation, degenerating myofibrils, 

and cellular infiltration (3,4). The cardiotoxic effects of 

norepinephrine infusion were further documented by Maling 

(7,14) in 1958 and 1960. They found fatty changes in the 

myocardium of dogs one to three days after infusion with 

norepinephrine. Focal necrosis, hemorrhages, and round cell 

infiltration of the myocardium were also present. Nahas (6) 

found in 1958 that infusions of norepinephrine in heart-lung 

preparations of dogs which isolated the heart from all 

secondary or neural influences caused extensive degeneration 

and hemorrhagic lesions of the myocardium, cardiac valves, 

and the appearance of coronary lesions. Rosenblum et al in 

1965 (9) reported that three consecutive intraperitoneal in¬ 

jections of norepinephrine made at 24 hour intervals pro¬ 

duced interstitial edema and mononuclear cell infiltration 

that was less severe than damage caused by isoproterenol at 

comparable doses. 

Schenk and Moss (15) in 1966 infused norepinephrine 

into dogs, cats, and rabbits with doses comparable to those 

used clinically and found cardiac lesions in all the ani¬ 

mals. These consisted of focal degeneration and necrosis of 

myofibers and subendocardial hemorrhages. Rabbits were most 

susceptible while dogs were the least susceptible to the 

development of cardiac lesions. The authors were also able 

to establish dose-response relationships. 

Similarly, Hoak (16) in 1969 found that intravenous 
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infusions of norepinephrine for six hours in dogs produced 

elevated plasma free fatty acid (FFA) concentrations and 

hemorrhagic lesions in the subendocardial portions of the 

left ventricle with areas of myofibrillar necrosis, edema, 

and polymorphonuclear infiltration. Electron microscopy 

showed extensive destruction of myofibrils and mitochondria 

and the presence of osmiophilic inclusions within the mito¬ 

chondria . 

Shortly after norepinephrine was discovered to be car- 

diotoxic, Chappel and Rona et al (17) demonstrated in 1959 

that isoproterenol, a synthetic adrenergic agent, adminis¬ 

tered subcutaneously to the rat caused infarct-like myocar¬ 

dial necrosis and that the severity of the lesions was 

directly proportional to the damage. Thus lesions of pre¬ 

dictable severity could be produced. They also showed that 

the lesions seen after isoproterenol treatment were more 

severe than those produced by epinephrine and norepinephrine 

(8). The synthetic and exogenous isoproterenol has since 

then been used extensively in studies of catecholamine- 

induced cardiomyopathy (18-26). 

Excess catecholamines secreted in stressful situations 

or in pheochromocytomas have been shown to result in myocar¬ 

dial damage. Szakacs and Cannon (13) found in 1958 that 

patients who received prolonged norepinephrine infusions for 

shock, and patients with pheochromocytoma had similar car¬ 

diac lesions to those produced in the dog by prolonged 

norepinephrine infusions in amounts comparable to therapeu¬ 

tic dosages. The lesions consisted of focal myocardial ne- 
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crosis, inflammatory exudate, and epicardial hemorrhage. 

Kline (26) in 1961 reported autopsy findings from pa¬ 

tients with pheochromocytomas and found that these myocar¬ 

dial lesions resembled those in experimental animals treated 

with norepinephrine. These consisted primarily of severe 

degenerative changes in groups of muscle fibers, foci of 

necrosis, and chronic interstitial inflammatory exudation. 

Van Vliet et al (27) in 1966 compared autopsy findings 

of patients with pheochromocytomas and those produced by a 

series of subcutaneous injections of norepinephrine in rats. 

Fifteen of twenty-six patients manifested "active catechol¬ 

amine myocarditis". The lesions were characterized by focal 

degeneration and necrosis of myocardial fibers with foci of 

inflammatory cells that were predominantly histiocytes, but 

also included plasma cells and occasional polymorphonuclear 

leukocytes. Diffuse edema of the myocardium was also found. 

The focal inflammatory lesions were most numerous in the 

inner two-thirds of the myocardium and most often appeared 

around small vessels. They were also found in the rest of 

the heart but in fewer numbers. Of the eleven patients who 

did not have active myocarditis, eight exhibited patchy 

myocardial fibrosis. Two showed marked myocardial fibrosis 

similar in appearance and distribution to the fibrosis of 

those with active myocarditis. This pattern was remarkably 

similar to that found in rats. All of the animals that died 

or were killed within five days of the initial injection of 

norepinephrine had active myocarditis. Fifteen of twenty- 

seven rats killed after three, four, and eight weeks showed 

increased amounts of fibrous tissue which was present focal- 
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ly around vessels, primarily in the inner two-thirds of the 

left ventricular myocardium. 

Stress is another example in which there is excess 

endogenous catecholamines. It is well established that all 

types of stress, e.g., physical, emotional, or sensory, 

result in increased plasma catecholamines concentration 

secondary to sympathetic activation (28). The major early 

experimental studies of Selye showed that various types of 

stress such as prolonged restraint, caloric, surgical, and 

bacteriotoxic stress, vagotomy, and injection of norepineph¬ 

rine or epinephrine elicited the same type of cardiac necro¬ 

sis in rats that had been preconditioned with corticoste¬ 

roids (29) . 

Raab was one of the major investigators in stress- 

induced cardiomyopathy. In 1961, he confirmed Selye's ob¬ 

servations that cardiac necroses occurred in rats pretreated 

with fluorocortisol and exposed to prolonged restraint, cold 

stress, or nicotine (known to release catecholamines), with 

the latter two being less effective in producing lesions 

(28). He also found that various antiadrenergic agents such 

as reserpine (catecholamine depleting), dibenamine (adrener¬ 

gic blocking), mecamylamine (ganglionic blocking), and 

chlorpromazine (centrally inhibiting), protected the heart 

muscle of rats preconditioned with corticosteroids from 

stress-induced cardiac necroses. Since all stressful situa¬ 

tions are accompanied by a reflex discharge of adreno- 

sympathogenic catecholamines, Raab postulated that the ex¬ 

cess amount of endogenous catecholamines was a common media- 
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tor in the pathogenesis of stress-induced myocardial lesions 

in animals preconditioned with corticosteroids. 

In a 1963 review of the literature concerning catechol¬ 

amines and myocardial necroses, Raab (30) cited studies 

which supported his theory. He noted that accumulation of 

catecholamines in heart muscle itself has been observed 

under direct stimulation of cardiac sympathetic nerves, 

stimulation of the midbrain, and under various catecholamine 

liberating stresses such as enforced exercise, cold expo¬ 

sure, insulin overdosage, or restraint. Also, direct elec¬ 

trical stimulation of the sympathetic nerves supplying the 

heart for several hours results in subendocardial hemor¬ 

rhages and necroses similar to those elicited by prolonged 

infusion of norepinephrine. 

Later animal studies showed that stress can induce 

myocardial lesions even in the absence of hormonal pretreat¬ 

ment. In 1964, Raab reported finding myocardial necrosis 

in 69% of wild rats exposed to frightening noises following 

periods of isolation (31). In contrast, myocardial lesions 

were elicited by emotional stress in only one-third to one- 

half of nonisolated, domesticated white rats even after 

pretreatment with corticosteroids. 

The cardiovascular system of the pig is considered to 

be more comparable to that of man than of other animals 

mainly used for cardiovascular research such as rats or dogs 

(32,33). Johansson et al (34) found that "restraint 

stress," i.e., prevention of escape behavior by injection of 

a myorelaxant while administering painful electric shocks, 

produced a severe cardiopathy which resulted in sudden death 
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in 13% of the animals. Subendocardial hemorrhages with 

fragmentation, granulation, and necrosis of the heart muscle 

cells, proliferation of histiocytes and fibroblasts, and 

slight polymorphonuclear infiltration developed within 24 to 

48 hours. The authors noted the similarity of the lesions 

to those induced by catecholamines. 

Cardiomyopathy could also be produced in pigs by the 

physical stress of high sustained positive G force as des¬ 

cribed by Mackenzie et al (35) in 1976. Examination of the 

stressed pig hearts showed myofibrillar degeneration, pool¬ 

ing of mitochondria, and cell death. Lesions occurred in 

random cells of the subendocardium and papillary muscles. 

Meerson (36) describes another experimental model in 

which emotional and painful stresses are induced as a rat 

waits intensely for painful electric shocks which it re¬ 

ceives at occasional intervals. Morphologically, he found 

complete contracture of the myocardial cells within 39 to 45 

hours. This was followed by muscle cell death with degener¬ 

ation and formation of fibroblastic ’’granulomas” in some 

cases, and the appearance of a cellular infiltrate around 

necrotic muscle fibers. 

Thus, stress cardiomyopathy has been described in the 

literature characterized by focal myocardial necrosis or 

myofibrillar degeneration. Specifically, the cardiac lesion 

in stressed animal experiments consists of scattered indivi¬ 

dual or small clusters of myocytes showing homogeneous eo¬ 

sinophilic transverse bands alternating with areas of fine 

granulation. This pattern has been termed myofibrillar 
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degeneration (37). While the studies cited above support 

the theory that stressful sensory and emotional stimuli 

might produce cardiomyopathy in laboratory animals, direct 

evidence in man is harder to obtain. Cebelin and Hirsch 

(38) in 1980 did a retrospective review of autopsy findings 

of homicide victims over 30 years in Cuyahoga County, Ohio 

and identified fifteen victims who died as a result of 

direct physical assault without sustaining internal inju¬ 

ries. Eleven showed cardiac changes (myofibrillar degener¬ 

ation) consistent with the "stress cardiomyopathy" that had 

been described in animal experiments. The authors inter¬ 

preted the data as being strongly supportive of the theory 

of catecholamine mediation of these myocardial changes in 

man and of the lethal potential of stress through its ef¬ 

fects on the heart. 

While the damaging properties of catecholamines have 

been extensively studied, the mechanism by which they result 

in myocardial injury is not well understood. One of the 

prominent theories postulates that high concentrations of 

catecholamines result in myocardial calcium overload with 

subsequent hypercontraction and myofibrillar necrosis (39). 

If this is correct, it seems reasonable to assume that 

administration of a drug which prevents entry of calcium 

into myocytes, such as one of the calcium channel blockers, 

should result in reduction of the injury. Calcium channel 

blockers are known to act as specific inhibitors of the slow 

transsarcolemmal calcium influx but do not (or only slight¬ 

ly) affect the fast sodium current that initiates normal 

myocardial excitation. In fact, Fleckenstein (40) has done 
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experiments in which he found that the calcium channel 

blocker, verapamil, reduces isoproterenol-induced myocardial 

necrosis. However, there have been few studies investigat¬ 

ing the effects of calcium channel blockers on the natural¬ 

ly-occurring catecholamines, epinephrine and norepinephrine. 

In this thesis, the possible protective effects of verapamil 

on norepinephrine-induced cardiomyopathy are examined. 
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PATHOLOGY 

The pathology of catecholamine-induced cardiomyopathy 

has been well characterized. Before the lesion is de¬ 

scribed, the normal myocardial ultrastructure will be re¬ 

viewed. Components of normal myocardium include: 1) cardiac 

muscle cells, 2) vascular elements - arterial, venous, and 

lymphatic vessels, and capillary network, 3) connective 

tissue cells - pericytes, fibroblasts, mast cells, primitive 

mesenchymal cells, and histiocytes, 4)neural elements, and 

5) extracelluar elements of connective tissue such as colla¬ 

gen fibers, elastic fibers, and connective tissue microfi¬ 

brils and proteoglycans. Within the cardiac muscle cells, 

sarcomeres form the functional units of contraction. Sarco¬ 

meres are attached end to end and packaged in myofibrils 

which are arranged parallel to the longitudinal axis of the 

cell. Alignment of the sarcomeres is responsible for the 

striated appearance of the myofibrils (Z-lines). Sarcomeres 

consist of A bands which contain myosin in the form of 

"thick” filaments, I bands containing actin in the form of 

"thin" filaments, and Z bands which contain alpha-actinin 

and other incompletely characterized proteins. The thick 

and thin filaments interdigitate so that each thick filament 

is surrounded by six thin filaments. The interaction of the 

thick and thin filaments constitutes the basis for the 

sliding filament mechanism of muscle contraction (41). 

Catecholamine-induced lesions are characterized by a 

particular form of cardiac cell necrosis termed myofibrillar 

degeneration by Reichenbach and Benditt (37). This consists 
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of clumping and disorganization of the cardiac myofibrils 

followed by degenerative changes in cell cytoplasm and min¬ 

eralization of mitochondria. The lesions are similar in all 

species (including man) and show little variation with the 

catecholamines used or route of administration (1). The 

nature of the lesion is determined by the amount of time 

that has elapsed between the administration of the drug and 

sacrifice of the animal. Severity and extent of the lesion 

varies directly with dose and rate of administration. 

On gross examination, focal and diffuse subendocardial 

hemorrhages are seen shortly after exposure to catechola¬ 

mines which are especially prominent in the left ventricle 

and papillary muscles (7,6,13,15,16). Myocardial hemor¬ 

rhages are also seen (13). The subendocardial and myocar¬ 

dial hemorrhages occur in both ventricles, right atrium, 

right atrial wall, and in the mitral valve (13). Hemorrhage 

has also been observed in the pericardium and subepicardium 

(13). Within 48 hours, the lesions appear as well demar¬ 

cated pale greyish-yellow areas involving the apical area of 

the heart (17,25). The tricuspid, mitral, and aortic valves 

become edematous and distorted with occasional hemorrhages 

noted on the valves (6,7). Within 4 to 5 days fibrosis 

begins and progresses (15,27), resulting in indistinct lin¬ 

ear scars or chronic aneurysm formation (20). 

By light microscopy, the immediate findings after 

exposure to catecholamines are interstitial edema, subendo¬ 

cardial congestion and hemorrhages, especially adjacent to 

Thesbian vessels (15). Myofibrillar degeneration with ne¬ 

crosis of the fibers can be demonstrated as early as 2 to 3 
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minutes after a single intravenous injection of isoprotere¬ 

nol (37). By 6 to 10 hours an inflammatory response becomes 

evident consisting of an intense interstitial leukocytic 

reaction most pronounced in subendocardial and midzonal 

portions of the left ventricle but occasionally extending to 

the subepicardial region (9,10,15,16,19), and uniformly 

involving the papillary muscles (42). The cellular infil¬ 

trate is predominantly mononuclear cells in which large 

histiocytic cells are most numerous (15,42,43,27). The peak 

of myocardial necrosis is reached by 48 hours (19,20) with 

complete destruction of muscle fibers evident and a full 

blown interstitial mononuclear cell reaction. Though car¬ 

diac histiocytes are most numerous and tended to concentrate 

in association with foci of myofiber necrosis (15,42,43), 

they were occasionally accompanied by lymphocytes, granulo¬ 

cytes (10,15,42,43), and perivascular Anitschkoff myocytes 

(26,44). 

In addition to fragmentation and local myofiber de¬ 

struction, numerous contraction bands are also seen in the 

myocardium (22,43). These represent irregular, acidophilic 

coagulation or condensations of contractile proteins forming 

transverse bands, and numerous hypercontracted sarcomeres. 

Also present are zones of granularity consistent with swol¬ 

len mitochndria (24,43). 

By 72 hours thin bands of connective tissue which 

stained as collagen become evident (15,26) and the necrotic 

muscle fibers are partly replaced by fibroblasts (19). Ear¬ 

ly manifestations of healing with proliferation of fibro- 
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blasts at the margins of necrotic areas are present by 4 to 

5 days (9,24,25). In 5 to 6 days, the necrotic muscle 

fibers have been resorbed and the interstitial reaction 

becomes prominent with numerous Anitschkow cells seen among 

the proliferating fibroblasts (17). The involved areas 

consist of sheets of histiocytes and fibroblasts suggesting 

a granulomatous pattern which peaks in 5 to 7 days (19,20). 

By 1 week, there is evidence of continuing phagocytosis of 

necrotic fibers and healing by fibrosis (15,37). At 2 

weeks, only fibrous areas are present (15,27). The "granu¬ 

lomatous” areas are eventually replaced by fibrous tissue 

(44), ultimately leading to indistinct linear scars or 

chronic aneurysm formation (20). 

No lesions have been observed in the larger coronary 

arteries or myocardial arterioles (9,16,43). Occasionally, 

thrombi are seen in intramural coronary arteries (6,16), but 

in other studies these have been absent (43). Branches of 

the coronary arteries and arterioles occasionally show fi¬ 

brinoid degeneration, even in areas where necrosis of the 

myocardium is not apparent (44). 

Accumulation of lipid droplets within isolated or 

groups of cardiac cells may also be found. This is seen 

immediately after exposure to catecholamines (7,10,14,15). 

Fatty degeneration of the myocardium has been reported 

(7,16). 

U1trastructural changes involve the myofibrils, sarco¬ 

plasmic reticulum, mitochondria, and lysosomes. Cells show 

a loss of glycogen and accumulation of neutral lipid. 

Changes in the myofibrils evidenced by marked thickening of 
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the Z lines have been noted as early as 30 minutes following 

exposure to catecholamines (10), consistent with hypercon¬ 

traction of sarcomeres. There is loss of the orderly ar¬ 

rangement of myofilaments as myofibrillar degeneration pro¬ 

gresses (24,25). By 6 to 12 hours, the Z line becomes less 

osmiophilic, and less distinct as the inflammatory response 

appears (10,37,43). 

The ordinarily flattened vesicles of the sarcoplasmic 

reticulum become swollen (10,37), and lipid droplets can be 

seen in the sarcoplasm. The mitochondria exhibit marked 

swelling and loss of cristae. Necrotic cells have the most 

severely damaged mitochondria (10,16,24,25,37). Osmiophilic 

inclusions within the mitochondria also appear and probably 

represent calcium accumulation granules (16,24,37,45). 

An increased number of lysosomes in cardiac muscle 

cells can be seen throughout the myocardium, but these are 

especially prominent in cells adjoining the necrotic areas 

(10). 

In summary, the main characteristics of the catechola¬ 

mine-induced mycardial lesion are myofibrillar degeneration, 

contraction bands, and interstitial mononuclear infiltrate 

composed primarily of histiocytes, with most of the damage 

occurring in the subendocardial regions. The acute injury 

is followed by fibroblastic proliferation and scarring. 
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PATHOGENESIS 

Despite the well characterized pathology of catechola¬ 

mine-induced cardiomyopathy, the exact mechanism by which 

catecholamines produce myocardial lesions is uncertain. 

Numerous theories have been advanced and these may be 

grouped into two broad categories. The first invokes isch¬ 

emia or relative hypoxia as the cause of the lesions, and 

the second presumes that catecholamines have a direct toxic 

effect on the myocardium leading to membrane permeability 

alterations. 

Many of the early investigators favored ischemia as a 

major factor in catecholamine-induced cardiomyopathy (21). 

Raab (30) theorized that adrenergic amines in excessive 

amounts, whether produced endogenously (as in severe stress 

or pheochromocytoma) or administered exogenously can elicit 

disproportions between supply and demand for oxygen in the 

myocardium causing myocardial necrosis. He concluded that 

the subendocardial location of catecholamine-induced necro¬ 

ses could be explained by the increased susceptibility of 

the ventricular inner layers to anoxia secondary to vascular 

compression when the intraventricular pressure rises. The 

cardiotoxic ity of catecholamines is abetted by a reduction 

or absence of compensatory coronary dilatation. Based on 

experimental findings which showed that: 1) increased endo¬ 

genous or exogenous catecholamines levels in the heart are 

associated with potassium depletion, 2) loss of myocardial 

potassium is secondary to hypoxia, and 3) dietary potassium 

deficiency results in focal necrotic lesions in the myocar- 
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dium, Raab proposed the following hypothesis: 

"Exaggerated catecholamine action (either due to 

exogenous administration or to intrinsic libera¬ 

tion) is capable of causing anoxia in vascularly 

handicapped, and therefore, particularly vulnera¬ 

ble myocardial cell groups. A resulting altera¬ 

tion of cell membrane permeability permits the 

escape of potassium from the anoxic cell groups 

and this disturbance in local electrolyte distri¬ 

bution initiates the process of multifocal cell 

destruction (30)." 

In view of findings which showed that adrenal corticoid 

pretreatment markedly aggravated catecholamine-induced car¬ 

diomyopathy, Raab further postulated that exaggerated stimu¬ 

lation of the catecholamine-liberating adrenosympathetic 

system accompanied by adrenocorticoid overactivation is the 

common, potentially cardiotoxic denominator of all forms of 

acute stress, and primarily responsible for all stress- 

induced cardiac lesions (30). 

Rona (8), in his early studies of isoproterenol necro¬ 

sis, was a proponent of the ischemic theory of catechola¬ 

mine-induced cardiomyopathy. However, he now feels that a 

direct toxic effect is the major factor but that alterations 

in the coronary microcirculation contribute to the necrosis 

as well. In an early paper comparing the cardiotoxic ac¬ 

tions of isoproterenol, epinephrine, and norepinephrine, 

Rona (8) stated that epinephrine was believed to cause 

myocardial lesions due to its cardiac stimulating proper¬ 

ties, thus increasing the oxygen requirements of the myocar¬ 

dium so that despite coronary vasodilation, a relative in¬ 

sufficiency of oxygen was produced. Therefore, since the 

study showed that isoproterenol was a more potent cardiac 

stimulator than the other two catecholamines, it would also 
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be expected to cause myocardial necrosis by increasing myo¬ 

cardial oxygen requirements and decreasing systemic blood 

pressure. Handforth (18) also considered isoproterenol 

necrosis to be ischemic in nature. He injected India ink 

into the coronary arteries of hamsters sacrificed shortly 

after injections of isoproterenol and demonstrated that 

blood flow to the subendocardium of the left ventricular 

wall was markedly reduced, even prior to the development of 

myocardial edema or necrosis. The areas affected by isch¬ 

emia proved to be the sites at which necrosis subsequently 

developed. Thus, he felt that isoproterenol-induced lesions 

were infarcts secondary to local myocardial ischemia and 

suggested that the ischemia may be due to either vasocon¬ 

striction or vascular shunts allowing blood to bypass capil¬ 

lary vessels. 

Ferrans et al (46) studied isoproterenol-induced myo¬ 

cardial necrosis and found thickened and increased density 

of Z bands, swelling of mitochondria, and enlargement of the 

vesicles of the endoplasmic reticulum within the first cou¬ 

ple hours of isoproterenol administration. This was followed 

by myofibrillar degeneration and lipid droplet accumulation 

in the spaces between myofibrils as well as in the endoplas¬ 

mic reticulum. These findings as well as the subendocardial 

distribution of the lesions were attributed to the exagger¬ 

ated demand for oxygen imposed on the coronary circulation 

by catecholamine-induced stimulation of myocardial metabo¬ 

lism. These findings support the concept that hypoxia plays 

a large role in the pathogenesis of catecholamine-induced 

cardiomyopathy. 
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Lehr et al (47,48) have recently presented experimental 

findings supporting their theory of catecholamine-induced 

cardiomyopathy. They concluded that the electrolyte derang¬ 

ing and necrosis-inducing properties of catecholamines are 

primarily due to a discrepancy between coronary vascular 

adaptability of flow and the greatly augmented oxygen de¬ 

mand. This results from either the positive inotropic and 

pronounced hypotensive effect of the beta adrenergic ag¬ 

onists, or the pronounced increase in peripheral resistance 

and constriction of the coronary vasculature caused by alpha 

adrenergic agents. Ischemia may be the ultimate common 

pathway in the mechanism of myocardial injury elicited by 

all adrenergic amines, since an identical pattern of isch¬ 

emic cationic abnormalities was found to occur in the myo¬ 

cardium of both alpha and beta adrenergic amine-induced 

injury. This pattern starts with a fall in myocardial 

magnesium concentration, followed by a rise of calcium and 

sodium, and in severe injury, a reduction in potassium (48). 

Lehr has concluded that it is ischemia rather than 

calcium overloading, as proposed by many other investigators 

that represents the primary mechanism of myocardial injury. 

Thus cardiac hypoxia is the main cause of the myocardial 

electrolyte disturbances which, in turn, may contribute to 

the initiation of a state of irreversible failure of cellu¬ 

lar function. In particular, Lehr emphasized the role of 

magnesium loss. Myocardial necrosis involves an early ob¬ 

ligatory loss of intracellular magnesium, which precedes the 

loss of potassium and the massive accumulation of calcium 
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and sodium. 

Lehr’s (48) studies of coronary artery ligation in the 

rat demonstrated the occurrence of early magnesium loss. 

The first significant changes in the myocardial bulk elec¬ 

trolyte content were apparent thirty minutes after ligation 

and consisted of depletion of magnesium, potassium, and 

phosphate. Significantly, calcium content was normal at 

that time. One hour after coronary artery occlusion, the 

first moderate rise in calcium content coincided with highly 

significant alterations of the other five electrolytes. 

Similar observations were made with myocardial injury pro¬ 

duced by either alpha or beta adrenergic amines. One hour 

after injection of a necrotizing dose of either isopro¬ 

terenol (beta agonist), phenylephrine (alpha agonist), or 

epinephrine (alpha and beta agonist), i.e., at a point in 

time when structural injury is as yet not readily demonstra¬ 

ble, significant loss of magnesium is uniformly present as 

the sole electrolyte disturbance. The calcium concentration 

begins to rise only subsequently, and is shown to have 

reached significantly increased levels at the three hour 

interval when necrosis is clearly apparent. 

Further support for a contributory role of electrolyte 

shifts in the mechanism of cellular injury can be derived 

from studies indicating that administration of electrolyte 

solutions containing either magnesium or potassium salts 

results in protection against catecholamine-induced necro¬ 

sis. 

Lehr’s view of the secondary nature of calcium over¬ 

loading is supported by his studies with parathyroidecto- 
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mized rats (48). Such animals failed to show any noticeable 

degree of protection against catecholamine-induced myocar¬ 

dial necrosis despite complete prevention or highly signifi¬ 

cant inhibition of myocardial calcium accumulation. In 

addition, Lehr's group was able to confirm Fleckenstein's 

(40) observation of the propranolol-1ike protective effect 

of verapamil in isproterenol-induced myocardial necrosis. 

However, cardiac injury elicited by phenylephrine was like¬ 

wise inhibited by verapamil but not by propranolol. Also, 

verapamil was equally protective in parathyroidectomized 

rats against isoproterenol-induced necrosis (that is, in the 

absence of myocardial calcium accumulation). Therefore, Lehr 

concluded that the beneficial effect of verapamil must be 

based on a property other than its calcium channel blocking 

capabilities and might be due instead to its negative ino¬ 

tropic, and thus oxygen sparing effects. 

In line with the ischemic theory, Haft et al (49-51) 

has proposed that intracoronary platelet aggregation may 

contribute to the mechanism that leads to myocardial isch¬ 

emia in catecholamine-induced cardiac necrosis. In view of 

the well known antiaggregating effects of aspirin and di¬ 

pyridamole on platelets, Haft (50) pretreated ten dogs with 

aspirin and ten dogs with dipyridamole followed by infusion 

with epinephrine at 4 ug/kg/min for four hours. He found 

that only three animals in each group exhibited any myocar¬ 

dial necrosis whereas all animals in the nonpretreated con¬ 

trol group exhibited significant myocardial necrosis. Fur¬ 

thermore, they were able to demonstrate platelet aggregates 
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within the small vessels of the hearts of dogs infused with 

norepinephrine (50) and in rats given isoproterenol (51). 

Other investigators, however, have been unable to confirm 

the finding of platelet aggregates in coronary vessels 

(27,42,43). 

Hoak (16) found that following norepinephrine infusions 

in dogs only a few of the small myocardial vessels were 

noted to be occluded by platelet aggregates. However, these 

were not seen often enough to represent the sole cause of 

the myocardial necrosis and in no instance were coronary 

arteries found to be occluded. Therefore, it does not 

appear that platelet aggregation is a major factor in cate- 

cholmine-induced myocardial necrosis. 

Several studies are inconsistent with the ischemia 

hypothesis. Ostadel et al (52) found that isoproterenol 

induces myocardial necrosis in the turtle. This is signifi¬ 

cant because the turtle does not have coronary arteries, but 

relies on the blood in the ventricular chambers to sustain 

the myocardium. These findings do not support Lehr’s hypo¬ 

thesis that myocardial necrosis is precipitated by isopro¬ 

terenol-induced decreased peripheral vascular resistance, 

decreased systemic blood pressure, and hence lower coronary 

blood flow resulting in ischemic cardiac injury. Ostadel’s 

study does not rule out the possibility, however, that 

catecholamines increase the demand for oxygen so much that 

demand outstrips supply and causes relative anoxia. 

Downing’s (42,43) studies of norepinephrine-induced 

cardiomyopathy in rabbits indicate that a supply-demand 

mismatch causing ischemic injury to the myocardium is un- 
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likely. He found that although mean arterial blood pressure 

rose, the heart rate fell, and calculations of the pressure- 

rate product suggested no increase in myocardial oxygen 

consumption throughout the course of norepinephrine infu¬ 

sion. Also, the histological pattern and leukocytic re¬ 

sponse differed from that expected with myofiber necrosis 

following an ischemic insult. An ischemic insult results in 

a predominantly polymorphonuclear infiltrate. However, in 

catecholamine-induced cardiomyopathy, the infiltrate con¬ 

sists primarily of histiocytic mononuclear cells. Morever, 

ischemia in which coronary flow does not remain interrupted 

frequently is accompanied by capillary damage and intersti¬ 

tial hemorrhage. These were never observed in Downing’s 

studies nor was coronary vascular injury or thrombus forma¬ 

tion identified by light microscopy. 

The second category of theories concerning pathogenesis 

of catecholamine-induced cardiomyopathy postulate that cate¬ 

cholamines have a direct cardiotoxic effect. The calcium 

overload concept of Fleckenstein is a major theory in this 

group. Isoproterenol-induced excessive calcium influx into 

the myocardial cell is thought to cause injury and necrosis 

by exaggerated activation of calcium-dependent ATPases and 

the consequent exhaustion of ATP and creatine phosphate 

reserves (39). For a better understanding of this theory, 

the normal mechanism of catecholamine action and salient 

features of myocardial energy metabolism will be presented. 

Durret and Adams (53) recently reviewed the mechanisms 

by which catecholamines exert their effects. These agents 
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interact with beta-1 adrenergic receptors on the extracellu¬ 

lar surface of the sarcolemma to elicit their positive 

inotropic and chronotropic effects on the heart. The mech¬ 

anism responsible for the positive inotropic effect appears 

to be enhancement of the slow inward calcium current and 

increased intracellular calcium concentration. Activation 

of the beta receptor stimulates the enzyme adenylate cy¬ 

clase, resulting in an increase in the intracellular concen¬ 

tration of cAMP. The exact mechanisms by which cAMP leads 

to increased contractility are not known. It is established 

that cAMP-dependent protein kinases phosphorylate proteins 

associated with myofibrils, the sarcoplasmic reticulum, and 

the sarcolemma. It may therefore affect contractility via 

several cellular mechanisms: 1)cAMP may act directly on the 

myofibrils by phosphorylation of myofibril components, F 

actin and troponin; 2)cAMP may increase calcium availability 

by enhancing calcium uptake by the sarcoplasmic reticulum; 

or 3)cAMP may also modulate calcium entry into the myocar¬ 

dial cell by inducing the phosphorylation of a specific 

protein in the sarcolemma by protein kinase, thereby, open¬ 

ing up membrane "channels" to allow the influx of calcium. 

The result is that the increase in calcium concentration 

inactivates the troponin-tropomyosin system and permits 

enhanced interaction of the actin and myosin filaments. 

Bloom (54) noted that a special feature of myocardial 

energy metabolism is the existence of a large amount of 

creatine phosphate (CP), the alternative storage form to ATP 

for high energy phosphate. CP is also important to the 

myocardium as it serves to buffer the ATP concentrations, 
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i.e., as ATP is converted to ADP through normal metabolic 

processes such as contraction, the ATP can be resynthesized 

either by electron-transport related processes, or at the 

expense of creatine phosphate through the action of creatine 

phosphokinase. Thus, a fundamental function of oxidation 

and glycolysis consists of maintaining a sufficiently high 

level of ATP and CP in the myocardial fiber for two impor¬ 

tant functions. The first is to supply energy for contrac¬ 

tion and to d-rive the "ion pumps" (active transport of 

sodium, potassium, and calcium ions connected with bioelec¬ 

tric and mechanical performance). And the second is to meet 

the energy expenditure for various synthetic reactions that 

are necessary for continuous cellular repair. 

According to Fleckenstein (39,40,55,56), severe myocar¬ 

dial cell damage, as well as contractile failure, will occur 

when the high-energy phosphate stores are exhausted, as in 

excessive ATP consumption by the heart due to beta adrener¬ 

gic stimulated mechanical hyperactivity. Physiologically, 

catecholamines increase myocardial tension by enhancing the 

utilization of high energy phosphates for contraction. 

Overdoses of catecholamines, however, stimulate the split¬ 

ting of ATP in the contractile machinery so excessively that 

not enough ATP is left for the various synthetic processes 

which are involved in regeneration of the living structures. 

Fleckenstein was able to demonstrate that high energy phos¬ 

phate becomes critical when the ATP concentration in myocar¬ 

dium is lowered by more than 50% and the corresponding CP 

concentration falls by more than 80% (40). He showed that 
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injections of isoproterenol into rats caused reductions in 

ATP and CP below the critical levels and this was associated 

with myocardial fiber necrosis (40). 

In a series of studies, Fleckenstein et al 

(39,40,55,56) showed that the cardiotoxic effects of beta 

adrenergic catecholamines, including isoproterenol, are 

mediated by calcium ions, and that these ions play a key 

role in the production of cardiac necroses. After isopro¬ 

terenol administration to rats, there is an increased move¬ 

ment of 45£a2+ from plasma into heart muscle, and the myo¬ 

cardial content of calcium can be observed to increase. In 

addition, the ATP content was found to fall. These workers 

also demonstrated that calcium ions are highly cardiotoxic 

if they are taken up excessively into the myocardial fibers; 

and that intracellular calcium overload initiates a break¬ 

down of ATP and CP. Morever, calcium-induced high energy 

phosphate exhaustion is crucial in the etiology of myocar¬ 

dial fiber necroses produced by a number of cardiotoxic 

agents, including large doses of beta adrenergic catechol¬ 

amines, vitamin D, dihydrotachysterol, cardiac glycosides, 

etc., or conditions of extreme physical or emotional stress. 

The mechanism by which calcium overload leads to myo¬ 

cardial necrosis is somewhat complex. Catecholamines in¬ 

crease transmembrane calcium influx into the excited myocar¬ 

dial fibers. This leads to activation of the calcium depen¬ 

dent myofibrillar ATPase that transforms phosphate-bond 

energy into mechanical work as well as the calcium transport 

ATPases of the sarcoplasmic reticulum and mitochondria. 

With increasing doses of these drugs, continued calcium 
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uptake and excessive splitting of ATP and CP occurs. In 

addition, the increase in intracellular calcium leads to 

structural damage and calcification of the mitochondria, im¬ 

pairing their phosphorylating capacity. Active extrusion of 

calcium from the calcium-overloaded myocytes occurs as long 

as ATP is availabe for this purpose. But in the advanced 

stages of ATP deficiency, the calcium extrusion seems to 

decline rather rapidly, so that a steep rise of the intra¬ 

cellular calcium concentration occurs. The calcium overload 

initiates a breakdown of ATP and CP, with the result that 

cardiac function and structural integrity cannot be main¬ 

tained . 

The intracellular sites where myocardial calcium over¬ 

load induces exhaustive ATP consumption include the myofi¬ 

brils, sarcoplasmic reticulum, and mitochondria. The first 

reaction of the contractile system to excessive splitting of 

ATP by the calcium activated myofibrillar ATPase consists of 

a supercontraction. Abundant transsarcolemmal calcium in¬ 

flux produces a state of excitation-contraction "overcou¬ 

pling” by which the myofilaments are eventually destroyed if 

the myocardial fiber cannot reduce the calcium overload in 

time. Apart from myofibrillar destruction, intracellular 

calcium overload is most injurious to the mitochondria. 

This is signaled by the appearance of intramitochondrial 

calcium phosphate precipitates. Fleckenstein (56) found that 

cardiac mitochondria in situ incorporate large amounts of 

calcium when overdoses of isoproterenol are administrated. 

Mitochondrial swelling, vacuolization, and cristolysis occur 
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probably as a self-defense mechanism (calcium-buffer) 

against a disproportionate rise in the cytoplasmic free 

calcium concentration that exaggerates ATP consumption. 

When, however, necrotizing doses of isoproterenol are admin¬ 

istered, transsarcolemmal calcium inflow is so dramatically 

stimulated that there is a toxic accumulation of calcium. 

Rona et al (57-60) have incorporated Fleckenstein's 

calcium overload concept into their own theory. While re¬ 

taining the importance of coronary microcirculatory factors 

in the evolution of catecholamine-induced cardiomyopathy, 

the early sarcolemmal membrane permeability alterations 

demonstrated by their studies with horse radish peroxidase 

(HRP), suggest a direct toxic effect of catecholamines. In 

their studies, isoproterenol, norepinephrine, and epineph¬ 

rine were administered to rats followed by injection of 

HRP. In control rats given HRP, the tracer became uniformly 

distributed in the myocardial interstitium and transverse 

tubular system with pinocytotic vesicles noted at the border 

of the sarcolemma of myocytes. However, the sarcolemma was 

never penetrated by the tracer. With norepinephrine and 

epinephrine infusion, HRP reached the interstitium more 

rapidly than in the controls and also appeared within some 

myocytes as early as ten minutes after infusion in the case 

of norepinephrine. Significantly, many of the cells con¬ 

taining HRP were ultrastructurally normal. Infusion of 

isoproterenol produced similar findings except they occurred 

after the isoproterenol-induced drop in blood pressure had 

returned to normal. The subsequent appearance of the tracer 

in the myocardial interstitium was followed by its presence 





28 

in some of the myocytes. 

Rona attributed these differences in the temporal 

course of the appearance of HRP to the varying pressor and 

depressor properties of the catecholamines and their subse¬ 

quent effect on the coronary microcirculation. Although 

norepinephrine and epinephrine constrict large coronary 

vessels, they dilate small coronary branches. When coupled 

with their pressor effect on systemic blood pressure, coro¬ 

nary blood flow is improved, thus accounting for the early 

interstitial appearance of HRP. In contrast, isoproterenol, 

through its vasodilating effects on the peripheral vascula¬ 

ture, causes an initial, transient hypotension which offsets 

the coronary vasodilation produced both directly and indi¬ 

rectly by increased metabolic demand and thus results in the 

delay in appearance of HRP. 

Following infusion of all three catecholamines, one of 

the earliest changes noted was the passage of HRP across the 

sarcolemma of normal appearing cells to be deposited on 

myofibrils. This suggested that some form of injury result¬ 

ing in early permeability had occurred. In addition, HRP 

showed a marked affinity for hypercontracted or necrotic 

myofilaments in structurally damaged cells. A later finding 

is HRP deposition along mitochondrial cristae indicating 

that the mitochondrial membrane had become permeable to the 

macromolecular tracer. 

In several recent papers, Rona et al (59,60) have noted 

the similarity between reperfusion injury and catecholamine- 

induced injury, particularly that which follows isoprotere- 
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nol administration. They both exhibit contraction band for¬ 

mation and mitochondrial calcium phosphate deposits. Fur¬ 

thermore, permeability alterations of myocardial cells in 

reperfusion injury parallel those seen in catecholamine- 

induced injury. Cardiac cells made ischemic by coronary 

artery ligation for ten minutes followed by reperfusion for 

sixty minutes were structurally normal except for abundant 

lipid droplets. Sixty minutes of ischemia followed by reper¬ 

fusion induced HRP deposition resembling that found with 

isoproterenol infusion in which there was contraction band 

necrosis with heavy deposition of HRP on hypercontracted 

myofilaments. These findings suggest a common causal path¬ 

way consisting of microcirculatory derangement plus direct 

cardiac muscle cell stimulation, possibly mediated by the 

release of catecholamines. Thus, Rona concluded that the 

pathogenesis of catecholamine-induced lesions involves rela¬ 

tive hypoxia, altered membrane permeability, and primary 

myofilament stimulation. These act together to produce 

calcium overload which activates calcium dependent myofi¬ 

brillar ATPase. Depletion of ATP and CP levels results in 

myofilament hypercontraction and loss of structural integ¬ 

rity as described by Fleckenstein. 

Other mechanisms which have been suggested include 

increased serum free fatty acid (FFA) levels in view of the 

lipid deposits observed in hearts following administration 

of catecholamines (7,14). Hoak (16) found elevated serum 

FFA in dogs following infusions of norepinephrine. He theo¬ 

rized that the stimulatory effect of catecholamines on lipid 

metabolism plays an important part in the production of 
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cardiac lesions. With the mobilization of lipid from adi¬ 

pose tissue induced by catecholamines, the plasma level of 

FFA increases and may lead to their accumulation within the 

myocardial cell. Accumulation of long chain fatty acids can 

cause uncoupling of oxidative phosphorylation and direct 

tissue damage. However, catecholamine infusions in rabbits 

do not cause a concomitant increase in FFA unlike the dog or 

rat (15). In this species a mechanism of injury that does 

not involve an increase in plasma FFA must be present . 

Oxidation of FFA by the myocardial cell may certainly be 

inhibited during catecholamine injury resulting in cellular 

overload with fatty acids. 

Mallov (61) also concluded that FFA are involved in the 

production of myocardial necrosis by catecholamines. Cate¬ 

cholamines increase FFA levels by stimulating lipolysis in 

depot fat. He suggested that high concentrations of cate¬ 

cholamines cause increased influx of calcium and FFA into 

myocardial cells, and that these are deposited as soaps. 

Soaps may produce alterations in plasma membrane permeabili¬ 

ty, permitting increased rates of influx and deposition to 

continue, ultimately causing cell damage and death. 

Other investigators have concentrated on the direct 

cardiotoxic effects of catecholamine metabolites. Yates et 

al (62) proposed that oxidation products of catecholamines 

such as adrenochrome, rather than catecholamines per se, may 

play a role in the pathogenesis of catecholamine injury by 

causing cell necrosis and contractile failure. This was 

based on studies (62-64) in which perfusion of isolated rat 
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hearts with fresh isoproterenol or epinephrine failed to 

induce necrosis in the myocardium. But lesions were found 

in hearts that had been perfused with isoproterenol that had 

undergone spontaneous oxidation in solution. Furthermore, 

perfusion of rat hearts with adrenochrome produced similar 

lesions along with of contractile failure. The hemodynamic 

effects of catecholamines, including reduced endocardial 

perfusion resulting from lower diastolic blood pressure, 

shortened diastole, and/or coronary vascular changes, were 

thought to cause stagnation of blood flow and allow accumu¬ 

lation of catecholamine oxidation products. These factors, 

by potentiating the deleterious effects of catecholamine 

oxidation products on oxidative phosphorylation and glucose 

metabolism, could also produce relative hypoxia. Thus, they 

concluded that catecholamine-induced lesions resulted from 

the combined effects of catecholamines and their oxidation 

products, including the adrenochromes. 

Free-radicals are produced during autoxidation of cate¬ 

cholamines, and Singal et al (25) suggested that catechol¬ 

amine-induced changes in the heart may also involve an 

increase in free-radical activity. They found that pre¬ 

treatment of rats with either vitamin E or zinc prevented 

isoproterenol injury. Since vitamin E is an antioxidant, it 

could act as a free-radical scavenger to prevent the cell 

membrane damaging effects of free radicals. Cell membranes 

contain high concentrations of highly unsaturated fatty 

acids and thus are susceptible to free-radical induced lipid 

peroxidation. This would result in membrane permeability 

alterations and allows the occurrence of intracellular cal- 





32 

cium accumulation and its deleterious consequences. Consis¬ 

tent with this is the fact that zinc has a membrane stabi¬ 

lizing effect probably by reducing free-radical induced mem¬ 

brane changes (24). 

Peroxidation of membrane lipids is a concept proposed 

by Meerson (36) to explain the pathogenesis of cardiac 

lesions caused by excess release of catecholamines in severe 

emotional and painful stress. This theory is based on a 

model of emotional and painful stress in which rats wait 

intensely for painful electric shocks for six hours and 

actually receive them at occasional intervals. Hearts were 

studied at various periods following termination of stress 

induction ranging from 2 hours to 4 days. Accumulation of 

hydroperoxides of lipids (products of lipid peroxidation) 

and labalization of lysomal enzymes occurred in those ani¬ 

mals subject to emotional/painful stress. Morphologically, 

there was hypercontraction and necrosis of myocardial fi¬ 

bers. Meerson suggested that the hydroperoxides of lipids 

and proteolytic lysosomal enzymes interfere with the mem¬ 

brane calcium transport apparatus and result in hvpercon- 

traction. In further experiments, he demonstrated that 

stress resulted in a significant decrease in capacity of 

sarcoplasmic reticulum membranes to accumulate calcium. 

This was thought to contribute to increased concentrations 

of calcium in the cytosol. Simultaneously, disturbances of 

oxidation and phosphorylation developed in mitochondria. 

Based on the above findings, Meerson proposed a theory 

of stress-induced cardiomyopathy. Emotional/painful stress 
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causes excitation of the higher vegetative centers which 

leads to an increased concentration of catecholamines in the 

blood. The catecholamines, in addition to acting on adreno¬ 

ceptors in the sarcolemma to activate adenylate cyclase, 

induce lipid peroxidation. These products (hydroperoxides) 

cause the release of proteolytic enzymes by lysis of lyso- 

somes. The action of both the lysosomal enzymes and hydro¬ 

peroxides of lipids results in damage to the sarcoplasmic 

reticulum membranes and sarcolemma. The mechanism for cal¬ 

cium transport is affected and excessive amounts of calcium 

accumulate in the cardiac cells causing what Meerson refers 

to as the "calcium triad." This includes contracture of 

myofibrils, damage to mitochondria with uncoupling of oxida¬ 

tion-phosphorylation, and activation of phospholipases and 

proteases. The result is hypercontraction and necrosis of 

myocardial fibers. 

With respect to norepinephrine-induced cardiomyopathy, 

Downing et al have demonstrated that short term (ninety 

minute) infusion of norepinephrine given in relatively mod¬ 

est doses (2 to 3 ug/kg/min) elicits a consistent pattern of 

myocardial injury in the rabbit (42). Measurements of car¬ 

diac function have revealed significant impairment of left 

ventricular performance when studied with afterload curves 

(65) or standard ventricular function curves (66). In 

studying the possible mechanisms of norepinephrine-induced 

injury, this group showed that insulin significantly reduced 

the extent of myofiber injury when rabbits were infused with 

norepinephrine (42). Previous studies in the isolated mus¬ 

cle preparation as well as the intact swine heart showed 
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that insulin substantially reduces contractility responses 

to norepinephrine (67,68). This indicates that there may 

exist a relationship between inotropic stimulation and cate¬ 

cholamine cardiomyopathy. Downing suggested that insulin 

may in larger doses exert other effects perhaps similar to 

the membrane stabalizing action of steroids. In a recent 

study (43) designed to assess the receptor system predomi¬ 

nantly involved in the pathogenesis of norepinephrine-in¬ 

duced lesions, Downing found that beta adrenergic blockade 

with practolol or propranolol failed to significantly reduce 

cardiac injury with norepinephrine. However, alpha adreno¬ 

ceptor blockade with phentolamine alone or in combination 

with either of the beta antagonists, markedly reduced lesion 

formation. Administration of the alpha agonist methoxamine 

produced dose-related increases in the intensity of myocar¬ 

dial injury morphologically identical with those resulting 

from norepinephrine. The alpha blocking agent, phentola¬ 

mine, markedly reduced methoxamine injury. Downing con¬ 

cluded that the norepinephrine cardiomyopathy results in 

large part from activation of the alpha adrenergic system in 

the rabbit model. He also speculated that alterations in 

myofiber calcium translocation, uptake, and binding induced 

by alpha-1 receptor activation may contribute to membrane 

damage. This is based on evidence for the existence of 

alpha receptors in cardiac muscle of several species, which, 

when activated, elicit inotropic changes. In contrast to the 

beta adrenergic system, activation of alpha receptors in¬ 

duces little reduction of time to peak tension, and relaxa- 
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tion time is lengthened, thus suggesting that altered myo¬ 

cardial calcium translocation is a primary event. 

While the exact mechanism of catecholamine-induced 

cardiomyopathy remains to be established, experimental evi¬ 

dence indicates a major role for membrane permeability al¬ 

terations leading to myocardial calcium overload. Ischemia 

due to coronary vasoconstriction appears unlikely to be an 

important pathogenetic mechanism. This is suggested by the 

fact that whereas catecholamines cause myocardial necrosis 

in the turtle, this species has no coronary arteries (52). 

Morever, the catecholamines probably do not evoke a net 

increase in myocardial oxygen demand (42,43) that might 

contribute to ischemia. The importance of calcium overload 

was suggested by investigations showing that verapamil pro¬ 

tects against isoproterenol and epinephrine-induced myocar¬ 

dial necrosis (40,48). The mechanism of verapamil protec¬ 

tion may be more complex than simple blockade of calcium 

influx, however. This is indicated by studies in which this 

agent also protected against isoproterenol-induced damage in 

parathyroidectomized rats. In this circumstance, myocardial 

calcium accumulation does not occur but myocyte injury does 

appear (48). It was therefore suggested that verapamil was 

acting through its negative inotropic and oxygen-sparing 

effects. However, this seems unlikely in view of the exper¬ 

imental evidence against the importance of ischemia in this 

process. The present study explores the question as to 

whether verapamil protects against norepinephrine-induced 

cardiomyopathy in the rabbit model, and examines the contri- 
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MATERIALS AND METHODS 

A total of 50 New Zealand white rabbits were used in 

this study. All animals were anesthetized with pentobarbi¬ 

tal, 30 mg/kg, and polyethylene catheters were placed in a 

femoral artery and vein. Arterial pressure was measured 

continuously with a Sanborn transducer, and heart rate was 

determined with a Sanborn cardiotachometer. The latter was 

verified by manual assessment of pulse frquency from pres¬ 

sure traces inscribed by a Sanborn recorder. Arterial blood 

samples were obtained at 15 minute intervals and analyzed 

for PO2, PCO2, and pH, with an Instrumentation Laboratories 

analyzer. Hematocrit and glucose concentrations (Glucostat, 

Worthington Biochemical) were also determined. 

The animals were divided into four groups. One group 

of thirteen rabbits was infused with norepinephrine (Levo- 

phed, Winthrop) at 2 ug/kg/min (NE-2) for ninety minutes. A 

second group of ten rabbits received a 50 ug loading dose of 

verapamil about five minutes before beginning infusion with 

NE-2 and verapamil at 1 ug/kg/min (VE-1) for 90 minutes. A 

third group of eight rabbits was also pretreated with 50 ug 

of verapamil five minutes prior to infusion with NE-2 and 

verapamil at 2 ug/kg/min (VE-2). Ten rabbits were treated 

with norepinephrine at 3 ug/kg/min (NE-3), and four were 

given NE-3 in combination with VE-2. A group of five control 

animals was infused with saline for ninety minutes. 

After infusion, the catheters were removed, the femoral 

wound surgically closed, and the animals returned to their 

cages after recovery from anesthesia. They were fed a 
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standard rabbit chow diet and given water ad libitum. All 

animals were sacrificed 2 to 3 days later by overdose of 

pentobarbital via ear vein. The hearts were immediately 

removed, emptied, and weighed. The atria and right ventric¬ 

ular free wall were dissected and weighed, and the left 

ventricle and septum separately weighed. Transverse "ring" 

sections of left ventricles were obtained from the basal and 

mid-portions and fixed in 10% buffered formalin. They were 

prepared by standard histological methods and stained with 

hematoxylin and eosin for the subsequent analysis. 

Morphological evaluation employed a semiquantitative 

histological scoring system first described by Downing and 

Lee in 1978 (42). Each section was graded by 2 observers 

according to the extent and intensity of leukocytic response 

without prior knowledge of the procedures used in a given 

animal. A maximum score of 2.0 was given when the lesions 

were florid, extensive, and transmural. Those with definite 

but sparse lesions were scored 1.0. Equivocal focal lesions 

were scored 0.5. Those judged to manifest injury more 

extensive than 1.0, but less than 2.0 (e.g., nontransmural) 

were assigned a score of 1.5. A score of 0 was given when 

no histological abnormality was present. Values for each of 

the 2 sections were taken. 
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RESULTS 

HISTOLOGICAL DATA 

DESCRIPTIVE RESULTS: The characteristic histologic findings 

in rabbits sacrificed 48 hours after a 90 minute infusion of 

norepinephrine at 3 ug/kg/min (NE-3) are shown in figure 1. 

This received a histological score of 2.0. There is an 

intense cellular infiltrate confined mostly to the intersti- 

tium especially in association with foci of myofiber necro¬ 

sis. The predominant cell population is mononuclear with 

large histiocytic cells being the most numerous accompanied 

by few lymphocytes. Polymorphonuclear cells including some 

eosinophils are occasionally present but in much smaller 

numbers. Extensive myofiber damage is present focally and 

numerous contraction bands and zones of granularity consis¬ 

tent with swollen mitochondria can also be seen. The Z 

lines are generally indistinct, and myofiber nuclei often 

are lost in the more active inflammatory foci. 

These changes characteristic of norepinephrine-induced 

damage were most pronounced in the inner half of the ven¬ 

tricular wall (subendocardial and mid-zonal portions), how¬ 

ever, transmural involvement was occasionally seen, espe¬ 

cially in those hearts exposed to higher doses of norepi¬ 

nephrine. The papillary muscles were uniformly involved but 

there did not appear to be a difference in intensity of free 

wall or septal involvement. With regard to the coronary 

vasculature, no discernible histopathological changes were 

evident in either the larger coronary arteries or myocardial 

arterioles. 
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Figure 2 shows a section typical of the verapamil 

treated animals. There are definite but sparse lesions with 

damage limited to the subendocardium. Scattered foci of 

myofiber necrosis, cellular infiltration, and vacuolization 

are seen. It was given a score of 1.0. Figure 3 was taken 

from a saline control and illustrates the normal histologic 

appearance of myocardium. 

QUANTITATIVE RESULTS: As described in the materials and 

methods section, basal and mid-level transverse slices from 

each heart were assigned an individual histologic score. 

All of the scores from a particular treatment group were 

averaged together into the overall score for that group. 

All groups treated with norepinephrine only exhibited 

significantly higher (p<0.05) histological scores than the 

saline control group. Average histologic scores of the 

norepinephrine and verapamil treatment groups are shown in 

figure 3. The value of the group treated with norepineph¬ 

rine at 2 ug/kg/min (NE-2) was 1.24 + 0.10 (S.E.). Treat¬ 

ment of the rabbits with a 50 ug loading dose of verapamil 

followed by infusion of verapamil at either 1 ug/kg/min or 2 

ug/kg/min (VE — 1; VE-2) simultaneously with NE-2 infusion 

resulted in a significant reduction in myocardial injury as 

shown by a score of 0.59 + 0.13 (p<0.01) in the VE-1 group, 

and 0.65 _+ 0.10 (p<0.01) in the VE-2 group. 

The 50 ug loading dose of verapamil followed by infu¬ 

sion of VE-2 also was protective against a higher dose of 

norepinephrine, i.e., 3 ug/kg/min infusion of norepinephrine 

(NE-3). As shown in figure 3, lower panal, the mean histo- 
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logic score of the NE-3 group was 1.44 + 0.13. Simultaneous 

infusion of NE-3 and VE-2 resulted in a significantly lower 

score of 0.69 + 0.21 (p<0.01). 

Figure 5 shows the relationship of norepinephrine and 

verapamil dosages to histologic scores. There does not 

appear to be a substantial increase in protection with a 

higher dose of verapamil as there was no significant differ¬ 

ence between the VE-1 and VE-2 groups (both of which were 

infused with NE-2). Also, the histologic score of the group 

given NE-3 along with VE-2 was not significantly different 

from the scores of the other two verapamil treated groups. 

The histologic scores of the NE-2 and NE-3 treatment groups 

were not significantly different from one another. 

HEMODYNAMIC AND METABOLIC RESPONSES TO NOREPINEPHRINE AND 

THE EFFECT OF VERAPAMIL INFUSION 

HEMODYNAMIC RESPONSES: Despite its protective effects 

against norepinephrine-induced histological damage, verapa¬ 

mil did not have a significant effect on the hemodynamic 

responses of the rabbit to norepinephrine. Figures 6 and 7 

show the mean arterial pressure (MAP), heart rate (HR), and 

MAP x HR (P x R) product responses of the various treatment 

groups. In the control animals, saline infusion did not 

result in any significant changes in MAP, HR, or P x R 

product. 

Figure 6 compares the hemodynamic responses of the NE-2 

group to the NE-2 + VE-2 group (as well as the saline con¬ 

trols). The NE-2 + VE-1 group showed basically similar 

trends in each parameter and was omitted from the figure for 
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the sake of clarity. Initial MAP just prior to the begin¬ 

ning the drug infusions was 94 +_ 5.0 (NE-2), 80 + 3.2 (NE-2 

+ VE-1), and 95 + 4.3 (NE-2 + VE-2). Initial HR was 249 + 

9.4 (NE-2), 243 + 4.5 (NE-2 + VE-1), and 254 + 9.1 (NE-2 + 

VE-2). Ten minutes after initiation of either norepineph¬ 

rine infusion or norepinephrine + verapamil infusion, MAP 

rose in all three groups to 128 + 5.6 (NE-2), 101 +_ 5.6 (NE- 

2 + VE-1), and 118 + 7.4 (NE-2 + VE-2). This was accom¬ 

panied by a reflex bradycardia as the HR dropped to 145 + 

12.3 (NE-2), 186 + 5.8 (NE-2 + VE-1), and 195 + 9.4 (NE-2 + 

VE-2). During the 90 minute infusion period, MAP gradually 

declined and HR increased toward baseline values. Ten min¬ 

utes after cessation of infusion, MAP had dropped below 

baseline values in all three groups to 62 _+ 3.2 (NE-2), 65 _+ 

4.6 (NE-2 + VE-1), and 72 + 3.4 (NE-2 + VE-2), while the 

mean HR had nearly reached baseline levels at values of 238 

+ 6.5 (NE-2), 231 + 9.4 (NE-2 + VE-1), and 253 + 12.1 (NE-2 

+ VE-2). 

Figure 7 illustrates the hemodynamic responses of NE-3 

and NE-3 + VE-2 treatment groups and shows basically the 

same pattern as described above with the MAP rising to a 

peak value at ten minutes after initiation of the infusion 

accompanied by reflex bradycardia. There followed a gradual 

decline in MAP towards baseline values and accompanying rise 

in HR, followed by a drop below baseline values by ten 

minutes after cessation of the infusion. 

It should be noted that all of the verapamil treated 

groups received a 50 ug loading dose of verapamil five 

minutes prior to beginning the infusion of norepinephrine 
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and verapamil. This resulted in a slight fall in MAP pre¬ 

sumably due to the vasodilating effects of verapamil on the 

peripheral vasculature with a reflex tachycardia (see fig¬ 

ures 6 and 7). 

In view of its vasodilating effects on the peripheral 

vasculature, it is conceivable that verapamil may protect 

the myocardium from norepinephrine-induced damage via reduc¬ 

tion of afterload. In order to assess this possibility, the 

effects of verapamil on MAP responses to norepinephrine were 

examined. Table 1 summarizes the blood pressure (BP) 

changes in the various groups at zero and ten minutes. It 

also shows the values for the difference between BP at ten 

minutes (the time at which maximal BP rise had occurred) and 

control BP and the difference between the integrated BP over 

the ninety minute infusion period and control BP. Initial 

BP of the NE-2 and NE-2 + VE-2 groups were essentially the 

same at values of 94 + 5.0, and 95 + 4.3 mmHg, respectively. 

The NE-2 + VE-1 group had a slightly lower initial BP of 80 

+ 3.2 (p<0.05). BP rose in all three groups ten minutes 

after initiation of infusion. While the two groups treated 

with verapamil attained lower absolute BP than the NE-2 

group, only the NE-2 + VE-1 was significantly lower at 101 + 

5.6 (p<0.01). This group also started out at a control BP 

that was about 15 mmHg lower than the other 2 groups. The 

NE-2 + VE-2 group had a BP at ten minutes of 118 + 7.4 which 

was not significantly different from the NE-2 group's BP of 

128 + 5.6. 

The change in BP from the control value to the ten 
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minute value was compared between the NE-2 group and the two 

verapamil treatment groups (Table 1). The rise in MAP in 

the verapamil treatment groups was lower than the NE-2 

group. However, there was no statistically significant 

difference between the NE-2 group and the NE-2 + VE-2 group 

which had rises in BP of 34 + 2.2 and 23 + 4.0 mmHg respec¬ 

tively at ten minutes. The NE-2 + VE-1 group had a smaller 

rise in BP of 21 +_ 5.9 mmHg (p<0.05). In rabbits treated 

with NE-3 or NE-3 + VE-2, the initial blood pressures were 

nearly identical at 102 + 4.8 and 100 + 3.3 mmHg, respec¬ 

tively. There was no statistically significant difference 

between the two groups in terms of the absolute BP achieved 

at ten minutes or the change in BP over ten minutes. 

The difference between initial BP and the average BP 

integrated over ninety minutes was also compared. There was 

no significant difference found between the NE-2 group and 

the NE-2 + VE-1 group or the NE-2 group and the NE-2 + VE-2 

groups. There was also no significant difference between 

the NE-3 and NE-3 + VE-2 groups. Thus, while verapamil 

treatment did appear to cause some blunting of the rise in 

MAP in response to norepinephrine infusion, this reduction 

in afterload was probably not enough to be a major factor in 

its protective effect on the myocardium. In support of this 

is the fact that the NE-2 + VE-2 and NE-3 + VE-2 had MAP 

values and changes in BP that did not differ significantly 

from their respective norepinephrine infusion groups, but 

exhibited significantly lower histologic damage scores. 

Also against the role of a certain absolute BP leading to 

myocardial damage is the fact that the BP at ten minutes 
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after initiation of infusion for the NE-3 + VE-2 group was 

higher than the BP of the NE-2 group (134 + 5.8 vs. 128 + 

5.6 mm Hg, respectively). Despite the tendency for a higher 

average BP (though the difference was not statistically 

significant), the histologic score of the NE-3 + VE-2 group 

was significantly lower than that of the NE-2 group (p 

<0.01). 

Further evidence against excessive hemodynamic loading 

as a main factor in norepinephrine-induced cardiac damage is 

presented in figures 8 and 9. In these figures, the rabbits 

in the NE-2 group are separated into 2 groups based on their 

histologic scores: those with scores less than or equal to 

1.0, and those with scores greater than or equal to 1.5. In 

figure 8, the maximum BP attained during the ninety minute 

infusion period is compared between the groups. Figure 9 is 

a comparison between the groups of the integrated mean BP 

over the ninety minute infusion period. There was no signi¬ 

ficant difference in maximum BP between the high score and 

low score groups which had maximum BP’s of 134 + 5.9 and 123 

+ 9.6 mmHg respectively. There was also no significant 

difference in the integrated BP over the ninety minute 

infusion period between the groups. The high score groups 

had an integrated BP of 116 +_ 5.2 mmHg, and the low score 

had a value of 107 _+ 7.7 mmHg. 

CARDIAC METABOLIC DEMAND: The MAP X HR (P x R) product for 

each group is shown in the lowermost panels of figures 6 and 

7; and values at 0, 10, 30, 60, and 90 minutes are summa¬ 

rized in table 2. For all the groups, the P x R remained 
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nearly constant throughout the infusion and in no instance 

was the initial control value exceeded. The initial values 

(x103) were 29 .3 + 1.8 (saline controls), 23 .7 + 1.8 (NE- 2), 

and 25 

+
 1 1.8 (NE- 3) . The P x R values at 0, 10, 30, 60 , 

and 90 minutes f or the saline controls were compared to the 

NE-2 and NE -3 group s. The P x R values for the NE-3 groups 

did not differ significantly from the saline cntrols, while 

the P x R values for the NE-2 group did not differ signifi¬ 

cantly from the saline controls except at the 60 and 90 

minute points where the NE-2 P x R product was significantly 

lower (p<0.0l). At no point did the P x R product of either 

norepinephrine group rise or exceed the values of the saline 

controls. Thus, it appears unlikely that excessive meta¬ 

bolic demand was a significant factor in the pathogenesis of 

the myocardial lesions caused by norepinephrine. Further¬ 

more, when the P x R product at each interval was compared 

between the norepinephrine infusion groups and the norepi¬ 

nephrine + verapamil infusion groups, the only statistically 

significant difference was between the control P x R product 

of NE-2 + VE-1 which was lower than that of NE-2 (p<0.05). 

However, this value was obtained prior to the infusion of 

verapamil + norepinephrine. Thus, verapamil treatment did 

not result in significantly lower P x R products, and there¬ 

fore it is unlikely that verapamil could have exerted its 

protective effect by decreasing metabolic demand. 
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ARTERIAL pH, BLOOD GASES, SERUM GLUCOSE, AND HEMATOCRIT 
CHANGES 

The pH in all treatment groups showed a tendency to¬ 

wards a slight decrease during the infusion followed by 

return to baseline values ten minutes after the infusion was 

stopped. This may be a reflection of a slight respiratory 

acidosis which is indicated by the increase in pC02 values 

that occurred in all five treatment groups during the infu¬ 

sion period. There was a return towards baseline values ten 

minutes after cessation of the infusion. In contrast, the 

saline controls exhibited a slight rise in pH which was 

probably a result of the slight fall in pCC>2 values during 

the infusion period. Arterial pC>2 values in all five treat¬ 

ment groups showed minimal change during the infusion period 

with only a slight increase observed ten minutes after 

cessation of infusion. 

Figures 10 and 11 show the plasma glucose values of all 

the groups. It can be seen that the dramatic rise in plasma 

glucose caused by norepinephrine infusion was unaltered by 

simultaneous infusion of verapamil. The curves for all 

treatment groups show nearly identical rises in plasma glu¬ 

cose in contrast to the flat saline control curves. The 

plasma glucose in the NE-2, NE-2 + VE-1, and NE-2 + VE-2 

groups rose progressively from about 168 mg/dl to a maximum 

value of about 375 mg/dl ten minutes after cessation of 

infusion. The NE-3 and NE-3 + VE-2 groups had an initial 

plasma glucose of about 123 mg/dl, which rose to a maximum 

of about 371 mg/dl. The saline controls showed minimal 

changes in serum glucose during infusion and averaged about 
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155 mg/dl . 

The hematocrit values of all groups are also shown in 

figures 10 and 11. The norepinephrine and verapamil treat¬ 

ment groups showed an average drop in hematocrit of about 

4%, presumably due to hemodilution by fluid infusion. This 

probably was not physiologically significant. Thus, the 

changes in the measured physiological parameters induced by 

norepinephrine infusion were essentially unchanged by vera¬ 

pamil . 
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DISCUSSION 

The results of this study indicate that verapamil is 

capable of reducing the severity of norepinephrine-induced 

cardiomyopathy. It was found that administration of VE-1 or 

VE-2 simultaneously with NE-2 significantly reduced the 

histologic score from 1.24 to 0.59 (VE-1) and 0.65 (VE-2). 

The VE-2 infusion was also protective against a higher dose 

of norepinephrine (3 ug/kg/min) reducing the score from 1.44 

to 0.69. There did not appear to be an increased amount of 

protection with a higher dose of verapamil as the scores of 

the VE-1 and VE-2 groups were not significantly different. 

All of the verapamil treated animals received a 50 ug bolus 

of verapamil prior to the infusion to rapidly achieve a 

therapeutic level which could be maintained by the infusion. 

These findings are in agreement with previous studies 

which showed that verapamil is able to reduce the myocardial 

damage caused by catecholamines (48,69). Fleckenstein (69), 

in a review of his studies of catecholamine cardiomyopathy, 

cited a experiment in which he demonstrated that verapamil 

was capable of protecting the rat heart against structural 

damage if given in appropriate dosage (50 mg/kg) simulta¬ 

neously with isoproterenol (30 mg/kg) subcutaneously. Based 

on a number of studies involving myocardial uptake of ra¬ 

dioactive calcium, Fleckenstein found that subcutaneous 

administration of 30 mg/kg of isoproterenol resulted in an 

increase in the uptake of ^^Ca^+ by a factor of six to ten 

with a maximum level in six hours. Simultaneous administra¬ 

tion of verapamil significantly inhibited the excessive 
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isoproterenol-induced radiocalcium uptake. Fleckenstein 

also described experiments in which verapamil (50 mg/kg) was 

effective in inhibiting the isoproterenol-induced breakdown 

of creatine phosphate fraction in the left ventricular myo¬ 

cardium of rats. Based on these data, he attributed the 

protective effect of verapamil against isoproterenol to its 

calcium channel blocking abilities by preventing calcium 

overload induced by high doses of catecholamines. The latter 

initiates breakdown of ATP and creatine phosphate leading to 

high-energy phosphate exhaustion via activation of the cal¬ 

cium dependent myofibrillar ATPase responsible for trans¬ 

forming phosphate bond energy into mechanical work. 

The mechanism of verapami1-indueed protection is proba¬ 

bly not due simply to its calcium channel blocking activi¬ 

ties to prevent high-energy phosphate depletion. Lehr (48), 

in a review of his studies on catecholamine cardiomyopathy 

found that verapamil was protective against isoproterenol . 

But he also found that verapamil was equally effective in 

parathyroidectomized rats in which myocardial calcium accu¬ 

mulation does not occur. Parathyroidectomy alone does not 

protect against isoproterenol-induced injury. Based on 

these findings, he concluded that calcium overloading is not 

a mechanism directly responsible for the cardiac injury 

produced by catecholamines, and that the beneficial effect 

of verapamil is based on a property other than the preven¬ 

tion of ATP depletion by calcium dependent ATPases. He 

suggested that verapamil may be protective via an oxygen 

sparing effect resulting from its negative inotropic and 

vasodilator actions. 
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Lehr also found that identical myocardial injury could 

be produced by phenylephrine, an alpha adrenergic agonist, 

and that verapamil protected against myocardial necrosis 

elicited by this drug. He postulated that at cardiotoxic 

doses, epinephrine acts primarily as an alpha adrenergic 

agonist. Thus, rats pretreated with theophylline, which 

inhibits cAMP breakdown by phosphodiesterase, show aggra¬ 

vated myocardial injury induced by isoproterenol. But myo¬ 

cardial injury induced by both phenylephrine and epinephrine 

are significantly reduced. This was based on the assumption 

that the stimulation of adenylate cyclase with subsequent 

formation of cAMP is a mechanism specific for beta, and not 

alpha receptors. Beta blockade with propranolol prevented 

isoproterenol-induced injury but had no effect on damage 

caused by phenylephrine. It was only marginally effective 

against tissue damage by epinephrine. Furthermore, alpha 

blockade significantly inhibited the development of epineph¬ 

rine-induced necrosis. He suggested that ischemia may be a 

common denominator in myocardial necrosis elicited by alpha 

and beta adrenergic amines but that alpha agonists create a 

myocardial oxygen debt. This likely results from enhance¬ 

ment of the workload resulting from increased peripheral 

resistance (hypertension), probably in the face of impeded 

blood supply to the myocardium due to coronary vasocon¬ 

striction. In contrast, beta agonists cause ischemia by a 

combination of reduced coronary blood flow (CBF) from hypo¬ 

tension, and oxygen wastage by the intense positive inotro¬ 

pic and chronotropic effects of excessive stimulation of 
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myocardial beta receptors. 

Norepinephrine, like epinephrine, also has both alpha 

and beta adrenergic activities, and Downing et al (43) 

demonstrated a major role of the alpha adrenergic system in 

norepinephrine-induced cardiomyopathy. They found that beta 

adrenergic blockade with practolol or propranolol failed to 

significantly reduce cardiac injury with norepinephrine. 

However, alpha receptor blockade with phentolamine markedly 

reduced lesion formation by norepinephrine. Furthermore, 

administration of the alpha agonist, methoxamine, produced 

myocardial injury which was morphologically identical to 

that of norepinephrine. Phentolamine sharply reduced meth- 

oxamine-induced myocardial injury. Arterial pressure and 

heart rate changes caused by methoxamine were the same as 

those caused by norepinephrine. In both norepinephrine and 

methoxamine treated animals, phentolamine prevented the rise 

in arterial pressure and reduced the extent of reflex car¬ 

diac slowing. 

According to Lehr's theory, alpha agonists induce myo¬ 

cardial injury by causing ischemia. This is secondary to 

increased peripheral vascular resistance and probably im¬ 

paired blood supply to the myocardium due to coronary vaso¬ 

constriction. Verapamil acts via its oxygen sparing effect, 

by reducing metabolic demand and afterload, thereby protect¬ 

ing the myocardium from the damaging effects of norepineph¬ 

rine. The results of the present study indicate that these 

two mechanisms are probably unlikely. The P x R product 

(blood pressure x heart rate) has been shown to be the 

hemodynamic parameter that correlates best with myocardial 
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oxygen consumption (r = 0.86) (70). However, verapamil did 

not significantly lower the P x R product at any time during 

norepinephrine infusion in this study. This is in agreement 

with previous observations in patients with ischemic heart 

disease in which the administration of verapamil had no 

significant effect on MVO2 (71,72). It suggests that vera¬ 

pamil does not exert its protective effects by decreasing 

metabolic demand. In addition, this study confirms previous 

findings that norepinephrine infusion does not result in an 

increase in metabolic demand (43,73). The NE-2 and NE-3 

groups had P x R products that at no point rose or exceeded 

the values obtained in the saline controls. Thus, it is 

unlikely that excessive metabolic demand plays a major role 

in norepinephrine-induced cardiomyopathy. 

Another way in which verapamil might decrease norepi¬ 

nephrine-induced damage is via afterload reduction. It is 

well established that verapamil has profound vasodilatory 

effects on vascular smooth muscle, especially the arteriolar 

beds (74). The present study showed a slight drop in sys¬ 

temic blood pressure five minutes after administration of 

the loading dose of verapamil. However, if verapamil was to 

protect against the effects of norepinephrine by reducing 

peripheral resistance, it should be expected to significant¬ 

ly diminish the rise in systemic blood pressure. This 

mechanism appears unlikely because in the verapamil treated 

groups, hemodynamic parameters followed the same patterns as 

the norepinephrine treated groups. Blood pressure rose to a 

peak value about ten minutes after initiation of the infu- 
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sion and this was accompanied by a reflex bradycardia. This 

was followed by a gradual decline in blood pressure towards 

baseline values and an accompanying rise in heart rate. 

While the blood pressure rise and absolute blood pressure at 

ten minutes was slightly lower in the verapamil treatment 

groups, the differences were not significant between the NE- 

2 + VE-2 and NE-2 groups, or between the NE-3 + VE-2 and NE- 

3 groups. Morever, when the average rise in blood pressure 

over the ninety minute period was compared between the 

norepinephrine treatment groups and the verapamil treatment 

groups, no significant differences were found. Thus, it 

seems probable that the slight reduction in the norepineph¬ 

rine-induced rise in blood pressure caused by verapamil was 

not a major factor in the protective effect of verapamil. 

While both the NE-2 + VE-2 and NE-3 + VE-2 groups 

exhibited blood pressure alterations that did not differ 

significantly from their respective norepinephrine treatment 

groups, the verapamil treated rabbits had significantly 

lower histological scores. Furthermore, the absolute blood 

pressure attained after ten minutes of infusion for the NE-3 

+ VE-2 groups tended to be higher than that attained by the 

NE-2 group (though not statistically significant). But the 

histological score of the NE-3 + VE-2 group was sharply 

lower than that of the NE-2 group (pcO.Ol). Further evi¬ 

dence against excessive hemodynamic loading as an important 

mechanism in norepinephrine-induced cardiomyopathy was ob¬ 

tained by comparing the maximum blood pressure and the inte¬ 

grated blood pressure over ninety minutes in a high histo¬ 

logical score group (greater than or equal to 1.5) and a low 
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score group (less than or equal to 1.0). No difference was 

demonstrated by either analysis. 

Lehr (48) also suggested a possible pathogenetic role 

of impaired blood supply to the myocardium caused by coro¬ 

nary vasoconstriction. Simons (73) recently found that 

norepinephrine causes an increase in coronary blood flow 

(CBF) in the rabbit from 2.66 ml/g/min initially to 3.46 

after three minutes of norepinephrine infusion (p<0.05). 

CBF declined to baseline values (2.33) after ten minutes, 

but showed a sharp decline to 1.51 after forty minutes of 

infusion. Coronary resistance (CR) rose progressively from 

baseline values of 40.9 units to 74.8 at forty minutes 

(p<0.05). Animals given phentolamine manifested none of 

these changes in CBF and CR and also had significantly less 

norepinephrine-induced damage compared to norepinephrine 

alone (p<0.01). He concluded that norepinephrine induces 

sustained coronary vasoconstriction in the rabbit and that 

reduced CBF may contribute to the pathogenesis of norepi¬ 

nephrine cardiomyopathy in the rabbit. Since it is well 

established that the coronary bed is exquisitely sensitive 

to the vasodilating effects of calcium channel blockers 

(75) , it is possible that verapamil exerts a protective 

effect via this mechanism. These agents exert a potent 

coronary vasodilator effect in the isolated rabbit heart 

(76) . In dogs, CBF increases and CR decreases, though no 

change occurs in the caliber of the large coronary arteries. 

The resistance vessels are too small to be seen by coronary 

arteriography (77). 
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While stimulation of alpha receptors to induce coronary 

vasoconstriction may contribute to norepinephrine-induced 

cardiomyopathy, the possible role of myocardial alpha recep¬ 

tors must also be considered. The calcium channel blockers 

have recently been found to have alpha receptor blocking 

properties. Hence, this is another mechanism by which vera¬ 

pamil may exert its protective effects. In a recent review, 

Benfey (78) summarized studies which show that myocardial 

alpha receptors alter myocardial contractility. Alpha re¬ 

ceptor mediated positive inotropic effects have been ob¬ 

served in isolated heart preparations from animals and hu¬ 

mans (79). In the absence of beta receptor blockade, alpha 

blockade with phentolamine potentiates the inotropic effect 

of epinephrine and norepinephrine on rat ventricle strips. 

In the presence of beta blockade, however, it inhibits the 

effect of the catecholamines (80). Phentolamine, and not 

propranolol, inhibits the inotropic effect of low concentra¬ 

tions of epinephrine and phenylephrine in rabbit atrium 

(81). Methoxamine in suitable concentrations elicits sub¬ 

stantial increases in force development in rat right ven¬ 

tricular papillary muscle and rat atrium (82,83). Methoxa¬ 

mine elicits dose-related increases of left ventricular 

contractility in the lamb as well (84). Aass et al (85) 

demonstrated that the myocardial alpha receptors in rabbit 

heart ventricle can be activated by norepinephrine to pro¬ 

duce an inotropic effect. However, beta blockade with pro- 

panolol was required to unmask the alpha response. These 

effects were eliminated by alpha-1 blockade with prazosin. 

In view of these several findings, it is likely that norepi- 
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nephrine-induced cardiomyopathy involves activation of the 

myocardial alpha receptor system. 

Recent studies have indicated that selected calcium 

channel blockers, notably verapamil, are capable of antagon¬ 

izing binding to myocardial alpha receptors (86-90). Both 

Endoh et al (86) and Siegl (91) have shown that D600 (the 

methoxy derivative of verapamil) inhibits alpha adrenocep¬ 

tor-mediated positive inotropic effects of phenylephrine. 

Sensitivity to isoproterenol was only partly inhibited, with 

no decrease in maximal effect. It is interesting to note 

that Motulsky et al (89) found that of all the calcium 

channel blockers, only verapamil and its analogues could 

block binding to alpha receptors. They attributed this to 

its greater structural similarity to epinephrine than other 

calcium channel blockers such as nifedipine or diltiazem. 

There also exists wide species variability in myocardial 

adrenergic receptor numbers. Mukherjee et al (90) found 

markedly decreased numbers of alpha and increased numbers of 

beta receptors in the canine as compared to rabbit or rat 

myocardium. They also found differences in the degree to 

which various calcium channel blockers competed with alpha 

antagonists for binding in different species. Notably, only 

in rabbit myocardium does verapamil antagonize alpha recep¬ 

tor binding at moderate concentrations (half maximal binding 

value of 5 x 10"7 M) whereas verapamil in canine and rat 

myocardium, and D600 in all three species antagonize alpha 

receptors only at relatively high concentrations. Thus, it 

is likely that verapamil exerts a protective effect against 
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norepinephrine-induced cardiomyopathy in the rabbit by inhi¬ 

biting activation of the myocardial alpha receptor system. 

The calcium channel blocking effects of verapamil may 

also be an important mechanism. Influx of calcium is likely 

involved in the inotropic effects of alpha receptors. Alpha 

receptors, in contrast to beta receptors, induce little 

reduction of time to peak tension, and relaxation time is 

lengthened. These mechanical events are consistent with 

stimulation by calcium ions. Indeed, altered calcium trans¬ 

location may be a final common pathway of cell death (42). 

It has been recently suggested that accelerated calcium- 

induced membrane damage may be an important mechanism in the 

sequence of cell death (92,93). Regardless of the type of 

initial injury (ischemic or "toxic" damage), the myocyte 

undergoes calcium accumulation, either by impaired energy 

metabolism and/or by plasma membrane alterations. Elevated 

intracellular calcium concentrations are responsible for 

cytoskeletal modifications that alter cell shape, activate 

phospholipases that perpetuate membrane damage, and finally 

lead to mitochondrial calcification. The relationship of 

norepinephrine-induced cardiomyopathy to this scheme is of 

course speculative. But it represents a potential mechanism 

through which verapamil may act to interrupt calcium-induced 

injury. 

In summary this study has demonstrated that verapamil 

causes a substantial reduction in the severity of damage to 

the myocardium caused by norepinephrine. It appears unlike¬ 

ly that verapamil exerts its protective effects via reduc¬ 

tions in afterload or metabolic demand because hemodynamic 
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responses to norepinephrine were unaltered and there was no 

significant decrease in the P x R product. There are sever¬ 

al possible mechanisms by which verapamil may exert its 

protective effects. These include prevention of norepineph¬ 

rine-induced coronary vasoconstriction, inhibition of myo¬ 

cardial alpha receptor activation, and prevention of lethal 

calcium accumulation within the cell. The latter is likely 

the common pathway of cell death regardless of the initial 

mechanism of injury. Indeed, verapamil may act at each of 

these sites. Further studies will be required to elucidate 

more precisely the individual mechanisms by which verapamil 

exerts its protective effects against norepinephrine-induced 

cardiomypathy. 
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band formation, and focal myofiber damage char- 

of lesions scored 2.0. Original magnification 

200x. 
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FIGURE 2. Representative histologic (H & E stain) section 

of left ventricular myocardium from rabbit sacrificed 48 

hours after simultaneous infusion with verapamil at 1 

ug/kg/min and norepinephrine at 2 ug/kg/min for ninety min¬ 

utes. There are definite but sparse lesions with damage 

limited to the subendocardium and less extensive necrosis, 

cellular infiltrate, and vacuolization characteristic of 

lesions scored 1.0. Original magnification 200X. 
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FIGURE 4. Histological scores from hearts in various groups 

of rabbits infused with norepinephrine only (NE) or NE 

simultaneously with verapamil (VE). Numbers in parentheses 

indicate ug/kg/min for NE and VE. Numbers within columns 

represent the number of animals in each group. Values are 

expressed as mean histological scores + SEM. 
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FIGURE 5. Relationship of norepinephrine (NE) and verapamil 

(VE) dosages to histological score. Numbers in parentheses 

indicate ug/kg/min for NE and VE. C = control group of 

saline infused rabbits. Values are expressed as mean histo¬ 

logical scores + SEM. 
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FIGURE 6. Values of the mean arterial pressure (MAP), heart 

rate (HR), and pressure-rate product (MAP X HR) at desig¬ 

nated intervals before, during, and following norepinephrine 

(NE), NE + verapamil (VE), or saline (C) infusion. Numbers 

in parentheses indicate ug/kg/min for NE and VE. A 50 ug 

loading dose of VE was given five minutes prior to beginning 

infusion with NE and VE as indicated. Values are expressed 

as means + SEM. 
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FIGURE 7. Values of the mean arterial pressure (MAP), heart 

rate (HR), and pressure-rate product (MAP X HR) at desig¬ 

nated intervals before, during, and following norepinephrine 

(NE), NE + verapamil (VE), or saline (C) infusion. Numbers 

in parentheses indicate ug/kg/min for NE and VE. A 50 ug 

loading dose of VE was given five minutes prior to beginning 

infusion with NE and VE as indicated. Values are expressed 

as means + SEM. 
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FIGURE 8. Comparison of the average maximum blood pressure 

(BP) attained during infusion with norepinephrine alone at 2 

ug/kg/min for ninety minutes by rabbits with histological 

scores less than or equal to 1.0 and those with scores 

greater than or equal to 1.5. NS indicates non-significance. 

Values are expressed as means + SEM. 
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FIGURE 9. Comparison of the average integrated mean blood 
pressure (BP) over the ninety minute infusion period with 
norepinephrine at 2 ug/kg/min of rabbits with histologic 
scores less than or equal to 1.0 and those with scores 
greater than or equal to 1.5. NS indicates non-signifi¬ 
cance. Values are expressed as means + SEM. 
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FIGURE 10. Mean values for plasma glucose and hematocrit at 
designated intervals before, during, and following norepi¬ 
nephrine (NE), NE + verapamil (VE), or saline (C) infusion. 
Numbers in parentheses indicate ug/kg/min for NE and VE. A 
50 ug loading dose of VE was given five minutes prior to 
beginning infusion with NE and VE as indicated. Values are 
expressed as means + SEM. 
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FIGURE 11. Mean values for plasma glucose and hematocrit at 
designated intervals before, during, and following norepi¬ 
nephrine (NE), NE + verapamil (VE), or saline (C) infusion. 
Numbers in parentheses indicate ug/kg/min for NE and VE. A 
50 ug loading dose of VE was given five minutes prior to 
beginning infusion with NE and VE as indicated. Values are 
expressed as means + SEM. 
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TABLE 1 

BLOOD PRESSURE CHANGES IN RESPONSE TO VARIOUS AGENTS INDICATED 

MEAN ARTERIAL PRESSURE (mmHg + S.E.) 

CONTROL BP BP(10) BP(10)-BP(C) INT.BP-BP(C) n 

NE-2 94+5.0 128+5.6 34+2.2 18+2.1 13 

NE-2VE-1 80+3.2a 101+5.6° 21+5.9b 16+3.8 10 

NE-2VE-2 95+4.3a 118 + 7.4 23 + 4.0 14+2.6 8 

NE-3 102+4.8 139+4.9 37+2.6 22+2.2 10 

NE-3VE-2 100+3.3a 134+5.8 34+3.6 25+2.4 4 

SALINE 102+6.0 103+7.9 0.6 + 2.1 1 + 1.6 5 

a five minutes post 50 ug loading dose of verapamil 
b P < 0.05 
c P < 0.01 

TABLE 1. Mean arterial pressure changes during ninety minute 
infusion of the treatment combinations of norepinephrine and 
verapamil indicated. Control BP = control blood pressure (prior 
to initiation of infusion). BP(10) = mean arterial pressure ten 
minutes after beginning infusion of drugs indicated. BP(10)- 
BP(C) = the difference between the blood pressure at ten minutes 
and control blood pressure. INT. BP - BP(C) = the difference 
between the integrated blood pressure over the ninety minute 
infusion period and control blood pressure. n = number of rab¬ 
bits. NE-2, NE-3 = infusion of norepinephrine at 2 ug/kg/mg and 
3 ug/kg/min, respectively. VE-1, VE-2 = infusion of verapamil at 
1 ug/kg/min and 2 ug/kg/min, respectively. 
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TABLE 2 

EFFECT OF THE VARIOUS TREATMENT COMBINATIONS OF NOREPINEPHRINE 

AND VERAPAMIL ON CARDIAC METABOLIC DEMAND 

P X R PRODUCT (X 103 + S.E.) 

CONTROL 10 MIN 30 MIN 60 MIN 90 MIN n 

SALINE 29.3+1.8 28.7+1.9 26.7+1.9 25.6+1.5 25.9+0.9 5 

NE-2 23.7+1.8 19.0+2.1 19.3+1 .8 16.7+1.6b 16.7+1.4b 13 

NE-3 25.7+1.8 23.7+3.5 23.0+2.5 22.6+2.1 20.9+1.7 10 

NE-2 23.7+1.8 19.0 + 2.1 19.3+1.8 16.7+1.6 16.7+1.4 13 

NE-2VE-1 19.5 + J_. 0 a 18.6+0.9 16.8+1.0 16.6+0.8 16.3+0.8 8 

NE-2VE-2 24.1+1.5 22.6+1.2 20.9+0.8 19.7 + 0.8 19.3+0.9 10 

NE-3 25.7+1.8 23.7+3.5 23.0+2.5 22.6+2.1 20.9+1.7 10 

NE-3VE-2 28.6+0.9 27.7+0.8 25. 1 + 1.5 22.1+1.2 23.4+2.0 4 

a P < 0.05 
b P < 0.01 

TABLE 2. The effect of the various treatment combinations of 
norepinephrine and verapamil on cardiac metabolic demand. Card¬ 
iac metabolic demand is represented by the P X R product (X 103 + 
S.E.) of each treatment group at 0 minutes (control), 10 minutes, 
30 minutes, 60 minutes, and 90 minutes after beginning infusion 
of the agent(s) indicated. P X R = the product of mean arterial 
pressure and heart rate. n = number of rabbits. NE-2, NE-3 = 
infusion of norepinephrine at 2 ug/kg/min and 3 ug/kg/min, re¬ 
spectively. VE-1, VE-2 = infusion of verapamil at 1 ug/kg/min 
and 2 ug/kg/min, respectively. 
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