
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

1970

Effects of tissue and media amino acid pools on
transport of amino acids by rat kidney cortex slices
William G. Koehne
Yale University

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Koehne, William G., "Effects of tissue and media amino acid pools on transport of amino acids by rat kidney cortex slices" (1970). Yale
Medicine Thesis Digital Library. 2809.
http://elischolar.library.yale.edu/ymtdl/2809

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2809&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2809&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2809&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2809&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/2809?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2809&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu






Digitized by the Internet Archive 
in 2017 with funding from 

The National Endowment for the Humanities and the Arcadia Fund 

https://archive.org/details/effectsoftissuemOOkoeh 













EFFECTS OP' TI 0 'j-t 

Oil TRAP!SPORT OF A1EGTO AC 

PAD AFDIA AUDIO ACID POOLS 

IDS BY RAT KIASIiPi CORTEX SLICES 

A Thesis 

Presented to 

the Faculty ox the School of liedicine 

Yale, university 

In Parhial Fa].fi],lr;lent 

of the Require:..ients for the Degree 

Doctor of rlicme 

by 

PFilliai’i Lea 



ibM'n • 



Permission for microfilming of "Effects of Tissue and Media 

Amino Acid Pools on Transport of Amino Acids by Rat Kidney 

Cortex Slices" is hereby granted by the author. 





ACKN CvILSDGIijE ITS 

Any endeavor such 

one person. This study 

many individuals. Host 

as a thesis can rarely be attributed to 

■ reflects the Influences and concerns of 

deeply and most directly* I am. indebted 

to the following people: 

Dr. Leon Rosenberg* whose numerous suggestions* wise 

counsel* and stimulus to scholarship have contributed 

so much to this study* and to ny own personal and 

professional growth. 

Joseph Durant and Isadora Albrecht* two colleagues 

and friends who by their example and willingness 

to share taught me that much of the success of 

laboratoiy research is dependent upon breadth of 

knowledge as well as rigorous performance of the 

task. 

Dr. Louis Elsas* who offered thoughtful encourage¬ 

ment and constructive criticism throughout this 

study. 

Dr. Jerry Hahoney* who contributed unselfishiy of 

his time and expertise in assisting me to collect 

and interpret much of the data in this study. 

iii 





I-iy wife, Nancy, and daughter. Shannon, who shared 

the joys aid frustrations of the past four years 

and provided, by their devotion, understanding, 

and support, a real reason to strive for the 

best I could offer. 

W.G.K. 

uv 





ABSTRACT 

This study investigated changes in tissue and. media amino 

acid pools during the course of incubation of rat kidney cortex 

slices in Krebs-Ringer bicarbonate buffer and in Krebs-Ringer 

buffer supplemented irith plasma concentrations of amino acids, 

focusing on influences which these pools exert on transport of 

amino acids by the tissue. The tissue ammo acid pool was found 

to be maintained at a more physiologic level when kidney slices 

were incubated in "amino acid buffer,11 although incubation of 

tissues in either this buffer or Krebs-Ringer buffer resulted in 

a substantial loss of amino acids from tissue to medium during 

idle course of incubation. The predominant amino acids lost from 

the tissue pool during incubation were glutamic acid and glycine, 

the tiro amino acids present in highest concentrations .in tissues 

prior to incubation. Transport of ^-srainoisobutyric acid (AH3), 

glycine, diaminobutyric acid (DAB), and lysine by kidney slices 

was significantly reduced when the uptake studies were carried 

out in amino acid buffer. The effect was shown for AIB to be 

due to competitive inhibition, confirming previous observations 

that amino acids composing the media pool may influence transport 

phenomena by competing with similar amino acids for transport. 

Reduced AIB uptake following prolonged preincubation of tissues 

either in amino acid buffer or in the presence of high concentrations 

of AIB suggested that the tissue pool may also influence amino acid 

transport, perhaps by means of feedback regulation as previously 

postulated in a bacterial system but heretofore undoscribed in a 

mammalian tissue. 
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INTRODUCTION 
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The cell membrane is known to be more than an inactive 

barrier separating vital intracellular components iron the 

surrounding extracellular fluid. It is now recognized as a 

highly developed structure having the unique ability to mediate, 

in a selective fashion, the movement of organic and inorganic 

substances between the cell exterior and the cell interior. 

Knowledge about the mechanism of this mediation has been 

accumulating rapidly during the past few years, but interest 

in the problem dates back at least a century. 

Tissue analyses carried out in the mid-nineteenth century 

revealed that sodium and calcium ions were largely extracellular 

in location, whereas potassium and magnesium were the principal 

q 
intracellular cations. Liebig noted in I8I5.7 that muscle ash 

was rich in potassium and poor in sodium while the reverse 

2 
was true in the blood. At about tie same time Snderlin 

reported that alkali phosphate exceeded alkali chloride in 

3 muscle. By 1875 Forster had grouped tissue salts into either 

the "Gewebesalze" (potassium, magnesium, and phosphate) or 

the "Safteseizen (sodium, chloride, and calcium). 

A static placement or !,fossilization” of the ions in one 

of the two compartments was assumed to explain these observations 

until labeled ions were first used to investigate the problem 
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thirty years ago. Cohn and Cohn^ showed in 1939 that Na^ 

rapidly entered the erythrocytes of the intact dog, and two 

years later Harris'* demonstrated a net exchange of sodium ions 

for potassium ions when erythrocytes were cooled or soon after 

they were depleted of glucose. These findings prompted Harris 

to comment: 

Plainly, the view that the erythrocyte membrane 
is impermeable to cations, the distribution of 
these ions being a static phenomenon, must be 
abandoned. In its place must be substituted a 
concept of normal membrane permeability to sodium 
and potassium, their concentrations in the cells 
being maintained by one or more metabolic functions 
of the cells.5 

The manner in which amino acids distribute themselves 

between the cell interior and the surrounding environment is 

a more recent interest of biologists. Van Slyke was the 

first to demonstrate, in 1913, that animal tissues have a much 

higher concentration of free amino acids than does plasma.0 

7 8 
Christensen et al. 9 reported in 1932 that all twenty-one amino 

acids they studied were concentrated by tie Shrlich mouse ascites 

tumor cell and that uptake of certain amino acids was inhibited 

by other amino acids of the same general class (neutral, 

cationic, or anionic). This prompted Christensen to postulate 

the presence of a trans-membrane "carrier" for amino acids: 

The evidence now seems very strong that the 
amino acids really are in a free form within the 
cell, or at least in a form with full osmotic 
activity and electric charge. Therefore, it seems 
necessary to assume that they exist in a modified 
form during transfer across the boundary. Presumably 





the si. rmo acia reacts Tilth a carrier to produce 
this modification. . . The inhibitory effects 
observed, here are probably explained as competitions 
among the amino acids for the carrier., rath.er than 
as competitions between carrier and inliibitor for 
the amino acid to be transferred. 

Amino acid transport has non been studied in a number of 

in vitro systems including tumor cells^*^, erythrocytes^, 

11 12 
various microorganisms , everted intestinal sac , isolated 

diaphragm muscle^"* 1~4, brain slices”^, and kidney slices'^. 

In general, the movement of ammo acids across cell membranes 

in these various preparations has been found to be a mediated 

process, i.e. involving a reaction between the amino a cid and 

a chemical structure or site present in a limited amount in 

17 
the memorane . IJany aspects of mediated transport are similar 

to those found in enzyme-catalyzed reactions — substrate 

specificity, saturation kinetics, responsiveness to competitive 

and noncompetitive inhibitors, etc. TJhen tlie amino acid is 

transported against a chemical concentration gradient, the 

term "active transport” may be invoked, inasmuch as some force 

other than diffusion is required to maintain an asymmetric 

l8 
system . This active process is energy-requiring and is 

presumably coupled Tilth cellular metabolic processes. 

This stu.dy Trill utilize a kidney slice preparation to 

investigate various features of amino acid transport. A brief 
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review of previous work in this system therefore seems in order. 

Kidney slices from the rabbit were introduced as airesns of 

studying p-amino-hippurate transport by Cross and Taggart 

in 19^0. it abb it kidney slices were subsequently employed by 

other investigators to study renal transport mechanisms for 

20 21 
potassium and galactose ; slices from guinea pig kidney 

r>2 
were used to investigate both sodium snd potassium transport ; 

and slices from a number of animals were used to study renal 

23 
handling of uric acid. 

The system used in the present study, rat kidney cortex 

slices, was introduced by Rosenberg et_al.~ in 1961. Amino 

acid transport mechanisms in this tissue have been veil char¬ 

acterized. In addition to many of the naturally occurring 

amino acids, at least two synthetic amino acids have been used 

extensively for kidney transport studies — -c.~aminoisobu tyr ic 

acid (AIB) and L-diaminobutyric acid (DAB). The former is a 

non-utilizable aiino acid, first employed by Christensen, 

2li 
Noall, et al. , which is transported by kidney slices in much 

the same fashion as neutral amino acids but is neither 

metabolised nor incorporated into protein once within the cell. 

AIB is thus a valuable tool to dissociate transport phenomena 

from intracellular metabolic events. DAB serves somewhat the 

same function for the dibasic amino acids, being transported 

much like lysine. It is apparently not as met ab o 1 ic ally inert 

as AIB, however, being oxidised significantly to carbon dioxide 
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although choiring minimal incorporation into protein 

Amino acid transport in the rat kidney slice has been 

shown to be dependent on aerobic metabolism, temperature, and 

oxidative phosphorylation"*" . In addition, it exhibits the usual 

26 27 
transport properties of substrate specificity 9 ', saturation 

kinetics at high substrate concentrations 1 , and competitive 

26 
inhibition among distinct groups of amino acids 1 it is 

dependent on an adequate ila+ concentration in the medium, with 

the transport of many amino acids being abolished in ha1"-free 

28 
medium . An interesting mathematical model has been designed 

29 
by Rosenberg et al. to explain the kinetic data obtained 

from transport studies of AIB, glycine, and L-lysine in kidney 

slices. The model has three "parallel" compartments representing 

the medium, extracellular space, and intracellular space. It 

presumes that substrate molecules can enter the extra- and Intra¬ 

cellular spaces simultaneously from the medium and need not 

traverse the extracellular space before entering the cellular 

compartment. Also, the exogenous amino acids apparently do 

not have to equilibrate with the intracellular pool before 

being incorporated into protein, but the oxidation of amino 

acids to carbon dioxide does seem to reflect their buildup in 

the intracellular pool. 

Interest in the intracellular and extracellular amino 





-7- 

acid pools has been growing in recent years. One aspect of 

this interest has centered around the role which the pools 

might have in membrane transport of amino acids. The intra¬ 

cellular pool is basically determined by the equilibrium 

existing between amino acid influx and efflux on one hand 

and intracellular utilization of amino acids on the other. 

The former may be represented by passive diffusion, carrier 

mediated but energy independent transfer, and active transport. 

The latter consists of incorporation of amino acids into 

protein and metabolic degradation of amino acids. It now 

seems apparent that the intracellular pool is not homogeneous 

but is rather either structurally or functionally compartmentalized. 

30 31 
It has been shown in single-cell systems ’ and in mammalian 

29 32 
tissues including the kidney slice 3 that the pool is 

heterogeneous with respect to at least cme cellular process, 

protein synthesis. Whether the protein synthesizing pool 

is structurally restricted to sites such as microsomes, 

nuclei, or mitochondria or whether it is only chemically 

differentiated by such mechanisms as selective activation 

or incorporation of amino acids into protein at the cell 

membrane is still undetermined. 

Little quantitative information is available on the 

composition of the intracellular amino acid pool. Malathi 
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33 et al. used a seird.-quautita.tive paper chromatographic method 

to estimate the concentrations of amino acids in several 

rat tissues including kidney. It has been found that, in 

general, the intracellular patterns do not reflect the amino 

acid composition of plasma*3 and that the makeup of the intra¬ 

cellular pool is remarkably constant when changes take place 

3d 
in the external environment of the animal . This is in 

contrast to the considerable variability found in the 

composition of the plasma amino acid pool in animals and man 

O/C o *7 

under a variety of conditions'3 3 

Influences of the intra- and extracellular pools on amino 

acid transport phenomena have thus far been investigated 

only in unicellular systems, with the exception of well 

defined competitive inhibitory effects observed between 

various amino acids when tissues are exposed to a medium 

containing both. That a transport carrier could be part of 

an inducible system was initially proposed in the remarkable 
<5 O 

work of Konod et al. on the B-galactosidase system in E. coli. 

They theorized that this carrier, termed a "permease", was 

coded for by a distinct genetic locus in the lac operon and 

that the presence of galactose in the medium could "turn on" 

the permease locus so that it would begin coding for the 

carrier necessary to transport galactose into the cell. 

Several other inducible permease systems in a variety of 
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microorganisms have since been described^ 4\ Conversely, 

a sulfate transporting system has been characterized in 

Salmonella typhimurium which is sensitive to a repressive 

type of regulation by its end product, cystine4 . In the 

realm of amino acid transport, Heinz has recently described 

a negative feedback control exerted by intracellular AIB 

on the AIB transport system in _3treptomvces hydrogenans4 344. 

Heinz postulates tliat the accumulated substrate, AIB, can 

inhibit one of the first reactions in the transport process, 

perhaps the energy-requiring conversion of inactive to active 

carrier, thus exerting a regulatory influence at the level 

of the transport carrier rather than at the gene level. He 

notes that the numerous analogies between enzymatic reactions 

and transport processes seen to justify such a hypothesis4 . 

It would seem important to extend to mammalian tissues 

these studies on the relationship between intra- and extra¬ 

cellular amino acid pools and membrane transport phenomena. 

The work reported in this paper is an attempt to do so in one 

specific system, the rat kidney cortex slice. An appealing 

feature of the kidney slice in this regard is that, while 

prepared by direct slicing of a mammalian organ, the tissue 

apparently consists almost entirely of renal tubules and has 

only minimal extraneous interstitial, tissue . It can therefore 
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be considered a. tissue in which very reproducible data can 

be collected for transport by tubular cells, and yet the 

transport observations in this system can apparently be 

considered indicative of the manner in which these processes 

occur in the intact animal. 

All previous studies of amino acid transport in rat kidney 

cortex slices have been carried out using a buffer which 

contains only one or two selected amino acids and appropriate 

concentrations of physiologic ions. To date no reports have 

appeared in which amino acid transport in kidney slices has 

been studied in a medium containing all the amino acids normally 

present in physiologic fluids. In addition, there has been no 

investigation of possible fluctuations in the tiss e and media 

pools of amino acids during the time course of the transport 

studies or of the influences these pools may exert on transport 

processes. The present study was therefore designed to provide 

information on the following: 

1) To characterize the transport of several amino acids 

by rat kidney cortex slices incubated in Krebs-Ringer 

bicarbonate buffer supplemented with plasma levels 

of amino acids. 

2) To compare the changes in tissue and media amino acid 

pools during incubation of kidney slices in this 

buffer and in normal Krebs-Ringer buffer. 
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3) To study direct and indirect influences of trie 

tissue and media amino acid pools on amino acid 

transport processes. 





METHODS ACID MATERIALS 
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Tissaes obtained from male oprague-Dawley rats were used 

for ail phases of this study. Rats weighing 120-200 grams 

were fed water and Purina rat chow jad libitum until sacrificed 

by stunning and decapitation immediately prior to removal of 

tine kidneys or collection of blood samples. 

Preparation of an incubation buffer containing amino 

acids in concentrations comparable to those in rat plasma, 

was the initial stage of this study. A pooled sample of blood 

from three rats was collected in a heparinised tube at the 

time of decapitation. The sample was centrifuged and the 

plasma deproteinized with 10;! sulfosalicylic acid prior to 

quantitative analysis for amino acids on a Beckman Ilodel 120G 

Amino Acid Analyzer using the method of lloore* Spackman* and 

h< 
Stein . To ensure the accuracy of the amino acid values 

obtained from a single pooled plasma sample* a second pooled 

sample was obtained from two rats during the course of another 

experiment and analyzed in an identical manner. AH amino acid 

concentrations from this sample were in close agreement with thos 

previously determined. Using the quantitative plasma amino 

acid values obtained from the initial pooled sample* cu"*i c*. CJU. O O 0. s 

solution of twenty amino acids was prepared. Tlie amino acid 

concentrations in this solution were calculated such that when 

the solution was used in preparing Krebs-Ringer bicarbonate 

buffer a medium resulted which was identical with Krebs-Ringer 

except that it contained amino acids in conentrations comparable 





to those found in rat plasma (Table I). This buffer was 

subsequently referred to as the "amino acid buffer". 

The aqueous amino acid solution was freshly prepared at 

two-week intervals by quantitatively weighing crystalline 

preparations of the individual amino acids on a Hetiler analytic 

balance and dissolving them in distilled water. The solution 

was then frozen until used. 

For studies of amino acid pools and transport, both 

kidneys were quickly removed from the decapitated rat and 

placed in either cold Krebs-Ringer bicarbonate buffer or in 

the specially prepared Krebs-Ringer buffer containing plasma 

concentrations of amino acids. The kidneys were first bisected 

transversely, and then thin cortical slices (about O.I; mm thick) 

were prepared with a Stadie-Riggs microtome. The initial 

(polar) slice from each heni-kidney was discarded, and two or 

three slices containing only cortical tissue were obtained 

from each heni-kidney. Slices were prepared from three animals 

in rapid succession. Groups of three slices (one from each 

animal) were transferred to a 2f?-ml Erienmeyer flask containing 

2.0 ml of Krebs-Ringer bicarbonate buffer, pH 7•U, or to a 

comparable flask containing 2.0 ml of amino acid buffer, pH 7»h. 

For transport studies a tracer quantity of labeled substrate 

was present in the incubation flask. The flasks were gassed 





with Op, on COg for 20 seconds, sealed, and incubated for 

specific lengths of tir.ie in a Tubnoff metabolic shaker at 

37.5°c. 

Following incubation, the tissue slices were removed from 

the flask, dipped twice in isotonic saline to remove surface 

radioactivity, blotted, weighed on a torsion balance, and 

placed in 2.0 ml of distilled water in conical centrifuge 

tubes. The tubes were placed in beakers of boiling water for 

six minutes to allow complete equilibration of the tissue water 

with the suspending solution and to end the reaction. The 

tubes were then cooled and centrifuged. 

Total tissue and media pools of free amino acids were esti¬ 

mated by measuring the concentration of <-amino nitrogen present 

in eitier an aliquot of the aqueous tissue supemateo* an 

aliquot of the final medium. The -amino nitrogen determin¬ 

ations provided an index of total free amino acids in die 

respective pools but did not distinguish individual amino 

h6 
acid forms. The method cf Fisher, Bunting, and Rosenberg 

was used for =c-amino nitrogen determinations. The tissue 

<-anino nitrogen pool was expressed in mmoles per liter of 

total tissue water. To ensure tiat mly the Sees -c-amino 

nitrogen pool was being measured, certain tissues were homo¬ 

genized in trichloroacetic acid and cc-nmino nitrogen determina¬ 

tions made on these tissue homogenates. Values obtained by 
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this nethod were in close agreement with those obtained by 

boiling the tissues. 

In the transport studies, radioactivity was assessed by 

pipetting 0.2 ml of the aqueous tissue superstate or the remaining 

incubation medium, into glass counting vials, followed by 2.8 ml 

of absolute ethyl alcohol end 7.0 nl of DP0-P0P0? phosphor 

(O.U575 2,5 diphenyloxazole and 0.0105 l,U-bis-2-phenylo:cazolyl- 

benzene in toluene). The vials were counted in a Packard 

Tricarb Liquid Scintillation Spectrometer. 

Values for total tissue water (30.0$ of the wet tissue weight) 

and extracellular space (25.75 of the wet weight) were taken from 

previous studies using the same tissue4 . Uptake of labeled 

substrate was defined as the distribution ratio of com per nl 

of intracellular fluid to com per ml of incubation medium. 

The following formula was used to calculate the net cpm per ml 

of intracellular fluid, based on the fact that labeled substrate 

in the medium equilibrates rapidly with the extracellular fluid: 

, . / . / Tn-n _ (net counts/min) - (counts/nin/nl medium) (ml EOF) 

(m3, water) - (nl SCF) 

Composition of the tissue amino acid pool was assessed first 

by semi-quantitative electrophoretic techniques and then more 

quantitatively by means of a Beckman liodel 120C Amino Acid 

Analyzer. An aliquot of the aqueous supera ate following boiling 
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and centrifuging of the tissue was used in both cases. This 

provided information on the composition of the "tissue pool" 

but did not differentiate intracellular from e: tracellulsr 

components. For semi-quantitative analysis a 30 pi aliquot 

of the supemate "mas spotted on tihatnan .'•-312-1 paper prior to 

inversion in a Gilson Iiodel D high voltage electrophorator 

containing 6.3d 

run at 2500 vol 

formic acid buffer for a two-hour unidimensionsl 

ts. The paper was then dried* sprayed with 

a 0.2,1 (w/v) solution of ninliydrin in acetone* heated* and 

compared visually with the amino acid pattern of a control 

solution run on the same paper. Following this initial 

screening* a 0.5 ml aliquot of the tissue supemate was 

analysed on the Beckman Amino Acid Analyzer to obtain more 

precise quantitative information on the concentrations of 

various amino acids in the tissue pool. Concentrations of 

glutamine and asparagine could not be derived by this method 

since the two amino acids are inseparable on the Beckman 

Analyzer column with the sodium citrate buffer system used. 

Chemicals used in this study included the following: 

<-Aminoisobutyric acid-l-C^1' (specific activity 3*37 mC per 

mmole)* glycine-2-C^' (specific activity 2.5 idO per nmole)* 

jj, r 
and L-lysine-U-C r (specific activity 126 mC per mmole) were 

obtained from Hew Bn gland Unclear Corporation. Uniformly 

, ih . 
labeled L-2*4-diamnobuuyruc acuc-U-C (specific activity 
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1.9 nG per nmole) , unlabeled. L-2,h~diarnrobutyric acid, and 

mlabeled <-aminoisobutyric acid were purchased from Calbiochen. 

Samples of the unlabeled naturally occurring amino acids used 

in this study vere obtained from liutritional Biochemicals 

Company. 





RESULTS 
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Amino Acid Composition of Rat Plasma 

Concentrations of the free amino acids in rat plasma are 

shown in Table I. Tliese values are similar to those reported 
JO 

by Scharff and Wool4 in 1;00 gran Sprague-Dawley rats and by 

h9 Schimassek and Gerok in Uistar rats. A striking observation 

is the apparent absence of cystine in the plasma of young rats. 

Schimassek and Gerok similarly reported that cystine was 

"not measurable" in the plasma of young Uistar rats. Scharff 

and Wool, however* found a O.Ool mil concentration of cystine 

in plasma from older Sprague-Dawley animals. 

Based on the data recorded in Table I* the amino acid 

buffer was prepared in such a way that it contained amino 

acids in the enact concentrations found in rat plasma. The 

concentrations of glutamine and asparagine, two amino acids 

which could not be measured by the technique used, were derived 

from composite data available on the concentrations of these 

amino acids in human plasma"’0. 

Changes in Tissue and Media °c-Anino nitrogen Fools during 

Incubation of Rat Kidney Slices 

Tissues were incubated for varying lengths of time in 

either Krebs-Ringer buffer or amino acid buffer to provide 

preliminary information on changes in tissue and media amino 
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acid pools daring the course of such an incubation. The pools 

were expressed in terns of their ~<.-smino nitrogen content, an 

index of the total pool of free amino acids. 

Changes in the tissue amino nitrogen pool during a 

360-minute incubation are illustrated in Figure 1. Uhen the 

slices were incubated in Krebs-Ringer buffer, the tissue 

oc-ainino nitrogen pool decreased markedly during the initial 

60 minutes of incubation and continued to fall at a slower 

rate thereafter. Incubation in amino acid buffer resulted in 

a similar decrease in the tissue pool, but the pool was 

maintained at a concentration 6-8 mil greater in this buffer. 

An interesting observation was the significant (p<0.01) rise 

in the tissue pool between 15> and 30 minutes incubation for 

tissues incubated in Krebs-Ringer buffer, followed by an equally 

significant (p<0.0l) fall by 60 minutes. Uhether this effect 

represents re-uptake of amino acids initially lost from the 

tissue, a brief increase in protein catabolism to maintain the 

tissue amino acid pool, or some other phenomenon was not 

investigated further. 

The media, concentration of *<-amino nitrogen increased 

almost linearly in'the two buffers throughout the 3o0-minute 

incubation (Figure 2). There was no evidence of a leveling 

off in the size of the media pool at longer incubation times. 
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Changes In Concentrations of Individual imino Acids Conoosing 

the Tissue Fool during the Course of Incubation 

More extensive information on the composition of the tissue 

amino acid pool seemed desirable in order to compare it with 

the previously determine plasma pool and to evaluate fluxes in 

individual amino acids during the course of incubation of the 

tissue. As an initial screening procedure, the amino acid 

patterns of several tissue supemates prepared from kidney 

slices without incubation were examined by means of high 

voltage electrophoresis. Detectable amounts of glutamine, 

glycine, serine, and alanine were observed, together with 

traces of lysine and the branched-chain amino acids. The 

glutamine spot was significantly more prominent than the others. 

Aqueous supemates from tissues incubated in Krebs-linger 

buffer for varying lengths of time were then analysed quanti¬ 

tatively on the Beckman Amino Acid Analyzer. Certain tissues 

were quickly prepared, weighed, and placed in boiling water 

without exposure to buffer. Tliese were labeled "direct from 

animal". Others were placed in cold Krebs-Ringer buffer for 

8-10 minutes prior to weighing and boiling. These were labeled 

"0 minutes incubation". The remaining tissues were incubated 

for either 180 or 360 minutes. As shown in Table II, glutamic 

acid (15.90 mil) and glycine (ll.lb mil} were found to be present 
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in the highest concentrations in the tissue pool. All other 

amino acids mere present in less than 2.25 mil concentrations in 

tissues direct from the animal. Once again concentrations of 

glutamine and asparagine could not he obtained by the method 

used. It T-ri.ll be noted that the tissue concentrations of 

glutamic acid and glycine decreased dramatically during the 

course of 3o0 minutes incubation, while the concentrations of 

most other amino acids declined by 5Qd or less. Kydroxyproline, 

proline, and methionine showed marked fractional decreases in 

concentration but were initially present in rather small amounts. 

Tissue concentrations of ornithine, lysine, and histidine increased 

during the course of the incubation. An intriguing finding is 

the presence of measurable cystine in the tissue pool despite 

its apparent absence in plasma. 

Transport of AIB, Glycine, DAB, and Lysine in the Two Buffers 

Characteristics of the transport of four amino acids by 

rat kidney cortex slices in Krebs-Ringer or amino acid buffer 

was next investigated. Two neutral amino acids, c-aminoisobutyric 

acid (AID) and glycine, as well as two dibasic amino acids, 

diaminobutyric acid (DAB) and lysine, were selected for these 

studies. IJhereas the naturally occurring amino acids, glycine 

and lysine, are known to be metabolized after transport into 

the cell, AIB and DAB have been shown to be utilized only 





Tissues were incubated with the minimally by the cell 3 

labeled substrate for varying lengths of time in either Krebs - 

Ringer or amino acid buffer and the resulting distribution 

ratios determined. 

Time curves for tie uptake of /JIB, glycine, DAB, and lysine 

revealed reduced distribution ratios for each amino acid when 

incubation was carried out in amino acid, buffer (Figures 3-6). 

The effect was seen within 10-15> minutes incubation for AIB 

and DAB and by 30 minutes for all four amino acids, suggesting 

that reduced influx rather then increased efflux was tie 

phenomenon being observed. By 60 minutes incubation distribution 

ratios were reduced by L&Jo for /JIB, 2 Op for glycine, b0% for 

D/IB, and30)3 for lysine. 

To ascertain whether the reduced uptake*ns related to the 

presence of amino acids in the incubation buffer rather than 

to maintenance of higher tissue amino acid pools in those 

slices incubated in amino acid buffer, tissues were preincubated 

for 60ninutes in either Krebs-Ringer or amino acid buffer and 

then transferred to fresh buffer containing labeled substrate 

for a la-minute incubation. The results, shown in Table III, 

reveal fiat the initial sice of Hie tissue amino acid pool had 

no apparent effect on AZ8 transport. The effect seemed instead 

related to the presence of amino acids in the incubation buffer. 
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Hlchaelis-I'snten Kinetics of -U3 and D/lB Tiymsport in the 

Tito Buffers 

Kinetic studies were undertaken to further elucidate the 

characteristics of -IDS and DAB transport in tissues erqoosed to 

a medium containing amino acids. Kidney slices were incubated 

in either Krebs-Ringer or amino acid buffer for 15 minutes 

in the presence of increasing concentrations of JOB or DAB. 

A 300-fold range of AI3 concentrations and a 200-fold range of 

DAB concentrations were used. The final intracellular concen¬ 

tration of each amino acid was corrected for diffusion to obtain 

the final intracellular concentration attributable to mediated 

transport alone . Uptake data were then plotted by the 

<i 
double reciprocal method of Lineweaver and Burlc to provide 

a means of determining ilichaelis constants for the substrates 

under fie two incubation conditions. - 

Curves for AX3 uptake in the tiro buffers (Figure 7) had 

differing slopes but an identical ordinate intercept. The 

extrapolated abscissa intercepts . differentfbr the tiro buffers, 

gave K values of 3.4 mil for Krebs-Ringer buffer and 12.5 mil 
0 El 

for amino acid buffer. The former value 

52 53 
previously by other investigators 9 . 

agrees with that reported 

Ho evidence was seen 

of the T!hi~h K system" for AIB transport in the kidney slice 
0 El 

53 — 
detected by Scriver and Lohyuddin . ilaodLmal velocity of Ai_3 

transport (V ) in both buffers was calculated to be 3.3 mmoles 
i max 
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per liter per Ip minutes. Hie greater K for AIB transport in 

amino acid buffer with no difference in V implies that AIB 

transport is competitively inhibited when tissues are ©imposed 

to tlie spectrum of amino acids in this buffer. 

DAB uptake in the two buffers showed no evidence of 

saturability even at 20 mil substrate concentrations* although 

distribution ratios were lower in amino acid buffer throughout 

the range of substrate concentrations used. It-therefore 

appears that DAB transport in tlielddney slice is handled by 

a system (or systems) of very high capacity. Previous studies 

of DAB transport in kidney slices have not included similar 

kinetic analysis* but it has been shorn for a number of amino 

acids, including the naturally occurring dibasics, that steady 

state distribution ratios exceeding 1.0 are attained even at 

25> 

high substrate concentrations (l5 mil) . It was of course 

impossible to calculate I-ichaelis constants for DAB transport 

in the two buffers since a saturable transport component could 

not be demonstrated. 

AIB Transport Follotring ^Prolonged Preiicioatior cf Tissues ±i 

Amino Acid Buffer or in the Presence of Ij3 jil yi_B 

Following the above studies on influen 

amino a.cid pool has on transport processes, 

important to investigate the more subtle run 

css which the me 

it was deemed 

itercf effects 

.a 
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exerted by the tissue anino acid pool on uptake of anino acids 

by the tissue. In particular, the possibility of eliciting 

evidence of feedback regulation of membrane transport by 

intracellular amino acids, an effect previously observed in 

bacterial systems, seemed worthy of investigation in a mammalian 

tissue. The amino acid buffer proved to be a valuable tool 

in these studies since the tissue pool of free amino acids had 

previously been shown to be maintained at a higher level in 

tissues incubated in this buffer. The tissue pool could also 

be altered by preloading the kidney slice with one particular 

anino acid. Presumably, changes in the composition of the 

tissue amino acid pool might promote alterations in uptake of 

amino acids by the tissue if the pool did indeed exert regulatory 

effects on amino acid transport. 

It was decided to study the 10-minute uptake of labeled 

AIB by tissues which had been preincubated for 180 minutes 

either in amino acid buffer or in Krebs-Ringer containing 

10 mM AIB, using tissues preincubated in. plain Krebs-Ringer 

as controls. A l80-minute duration for the preincubation was 
r' r) 

selected in view of data reported by Elsas and Rosenberg"5 

which suggests that the catabolic !:half-life!i of the proteiu(s) 

postulated to be responsible for mediated transport of MB in 

the rat kidney slice is about 3~s hours. Presumably, a repressive 

effect exerted by the tissue pool on the synthesis of this 
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protein would be more clearly revealed following a preincubation 

of at least 180 minutes. Preincubation in amino acid buffer or 

in the presence of 10 mil AI3 lea to reduced AIB uptake compared 

with control tissues (Tables IV-V). The effect was highly sig¬ 

nificant (p<0.0l) ii both cases. To determine whether a similar 

effect could be observed following a briefer preincubation, 

certain tissues were preincubated in 10 mil AIB or in Krebs-Ringer 

for only 60 minutes while the remainder were preincubated for 180 

minutes.'Again, significantly reduced AIB uptake wan noted in 

tissues exposed to high media concentrations of AIB during the 

60 -minute preincubation (p<0.0l), but tie effect was not as marked 

as that observed following 180 minutes preincubation (Table VI). 

To determine the elatent to which the above findings might 

reflect differences in media amino acid pools in the incubation 

flasks as a result of rapid efflux of amino acids from tissues 

preincubated in amino acid buffer or 10 nil AIB, tissue and 

media «-amino nitrogen pools were assessed during the 10-minute 

incubation. As shown in Table VII, the concentration of amino 

acids in the tissue pool decreased by approximately imi 

during the 10-minute period. Concentration of the media pool 

increased by 0.2^ ml- during tie incubation if the tissues 

had been preincubated in Krebs-Ringer buffer and by 0.5>0 rA 

if the tissues had been exposed to amino acid buffer during 

the preincubation. It was deemed essential to demonstrate 
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conclusively whether the 0.29 mil difference in tie media pools 

could account for the reduced AIB uptake noted in tissues 

preincubated inauino acid buffer. Ten-ninute AI3 uptake 

studies "without preincubation were therefore performed in 

plain Krebs-Ringer buffer or in Krebs-Ringer containing amino 

acids in 1/10 or 1/20 the concentrations found in amino acid 

buffer (approximately 0./0 mil and 0.29 ml I respectively). In 

addition, certain tissues were incubated in the presence of 

0.32 mM AIB, the concentration of AIB expected in the incubation 

medium had the entire AIB contentcf the tissue pool (at 10 rail 

concentration) shifted from tissue to media following transfer 

of tissues from preincubation to incubation flasks. There 

was no difference in AIB uptake under any of these incubation 

conditions (Table VIII). Evidence, then, seems to indicate 

that the factors responsible for reduced amino acid transport 

are not present in the incubation medium but are instead related 

to a property of the tissue. The greater tissue amino acid pool 

known to exist ii those slices which transport less substrate 

imolies that the relative size of the tissue pool may be a 

regulatory influence on the amount of 3hsIrate transported 

by the tissue. 





DISCUSSION 
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Transport of amino acids by rat kidney cortex slices has 

been considered indicative of the manner in which amino acids 

are transported in the intact kidney. The medium, commonly 

used in transport experiments has, however, contained only 

one or two amino acids rather than the full spectrum of amino 

acids normally filtered by the glomeruli and reabsorbed in 

the renal tubules. Incubation of kidney slices in a medium 

containing plasma conentrations of amino acids would seem to 

more closely approximate physiologic conditions, and use of 

this medium for transport studies might provide a more accurate 

indication of transport processes as they occur in the kidney 

in vivo. Preparation and utilization of such a buffer to 

investigate influences of tissue and media amino acid pools 

on transport processes were the goals of this study. 

The concentrations of various amino acids in rat plasma 

as determined in this study are in close agreement with values 

found by other investigators in rats of different age or 

L8J.9 
strain r . Discrepancies are perhaps related not only to 

age or strain differences but also to differences in the time 

of blood sampling in view of a recent report noting significant 

diurnal variations in the plasma concentrations of most amino 

37 acids in man . The absence of measurable cystine in rat 

ho 
plasma, while agreeing with a previous report is somewhat 
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surprising when contrasted, with the small but quantifiable 

amount of cystine detected in an analysis of the tissue amino 

acid pool. It is probably worth noting in this regard that 

only ornithine was present in the tissue pool in a concentration 

smaller than that of cystine. Perhaps the minute concentration 

cf plasma cystine required to maintain renal tissue pools in the 

range of 0.36 ml-i is undetectable even by the sensitive 

analytic technique used in this study. 

Heterogeneity of the "tissue amino acid pool" complicates 

interpretation of tie quantitative data on concentrations of 

amino acids in the tissue. ITot only does such a pool consist 

of those amino acids free in the extracellular fluid and in 

the intracellular fluid but also may encompass several compart¬ 

mentalized pools within the intracellular space. It may be 

useful for analytic purposes to assume that the extracellular 

amino acid pool reflects quite closely the relative amino 

acid pattern found in plasma. Coupling this supposition 

with the documented fact that the IGF includes of the 

tissue wet weight* it is apparent that the "tissue pool" 

reflects predominantly the pattern of nino acids found intra- 

cellularly. A striking observation* then* is the variability 

between the relative concentrations of amino acids in plasma 

and in the tissue pool (Table IS). Whereas a significant 





gradient exists for certain amino acids such as glutamic 

acid (0.18 mM in plasma, 1£.9 mM in the tissue pool), other 

amino acids such as arginine show only a small gradient 

(0.22 ml! in plasma, 0.27 mil in the tissue pool). In general, 

the concentrations of glutamic acid, aspartic acid, glycine, 

and methionine are vastly greater in the tissue pool than in 

plasma, while the tissue/plasma ratios of most other amino 

) ft 

acids range only from about 3/1 to 6/1, Scharff and Wool4 

reported a similar wide variability in the relative tissue/ 

plasma concentrations of individual amino acids in rat diaphragm 

and heart muscle. They also noted the gradient to be greatest 

for aspartic acid and glutamic acid. 

It is interesting to compare the ratio of tissue/plasma 

concentrations of amino acids with ICF/ECF distribution ratios 

obtained for tine same amino acids in transport studies using 

labeled substrate. Glycine, for example, attains a steady 

state distribution ratio of only 6.0 to 7.0 in uptake studies 

in the kidney slice'*'0 yet this amino acid was shown to have 

a tissue/plasma gradient of 19.6 in tissues direct from the 

animal (Table EC). After l80 minutes incubation the concentra¬ 

tion of glycine in the tissue pool had decreased to the extent 

that the tissue/plasma ratio was only about U.l. It may be 

more appropriate to use the 180 minute tissue /plasma ratio for 



& 



comparison since glycine is known to attain a steady state 

distribution ratio rather slowly. A glycine tissue/plasma 

ratio of I; or 5 would, then, agree rather well with the IGF/EOF 

distribution ratio of labeled substrate reported for this 

amino acid. Similar reasoning reveals that tissue/plasma 

ratios for lysine (3.1) and proline (1.6) at 180 minutes incu¬ 

bation closely approximate their reported ICF/SCF steady state 

pr* cf) 
distribution ratios (3.0 and 2.3 respectively '>> ). In general, 

the distribution ratios of those amino acids whose transport 

has been studied in the rat kidney slice do not differ markedly 

from their respective tissue/plasma ratios, as reported in the 

present investigation. 

The finding that the tissue pool of free amino acids is 

maintained at a slightly higher concentration when tissues 

are incubated in amino acid buffer is encouraging evidence 

that, in at least one respect, use of this buffer provides a 

more physiologic environment for the tissue. A substantial 

loss of tissue amino acids occurs even in this buffer, however, 

presumably as an inevitable consequence of rupturing and 

traumatizing renal cells in the slicing process. 

Quantitative data on changes in the composition of 

the tissue pool during prolonged incubation in Krebs-Ringer 
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buffer revealed that those amino acids present in the highest 

concentrations in tissues taken directly from the animal 

showed the greatest decrease in concentration during the course 

of incubation. The concentration of glutamic acid* originally 

15.90 mi-1 in the tissue pool, fell to 1.96 mil after l80 minutes 

incubation and remained relatively constant thereafter. The 

concentration of glycine, 11.15 bM in tissues direct from the 

animal, decreased to 2.32 mil at 180 minutes and also stabilized 

at that point. It is perhaps important to note that glutamic 

acid and glycine are two of the amino acids whose concentrations 

in the tissue pool far exceed their plasma concentrations. 

Disruptions in normally functioning transport processes caused 

by slicing and traumatizing the renal tissue might therefore 

be reflected rapidly and dramatically as a decrease in the 

steep tissue/plasma gradients of these taro amino acids. In 

addition, glutamic acid and glycine are among the amino acids 

most actively involved in intracellular metabolic processes. 

Such processes might, over the course of 180 minutes, promote 

a more striking decrease in the intracellular concentrations of 

glutamic acid and glycine than in the concentrations of most 

other amino acids. 

Hie marked decrease in the tissue amino acid pool observed 

over the course of 180 minutes incubation was followed by 

little subsequent decline from 180 to 36O minutes. This 
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relative stability of the tissue pool after l30 minutes 

exposure of the tissue to a buffered medium suggests that 

advantages might be derived by conducting amino acid transport 

studies after such a steady state has been attained. The 

flux of amino acids from tissue to medium prior to that time 

undoubtedly has some unassessed impact on uptake of amino 

acids by the tissue. Transport of glutamic acid and glycine 

would seen most likely affected by such spontaneous changes 

in the composition of the tissue pool since these are the 

amino acids subject to the greatest and most rapid decrease 

in tissue concentration. 

Transport of two neutral, amino acids* glycine and AI3, 

and of two dibasic amino acids,, lysine and DAB* has been shown 

to be greatly influenced by the size of the media amino acid 

pool. Incubation of slices in a medium whose amino acid compo¬ 

sition simulates that of plasma was shown to lead to a significant 

decrease in glycine* AI3* lysine* and DAB uptake by the tissue. 

This is perhaps not surprising in view of the well documented 

competition for transport sites among various groups of amino 

acids. 3" Indeed* it was clearly demonstrated in this study 

that AI3 uptake was competitively inhibited when tissues were 

incubated in amino acid buffer. An attempt was made to 

illustrate the same effect for DAB* but failure to elicit 

sat an ability of the DIB transport system even at 20 mil substrate 
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concentrations prevented kinetic analysis of the uptake data. 

It seems reasonable to assume, however, that competitive 

inhibition accounted for the decreased transport of all four 

substrates in amino acid buffer. The degree of inhibition 

of transport for a given amino acid may be related to the 

relative concentrations in amino acid buffer of those amino 

acids sharing transport sites with the labeled substrate 

and which therefore actively compete with it for transport. 

This study presents the first evidence that the tissue 

amino acid pool may exert effects on amino acid transport more 

subtle than those exerted by the media pool. It is postulated 

that one such effect may involve a feedback control mechanism, 

similar to that suggested in a bacterial system4'5* 54 but 

heretofore undescribed in a mammalian tissue. .Markedly reduced 

MB uptake was observed in tissues which had been preincubated 

for 180 minutes either in amino acid buffer or in the presence 

of a high concentration of AI3, two conditions which axe known 

to alter the composition of the tissue amino acid pool. 

Furthermore, it was found that the reduction in AI3 uptake 

under the latter condition appeared related to the duration of 

preincubation in AIB, the effect being more striking following 

180 minutes preincubation than after 60 minutes preincubation. 

Whether such reduced uptake is due to control exerted by a 
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greater tissue amino acid pool cannot be answered conclusively 

fron data obtained in this study. It does seen apparent, 

however, that the regulatory influence resides within the tissue 

since no factor was detected in the media to account for the 

findings. The effect being observed differs significantly fron 

that of exchange diffusion as reported for dibasic amino acid 

bb 
transport in the kidney slice by Schwartzman, Blair, and Segal 

since preloading the tissue with an amino acid involved in 

exchange diffusion leads to an increase rather than a decrease 

in initial uptake of that or a similar amino acid. The possibility 

of generalized tissue damage or metabolic derangement following 

prolonged exposure to amino acicl buffer or high concentrations 

of AIB, effects mulch may lead to lowered amino acid transport, 

has not been ruled out by this study. ¥ith this in mind, it 

would seen important to investigate the transport of amino acids 

other than AIB following prolonged preincubation to assess the 

specificity of the observed effect. Further, if a regulatory 

influence of the tissue pool is indeed responsible for the 

alteration in amino acid uptake, the site of such regulation 

should be sought. In view of the apparent dependence of the 

magnitude of reduction in AIB uptake on the duration of pre¬ 

incubation, with the effect being more striking following 

longer exposure of the tissue to a high concentration of AIB, 

repression of synthesis of a protein(s) responsible for AIB 
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transport should perhaps be considered a potential, site for 

such regulation. 

Tissue and media amino acid pools have been shown in this 

study to be a major influence on amino acid transport in the 

rat kidney cortex slice. The two pools were demonstrated to 

change in composition and relative size during the course of 

incubation, with the magnitude of such changes being governed 

at least partially by the nature of the incubation buffer. 

I-lore important, evidence was presented indicating direct and 

indirect effects which amino acids in the pools exert on the 

amount of substrate taken up by the tissue. An all too 

comon practice has been to view amino acid transport as a 

rather isolated event involving mediated movement of an amino 

acid across a cell membrane. This study will have contributed 

significantly to an understanding of transport phenomena if 

it merely creates an increased awareness of the importance 

of the pools of amino acids residing on either side of the 

cell membrane 





TABLES 





TABLE l 

Amino Acid Concentrations in Rat Plasma and in Amino Acid Buffer 

Rat Plasma Ami no Acid Buffer 
Amino Acid mgA00ml mgAOCml mM 

Bydrosyproline l.U l.U 0.11 
Aspartic acid 0.6 0.6 0.0£ 
Threonine h.l U.7 0.39 
Serine 3.3 3.3 0.31 
Glutamine 9.7 9.1 0.66 
Proline 3.9 3.9 0.3h 
Glutamic acid 2.7 2,7 0.18 
Glycine h.3 U.3 0.57 
Alanine 5.3 5.3 0.59 
Valine 3.0 3.0 0.26 
Cystine 0.0 0.0 0.00 
Methionine 0.9 0.9 0.06 
looleucine 1.2 1.2 0.09 
Leucine 2.3 2.3 0.18 
Tyrosine 1.9 1.9 0.10 
Phenylalanine 1.1 1.1 0.07 
Ornithine 1.0 1.0 0.08 
Lysine 8.0 8.0 o.a 
Histidine 1.1 1.1 0.07 
Arginine 3.9 3.9 0.22 
Asparagine 0,6 0.6 o.o5 

03 irl-i 

Concentrations of amino acids in ratpLasma uere assessed hy 
analysis of an aliquot of deproteinized plasma cooled from 
three animals. A Beckman Model 12GC Amino Acid Analyzer was 
used for the determinations. Amino acid buffer ms then. 
preoared so the .t it contained concentrations of individual 
amino acids exactly the same as those found in the pooled 
plasma sample. 
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TABL2 II 

Composition of the Tissue Amino Acid Pool at Various j.ncubaiion 

Tines 

Direct from 
Amino Acid Animal 0 ruin. 180 min. 360 min, 

Hydrosqyproline O.lj.5 mil 0.1-2 mil 0.00 mil 0.00 mil 
Aspartic acid 2.00 1.18 1.67 1.32 
Threonine 1.07 0.79 0.62 0.61 
Serine 1.72 1.13 1.0k 1.0b 
Proline 1.32 O.6I4. 0.5k 0.31 
Glutamic acid Ip. 90 10.62 1.96 2.00 
Glycine 11.15 6.88 2.32 2.91 
Alanine 2.25 2.29 1.16 1.12 
Valine 0.72 0.57 o.5U 0.58 
Half cystine O.36 0.25 Trace 0.15 
Ilethionine 0.97 0.6k 0.27 0.07 
Isoleucine 0.39 0.39 0.36 0.39 
Leucine l.lli 0.79 0.7h 0.73 
Tyrosine 0.57 0.39 0.1;2 0.31; 
Phenylalanine 0.1-3 0.27 0.39 0.32 
Ornithine 0.00 0.00 5 0.06 
Lysine 1.03 1.19 ia 

43 Sj 1.73 
Arginine 0.27 0.35 O 1—' O.16 
Hi stidine 0.31 0.35 *3 0.1$ 

Rat kidney cortex: slices were incubated, in Krebs 
bicarbonate buffer for the designated length of 

-Ringer 
tine. An 

aliquot of aqueous tissue e: struct was then analysed on a 
Beckman Ho del 1200 Amino Acid Analyser. Concentrations 
of individual anino acids are expressed as nmoles per liter 
of total tissue water. One tissue was analyzed at each 
incubation time. The terns I:direct from animal21 and 
"0 minutes incubation” are explained in the text. 





TABLE III 

Effect of _ reinci ibation in Amino Acid Buffer on AEB Transport 

Preincubation 
Buffer 

Incubation 
Buff er 

Distribution Ratio 

Krebs-linger Krebs-Ringer k.k5 

Krebs-PJnger Amino Acid 2.71; 

Amino Acid Krebs-Ringer k.85 

Amino ilcid Amino Acid 2.55 

Tissues were preincubated in fie designated buffer for 
60 ninutes end then transferred to, different flasks 
containing fresh buffer and AIB-c' (0.06 nil) for a 
k^-ninute uptake strip. Each distribution ratio 
represents fie mean of k observations. Distribution 
ratio is defined as fie ratio of cpm per nl of 
intracellular fluid to cpm per ml of incubation 
medium. 





TABLE IV 

Effect of Prolonged Freincubation in Amino Ac id 

Buffer on AI3 Transport 

Freincubation Condition Distribution Ratio 

Krebs-Ringer 2.25 

Amino Acid Buffer 1.73 

Tissues were preincubated for 180 minutes in either 
Krebs-Ringer or amino acid buffer and then transferred 
to different flasks containing fresh Krebs-Ringer buffer 
and 0.1 nil AIB-Cl^ for a 10-minute uptake study. Each- 
distribution ratio represents the mean of seven observations. 
The "p" value for the difference in distribution ratios 
is <0.01 (Student's !!t,! test). 

TABLE V 

Effect of Prolonged Ire Inc ubation in 10 mil AI3 

on ATB Transoort 

Preincubation _Condition Distribution Ratio 

Krebs-Ringer 2.81*. 

10 rrff-I AIB 1. h).i 

Tissues"were preincubated for 180 minutes in 
Krebs-Ringer buffer with or without IQmli AIB 
and then transferred to different flasks 
containing fresh buffer with 0.1 iriM AIB-C-l 
for a 10-ninute uptake study. Each distribution 
ratio represents the mean of four observations. 
The "p" value for the difference in distribution 
ratios is <0,01 (Student's "t" test). 
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TABLE VI 

Effect of Duration of Preincubation 

in 10 if I AIB on AJB Transport 

Duration of Preincubation Distribution 
Preincubation Condition Ratio 

Krebs-Ringer 2.09 
l80 Kinutes 

10 mil AIB 1.05 

Krebs-Ringer 2.00 
60 Hinutes 

10 ill AIB 1.U2 

Tissues were preincubated for either 60 minutes or 
180 minutes in Krebs-Ringer buffer with or without 
10 if I AIB and then transferred to different flasks 
containing fresh Krebs-Ringer buffer with 0,1 rfi 
AIB-CJ ' for a 10-minute uptake study. Each distribution 
ratio represents the mean of three or four observations. 

The "p" values for differences in distribution ratios 
is <0.01 (Student's !It” test) for both preincubation 
times. 





TABLE VII 

Changes in Tissue and Ledia u-Irnno Mitrogen Fools Pollen-ring 

Transfer of Tissues Prom Preincubation Buffer to Incubation 

‘Tissue Pool - 

Preincubation Caudition 

Buffer 

Pollen-ring 
180-Inn. Preincub. 

Following 180-Lin. 
Preincubation 4- 
10-1 fn. Inc; ibation 

Krebs-Ringer 29.0 mil 25-5 mH 

Amino Acid Buffer 33.6 mil 28.6 ml-I 

Hedia Pool (Incubation PI asks) — 
Poll cu rin g Following 180-Hin. 

Preincubation Condition 18 0-Inn, Prein cub. Preincubation + 
10-Inn. Incubation 

Krebs-Ringer 0.00 mM 0.25 mM 

Amino Acid Buffer 0.00 mil 0.55 mil 

Tissues 'rare preincubated for 180 minutes in either 
Krebs-Ringer or amino acid ‘buffer and then transferred 
to different flasks containing fresh Krebs-Ringer 
buffer for a 10-minute incubation -without substrate. 
Tissue <-anino nitrogen concentrations are expressed 
as mmoles per liter of total tissue water. Ledia 
concentrations are expressed as mmoles per liter of 
the appropriate media. Each value represents the mean 
of three observations. 





TABLE VUI 

AIB Transport An Differing Iledia 

Incubation Condition Distribution Ratio 

Krebs-Ringer 1.03 I 0.07 

0.32 mil AIB 0.92 £ 0.09 

Amino Acids (0,;0 rail) 0.95 i 0.10 

Amino Acids (0.25 rail) 1.09 ± 0.07 

Tissues uere incubated for IQ minutes in 
Krebs-Ringer buffer or iT Krebs-Ringer differ 
contaiiing the designated concentration of 
amino acid. Substrate iras _4IB-C~-L 0.1 rail. 
Each distribution ratio represents the mean 
of four observations 1 3.E. 





TABm XX . 

Ratios of Indivi 

.Amino Acid 

Glutamic acid 

Aspartic acid 

Glycine 

Hethionine 

Leucine 

Phenylalanine 

Tyrosine 

Serine 

Histidine 

Isoleucine 

Eycroyproline 

Proline 

Alanine 

Valine 

Tlireonine 

Lysine 

Arginine 

Ornithine 

Half cystine 

Tissue amino acid < 
per liter of total 
concentrations are 

Inal Amino Acids in Tissue and Plasma 

Tissue/Plasma Ratio 

l/.90/0.18 =83.3 

2.00/0.0/ = Uo.o 

11.1//0./7 = 19.6 

0.97/0.05 = 16.1 

l.lli/0.l8 = 6.3 

O.lj.3/0.07 = 6.1 

0./7/0.10 = 5.7 

1.72/0.31 = /./ 

0.31/0.07 = h.h 
0.39/0.09 = U.3 

0.W0.11 * It.2 

1.32/0.3U = 3.9 

2.2//0./9 = 3.8 

O.72/O.26 = 2.8 

1.07/0.39 = 2.7 

1.03/0.// = 1.9 

0.27/0.22 =1.2 

0.00/0.08 = 0.0 

O.36/O.OO = — 

concentrations are ezipressed as mmoles 
tissue urater (see Table jjl). Plasma 
in mmoles per liter of zat plasma (Table I). 





FIGURES 





50- 

Figure 1 — Changes in the tissue amino nitrogen pool during 

the course of 360 minutes incubation of rat kidney cortex slices 

in either Krebs-Ringer or amino acid buffer. Tissue <<-amino 

nitrogen content, expressed in mmoles per liter of total tissue 

water, was used as an index of the concentration of free amino 

acids in the tissue pool. Each point from 0 to 1.80 minutes 

incubation represents the mean of 7 or 10 observations t S.E., 

while points at 270 and 360 minutes incubation represent the 

mean of I4 observations ~ S.E. The value at 30 minutes incubation 

in Krebs-Ringer buffer is significantly greater (p< 0.01) than 

values at either 15’ or 60 minutes. 
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Figure 2 -- Changes in the media amino nitrogen pool 

during the course of 360 minutes incubation of rat kidney 

cortex slices in either Krebs-Ringer or amino acid buffer. 

Media <-amino nitrogen concentration, expressed in mmoles 

per liter of final medium, it as used an an index of the 

total concentration of free amino.acids present in the 

media at various incubation times. Each point from lf> to 

l80 minutes incubation represents the mean of 7 or 10 

observations t S.E., while points at 270 and 360 minutes 

incubation represent the mean of h observations t S.K. 

*-amino nitrogen concentration of the initial amino acid 

buffer, representing the mean of U observations t S.E., is 

plotted at 0 minutes incubation. 
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Figure 3 Time course of AIB uptake by rat kidney cortex 

slices incubated, in either Krebs-Ringer bicarbonate buffer 

or amino acid buffer. Initial medium concentration of AIB 

was 0.06 ill!. Rat kidney cortex slices were incubated 

aerobically (95>v 0o5 C0o) in 2.0 ml Krebs-Ringer buffer 
2 

or amino acid buffer (pH 7*k) at 37°0. Each point represents 

the mean of 3 observations. Uptake was defined as the 

distribution ratio of cpm per ml of intracellular fluid to 

cpm per ml of incubation medium. 
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* 

Figure h — Time course of 

cortex slices incubated in 

buffer or amino acid buffe: 

glycine uptake by rat kidney 

either Krebs-Ringer bicarbonate 

« Initial medium concentration 

of glycine was 0,57 Rat kidney cortex slices were 

incubated aerobically (955 Ogp 55 CCa) in 2,0 ml Krebs- 

Ringer buffer or amino acid buffer (pH 7.5) at 37 0. Each 

point represents the mean of 3 observations. Uptake was 

defined as the distribution ratio of cpn per ml of intra¬ 

cellular fluid to cpn per ml of incubation medium* 
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Figure 5 

slices incul 

or aiaino ac. 

was 0.1 mM. 

aerobically 

or amino acJ 

the mean of 

distributior 

cpm per nl c 

Tine course of DAB uptake by rat kidney 

Dated in either Krebs-Ringer bicarbonate 

Ld buffer. Initial medium concentration 

cortex 

buffer 

of DAB 

Eat kidney cortex dices were Incubated 

($>£> 02, % COp) in 2*0 ml Krebs-Ringer buffer 

Ld buffer (pH 7*h) at 37°C* Each point represer 

6 observations. Uptake was defined as the 

. ratio of cpm per ml of intracellular fluid to 

f incubation medium. 
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Figure 6 ~~ Tims course of lysine uptake by rat kidney cortex 

slices incubated in either ICrebs-Ringer bicarb o;: ate buffer or 

amino acid buffer. Initial medium concentration of H.ysine 

was 0<5n mb. R at kidney cortex slices were inc ’.bated aerobic all; 

(95b 0^5 5b GUp ) in. 2.0 ml Krebs-Rb.igor buff ’or or amino acid 

buffer (pH ?.u) at 37°C. Each point repres-i £ its the mean of 

3 observations. Uptake was defined as the c t Lb ition ri t: o 

of cpn per ml o. f intracellular fluid to cpn per ml of incubation 

medium. 
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Figure 7 — Lineireaver-Burk plot of AIB uptake by rat kidney 

cortex slices incubated in either Krebs-Kinger buffer or amino 

acid buffer. Initial medium concentrations of AIB ranged 

from 0.03 ill to 10.0 mc-i. Tissues were incubated for If? minutes. 

Each point represents the nean of 6 observations. V is the 

velocity of mediated uptake in mmoles per liter per If? minutes 

as determined by subtracting the uptake component due to 

passive diffusion"^' . S represents the initial substrate 

concentration in mmoles per liter. Appropriate K values for 
m 

AIB uptake in each buffer were calculated from the respective 

abscissa intercepts: K (Krebs-Ringer)-3.Ij. mM, Km(amino acid)“ 

12. A nib V . as calculated from the ordinate intercept, was 
men: 

3*3 mmoles per liter per If? minutes for both buffers. 
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