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ABSTRACT 

PERIPHERAL PARASITE DENSITY AND ITS RELATIONSHIP TO SEVERITY OF 

DISEASE IN PEDIATRIC CEREBRAL MALARIA. Rachel N. Bronzan. Kilifi Coastal 

Unit, Kenya Medical Research Institute, Kilifi, Kenya. (Sponsored by Frank J. Bia, 

Department of Medicine, Yale University School of Medicine, New Haven, CT). 

Pediatric cerebral malaria is an important cause of pediatric mortality in sub-Saharan 

Africa. Many efforts have been made to determine risk factors for serious disease and to 

elucidate prognostic indicators, but studies to date have generally shown little or no 

correlation between peripheral parasite density and severity of disease or outcome. This 

study attempts to further define the relationship between parasite density and disease, 

specifically investigating the interactions of age, parasite density, and mortality in cases 

of cerebral malaria versus noncerebral malaria patients. Our data set is larger than any 

which has been previously analyzed, and includes peripheral parasite counts on 3281 

children ages 0 to 13 years, including 2212 inpatients (419 cerebral malaria, 1257 severe 

noncerebral malaria, and 479 anemic patients), 438 outpatients, and 631 healthy children 

from the community. For each group of patients, the geometric mean parasite density at 

each age was determined and parasite densities were compared among groups. Mortality 

was analyzed as a function of both age and parasite density for each group, and the 

parasite densities for those who died were compared with the counts of those who 

survived for each group. Parasite density was slightly positively correlated with age for 

all groups analyzed together (r=0.09, pO.OOOl) and for noncerebral patients, but not for 

other groups. Cerebral malaria and anemic patients' parasite densities tended to decrease 

with age. Although inpatients with severe disease had significantly higher geometric 

mean parasite densities as compared to other inpatients, cerebral and anemic patients had 

significantly lower parasitemias than noncerebral patients with severe disease. Since 

mortality is highest in the former two groups (cerebral patients 15.75% and anemic 





patients 6.1%), peripheral parasite density alone at time of admission is clearly not of 

prognostic value for death. Additionally, because of the wide range of parasite densities 

within each group, parasite density is also not predictive of severe disease. Thus, this 

study, more powerful than previous ones of its type, corroborates previous findings that 

higher peripheral parasite density is grossly associated with worse prognosis but that 

peripheral parasite density is of no prognostic value except at extremely high levels. 

Modifiers of the parasite density/disease relationship and other determinants of morbidity 

and mortality are discussed. 
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INTRODUCTION 

Malaria is a leading cause of morbidity and mortality in the developing world. 

It has been estimated that there are 300 hundred million people infected with malaria 

in the world and 100 million cases of malaria in developing countries each year [1]. In 

children alone there are between 0.5 and 2 million deaths a year in sub-Saharan Africa 

[2]. In malaria-endemic areas severe disease, characterized mostly by severe anemia and 

cerebral malaria, is seen primarily in children and accounts for approximately 1-2% of 

all malarial disease in children [2]. Cerebral malaria carries case fatality rates between 6 

and 50% in the pediatric population, with many of those who survive having 

permanent neurological sequelae [3, 20, 21, 22, 27, 28]. 

The pathogenesis and pathophysiology of cerebral malaria are not fully 

understood. Sequestration of parasitized red blood cells (PRBCs) in the cerebral 

vasculature of patients is strongly implicated in the pathogenesis of cerebral malaria, 

but the pathophysiology of clinical disease is poorly understood. It has been shown, 

however, that patients with cerebral malaria sequester more red blood cells (RBCs) 

than do patients with other forms of malaria [4] and that the degree of PRBC 

sequestration is strongly correlated with a clinical coma scale [5]. Whether the mass of 

sequestered infected RBCs is directly a function of the total body parasite load, or 

whether host-parasite interactions (i.e. specific interactions between infected red blood 

cells and cerebral post-capillary endothelium) primarily determine the degree of 

sequestration, has yet to be determined. If total body parasite load is correlated with 

degree of sequestration, one might expect a strong positive association between high 

peripheral parasitemias and cerebral malaria. If specific cell-cell interactions are a 

strong determinant in the degree of sequestration, one could postulate at least a 

weakening of such an association between parasitemia and disease. Certainly a 

combination of factors contribute to sequestration and disease. 
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Many efforts have been made to determine risk factors for serious disease and to 

elucidate prognostic indicators. There have been varying reports on whether parasite 

density correlates with severity of disease in patients without cerebral malaria, and 

there are even fewer data concerning this potential correlation in patients with cerebral 

malaria [3,14,18,38,11,16,35]. The goal of this study was to determine if there is a 

correlation between high peripheral parasite counts and cerebral malaria in a malaria- 

endemic area. We studied children in coastal Kenya who were infected with 

Plasmodium falciparum and specifically examined the interrelationships between 

parasite density, type and severity of clinical disease, age, and mortality. 

Life Cycle of the Malaria Parasite 

In order to understand the issues surrounding this study, it is necessary to 

understand the life cycle of the malaria parasite in man. Plasmodium falciparum is the 

most virulent of the four species of human malaria and is the sole focus of this study. 

Infection with P. falciparum begins with the bite of an infected anophelene mosquito, 

in our instance Anopheles gambiae. In the process of obtaining a blood meal, the female 

mosquito deposits sporozoites into the host. The median size of this "dose" per bite is 

approximately 20 sporozoites [6]. The sporozoites then pass to the liver where they 

invade hepatocytes and multiply 10,000-fold over a period of about 8 to 9 days. The 

parasites, now called merozoites, rupture from the hepatocytes and are released into 

the bloodstream to invade erythrocytes of all ages. This begins the erythrocytic stage 

of infection, the stage associated with disease [7]. 

Once inside the red blood cell the parasite develops through the stages of ring 

form and trophozoite, and finally reproduces to form about 20 merozoites packed into 

a schizont. The schizont eventually ruptures, releasing the merozoites into the 

bloodstream, increasing the parasite population within the host. Less commonly the 

parasite differentiates into gametocytes, the sexual form of the parasite. The parasite's 
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life cycle is completed when a female mosquito takes another blood meal and ingests 

the gametocytes, which are infectious for mosquitoes. 

The entire cycle within the red blood cell transpires in 48 hours. During the 

second half of the process, erythrocytes containing trophozoites adhere to the 

endothelium of the post-capillary venules in the deep vascular beds of organs 

throughout the body, a process known as sequestration. Consequently, only the 

younger ring forms of the P. falciparum parasite are seen on examination of peripheral 

blood [7]. 

Clinical Presentation of Malaria 

The clinical presentation of malaria is varied. Symptoms of uncomplicated 

malaria include fever, malaise, nausea, vomiting, and headache. However, in malaria- 

endemic regions there is a high prevalence of asymptomatic parasitemia, so diagnosis of 

malarial disease is not straightforward. The presenting symptoms are shared with 

many other common diseases, and the prevalence of parasitemia in people with fevers 

can be expected to be at least that which is found in the general population [8]. 

Severe Disease: Presentation and Potential Risk Factors 

In children, severe disease has two distinctive presentations, severe anemia and 

cerebral malaria [8]. Severe disease occurs in a minority of children, but what 

determines whether or not severe disease will develop is still poorly understood [2,8]. 

Hypoglycemia, convulsions, septicemia, retinal hemorrhages, elevated CSF lactate, and 

hyperparasitemia (>20-25% cells parasitized [9,10]) are all associated with poor 

prognosis [10]. In Malawi, Molyneux et al used a retrospective analysis to develop a 

bedside prognostic index which identified those children with cerebral malaria who 

were at increased risk for adverse outcome (death or neurologic sequelae) [3]. This 

index included parasitemia >1 x 10^ ring forms/(ll, blood glucose <2.2 mmol/1, and 

white blood cell count > 15 x 10^/1. Age has also been repeatedly shown to be a risk 

factor not only for malarial disease but for severe malarial disease as well. Younger 
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children have more clinical malaria episodes per year than do older ones. Interestingly, 

although children under the age of one year are at highest risk for severe anemia, it is 

those over the age of two who are at highest risk for cerebral malaria [7, 8]. This 

unusual association of age with the spectrum of disease will be considered in more 

detail later. 

Severe anemia is attributable not only to the destruction of parasitized red 

blood cells by the spleen but also to the destruction of nonparasitized red blood cells, 

as well as to depressed erythropoeisis [23] The degree of anemia has often been 

referred to as being disproportional to the level of parasitemia [24]. However, a recent 

paper modeling the interaction between parasites and erythrocytes using coupled 

differential equations, suggests that severe anemia can result from low parasitemia even 

with constant erythropoeisis [23], Anemia is often severe enough to require 

transfusion, and it is not uncommon for anemia to trigger heart failure. 

The clinical features of cerebral malaria include a range of neurological findings, 

and the diagnosis will vary with the clinical criteria being used [25]. In the research 

setting coma scales are used to produce more uniform diagnoses, but rigorous inclusion 

criteria may exclude true cases [8] while loose clinical definitions may lead to elevated 

estimates of its incidence. Cerebral malaria is often characterized by sudden onset. 

Clinical features include coma, seizures, and other neurologic findings such as gaze 

abnormalities, retinal hemorrhages, and decorticate or decerebrate rigidity. 

Postmortem pathologic examination of the brain often confirms the diagnosis of 

cerebral malaria. 

Although a positive blood smear helps to make the clinical diagnosis, it is 

possible to have a transiently negative blood smear in a semi-immune person if an 

infection is highly synchronized and the parasitized cells are all sequestered. Other 

causes of coma and seizure confuse the picture. The Glasgow coma scale is poorly 

suited to the assessment of coma in pediatric cerebral malaria patients. The Blantyre 
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coma scale [3], developed in Blantyre, Malawi, is shown below and is far more 

appropriate for assessing young children in coma because it does not require that 

children be able to speak or follow commands. Additionally, children in malarial 

coma often have consistently open eyes even in the absence of corneal reflexes, 

indicating that this is not "spontaneous eye opening", yet these children would score 

favorably on the Glasgow coma scale. 

Blantyre Coma Scale 

Best motor response Score 
Localizes to painful stimulus 2 
Withdraws limb from painful stimulus 1 
No response or inappropriate response 0 
Best verbal response 
Cries appropriately with painful stimulus or, if 2 
verbal, speaks 
Moan or abnormal cry with painful stimulus 1 
No vocal response to painful stimulus 0 

Eye movement 
Watches or follows (e.g. mother's face) 1 
Fails to watch or follow 0 

A score of 0 in any of the three components of this coma scale is predictive of poor 

outcome, but a combined score of 0 correlates more strongly with outcome [3]. 

Laboratory Diagnosis 

Laboratory diagnosis of malaria typically involves the use of thick and thin 

blood films. Although other diagnostic methods are available, such as polymerase 

chain reaction, blood films are the most practical method available for use in the field. 

Thick films employ larger samples of blood than do thin films and are therefore useful 

in rapid screening for parasites. Preparation involves spreading out the blood on a 

slide, allowing it to dry, and then lysing the red blood cells before staining. This 

allows quantification of parasite density (parasites/pL blood) by calculating the 
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number of parasites observed per 100 white blood cells and then multiplying by the 

patient's white blood cell count. 

For higher levels of parasitemia a thin blood film is the preferred method for 

quantitative diagnosis. These films use a very thin layer of blood, and permit the 

direct visualization of parasites within red blood cells. This allows the estimation of 

the percent parasitemia (the percent of the total red blood cells which are infected) and 

again permits calculation of the parasite density by counting the number of parasites 

observed per 500 red blood cells and then multiplying by the patient's red blood cell 

count. 

Common laboratory findings in malaria include anemia, acid/base disturbances, 

hypoglycemia, elevated CSF lactate, and elevated white blood cell count. The latter 

three findings are associated with poor outcome. Acid/base disturbances, 

hypoglycemia, and elevated CSF lactate in particular are common findings in cerebral 

malaria. 

Pathogenesis and Pathophysiology of Cerebral Malaria 

As mentioned previously, the pathogenesis and pathophysiology of cerebral 

malaria are poorly understood. The pathophysiology is probably related to 

sequestration, cytoadherence of PRBCs to the cerebral vasculature, but the mechanisms 

responsible for the pathology are not fully defined. Risk factors for development of 

cerebral malaria may be contributed by both the host and the parasite [2, 7]. For the 

host these include HLA type, lack of immunity to certain strains of malaria parasites, 

and sensitization by previous exposure [2, 7, 29]. For the parasite these include 

exofactors (soluble parasite factors which may be toxins or may induce cytokine 

production), ability to induce tumor necrosis factor (TNF), and capacity to bind to 

endothelium and form rosettes [7, 26, 34]. These factors will be elaborated upon 

further in the discussion. 
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Sequestration is a process peculiar to Plasmodium falciparum in which infected 

RBCs adhere to the endothelium of deep vascular beds and reduce blood flow. As 

described, sequestration occurs about 24 hours into the 48 hour life cycle of the malaria 

parasite. Mature trophozoites and schizonts are found sequestered in the deep vascular 

beds of many different organs, while only ring stage parasites are found in the 

peripheral blood. Sequestration can occur in any organ, but when it occurs in the 

brain, cerebral malaria can result. 

The process of sequestration clearly has some potential benefits for the parasite 

[8], First, parasitized cells evade the spleen by residing in deep vascular beds. Second, 

by obstructing blood flow sequestration produces a more hypoxic and acidic 

environment which is beneficial to the asexual growth of the parasite. Third, it has 

been postulated that sequestration provides for more efficient infection of new RBCs, 

because newly released merozoites encounter a higher proportion of uninfected RBCs 

when they enter the peripheral circulation [8]. 

On electron microscopic examination, parasitized red bloods cells exhibit small 

protrusions on their cell membranes which are termed knobs. These knobs are 

neoantigens, and have been shown to be parasite antigens which have been transported 

to the cell membrane by the intracellular parasites [30], and they may also be modified 

host RBC determinants [39]. In cerebral malaria it is these antigens which adhere to 

various receptors on the endothelial cells of the cerebral vasculature, primarily the post 

capillary venules, as well as to nonparasitized red cells (termed resetting) [7], both of 

which probably contribute to the gross process of sequestration [31, 36]. 

Some neoantigens are highly conserved while others demonstrate the ability to 

rapidly switch phenotypes, even in the absence of selective pressure [32]. The ability 

to rapidly change these surface antigens could clearly be of importance in the parasite's 

efforts to evade the host's immune response and this has implications for the 

development of vaccines directed at intracellular stage parasites. Furthermore, it has 
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been demonstrated that the adhesive potential of these antigens changes with the 

phenotype [32] which suggests a role for these changes in the pathogenesis of disease, a 

role separate from immune evasion. 

On the cerebral endothelium there are several candidate receptors for 

parasitized RBC neoantigens including thrombospondin, CD36, ICAM-1, E- 

selectin, and vascular cell adhesion molecule-1 [7, 8]. The interaction of the 

parasite surface antigen polymorphisms described above with host receptor 

polymorphisms could result in extreme person-to-person variation in the 

severity and type of disease [2]. These interactions will also be elaborated upon 

in the discussion. 

Peripheral Parasite Density and Disease 

What is the relationship between peripheral blood parasite density and disease 

severity? Parasite prevalence in a population and average parasite density in individuals 

are indices which are often used to demonstrate malaria endemicity [8], But the 

relationship of these factors to clinical disease has not been clearly demonstrated, so 

their usefulness as surrogate measures of morbidity in the analysis of the effects of 

various interventions is questionable. 

It has been demonstrated in The Gambia that while clinical disease from 

malaria shows striking seasonal variation, parasite prevalence varies little over the year, 

suggesting that parasite prevalence does not correlate well with the amount of disease 

in their population [15]. This illustrates the difficulties in distinguishing between 

malarial infection and malarial disease. In Kenya a mean of approximately 33% of well 

children had parasites on a thick smear [9]. In such a setting, a positive malaria blood 

film in a patient with fever may be an incidental finding as the prevalence of 

parasitemia in patients with fever will always be at least as high as the prevalence of 

parasitemia in the general population. These kinds of data have led some researchers to 

try to define a numerical cut-off level of parasitemia above which asymptomatic 
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infection is uncommon [33, 15]. Exactly where this cut-off should fall is difficult to 

determine. And as mentioned, severe disease does occur in patients with low, or even 

transiently absent, parasitemias while patients with higher parasitemias can be 

asymptomatic [14]. 

Age of the infected individual also influences the relationship between 

parasitemia and disease. In malaria endemic regions, there is clearly a decrease in the 

frequency and severity of disease at older ages where higher parasitemias are tolerated 

without disease, suggesting that partial immunity may be established over time. 

Although parasitemia occurs at all ages, the majority of symptomatic disease is seen in 

children. Mortality from malaria is highest in children under the age of five, before the 

age at which peak parasite prevalence is reached. Greenwood [15] and Molyneux [3] 

have both found that in ill children parasite density does not correlate with age. In the 

latter, study age <3 years was associated with poor outcome, demonstrating an effect of 

age on disease which is independent of parasitemia. 

Finally, only a few studies have specifically examined the relationship between 

parasite density and severity of disease. Conclusions have been conflicting as to the 

prognostic value of parasitemia at time of admission in predicting severity of disease or 

outcome. In 1937, Field and Niven found a close correlation between mortality and 

parasitemia, but only for those cases in which treatment was not given prior to doing 

the blood smear. They also noted a >50% mortality in those patients with more than 

500,000 parasites/pL [38]. These findings led to the acceptance and use of peripheral 

parasitemia at time of admission as a gross indicator of morbidity and mortality. But 

there have been many cases in the literature illustrating that very high parasitemias can 

be tolerated without significant disease, and that severe disease or even death can occur 

in the presence of very low parasite counts [14]. Field further supported the 

correlation between parasitemia and mortality in 1949, and another study may 

corroborate these findings [18]. A recent publication suggests that geometric mean 
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parasite density in the general pediatric population can be used as a surrogate measure 

of morbidity and mortality from malaria and would thus be a useful measure when 

assessing various interventions, but this may only apply to mild forms of disease. 

Molyneux et al [3] found an increased risk for adverse outcome such as death or 

neurologic sequelae for those pediatric cerebral malaria patients with parasitemias over 

lxl06/pL. 

In 1949 Field noted that peripheral schizogony is associated with higher 

parasitemias, yet felt that peripheral parasite density was of more prognostic value than 

was peripheral schizogony. A mathematical model has been proposed and tested 

which correlates higher proportions of late stage parasites in the peripheral blood with 

degree of sequestration and thus severity of disease [12, 13]. 

Several studies found no correlation between admission parasitemia and 

severity or type of disease [11, 16], although one study found that parasitemias in 

asymptomatic people were significantly lower than those parasitemias associated with 

disease [11]. Another study suggests that disease severity correlates better with the 

sequestered parasite load than the number of circulating parasites [35]. Some of these 

studies were limited by the number of patients (insufficient power) or the methods 

used in collecting or analyzing data. 

Our study attempts to further define the relationship between parasite density 

and disease, looking specifically at the interactions of age, parasite density, and 

mortality in cases of cerebral malaria versus noncerebral malaria and malarial anemia. 

We examined our data to see if there was a difference in the mean parasite density in 

cerebral malaria patients as compared to severely ill but noncerebral malaria patients 

and additionally looked at mortality to see if it was associated with a higher 

parasitemia when compared with children of the same age and disease status. Few if 

any prior studies have had sufficient patient numbers to look at the association 

between parasitemia and mortality. 
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METHODS 

Study Area, Population and Hospital 

All patients in this study were from Kilifi District on the coast of Kenya. The 

majority of the population are Giriama, members of the Mijikenda ethnic group. A 

1989 national census estimated the total population of the district to be 63,834 persons, 

79% of whom are rural farmers, the remaining 21% living in Kilifi town [9], Mosquito 

vectors are present year-round and residents receive from 1.5 to 8 infective bites per 

year in Kilifi town or the rural forest, respectively [41]. The parasite rate in healthy 

children is 34% averaged over the year, but transmission peaks after the rainy season 

when the parasite rate rises to 39%, remaining around 25% the rest of the year [9]. The 

clinical picture of malaria is typical of that in an endemic area in that clinical disease 

occurs primarily in children and malaria-specific mortality decreases with age, adults 

having acquired sufficient immunity to remain asymptomatic when infected. A 

minimum estimate of the incidence of severe malaria in children under 5 years is 14 per 

1000 per year as estimated from hospital records [9]. The minimum estimate for the 

malaria-specific mortality rate in children under five years is 1.1 per 1000 children per 

year, but this is likely to be a significant underestimate because many deaths occur 

outside the hospital [9], 

The data for this study were collected over a period of five years, from January 

1989 to December 1993, by researchers from the Kenya Medical Research Institute 

(KEMRI) and by researchers from Oxford's John Radcliffe Hospital working in Kilifi. 

Our study population was derived from four distinct patient populations: KEMRI 

inpatients, pediatric ward patients, outpatient malaria cases, and healthy children from 

the community. All children included in the study had a primary diagnosis of malaria. 

Inpatients were from either the pediatric ward at Kilifi district hospital or the KEMRI 

ward, a five-bed pediatric intensive care unit constructed to facilitate research on severe 

pediatric malaria. The study included all patients admitted to either the KEMRI ward 
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or the hospital pediatric ward from January 1989 to December 1991, and additionally 

included all KEMRI patients admitted from January 1992 to December 1993. 

Patients: Clinical Assessment and Laboratory Investigations 

KEMRI patients were patients with severe malaria who were admitted to 

KEMRI ward either immediately upon presentation to the hospital or on transfer from 

the pediatric ward. Severe malaria was defined as having one or more of the following: 

severe anemia (hb < 5.1g/dL) with parasitemia > 10,000/pL, prostration (unable to sit 

or stand), cerebral malaria (coma defined as child unable to localize to pain [42] more 

than one hour after a seizure and more than six hours after anticonvulsants), 

hyperparasitemia (>20% parasitemia), 2 or more convulsions within 24 hours before 

admission, and death with a diagnosis of malaria confirmed by blood film. 

For the purpose of this study, children with severe malaria were classified as 

either cerebral or noncerebral malaria patients. Patients with severe malaria were 

considered noncerebral if they had a Blantyre coma score of 5. Cerebral malaria 

patients were those children who could not localize to pain. Cerebral malaria patients 

were divided into those who were cerebral on presentation (always cerebral) and those 

who became comatose during their hospitalization (new cerebral). Throughout this 

paper these two groups are analyzed together as cerebral malaria patients unless 

otherwise specified. A subset of those severe noncerebral patients with a hemoglobin 

less than 5.1g/dL were classified as anemic. Patients who were both anemic and 

cerebral were classified only as cerebral. 

On admission a complete history was taken from the parent and a physical 

examination was performed. Multiple laboratory investigations and clinical 

assessments were performed on admission as data was often being collected for other 

investigative studies. Those data pertinent to this study include age in months, thick 

blood films, thin blood films for those with high parasitemias, hemoglobin, white 

blood cell count, red blood cell count, respiratory status (in respiratory distress, yes or 
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no) and coma status (using Blantyre coma scale) [9]. At least every six hours during the 

child's stay on the unit blood films were repeated and for those who were anemic or in 

coma, hemoglobin or coma score was rechecked, respectively. Outcome was recorded 

as dead, alive, or alive with neurologic sequelae. 

Pediatric ward inpatients were those children who were admitted to the 

pediatric ward by the hospital staff for inpatient therapy. Data available on these 

patients consisted of age in months, admission blood film, blood count, and for some 

patients, hemoglobin and repeat blood films as indicated. Outcome was recorded as 

dead or alive. 

The malaria outpatients were those who presented to the outpatient clinic at 

the hospital and were subsequently recruited as nonsevere case controls for another 

study [9]. Similarly, the sample of healthy children from the community was those 

children selected as "well" community controls for the same study, all of whom had 

blood films done. For these two groups of patients the child's age in months and the 

parasite density at the time of the encounter were recorded. 

Data Analysis 

For most analyses children were divided into groups according to their age in years: 

Age 0 years = 0 to 11 months 

Age 1 year = 12 to 23 months 

Age 2 years = 24 to 35 months 

Age 3 years = 36 to 47 months 

Age 4 years = 48 to 59 months 

Age 5 years > 60 months 

All children 6 years and older were included in the 5 year old age group because of 

small sample size and the relatively similar spectrum of malaria disease and relative 

"immunity" in these older children. 

Parasite densities were calculated as explained previously. The number of 

parasites per 100 white blood cells was multiplied by the white cell count times ten. 
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The number of parasites per 500 red blood cells was multiplied by the red cell count 

times 2,000. If a corresponding blood count had not been obtained simultaneously 

with the blood film, the white or red cell count nearest in time to the blood film was 

used. 

For the outpatient malaria cases a cut-off of 10,000 parasites/pL was established 

as a minimum cut-off for the diagnosis of clinical malaria in ambulatory children in an 

effort to exclude ill children with incidental parasitemias. The natural log of the 

parasite density (In parasitemia) was used for all analyses involving mean parasite 

densities because of the right skew of the distribution of parasite densities. Admission 

parasitemias were used for all calculations except where specified. For all summary 

analyses "all inpatients" refers to all KEMRI and pedi ward patients from January 1989 

to December 1991. Although KEMRI patients from 1992-1993 were also part of the 

data set, summary statistics for inpatients are best represented by the complete set of all 

inpatients from 1989-1991 as additional data in certain groups could skew the data. For 

comparisons with other groups, "all inpatients" refers to all KEMRI and pedi ward 

patients from 1989-1993. 

For each group of patients the following statistics were calculated: mean age, 

mean natural log of parasite density, geometric mean parasite density and mortality. 

Mean parasitemias were compared between all possible pairs of groups. Each group 

was analyzed both as a whole and after stratifying by age in years. Correlations 

between parasitemia and age were assessed using linear regression. 

Mortality for each group was compared with that of all other groups, 

stratifying either by age or by level of parasitemia. Analysis of variance was utilized to 

determine if mortality was affected by age, parasitemia or both. The parasitemia levels 

used were, in parasites per flL blood: level 1 = 0-9,999 parasites, level 2= 10,000-49,999, 

level 3 = 50,000-99,999, level 4=100,000-499,999, level 5 = 500,000-999,999, and 

level 6>1,000,000 parasites. Additionally, the geometric mean parasitemias and 
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mean In parasitemias were compared for the group of patients who died versus those 

who survived. 

Statistical Analysis 

Statistical analysis was performed using SPSS for Windows (KEMRI Coastal 

Unit, Kilifi, Kenya ) and STATA (Harvard School of Public Health). Multiple 

ANOVA and linear regression were used for analysis of relationships between age or 

mortality and parasitemia, t-test for unequal variances was used for comparison of 

mean parasitemias and mean ages, and Spearman's correlation was used in the analysis 

of some age/parasite relationships. 

Terminology 

For the purposes of this analysis, the following terminology will be used when 

referring to the various patient groups unless otherwise specified (in order of severity): 

Cerebral => KEMRI inpatients with cerebral malaria at any time 

during admission 

Always cerebral => KEMRI inpatients with cerebral malaria at 

time of admission 

Newly cerebral => KEMRI inpatients with cerebral malaria 

which developed after admission 

Noncerebral severe, or noncerebral KEMRI => KEMRI 

inpatients with severe noncerebral malaria 

Severe => all KEMRI inpatients 

Anemic => Those noncerebral KEMRI patients with 

hemoglobin < 5.1 g/dL 

General pediatric ward, or pedi ward inpatients => inpatients on 

the pediatric ward with disease serious enough to require 

hospitalization but not necessarily meeting the 

requirements for severe disease 

All inpatients => Inpatients from all of the above groups 

admitted between January 1989 and December 1991 

Outpatients => Ambulatory children with malaria (parasitemia > 

10,000 parasites/pL and clinical signs of malaria) 

Healthy/well community children => Healthy children who had blood 

films drawn for a previous study of parasite prevalence. 
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RESULTS 

3281 children were studied of whom 2212 were inpatients, 438 were 

outpatients diagnosed with malaria, and 631 were healthy children in the community. 

Of the 2212 inpatients, 1676 had severe disease (admitted to KEMRI ward) and 536 had 

been admitted to the general pediatric ward. Of the 1676 KEMRI patients, 419 had 

cerebral malaria and the remaining 1257 had severe noncerebral malaria. 479 of the 

KEMRI patients had severe malarial anemia, and 407 of these were not obtunded 

(noncerebral). 

Age Distribution 

Ages ranged from 0 months to 157 months for all groups. The mean age for the 

entire study population was 28.2 months. The mean age for cerebral malaria patients 

was significantly higher than for anemic patients, 35.5 months versus 20.8 months 

(p<0.0001, see Figures 1 and 2). The mean age and age range for each group is shown 

below. 

Group 

Mean Age 

(months) 

Median Age 

(months) 

Range 

(months) 

All children 28.2 23 Oto 157 

Inpatients: 27.1 21 Oto 157 

Cerebral 35.5 32 4 to 157 

Severe Noncerebral 25.3 19 Oto 148 

Noncerebral Nonanemic 27.6 21 Oto 148 

Anemic 20.8 13 1 to 149 

Noncerebral Anemic 20.5 12 1 to 121 

Gen. Pedi Ward 24.7 19 0 to 127 

Outpatients 28.8 25 2 to 90 

Clinically well children 31.5 28 2 to 108 

Parasite Densities and Prevalence 

Among children diagnosed with malaria, parasite densities at time of admission 

to the hospital ranged from 0 to 3,339,600 parasites/pL (not all patients had parasites 
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on their first blood film after admission). Mean natural log parasite densities (mean In 

parasitemias) and geometric mean parasitemias for each group were as follows: 

Group 

number 

of patients 

mean 

In para. 

geomean 

parasitemia 

min. para, 

(per pL) 

max. para, 

(per pL) 

all inpatients 1866 10.35 31,347 0 3,339,600 

cerebral 419 10.48 35,562 0 3,339,600 

noncerebral 1257 10.72 45,400 0 2,880,000 

anemic 479 10.34 31,098 0 2,880,000 

gen. pedi ward 536 9.80 18,092 0 999,999 

outpatients 438 N/A* N/A* 10,032 1,158,300 

well children 631 2.5 12 0 50,406 

* Not applicable because 10,000 parasites/pL cut-off was used 

For the cross-section of 631 healthy children who had blood films done, the prevalence 

of parasitemia was 33%. 

Relation Between Age and Parasitemia 

For the analysis of the relationship between parasite density and age, age was 

analyzed using both age in months (a continuous variable) and age in years (analyzed as 

both a continuous and categorical variable). For the group of all inpatients, 

parasitemia was somewhat positively correlated with age (Spearman rank 

coefficient = 0.090, p<0.0001). This linear correlation held for either age in years or 

age in months as the explanatory variable. However, in analyzing any group on its 

own (cerebral, noncerebral anemic, or general pediatric ward patients) only 

noncerebrals and the subset of nonanemic noncerebrals showed statistically significant 

correlations between parasite density and age (r = 0.069, p = 0,015 and r = 0.103, 

p = 0.003, respectively, see Figure 3). This suggests that perhaps the slight correlation 

seen for all age groups was a result of combining different patient populations which 

had different mean parasitemias and different age distributions. For the outpatients, 

parasitemia was not correlated with age (Figure 4), nor did the healthy children 

demonstrate a trend toward lower parasite densities at older ages (Figure 5). 
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Although there was no correlation between parasite density and age for all 

severe cases taken together, when cerebral versus severe noncerebral disease were 

compared, cerebral malaria patients' parasitemias tended to decrease with age 

(p = 0.054) as compared with the parasitemias of patients with severe noncerebral 

disease (Figure 6). For cerebral patients, then, we see a reversal of the direction of the 

trend of parasitemia with age seen for the group of all inpatients. Because of the slight 

correlation with age and the significantly different age distributions amongst the 

different groups of patients, further analyses were done after stratifying by, or 

otherwise controlling for, age. 

Relation Between Parasite Density and Type or Severity of Disease 

Cerebral disease versus other disease 

The geometric mean parasitemias for cerebral versus noncerebral KEMRI 

malaria patients were not significantly different (p = 0.201), nor were they different for 

cerebral patients when compared with all other inpatients on both the KEMRI and 

general pediatric wards (1989-1993). However, as mentioned above, the mean 

peripheral admission parasitemia decreased with age for cerebral malaria patients. 

Parasite density on admission was not significantly different for those children who 

presented in coma (not localizing to pain) versus those who presented unobtunded 

(Blantyre Coma Score = 5) independent of age (p = 0.46). 

KEMRI inpatients versus others 

The geometric mean parasitemia for KEMRI patients as a whole was 

significantly different from that for general pediatric inpatients (p<0.00005). Taken 

alone, both the cerebral and noncerebral KEMRI malaria groups had geometric mean 

parasitemias which were significantly different from those of the general pediatric ward 

patients. This was true for all ages taken together, but when analyzed by age in years, 

we see an effect of age in that the mean parasitemias are not significantly different for 

the three groups at the older ages, especially for the cerebral patients as compared to 





19 

the general pediatric ward patients (Figure 7). This is due to the decreasing parasite 

densities at older ages for the cerebral patients and slightly higher parasite densities for 

the 4 and 5-year-old general pediatric was patients. 

Anemic patients versus others 

When the anemic patients were separated from and compared to other KEMRI 

noncerebral patients who were not anemic, the anemic group had significantly lower 

parasitemias than did the nonanemic noncerebral patients (p = 0.0021) however, the 

cerebral patient's mean parasitemia was not significantly different from that of the 

anemic patients (p = 0.4437). Similar to the cerebral patients, the anemic patients 

demonstrated a trend toward lower parasitemias at older ages (p = 0.066, Figure 8). 

Inpatients (1989-1991) versus others 

Inpatients had dramatically higher parasitemias when compared with 

outpatients, and an even greater difference was observed between inpatients and 

healthy children (p < 0.0001). 

Relation Between Mortality and Type or Severity of Disease 

Mortality was significantly higher for the cerebral patients than for any other 

group (15.75%). Anemic patients had the second highest mortality rate (6.1%) as 

shown below. Mortality increased somewhat with parasitemia for each group except 

for malaria outpatients (Figure 9). Additionally, for all groups, parasitemia was on 

average higher for those children who died than for those who survived, but in no case 

was the difference statistically significant (Figures 10, 11 and 12). 

Patient Group 

Geometric Mean 

Parasitemia/jlL 

Deaths 

Geometric Mean 

Parasitemia/|iL 

Survivors 

Percent 

Mortality 

Gen. Pedi. Ward 23,389 18,034 1.87 

Noncerebral 81,634 44,356 3.18 

Cerebral 51,534 33,190 15.75 

Anemic 53,637 30,031 6.14 

All Inpatients 48,533 30,638 4.61 
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Mortality was approximately constant over all ages for all inpatients taken 

together (Figure 13). Cerebral malaria patients had the highest mortality under 3 years 

of age, and all anemic patients who dies were under 3 years of age (Figure 12). 

DISCUSSION 

It has long been accepted that there is a correlation between parasite load and 

both severity of disease and outcome in Plasmodium falciparum malaria. What has not 

been clearly described is the nature of these relationships for different presentations of 

disease: cerebral malaria, severe anemia, and other presentations of variable severity. 

Our data support previous findings that there is an association between parasite 

density, as measured with a peripheral blood film at time of presentation, and severity 

of disease, but we have also found that for those presentations of malarial disease with 

the highest mortality (severe anemia, and particularly cerebral malaria) the association 

with parasite density is weakest. Thus, peripheral parasite density is not of prognostic 

value in predicting type or severity of disease or outcome for the individual patient. 

Furthermore, our data suggest that peripheral parasite density may not be of use as a 

surrogate measure of malaria-associated morbidity and mortality. 

Parasitemia and Age in Severe Disease 

Our data demonstrate a slight increase in peripheral parasitemia with increasing 

age, for all inpatients evaluated from 1989-1991, but this trend was small. This 

relationship was not significant for any group analyzed on its own. 

There was a somewhat larger trend, of borderline significance, towards lower 

parasitemias at older ages in both the cerebral and the anemic patients (p = 0.054 and 

p = 066, respectively, Figure 6). While the relationship between parasite prevalence and 

age in malaria-endemic areas has been well studied, there has been little research into 

the relationship between parasite density and age. It has been well documented that 

adults from endemic areas tolerate higher parasitemias without disease than do 
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children, reflecting the development of immunity to malaria through repeated or even 

chronic exposure. The nature and scope of this immunity are poorly understood and 

there are several intriguing aspects to it. First, although the period of highest mortality 

from malaria is from 0 to 5 years of age, parasite prevalence continues to rise until age 

10, when mortality dramatically declines [2]. Second, although immunity apparently 

builds over time, the average age of cerebral malaria patients is significantly higher than 

the average age of severely anemic patients [2, 7], 36 versus 21 months from our data. 

One theory which attempts to explain the first observation, that of decreasing 

mortality in the face of increasing parasite prevalence, is the theory of strain-specific 

immunity [37]. The authors suggest that immunity to P. falciparum parasites is strain 

specific, and that immunity increases as children encounter each strain. Given a person 

with an asymptomatic parasitemia, the argument is that the quantitative effects of a 

new innoculum, i.e. the number of parasites contributed by a new bite at the beginning 

of the rainy season, would be far outweighed by the numbers of parasites contributed 

by multiplication of the preexisting parasites. Therefore, the authors propose that a 

qualitative difference in the new innoculum, rather than the addition of many more 

parasites, is what triggers disease. This theory is consistent with the observation that 

vector control through the use of bednets has reduced morbidity and mortality 

without reducing the prevalence of parasitemia. Although children are still parasitized, 

bednets may reduce morbidity by reducing the number of infective bites per year, 

because a lower infective bite rate most dramatically lowers the chances that a less 

common event, such as being infected by a new strain of falciparum parasite, will occur 

[6]. 

It is interesting to note that the age distributions for severe anemia and cerebral 

malaria are significantly different from one another. The mean age for cerebral malaria 

is 15 months older than that for severe malarial anemia in our study, and 18 months 

older in two other studies in The Gambia and Kenya [43, 8]. This suggests that the 
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pathophysiology of cerebral malaria is distinctly different from that of other forms of 

malaria in that the partial immunity which children develop over time does not confer 

the same protection from cerebral malaria as it does from other forms of disease. 

Perhaps previous exposure actually sensitizes an individual and is a prerequisite to the 

development of cerebral malaria [2]. Several other theories have been proposed to 

explain the observed age distribution. 

It has been suggested that there may be rarer, more virulent strains of malaria 

which are more likely to cause cerebral malaria. In conjunction with the theory of 

strain specific immunity, this would suggest that while young children are continually 

challenged with the more common, less virulent strains, they do not develop 

protective partial immunity to the virulent strains because on average, the population's 

exposure to the virulent strains occurs at an older age. This theory would then 

implicate parasite virulence factors in cerebral malaria. 

Parasite Virulence Factors in Cerebral Malaria 

Some proposed parasite virulence factors include increased ability to induce 

tumor necrosis factor (TNF) production by the host, increased capability of binding to 

endothelial cells, increased ability to form rosettes, and variable rates of replication 

within the host [2, 7, 26, 34]. There is evidence to support some of these ideas. 

Extracts of some strains of parasites induce higher levels of TNF-a than do other 

strains [7], and higher levels of TNF have been found in the serum of patients with 

cerebral versus other forms of malaria [34]. Thus, TNF is implicated in cerebral 

disease and certain parasites are more capable than others of inducing TNF production. 

Also, parasitized red blood cells (PRBCs) from patients with cerebral malaria show 

varying degrees of binding to putative host cell receptors in vitro, suggesting that only 

some strains of P. falciparum express neoantigens capable of cerebral cytoadherence 

[44]. Additionally, some strains of P. falciparum do not produce knobs on the surface 

of the PRBCs. These knobless PRBCs do not bind to endothelial receptors such as 
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thrombospondin, suggesting that the ability to form knobs is another parasite 

virulence factor [4, 31]. 

Host Factors in Severe Disease 

Host factors are also likely to influence the likelihood of cerebral malaria or 

other severe malaria disease. Variation in the host factors involved in cytoadherence 

may contribute to a person's "susceptibility" to cerebral malaria. That is, amongst 

individuals, differential expression of potential cerebral endothelial receptors for 

infected RBC neoantigens may result in differential "susceptibility". Those persons 

expressing more of the necessary receptors would experience cytoadherence, 

theoretically leading to gross RBC sequestration and thus cerebral malaria. TNF has 

been shown to upregulate I-CAM production, so a strain of parasite which was 

particularly effective at inducing TNF production could "uncover" a person's 

susceptibility to cerebral malaria by causing an upregulation of I-CAM or other 

putative receptors which would increase binding. Some people may be more 

susceptible to upregulation of this sort. Presumably, strain-specific immunity 

developed over time protects adults even if they are individuals "susceptible" to 

cerebral malaria. 

Additionally, HLA type has been shown to play a protective role in malaria 

disease [29]. In The Gambia there is a high frequency of HLA class I antigen HLA- 

Bw53 which was associated with a 40% protection against both cerebral and severe 

anemic disease, and HLA class II antigen DRwl3 was shown to be protective against 

severe disease but not cerebral malaria. That HLA class I antigens are protective 

against cerebral malaria but HLA class II antigens are not suggests that cytotoxic T-cell 

actions may be involved in the killing of pre-erythrocytic parasites whereas antibodies 

(produced in association with HLA class I antigens) may play a more important role in 

the prevention of severe disease other than cerebral malaria [2]. Clearly, the details of 

host-parasite interactions have not all been elucidated. 
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Mortality 

Although mortality was higher in both anemic and cerebral disease than in 

other groups, the admission parasitemias of those who died were not significantly 

higher than the parasitemias of those who survived for any group (Figures 11 and 12). 

When all inpatients were considered together, those who died had a higher geometric 

mean peripheral parasitemia than those who did not die (Figure 10). Mortality 

increased in a linear fashion with increasing parasitemia for all KEMRI groups and for 

all inpatients, but there was not a significant linear trend for the general pediatric ward 

patients alone. 

While peripheral parasite counts may be very useful in grossly determining 

who is at higher risk of death they are not useful for predicting clinical course or 

severity of disease, although it may be possible to establish cut-offs of parasite density 

within various categories of disease which may be of some prognostic value. For 

example, mortality is almost twice as high for all inpatients with parasitemias over 

100,000/pL as for those with parasitemias less than 100,000/jlL (7.96% versus 4.40%). 

Using a parasitemia cut-off of 100,000/jlL produced the greatest difference in mortality 

between those above and those below the cut-off, so a parasitemia of 100,000/(J.L may 

be an appropriate cut-off as an indicator of increased risk of death. But as would be 

expected, clinical presentation seemed to correlate with outcome better than did 

peripheral parasite density. Mortality for all KEMRI patients was more than three 

times the mortality for general pediatric ward patients (6.32% versus 1.87%), and for 

cerebral patients mortality was more than eight times that for pediatric ward patients 

(15.75% versus 1.87%). None the less, the applicability of a cut-off "warning" 

parasitemia level as an indication for aggressive inpatient monitoring and parenteral 

treatment might merit further investigation. 

Mortality did not vary dramatically with age for all inpatients considered 

together. Flowever, cerebral malaria patients had the highest mortality for those under 
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2 years of age, and all of the deaths in the malarial anemia patients occurred under 3 

years of age. This may be consistent with the theory of the development of partial 

strain specific immunity. If immunity is strain specific, then as people age, higher 

parasitemias may be tolerated without disease. If deaths occur at only a very young 

age, then we could postulate that this partial immunity protects not only against 

disease, but also against severe disease, and even mortality. Thus, when young children 

are exposed to strains which they have not previously encountered they are not only 

more likely to become sick than are older individuals, but they are also more likely to 

develop severe disease and to die. This conclusion is supported by the finding of 

higher mortality at younger ages. 

Disease versus Parasitemia 

Distinguishing between malaria parasitization and disease is not 

straightforward, and exactly what defines a "case of malaria" is a subtle point which is 

still disputed. Mortality in Kilifi District follows a pattern which is typical of endemic 

areas, being highest in the youngest age groups, when severe disease is most common 

[9]. But again, it is of interest to note that both the risk of severe disease and the risk of 

death reach their peak before the age at which the prevalence of parasites is highest. 

One explanation for this is that at younger ages parasitemia is more likely to cause 

disease, and that healthy children are healthy only because they are not parasitized, 

whereas at older ages parasitemia is better tolerated so that the prevalence of 

parasitemia in the healthy population increases. This has implications for the 

relationship between parasitemia and disease because while the partial immunity which 

develops over time is protective against disease it is apparently not protective against 

parasitemia. However, a cross-sectional study from western Kenya has suggested that 

immunity may reduce parasitemia too, in that healthy children had decreasing parasite 

densities over the ages 0 to 6 years. 
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In fact, it is not known how the partial immunity which develops through 

chronic exposure to malaria protects against disease without eliminating parasitemia. 

It may be, as discussed, that specific immunity is against parasite antigens which vary 

from strain to strain [39, 40]. It is also possible to imagine that what is being 

considered "partial immunity" is in part just an adaptation or a tolerance of the host to 

the effects of malaria parasitization. That is, the host does not manifest the symptoms 

of severe anemia (respiratory distress and heart failure) or does not, perhaps, mount the 

same immune response to parasite neoantigens, or the same cytokine response to waves 

of merozoites being released. This idea is consistent with the finding that immunity to 

disease is developed without complete immunity to infection. 

In a survey study of healthy children in western Kenya with a mean parasite 

prevalence of 94.4%, a comparison of geometric mean parasite density and age revealed 

that there is a significant decrease in parasite density for older children as compared 

with younger ones (<2 years vs. 2-3 years vs. 4-6 years) [17]. If parasitemia declines 

with age, then the "partial immunity" which these children develop is actually 

reducing parasite density, not just disease. In this same study, prevalence of fever 

(defined as temp >37.5 C) was found to increase with increasing parasite density, and 

the authors suggest that parasite density could therefore be used as a surrogate measure 

of malaria morbidity and mortality. But fever alone in an ambulatory population 

represents the mildest form of disease. While parasite density may be an appropriate 

surrogate measure for mild disease and certain types of severe disease, and it may not 

necessarily follow that parasite density would be a good measure of mortality. In 

particular, it is not entirely clear whether the prevalence of fever is a reflection of the 

incidence of cerebral malaria disease and mortality as the authors suggest. This is 

because of the age distribution of cerebral malaria. 

Whether the late age of onset of cerebral malaria is due to rare parasite strains 

or whether prior sensitization is required to trigger cerebral malaria, it is not apparent 
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how lower parasite densities in the population would confer any protection against this 

form of disease. That is, whatever it is about the immunology or pathogenesis of 

cerebral malaria which delays its onset relative to other forms of malaria disease, it 

seems likely that this age effect would preclude a direct correlation between parasite 

density in the population and cerebral malaria morbidity. If this were true, then the 

correlation between parasite density and mortality might be weakened because of the 

high proportion of malaria deaths due to cerebral disease. 

Further Analyses to Consider 

There are two factors which we did not assess in our study which would be of 

interest: history of antimalarial treatment prior to presentation at the hospital and 

stage of parasite development. We did not determine which patients had taken 

antimalarials prior to coming to hospital. Field and Niven found a correlation 

between mortality and parasitemia for those patients who had not taken chloroquine 

prior to the blood film. Perhaps including a history of treatment in the analysis would 

reveal stronger correlations in our data. Secondly, there is considerable evidence that a 

peripheral blood film with a predominance of late stage parasites is correlated with 

poor outcome and is suggestive of a greater load of sequestered parasites [12, 13, 14]. 

No attempt was made to assess parasite stage when the blood films for this study were 

read. But again, including parasite stage in our analysis would very likely help 

strengthen correlations or elucidate new correlations between parasite density and 

severity of disease. 

Finally, a question to ponder: why is the spectrum of childhood disease so 

different in western versus coastal Kenya? Parasite prevalence is around 94% in 

western Kenya and severe anemia is the most common severe form of malaria, with 

cerebral malaria being relatively rare. In contrast, along the coast of Kenya parasite 

prevalence is around 34% and cerebral malaria and severe anemia are both seen, but 

cerebral malaria is far more common than in western Kenya. Could the differences in 





spectrum of disease seen in these two areas be attributed to the difference in the force 

of transmission and the different parasite rates in the two areas? 

Conclusion 

The search for surrogate measures of malaria morbidity and mortality 

continues. Surrogate measures would facilitate evaluation of public health 

interventions in that labor intensive direct measurement of disease and mortality 

would be avoided. To date, no universal useful measure has been identified. Only one 

study has suggested that peripheral parasitemia measured in the general population 

may be of value in assessing the burden of malaria morbidity and may therefore be of 

use in evaluating the effect of interventions. Similarly, prognostic indicators applicable 

to individual patients are lacking. Peripheral parasitemia was shown long ago to have a 

general association with severity of disease and outcome. Further studies have 

attempted to elucidate combinations of clinical and laboratory assessments which 

would be of prognostic value in the evaluation of patients in hospital. Yet the fact 

remains that peripheral parasitemia alone is of virtually no prognostic value for the 

individual patient. Our data support these findings and further reveal that while severe 

disease is generally associated with higher parasitemias than is non-severe disease, those 

forms of disease with the highest mortality, cerebral malaria and severe malarial 

anemia, do not have significantly higher parasitemias than other severe malarial disease 

and in fact may have lower parasitemias. This reduces even further the usefulness of 

elevated parasitemia as a prognostic indicator of morbidity and mortality and also 

indicates that parasite density is perhaps only of secondary importance in, or is perhaps 

secondary to, the pathogenesis of severe disease. 
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