
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

1984

Formylglycinamide ribonucleotide
amidotransferase in a revertant of a Chinese
hamster ovary purine auxotroph : implications for a
mechanism of coordinate regulation of two
enzymes in the de novo biosynthesis of purines
Richard Louis Leff
Yale University

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Leff, Richard Louis, "Formylglycinamide ribonucleotide amidotransferase in a revertant of a Chinese hamster ovary purine auxotroph
: implications for a mechanism of coordinate regulation of two enzymes in the de novo biosynthesis of purines" (1984). Yale Medicine
Thesis Digital Library. 2848.
http://elischolar.library.yale.edu/ymtdl/2848

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/2848?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu






Permission for photocopying or microfilming of " 

11 

for the purpose of individual scholarly consultation or refer¬ 

ence is hereby granted by the author. This permission is not 

to be interpreted as affecting publication of this work, or 

otherwise placing it in the public domain, and the author re¬ 

serves all rights of ownership guaranteed under common law 

protection of unpublished manuscripts. 

(Printed name) 

(Date) 





Digitized by the Internet Archive 
in 2017 with funding from 

The National Endowment for the Humanities and the Arcadia Fund 

https://archive.org/details/formylglycinamidOOIeff 



V 



FORMYLGLYCINAMIDE RIBONUCLEOTIDE AMIDOTRANSFERASE IN A REVERTANT OF A 

CHINESE HAMSTER OVARY PURINE AUXOTROPH: 

Implications for a mechanism of coordinate regulation of two enzymes 

in the de novo biosynthesis of purines 

A Thesis Submitted to the Yale University 

School of Medicine in Partial Fulfillment 

of the Requirements for the Degree of 

Doctor of Medicine 

by 

Richard Louis Leff 

1984 



*9 
_} 

3Xj$ 



ABSTRACT 

FORMYLGLYCINAMIDE RIBONUCLEOTIDE AMIDOTRANSFERASE IN A REVERTANT OF A 

CHINESE HAMSTER OVARY PURINE AUXOTROPH: 

Implications for a mechanism of coordinate regulation of two enzymes 

in the de novo biosynthesis of purines 

Richard Louis Leff 

1984 

ABr, a revertant of the puri ne-requi ri ng Chinese hamster ovary cell 

line Ade_P/\B, is examined. A probably single mutational event is 

responsible for Ade"PAB» and for its reversion (ABr). Phosphoribosy1- 

pyrophosphate ami dotransferase (PRPP ATase; EC 2.4.2.14) and fornyl- 

glycinamide ribonucleotide amidotransferase (FGAR ATase; EC 6.3.5.3) have 

altered enzyme activities in Ade"PAB and ABr. Ade"PAB complements neithe 

Ade"A (deficient in PRPP ATase) nor Ade~B (deficient in FGAR ATase). 

Mixing studies results in no alterations of PRPP ATase and FGAR Atase 

activities. Structural changes in Ade~PAB and ABr have been described 

which alter the apparent glutamine affinity of PRPP ATase. In this 

thesis, FGAR ATase in dialyzed enzyme extracts from ABr is found to 

possess increased sensitivity to thermal inactivation at 50°C in 

comparison to extracts from wild type (CHO). Extracts from ABr and CHO 

demonstrate equivalent FGAR ATase apparent affinity for glutamine, with 

apparent binding constants (Km) of 0.54mM and 0.86mM, respectively. 

Glutaminase sensitivity to thermal inactivation and apparent affinity for 

glutamine is found to be equivalent in ABr and CHO. 

Given the complementation pattern of Ade-PAB and the results of 

mixing studies, the findings of structural alterations in both PRPP ATase 

and FGAR ATase are discussed. Various models within the confines of 





established theory do not explain the properties of Ade~P/\B and ABr. 

Another possible model presented involves the separation of these two 

enzymes from a single precursor. However, the recent mapping of PRPP 

ATase and FGAR ATase to different human chromosomes makes this theory 

less likely. 
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INTRODUCTION 

The two enzymes of the purine de novo biosynthetic pathway classified 

as amidotransferases are phosphoribosylpyrophosphate ami dotransferase 

(PRPP ATase, EC 2.4.2.14) and formylglycinamide ribonucleotide 

amidotransferase (FGAR ATase, EC 6.3.5.3). As ami dotransferases, both 

enzymes catalyze the formation of a carbon-nitrogen bond utilizing 
t 

glutamine as a nitrogen source. Additionally, both enzymes possess 

aminotransferase activity which substitutes ammonia for glutamine as the 

nitrogen donor. Chinese hamster ovary cell (CH0-K1) mutants have been 

isolated with altered PRPP ATase and FGAR ATase activities (1). A brief 

review of these two enzymes will be followed by a description of the 

mutant CHO cell lines studied in this paper. 

PRPP ATase catalyzes the formation of phosphoribosylamine (PRA) from 

phosphoribosylpyrophosphate (PRPP) and glutamine (or ammonia)(2). This 

Glutamine _ 

or ® 
Ammonia 

a—Phosphoribosyl— j}-Phosphoribosyl- 

pyrophosphate amine 

(PP-ribose—P) (PRA) 

first committed step in the de novo synthesis of purines is a logical 

focus for the regulation of the enzymatic pathway. The complex 

regulation of de novo purine synthesis involves many factors including 

substrate availability, end product feedback inhibition, and enzyme 

stability (2-13). 





The recent purification of PRPP ATase from a human source (14) has 

confirmed previous work on impure enzyme preparations. PRPP ATase is 

composed of 4-5 homogeneous subunits forming an active enzyme with a 

molecular weight of 133,000 daltons (14-17). The ami dotransferase and 

ami notransferase activities copurify indicating that both activities are 

contained in one enzyme (14). The oxygen-sensitive and iron-sulfur 

components of PRPP ATase are necessary for mammalian enzymatic activity 

(18), but may not be directly involved with the active sites (19-21). 

PRPP ATase possesses separate binding sites for the substrates glutamine 

and PRPP, and for purine nucleotide feedback inhibitors (4,7,11,12,22). 

FGAR ATase is the fourth enzyme in the de novo purine synthetic 

pathway. It catalyzes the formation of formylglycinamidine (FGAM) from 

formyl glycinamide (FGAR) and glutamine (or ammonia) and the hydrolysis of 

© 
Glutamine 

H / H 

H,C^ "N>0/ H2C^ ^C=0 
H / | H 

C C 
XNH l HN^ VNH 

P-5-R ATP P-5 —R 

Phosphonbosyl- Phosphoribosyl- 

formylglycinamide tormylglycinanndin e 

(FGAR) (FGAM) 

ATP (2). FGAR ATase has been purified from avian liver as a single 

polypeptide with a molecular weight of 133,000 daltons (23). Separate 

p 
sites for the binding of glutamine and an FGAR-Mg+ complex have been 

characterized (24-28). FGAR ATase is not an iron-sulfur containing 

enzyme (23) as is PRPP ATase from avian and mammalian sources (18). In 

vitro studies reveal that FGAR ATase ammonia-dependent activity is much 

lower than its glutamine-dependent activity (24). This differs 
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from that found for PRPP ATase activity in vitro (1). 

Several purine auxotrophic CHO cell lines, each deficient in an 

enzyme of the de novo purine synthetic pathway, have been characterized 

(29-33). Recently, Oates, Vannais and Patterson (1) described an 

interesting purine auxotroph. This cell line (Ade_Pab) was found to 

complement all the purine auxotrophic cell lines except those deficient 

in either PRPP ATase (Ade~A) or FGAR ATase (Ade“B). Further analysis 

revealed a loss of measurable FGAR ATase activity. Additionally, a 

virtual loss of measurable glutamine-utilizing PRPP ATase activity with 

an almost normal ammonia-utilizing PRPP ATase activity was identified. 

Mixing studies on cell-free extracts from Ade_A, Ade"P/\B and CH0-K1 

produced no changes in the level of the separate PRPP ATase activities. 

Similarly, combinations of cell-free extracts fromAde"B, Ade“PAB and 

CH0-K1 were not altered in the level of FGAR ATase activity (1). 

Ade-P/\B cell lines were isolated from CH0-K1 using an ethyl methane- 

sulphonate and BUdR-visible light procedure which usually produces point 

mutations (34). The alteration in both PRPP ATase and FGAR ATase in 

Ade“PAB can be easily explained by theorizing two mutational events; 

however, several properties of Ade_PAB argue against this possibility. 

First, the frequency of isolation of Ade~PAB is approximately that for 

either Ade“A or Ade"B. If Ade“PAB was the result of two independent 

events, then one would expect it to occur at a much lower rate than 

either Ade~A or Ade"B. Second, revertants of Ade'PAB (ABr) are not 

infrequently isolated. The final argument of Oates, Vannais and 

Patterson is the lack of a viable complement between Ade~A (with normal 

FGAR ATase) and Ade“PAB (with near normal ammonia-dependent PRPP ATase), 

which should resemble ABr in PRPP ATase and FGAR ATase activities 
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(described below). These results are not easily explained in the context 

of the enzyme levels of PRPP ATase and FGAR ATase for ABr. Oates, 

Vannais and Patterson (1) therefore conclude that this implies a more 

complicated basis for Ade"P/\B Than two distinct mutational events. 

ABr, isolated in more than 30 independent reversions of Ade_PAB (1)» 

regains normal FGAR ATase activity, and retains near normal ammonia- 

dependent PRPP ATase, while possessing only minimal glutamine-dependent 

PRPP ATase activity. Further investigation by Holmes (personal 

communication) demonstrates the apparent decrease in (glutamine-dependent) 

PRPP ATase activity in ABr as being the result of a decrease in apparent 

affinity for glutamine. Additionally, the virtual loss of 

glutamine-dependent PRPP ATase activity in Ade-P/\B is due to a marked 

decrease in apparent affinity for glutamine of several orders of 

magnitude. Ade_PAB does not appear to have altered apparent binding 

constant for PRPP or molecular weight as judged by sucrose density 

gradient (personal communications from Holmes). Since ABr does indeed 

possess some glutamine-dependent PRPP ATase activity whereas Ade~PAB has 

virtually none, these findings clarify the previously mentioned lack of 

complementation between Ade"A and Ade”PAB» Additionally, PRPP ATase in 

Ade“PAB ancl in ABr 1S found to have greatly increased sensitivity to 

thermal inactivation (personal communication from Holmes). Therefore, 

these data suggest a structural mutation in PRPP ATase which causes a 

severe defect in Ade~PAB and only a moderate change in ABr. 

Studies on the growth rate of ABr in various media are consistent 

with the altered affinity for glutamine by PRPP ATase. In purine-free 

media, ABr has a slower rate of growth than CHO, with a doubling time of 

20.6 hrs versus 12.5 hrs, respectively. However, in media supplemented 
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with hypoxanthine, ABr approaches wild-type growth rates (1). 

Additionally, all media contain some added glutamine since CH0-K1 cell 

lines are auxotrophic for glutamine. Supplementation of purine-free 

media with 10 times the normal level of glutamine increases the growth 

rate of ABr to near normal levels (personal communication from Holmes). 

These results imply that the decreased rate of de novo synthesis of 

purines in ABr can be accelerated by increasing the concentration of 

glutamine. These growth rate and enzyme activity studies of ABr 

indirectly demonstrate the importance of glutamine-dependent PRPP ATase 

activity in the rate of de novo purine synthesis. 

Accumulation of FGAR and formation of completed purines by wild-type, 

purine auxotrophic mutants, and revertant cell lines are direct methods 

employed to examine the rate of de novo purine biosynthesis (1). Oates, 

et al incubated cells with ^C-formate in purine-free media supplemented 

with either glutamine or ammonia to measure FGAR and completed purine 

synthesis. The results of Oates, et al (1) on formation of completed 

purines expressed as cpm/lO^ cells +_ lOOug/ml azaserine (Aza) are: 

CH0-K1 Ade“A Ade"B Ade-PAB ABr 

Glutamine (Infl) 74,113 <100 <100 1,414 10,582 

Gin (ImM) + Aza 1,056 <100 <100 <100 156 

NH4CI (lOrrM) 32,947 <100 <100 826 17,873 

NH4CI (lOmM) + Aza 3,502 <100 <100 100 1,240 

The addition of azaserine, a glutamine analog, inhibited glutamine- 

dependent FGAR ATase activity at much lower concent rations than it 

affected glutamine-dependent PRPP ATase activity, as seen in the figures 

from Oates, et al presented below (1). 
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Glutami ne Ammonia 

The Etfect of Azaserine Concentration on Accumulation ot 

Phosphonbosylformylglycinamide (FGAR) in Whole Cells Incubated 

with 1 mM Glutamine 

(0-0) CHO-K1; (0-Q) Ade A; (x-x) Ade B: (• ■—•) 

Ade P«b. (V-V)ABr34. 
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The Effect of Azaserine Concentration on Accumulation of 

FGAR in Whole Cells Incubated with 10 mM NH..CI 

(0--<•>) CHO-K1; (□-□) Ade A; (x-x) Ade~B; 'O-®) 

Ade Pab. (V.V) ABr34. 

The results of the studies on FGAR accumulation and completed purine 

formation for Ade“A, Ade’B and CHO were as expected for cell lines 

possessing deficient PRPP ATase activity, deficient FGAR ATase activity, 

and wild-type enzymatic activities, respectively. Ade~P/\B accumulated 

FGAR at a constant low rate in the presence of either glutamine or 

ammonia. This is consistent with the absence of FGAR ATase in Ade~PAB. 

The rate of FGAR accumulation is reduced at higher concentrations of 

azaserine (>100 yg/ml), consistent with inhibition of PRPP ATase activity. 

Conversely, in ABr azaserine concentrations that lead to the accumulation 
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of FGAR are consistent with the inhibition of FGAR ATase. The rate of 

production of FGAR is decreased in ABr due to decreased PRPP ATase 

activity (1). Therefore, only when FGAR ATase activity is sufficiently 

inhibited will FGAR accumulate in ABr. 

These in vivo studies represent attempts to determine the significance 

of the mutations in Ade"P/\B (and ln ABr) for de novo purine biosynthesis. 

The combined results on enzymatic activity, PRPP ATase thermal 

inactivation, apparent affinity for glutamine by PRPP ATase, accumulation 

of FGAR, and formation of completed purines (1, and personal communication 

from Holmes) are suggestive of a single mutational event affecting two 

distinct glutamine-utilizing enzymes. Increased sensitivity to thermal 

inactivation is indirect evidence in Ade~P/\B for a structural alteration 

in PRPP ATase. Data on FGAR ATase show a loss of measurable activity in 

Ade"P/\B» with a virtually complete recovery of activity in ABr. 

The following is a brief summary in tabular form of the findings on 

Ade~P/\b and ABr for PRPP ATase and FGAR ATase activities (1, and personal 

communication from Holmes). 

Enzyme Property Ade"PAB ABr 

PRPP ATase ammonia-dependent activity + + 

glutamine-dependent activity i 

apparent glutamine affinity ++ + 

thermal stability + 

FGAR ATase ammonia-dependent activity o + 

glutamine-dependent activity o + 

apparent glutamine affinity ? ? 

thermal stability ? ? 
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+ = near wild type level 
4- = decreased from wild type level 
++ = markedly decreased from wild type level 
o = no measurable activity 
? = unknown 

The research described in this thesis entails the evaluation of FGAR 

ATase in ABr for alterations in structure and enzymatic properties. 

Specifically, FGAR ATase is examined for sensitivity to thermal 

inactivation and for apparent glutamine affinity. Since Ade~PAB contains 

no measurable FGAR ATase enzymatic activity, these studies are performed 

on ABr. Observations by Holmes (personal communication from Holmes) on 

the apparent glutamine Km and the thermal inactivation of PRPP ATase in 

Ade"PAB indicate that FGAR ATase in ABr might exhibit some alterations 

not examined by Oates, et al (1). In conjunction with past observations, 

the results on FGAR ATase can provide some insight for the genetic basis 

responsible for the altered enzymatic profilesof Ade_P/\B and ABr. 
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EXPERIMENTAL PROCEDURES 

Materials 

14C-Glutamine (50mCi/mmole) and 14C-glycine (1.4mCi/mmole) were 

obtained from New England Nuclear. One preparation of chicken liver 

acetone powder was obtained from Sigma. Another preparation was from 

chicken liver obtained from Gold Kist, Durham, N.C. and extracted with 

acetone as described in Methods of Enzymology (35). PRPP, ATP and 

ribose-5-phosphate were obtained from Sigma. All other chemicals were of 

the highest grade commercially available. 

Cel 1 Lines 

Wild type CH0-K1 (CHO), Ade~P/\B revertant (ABr20), and azaserine- 

resistant (ASr) cell lines were generously supplied by Dr. David 

Patterson. Characterization and isolation of ABr20 beyond that described 

in the introduction can be found in the paper of Oates, Vannais and 

Patterson (1). 

Cell lines were maintained under sterile conditions with Ham's F-12 

medium plus dialyzed fetal calf serum (5%) supplemented with glutamine 

and nonessential amino acids. Fetal calf serum was dialyzed against 

lOOOx volume of normal saline for 24 hours three times. Cultures were 

maintained at 37°C under 5% CO2 and added moisture. Dialyzed culture 

medium, pH 7.4, was changed daily. Cultures were checked daily for 

infection and confluence. Cells were split 1:3 - 1:4 at 2-4 day 

intervals when confluent monolayers were observed. Cultures were kept in 

Petri dishes or roller bottles for increased production. Cells were 

split 1-2 days prior to harvesting and were harvested prior to confluence 

to insure rapid cell growth rates. This ensured maximal yield of the 

enzymes of the purine de novo biosynthetic pathway. 

a 
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Enzyme Extraction 

Cell-free extracts were prepared as follows. Cells were first 

dissociated with trypsin (1 mg/ml). Cells were then concentrated by 

centrifugation to 2x10^ cells/ml of phosphate buffered saline (containing 

the following in mmol/liter; NaCl 137, KC1 2.7, Na2HP04 8.1, KH2PO4 0.62, 

dextrose 5.56, and chloroform 3.35). Cell disruption was by freeze- 

thawing three times with a dry ice-acetone bath. Centrifugation to 

remove cellular debris produced a supernatant of an "enzyme extract" 

which was then stored in small aliquots at -70°C. On the day of use 

enzyme extract was dialyzed against 1000 volumes of Tris buffer (50nf! 

pH=7.4) for 2 hours at 4°C. 

Protein concentration for enzyme extracts was determined by the 

method of Lowry, et al (36) modified to correct for the Tris buffer. 

Bovine serum albumin was used as a standard. 

Preparation of FGAR 

Commercial preparations of FGAR are not available. FGAR was 

synthesized using the enzymes of the purine de novo pathway from chicken 

liver acetone powder (37). FGAR ATase activity was blocked with 

azaserine as described in Methods of Enzymology (37). Serial dilutions 

of FGAR were used to determine that sufficient FGAR was available to 

maintain optimal enzyme activity for 45 minutes in the FGAR ATase 

activity assay described below (data not shown). 

FGAR ATase Activity Assay 

FGAR ATase activity was determined by measuring the FGAR-dependent 

conversion of radioactive glutamine to radioactive glutamate. For each 

experimental sample with FGAR present, a control was done with Tris 

buffer replacing FGAR. All assays were performed in duplicate. Assay 

mixtures of 50 microliters contained: Tris 50mM pH=7.4, MgCl2 lOnfl, KC1 
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lOOnti, ATP 10nM, 14C-glutamine 4mM (specific activity 0.42mCi /mmole), 

FGAR solution (5 microliters), and dialyzed enzyme extract (25 

microliters). Although FGAR concentration was not known, preliminary 

experiments demonstrated that this substrate was not limiting in this 

assay. All solutions were kept at 4°C until incubation at 37°C for 45 

minutes unless otherwise specified. The reaction was stopped by 

immersion in an ice-water bath at 4°C. 

Electrophoresis on Whatman 3MM paper was promptly carried out. Ten 

microliters of a carrier solution of glutamine (4 mg/ml) and glutamate 

(4 mg/ml) was applied and dried prior to applying 15 microliters of assay 

mixture. Electrophoresis in borate buffer (50mM) with 2000 volts at 250 

mAmps for 35 minutes was sufficient to separate glutamine and glutamate. 

The glutamate spot was identified with ninhydrin spray and cut out. 

Radioactivity was counted in a solution of PP0/P0P0P (15.12 gm 

2,5-Diphenyloxazole/378 mg P-bis[2-(5-Phenyloxazoyl)]-benzene/8 pints 

toluene) for 10 minutes with 60% efficiency. 

The assay for FGAR ATase is linear with time (to 60 minutes) and 

protein concentration (data not shown). 

Oetermination of Apparent Glutamine Affinity of FGAR ATase and 

G1utaminase 

Glutamine concentrations were varied from 0.167mM to 4mM while all 

other assays conditions were held constant. Measurements without FGAR in 

the reaction mixtures were subtracted from each result. This difference 

determined the FGAR ATase activity. Glutaminase activity is measured by 

the conversion of glutamine to glutamate without FGAR present and is 

linear with time and protein concentration. 

Thermal Inacti vation of FGAR ATase and Glutamine 

Following dialysis as described in Enzyme Extraction, the enzyme 
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extract was heated to 50°C in a water bath for variable lengths of time. 

The enzyme extract for each time point was heated in a single test tube 

and then aliquoted for duplicate assays. Enzyme extract was constantly 

kept at 4°C on an ice-water bath while being handled. Maximal enzyme 

activity was measured by maintaining a sample of enzyme extract at 4°C 

during the period of inactivation. Glutaminase activity was determined 

in controls without FGAR present. 

Sucrose Density Gradient Study 

PRPP ATase is known to exist in two forms (15). In the presence of 

PRPP a 133,000 dalton form exists, while in the presence of AMP a 270,000 

dal ton form predominates. In an attempt to determine an association 

between PRPP ATase and FGAR ATase, enzyme extracts with either PRPP or 

AMP present were applied to sucrose gradients and fractions assayed for 

FGAR ATase activity. 

Enzyme extract from the ABr cell line was prepared as described in 

Enzyme Extraction and used on the same day. Separate aliquots of the 

dialyzed extract were incubated at 37° for 15 minutes with either 5.OrrM 

AMP or 0.5mM PRPP. Each aliquot (200x) was then placed on 11.6 ml of a 

sucrose density gradient of 10% to 28.2% with potassium phosphate buffer 

(50mM KPi pH=7.4, 15mM S-mercaptoethanol, and 5mM MgCl2) and with either 

5.0mM AMP or 0.5mM PRPP. Centrifugation at 100,000 x g was carried out 

for 16 hours in a 1.1 cm diameter tube. Fractions of 0.2 ml were collected 

and enzyme activity measured over a 60 minute incubation period at 37°C 

as previously described, except for the use of 32.5x of extract and 17.5x 

of reaction mixture. All reaction concentrations were otherwise 

unchanged from that previously described in the FGAR ATase activity 

assay. 
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RESULTS 

Properties of the Enzyme Extract 

Table 1 contains data comparing enzyme extracts from CHO and from 

ABr. These data are compiled from multiple experiments, including some 

not presented for the thermal inactivation and glutamine affinity 

studies. Overall, the enzyme extracts of ABr minimally differ by 1 to 

1.5 standard deviations from the extracts of CHO in average specific 

activity and protein concentration. Protein concentration does vary 

significantly (p <0.05); however, the 3 mg/ml (20%) difference between 

ABr and CHO is not large. Therefore, the actual enzyme extraction 

procedure produces equivalent preparations for ABr and CHO. 

Thermal Inactivation Studies 

Structural changes in enzymes can sometimes be indirectly 

demonstrated by an increased sensitivity to thermal degradation (1). 

PRPP ATase from ABr is more sensitive to inactivation at 37°C than that 

from CHO (personal communication from Holmes). FGAR ATase is relatively 

stable at 37°C (data not shown), but following dialysis it is rapidly 

inactivated at 50°C. The T 1/2 of FGAR ATase activity at 50°C in 

dialyzed extracts of ABr is half that of CHO, with decay constants of 0.9 

minutes and 1.7 minutes, respectively (Figure 1). The data shown in Fig. 

1 represent the combined results of two thermal inactivation experiments. 

For the thermal inactivation studies, when compared to CHO enzyme 

extracts, those from ABr have a slightly greater FGAR ATase specific 

activity (13.8 nmol/mg protein/hr versus 10.1 nmol/mg protein/hr) and a 

slightly greater protein concentration (18.4 mg/ml versus 15.6 mg/ml). 

The differences between these parameters for the enzyme preparations of 

ABr and CHO are small in comparison to the nearly two-fold alteration in 
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the rate of inactivation of FGAR ATase at 50°C. 

Additionally, glutaminase from both ABr and CHO decays to 50% of the 

original activity in approximately 3 minutes (Figure 2). Therefore, the 

rate of inactivation of glutaminase is essentially the same for ABr and 

CHO. These results on glutaminase demonstrate that under the conditions 

of this study ABr possesses an enzymatic activity which is virtually 

unaltered in its sensitivity to thermal inactivation. This is especially 

important to note when compared to the results demonstrating a two-fold 

difference between ABr and CHO in the thermal inactivation of FGAR ATase 

(Figures 1 and 2). 

Apparent Affinity for Glutamine 

The apparent affinity for glutamine of PRPP ATase is severely 

decreased in Ade~P/\g and only moderately affected in ABr (personal 

communication from Holmes). Figure 3 demonstrates the apparent affinity 

for glutamine of FGAR ATase from ABr as being similar to that from CHO. 

The apparent Km for glutamine of ABr and CHO are 0.54mM and 0.86mM, 

respectively, with the least-squares plots having correlation 

coefficients of at least 0.86. These results are comparable to that 

previously found for the apparent glutamine Km of FGAR ATase from avian 

liver, 0.2mM to 0.62mM (27,28) and from Ehrlich ascites tumor cells, 

O.llmM (24). Least-squares analysis of a Michaelis-Menten plot in 

Cartesian coordinates for the data in Figure 3 yield large standard 

errors for the apparent glutamine Km of FGAR ATase (mean standard error, 

T$2 = 0.41). Therefore, least-squares analysis of the data in the 

reciprocal plot (as in Figure 3) is the method employed throughout this 

paper. As demonstrated by the overlap on Figure 3, little difference is 

seen in the extrapolated values for the apparent glutamine Km of FGAR 
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ATase from ABr and CHO. 

The enzyme extracts from ABr and CHO for the study of apparent 

glutamine affinity of FGAR ATase possess approximately equal activities, 

under assay conditions, 18.1 nmol/mg protein/hr versus 18.6 nmol/mg 

protein/hr, respectively. Extrapolation of the data in Figure 3 yields 

FGAR ATase Vmax for ABr and CHO of 22.2 nmol/mg protein/hr and 30.0 

nmol/mg protein/hr, respectively. The slightly lower Vmax of FGAR ATase 

from ABr, 74% of the wild-type level, is a small change given the 

complete absence of FGAR ATase activity in Ade”PAB» ABr and CHO enzyme 

extracts are also approximately equal in protein concentrations, 11.5 

mg/ml and 13.4 mg/ml, respectively. Therefore, the enzyme extracts do 

not greatly differ for these parameters between ABr and CHO in this 

study. 

As a further control the apparent glutamine affinity of glutaminase 

activity in ABr and CHO are virtually equal, 0.25mM and 0.30mM, 

respectively (Figure 4). These least-squares plots also demonstrate a 

slightly lower Vmax for ABr in comparison to CHO, 15.8 nmol/mg protein/hr 

versus 21.8 nmol/mg protein/hr, respectively. The high values of the 

correlation coefficients for these results (at least 0.95) are due to the 

calculation of glutaminase activity from the measurement of one radioac¬ 

tive sample. Whereas FGAR ATase activity is the difference between two 

samples (one with and one without FGAR), glutaminase activity is only the 

result of one sample (without FGAR present). Therefore, much less 

variation is present in the plots for glutaminase (Figure 4) than in the 

plots for FGAR ATase (Figure 3). 

Additionally, in ABr the slightly greater apparent affinity for 

glutamine (lower apparent Km) of glutaminase parallels that of FGAR 
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ATase. This tends to minimize the slight difference in apparent 

glutamine affinity of FGAR ATase, since a similar finding is demonstrated 

for glutaminase. Therefore, the result that enzyme extracts from ABr are 

equivalent to those from CHO in apparent glutamine affinity of FGAR ATase 

can be made with greater certainty. 

Other Results 

Preliminary studies were performed on a sucrose density gradient for 

ABr and on enzyme dilutions for an azaserine-resistant cell line (ASr). 

These results are briefly presented below without the actual data. 

FGAR ATase retains activity in conditions of a sucrose density 

gradient. When applied to a sucrose density gradient, insufficient FGAR 

ATase activity is present to be accurately distinguished from background. 

Therefore, the determination of any multienzyme complex with PRPP ATase 

is not practical with the crude dialyzed enzyme extract in use. 

Isolation of a cell line which overproduces FGAR ATase would have 

aided in the sucrose density gradient studies. Since azaserine is a 

potent inhibitor of FGAR ATase, ASr was thought to be a possible 

overproducer of FGAR ATase. ASr cells are resistant to growth inhibition 

at lug/ml concentration of azaserine was assayed for FGAR ATase enzyme 

activity. FGAR ATase is inhibited at azaserine concentrations of 

0.1 yg/ml or less. Serial dilutions (1:2, 1:5, 1:10) of enzyme extracts 

from ASr and CHO possess comparable activities. Therefore, ASr does not 

appear to be an overproducer of FGAR ATase. 
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DISCUSSION 

Alterations of PRPP ATase and FGAR ATase in Ade_PAB might be regula¬ 

tory or structural in their nature® In Aerobacter aerogenes both PRPP 

ATase and FGAR ATase are coordinated repressed and derepressed (38). 

However, research has identified structural alterations in both enzymes 

for Ade"PAB« The structural change in PRPP ATase involves the utiliza¬ 

tion and binding of glutamine. Glutamine-dependent PRPP ATase in Ade~PAB 

has markedly decreased affinity for glutamine while in ABr it is only 

moderately decreased (1, personal communication). Additionally, 

increased sensitivity to thermal inactivation of PRPP ATase in Ade_PAB 

and ABr, indirectly demonstrating structural alteration, has been found 

(personal communication from Holmes). 

FGAR ATase activity lost in Ade~PAB is almost completely recovered in 

ABr (1). The results of experiments on FGAR ATase from ABr demonstrate 

an increased sensitivity to thermal inactivation (Figure 1). This is not 

unusual in that increased sensitivity to thermal inactivation is found to 

be common among revertant cell lines (1). The most likely explanation 

for this increased sensitivity is a structural change(s) in FGAR ATase 

from ABr. 

Other possible causes of the increased sensitivity to thermal 

inactivation involve an altered intracellular environment which offers 

less protection to FGAR ATase in crude dialyzed enzyme extracts from ABr. 

Diffusible, low molecular weight compounds are removed by dialysis. This 

includes glutamine, potassium, FGAR, magnesium, and ATP which have been 

shown to increase the stability of FGAR ATase (23,39). A non-diffusible 

glutamine-enzyme complex for FGAR ATase with increased stability at 50°C 

has also been described (23,25,39). The presence of any glutamine-enzyme 
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complex cannot be totally eliminated from having a potential effect upon 

the measured rates of thermal inactivation. However, the studies on FGAR 

ATase affinity for glutamine (Figure 3) demonstrate only a minimal 

difference between ABr and CHO, with binding constants of 0.54mM and 

0.86mM, respectively. Any protection from a greater amount of 

glutamine-enzyme complex in ABr (due to increased glutamine affinity) 

would be expected to increase the thermal stability of FGAR ATase. Since 

just the opposite is observed, it is unlikely that a glutamine-enzyme 

complex can be responsible for the increased sensitivity to thermal 

inactivation of FGAR ATase from ABr. 

The decreased thermal stability in ABr (and Ade_PAB) might be due to 

altered transport of glutamine. CH0-K1 cells are auxotrophic for 

glutamine. Then, although the media for CHO and ABr contain the same 

concentration of glutamine, the intracellular concentration of glutamine 

could be lower in ABr than in CHO. Lowered intracellular glutamine 

concentration might then lead to less protection of FGAR ATase by 

decreasing the amount of glutamine-enzyme complex. This is felt to be 

unlikely in that structural changes in PRPP ATase from Ade-P/\B and ABr 

have been documented (1, and personal communication from Holmes). 

Additionally, loss of measurable FGAR ATase activity in Ade'PAB is 

well-established (1). Therefore, decreased glutamine transport would 

involve yet a third alteration in CHO to produce Ade_PAB from a probable 

single mutation. 

As a further control, glutaminase was examined for thermal sensitivity 

and apparent glutamine affinity. The rate of inactivation of glutaminase 

at 50°C is the same for ABr and CHO (Figure 2). This finding serves to 

emphasize the two-fold difference found for the thermal inactivation of 
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FGAR ATase between ABr and CHO (Figure 1). Conversely, the slightly 

greater apparent glutamine affinity of glutaminase from ABr (Figure 4) 

minimizes the slightly greater apparent glutamine affinity of FGAR ATase 

from ABr (Figure 3). Therefore, the increased thermal inactivation of 

FGAR ATase from ABr is indirect proof of some structural alteration, and 

most likely is not due to decreased glutamine-enzyme complex from either 

decreased apparent glutamine affinity or decreased amounts of 

intracellular glutamine. 

The evaluation of Ade~PAB as a result of a single mutational event 

producing structural changes in two enzymes will be elaborated on later. 

It is of interest to first point out an important conclusion that may be 

drawn from the preceding investigations of Oates, et al (1) and E.W. 

Holmes (personal communication). As mentioned in the Introduction, 

Ade-P/\8 retains only measurable ammonia-dependent PRPP ATase activity 

(1), while ABr also possesses some measurable glutamine-dependent PRPP 

ATase activity. Additionally, both Ade~PAB and ABr have normal 

ribose-5-phosphate ami notransferase which converts ribose-5-phosphate and 

ammonia to phosphoribosylamine (PRA) (1). However, in complementation of 

Ade"PAR an^ Ade"A (with normal FGAR ATase activity), neither 

ammonia-dependent PRPP ATase nor ribose-5-phosphate aminotransferase form 

sufficient PRA in vivo to sustain cellular function. Therefore, in this 

mammalian system the de novo synthesis of purines requires 

glutamine-dependent PRPP ATase activity. This conclusion is further 

supported by finding that increased concentrations of glutamine raises 

the growth rate of ABr to wild-type levels (CH0-K1 is a glutamine 

auxotroph), thereby overcoming the decreased apparent affinity for 

glutamine by PRPP ATase in ABr (personal communication from Holmes). 
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It should also be mentioned that Ade~PAB represents a separation of 

glutamine and ammonia-dependent PRPP ATase activities. Glutamine- 

dependent activity is virtually lost in Ade"PAB due to a marked decrease 

in apparent affinity for glutamine (personal communication), while 

ammonia-dependent activity is almost normal (1). There are some reports 

of separating these enzymatic activities in partially purified 

preparations (40). However, single mutational events were clearly shown 

to form cell lines deficient in both glutamine and ammonia-dependent PRPP 

ATase (30,31,33). Additionally, purified human PRPP ATase has recently 

been found to maintain a constant ratio of glutamine-dependent to 

ammonia-dependent activities (14). Therefore, the enzyme alterations in 

Ade_PAB which keep the ammonia-dependent PRPP ATase activity basically 

intact and markedly decreases the apparent glutamine affinity of 

(glutamine-dependent) PRPP ATase activity imply a more complicated 

explanation than if both activities were simultaneously altered. 

Before presenting various explanations to account for the enzymatic 

character!'stics of Ade"PAB» I will briefly summarize some of the relevant 

information. Both PRPP ATase deficient cell lines (Ade“A) and FGAR ATase 

deficient cell lines (Ade~B) have been isolated (29-31,33,41,42). Both 

PRPP ATase and FGAR ATase have been purified as separate and distinct 

enzymes (14,22,23). Human PRPP ATase has been purified and is composed 

of 4-5 homogeneous subunits with molecular weights of 30,000 each (14). 

FGAR ATase from chicken liver is composed of a single polypeptide with a 

molecular weight of 133,000 (23). The existence of the Ade_PAB cell line 

with structurally altered PRPP ATase and FGAR ATase from a probably 

single mutational event is an interesting occurrence. Evidence for a 

single mutation producing Ade-PAB is based upon isolation technique. 
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isolation frequency, and reversion frequency. Evidence for the enzymatic 

profile of Ade-PAB as the result of structural changes in both PRPP ATase 

and FGAR ATase is as follows. Ade-P/\B possesses almost normal 

ammonia-dependent PRPP ATase, markedly altered apparent glutamine 

affinity of (glutamine-dependent) PRPP ATase and loss of FGAR ATase. 

Similarly, ARr possesses almost normal ammonia-dependent PRPP ATase, 

moderately altered apparent glutamine affinity of (glutamine-dependent) 

PRPP ATase and virtually normal FGAR ATase (1, personal communication 

from Holmes). Also, increased sensitivities to thermal inactivation 

indirectly demonstrate structural alterations in PRPP ATase and FGAR 

ATase from Ade’PAB and ABr. Experiments on the glutamine affinity of 

FGAR ATase from ABr demonstrate no difference between ABr and CHO. 

Therefore, I postulate that some structural alteration of FGAR ATase in 

Ade"P/\B results in an enzyme which is catalyti cal ly inactive and/or 

extremely labile, but this mutation need not affect glutamine binding. 

Addition of the data presented in this thesis to the tabular summary 

present in the Introduction on the findings for Ade"P,AB and ABr yields: 

Enzyme Property Ade"PAB ABr 

PRPP ATase ammonia-dependent activity + 

glutamine-dependent activity 4' 

apparent glutamine affinity 4' 4- 

thermal stability 4-4- 

+ 

4- 

4- 

+ 

FGAR ATase ammonia-dependent activity 0 

glutamine-dependent activity 0 

apparent glutamine affinity (+) 

thermal stability (+) 

+ 

+ 
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+ = near wild type level 
4- = decreased from wild type level 
+4- = markedly decreased from wild type level 
o = no measurable activity 
* = result presented in this thesis 
( ) = postulated from results presented 

Possible explanations for the existence of Ade~P/\B roust also take 

into account that Ade"PAB does not complement Ade'A, Ade"B nor itself, 

but does complement all other purine auxotrophs (Ade"C, Ade"D, Ade"E...) 

(1). Additionally, coincubation of crude extracts of Ade"PAB» Ade"A, 

Ade"B, and CHO in mixing studies does not result in any alteration of 

PRPP ATase or FGAR ATase activities (1). Since normal enzymatic 

activities are possible in the presence of Ade"PAB extract, any theory 

involving modification of PRPP ATase and FGAR ATase in the cytosol is 

unlikely. This precludes the presence of a diffusible inhibitory 

substance. In complementation studies, a normal post-translational 

modification would be expected to modify enzyme from both cell lines; 

however, an inability to complement Ade_A and Ade_B demonstrates that such 

is not the case for Ade~PAB (1). Since FGAR ATase retains little 

enzymatic activity when blocked with the glutamine analog azaserine, a 

diffusible inhibitory substance present in Ade~PAB that could affect 

both glutamine-dependent PRPP ATase and FGAR ATase might be a glutamine 

analog. However, mixing studies of extracts from Ade“PAB tail to inhibit 

PRPP ATase and FGAR ATase from other cell lines (1). Therefore, like 

alterations in post-translational modification, the presence of a 

diffusible inhibitory substance is doubtful. 

If the alterations in PRPP ATase and FGAR ATase in Ade_PAB are not 

inherent in the cytosol, then the two enzymes may have effects upon each 

other in the cytosol. For example, the existence of multienzyme 
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complexes is a possibility. A multienzyme complex would seem favorable 

since many of the intermediates of the de novo purine biosynthetic 

pathway are unstable (43). Early reports on the characteristics of the 

enzymes involved revealed some partial co-purification (44). However, 

further research demonstrated that these enzymes are not present in a 

tight multienzyme complex (45). 

If PRPP ATase and FGAR ATase do not affect each other in a 

multienzyme complex, then perhaps they share a common subunit which when 

altered could affect both enzymes. It has been postulated that some of 

the glutamine-utilizing ami dotransferases are the union of separate 

glutaminase and ammonia-utilizing aminotransferase polypeptides (27). 

Glutaminase activity would reside on a separate polypeptide, with 

enzymatic specificity conferred by the individual ami notransferase 

polypeptide. Such a mechanism seems unlikely in that PRPP ATase is 

formed of 4-5 homogeneous subunits with a molecular weight of 30,000 (14) 

and FGAR ATase is a single polypeptide with a molecular weight of 

133,000 (23). Although PRPP ATase and FGAR ATase are from different 

species (human and avian sources, respectively), subunits of PRPP ATase 

are also found in bacteria (22,46,50). Additionally, no distinct 

glutaminase activity has been separated from purified preparations of 

either PRPP ATase or FGAR ATase (14,22,23,46). Therefore, it seems 

doubtful that PRPP ATase and FGAR ATase share some common subunit, 

especially when one considers that PRPP ATase is separable into 4-5 

homogeneous subunits and FGAR ATase is a single polypeptide. 

Postulating the theoretical existence of a single multifunctional 

polypeptide could explain many of the mutational findings for Ade-Pftg. 

Such a polypeptide is not without precedent, in that a multifunctional 
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polypeptide has been identified which catalyzes the first three reactions 

of the de novo pyrimidine biosynthetic pathway (47-49). A multifunctional 

polypeptide is consistent with the production of Ade“P/\g by a single 

mutational event which then alters more than one enzyme activity. The 

mixing studies, the complementation pattern of Ade"PAB> and the not 

uncommon formation of revertants are in agreement with such a theoretical 

multifunctional polypeptide. 

Additionally, coordinate control in the production of PRPP ATase and 

FGAR ATase has been demonstrated for bacteria (37). This type of 

regulation of the level of enzymes of a pathway has been described for 

the (previously mentioned) first three enzymes of the de novo pyrimidine 

biosynthetic pathway (47,48) and for two non-sequential enzymes of the de 

novo purine biosynthetic pathway (49). The identification of a 

multifunctional protein catalyzing the first three reactions of the de 

novo pyrimidine biosynthetic pathway explains the findings for these 

enzymatic activities. The two non-sequential enzymes of the de novo 

purine biosynthesis are the third and the sixth enzymes of the pathway, 

phosphoribosylglycinamide synthetase (GAR synthetase, EC 6.3.4.13) and 

phosphoribosylaminoimidazole synthetase (AIR synthetase, EC 6.3.3.1), 

respectively. Both GAR synthetase and AIR synthetase have been assigned 

to chromosome 21. Also, a purine auxotrophic cell line (Ade~PcG) and its 

revertants have been reported which first lost and then regained both GAR 

synthetase and AIR synthetase (49). Therefore, the coordinate regulation 

of GAR Synthetase and AIR Synthetase may be under the direction of a 

single regulatory unit which is mutated in Ade~PcG and its revertants. 

However, for Ade'PAB The structural changes in both PRPP ATase and FGAR 

ATase cannot be easily explained by mutation in a similar regulatory unit. 
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None of the possible explanations presented above satisfactorily deals 

with all of the enzymatic and genetic characteristics of Ade“PAB (anc* 

ABr). A theoretical multifunctional polypeptide can explain the 

structural alteration of two enzymes from one mutational event. However, 

the purification of separate and distinct enzymes makes this theory 

unlikely. Additionally, the complementation pattern of Ade"A and Ade'B 

point to two separate genes for these enzymes. The separate 

complementation group Ade_PAB could be explained by its affecting a 

multienzyme complex. Such a complex is demonstrated for the last two 

enzymes of the purine de novo biosynthetic pathway leading to formation 

of IMP (phosphoribosyl-aminoimidazolecarboxamide transformylase, EC 

2.1.2.3 and inosine-5'-monophosphate cyclohydrolase, EC 3.5.4.10; 

reference 51). Additionally, in Salmonella typhimurium, identification 

of a third complementation group (distinct from the two groups for each 

enzyme) has been shown to affect the interaction between these two 

enzymes (52). This is demonstrated by the restoration of low 

transformylase activity from this third complementation group by the 

addition of normal cyclohydrolase. However, a similar mixing study for 

PRPP ATase and FGAR ATase from Ade'PAB does not affect any enzyme 

activities (1). Therefore, PRPP ATase and FGAR ATase are probably not in 

a tight multienzyme complex similar to that of transformylase and 

cyclohydrolase. 

Ade~PAB is a third complementation group to Ade~A and Ade_B« 

Therefore, it appears to involve a third gene distinct from the two genes 

coding for PRPP ATase and FGAR ATase. A model for Ade“PAB might involve 

the theoretical existence of a single precursor for PRPP ATase and FGAR 

ATase. Given the complexities of mammalian systems, such a precursor 
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could exist at the DNA, RNA or polypeptide level. Ade~P/\3 would then be 

the result of a mutation in the separation of the PRPP ATase and FGAR 

ATase segments at one of these three levels. 

The marked decrease in apparent glutamine affinity of 

(glutamine-dependent) PRPP ATase in Ade~PAB with reversion to a moderate 

decrease in ABr could be explained by the following hypothesis. The 

Y-glutamyl intermediate formed during glutamine hydrolysis has recently 

been shown to bind to the N-terminal cysteine residue on PRPP ATase in E. 

coli (53). If one assumes that the FGAR ATase gene is located "proximal" 

or on the 5'-end of the PRPP ATase gene, a mutation could lead to an 

error in the splicing of DNA or RNA or in the separation of these two 

enzymes such that the glutamine site of PRPP ATase (at its N-terminal 

end) and a crucial enzymatic site of FGAR ATase (at its C-terminal end) 

would both be affected. 
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Since the active cysteine residue is normally a N-terminal residue, 

then the presence of several extra amino acids in Ade"PAB might 

severely disrupt the glutamine-utilizing section of PRPP ATase and only 

minimally affect the ammonia-utilizing section of PRPP ATase. FGAR ATase 

activity would be simultaneously lost due to a mutation in the C-terminal 
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portion of this protein. For reversion to take place, the position for 

DNA or RNA splicing or for separation of two polypeptides would change to 

a position which added at least one (but not too many) amino acids to the 

N-terminus of PRPP ATase in ABr. The altered glutamine binding of PRPP 

ATase would then be less marked. Also, FGAR ATase could be almost fully 

active, and might only exhibit the loss of some non-functional amino 

acids with a decrease in thermal stability. 

The presumed change in the position of the separation between PRPP 

ATase and FGAR ATase would of necessity be due to alterations in the 

genetic code. There is little information to speculate even further on 

the nature or mechanism of the putative defect in the splicing process. 

However, the model presented does fit all of the known properties of 

Ade“P/\B and ABr. 

The complementation properties of Ade"PAB and ABr are in accord with 

this model; however, the recent mapping of PRPP ATase and FGAR ATase to 

different human chromosomes does cast doubt on this model. PRPP ATase 

has been tentatively assigned to human chromosome 4 (54). FGAR ATase was 

initially localized to human chromosome 4 by linkage to esterase 

production (55), but has been reassigned to human chromosome 14 (56). 

Although the genome of the Chinese hamster cell may differ from human 

cells with regard to the chromosomal localization of PRPP ATase and FGAR 

ATase, the model proposed above for Ade"P/\g is not supported by the 

finding for human cells. 

Short of isolating and sequencing PRPP ATase and FGAR ATase from 

Ade-P/\B and ABr, a simpler experimental method involves examination of 

the N-terminus of PRPP ATase. If PRPP ATase from Chinese hamster ovary 

cells possess the same N-terminal, glutamine binding cysteine residue as 
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found for E. Coli (53), then this could be identified by first 

irreversibly binding a radiolabelled glutamine analog such as azaserine 

or DON (6-diazo-5-oxo-L-norleucine). Next, a single step of Edman 

degradation could be performed to determine if a radioactive glutamine 

analog-cysteine unit was the N-terminal residue. If the alterations 

which formed Ade_P/\B and ABr produced extra N-terminal amino acids on 

PRPP ATase, then both cell lines would demonstrate an absence of tfre 

radioactive glutamine analog-cysteine residue. This finding would be 

consistent with the model presented above. 
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TABLE 1 

FGAR ATase Specific Activity and Protein Concentration 

Means and standard deviations are compilations of multiple 

experiments with ABr and CHO enzyme extracts. Values are expressed as 

mean +_ standard deviation (sample size). 

ABr CHO 

FGAR ATase Specific Activity* 13.8 _+ 3.55 (10) 14.5^3.80 (11) 
(nmol/mg protein/hr) 

Protein Concentration 12.5 +_ 3.35 (11) 15.3 +_ 1.86 (12) 
(mg/ml) 

*Activity is measured at 4mM glutamine. 





34 

Thermal Inactivation of FGAR ATase: ABr (o) and CHO (») are each the 

averaged result of two separate experiments. Dialyzed enzyme extracts 

from ABr and CHO are simultaneously heated to 50°C in open glass test 

tubes for 0.25 minutes to 4 minutes and immediately placed on an ice- 

water bath. Interpolation of the data yields the time required for the 

loss of 50% of FGAR ATase activity for ABr as 0.9 minutes and for CHO as 

1.7 minutes. 
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Thermal Inactivation of Glutaminase: ABr (o) and CHO (•) are each the 

combination of three separate experiments. All points are compiled from two 

independent studies except at 0.5, 1, and 3 minutes, which are each from one 

study. Dialyzed enzyme extract is heated to 50°C in an open glass test tube 

for 0.5 minutes to 10 minutes and then immediately placed on an ice-water 

bath. Results are drawn from the control data which are the reaction 

mixtures without FGAR present. The 3 minute point does not lie on a smooth 

curve of the other data points. Since it is also from one experiment and 

not as reliable, it is left out of the curve. By interpolation, both ABr 

and CHO lose 50% of their glutaminase activities in approximately 3 minutes. 
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Apparent Glutamine Affinity of FGAR ATase: Reciprocal plot of FGAR ATase 

specific activity and glutamine concentration. ABr (o) is the result of 

three experiments and CHO (o) is the result of two experiments. Glutamine 

concentrations vary while all other enzyme assay conditions remain 

constant. Glutamine concentrations greater than ImM approach saturation 

and are therefore not in these plots. A least-squares plot for ABr yields 

an apparent glutamine Km of 0.54mM and a Vmax of 22.2 nmol/mg 

protein/hr, with a correlation coefficient of 0.86. Similar analysis for 

CHO produce an apparent glutamine Km of 0.86mM and Vmax of 33.0 nmol/mg 

protein/hr, with a correlation coefficient of 0.90. 
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Apparent Glutamine Affinity of Glutaminase: ABr (o) is the result of 

three experiments and CHO («) is the result of two experiments. These 

results are extracted from the controls of the glutamine binding study 

which are enzyme assays without FGAR. A least-squares plot for ABr yields 

an apparent glutamine Km of 0.25mM and Vmax 15.8 nmol/mg protein/hr, with 

a correlation coefficient of 0.98. The results for CHO are an apparent 

glutamine Km of 0.30mM and Vmax of 21.8 nmol/mg protein/hr, with a 

correlation coefficient of 0.95. 
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