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ABSTRACT 

The arcuate nucleus and MPOA (medial preoptic area) of the rat brain, 

implicated as sites of estrogen's action in controlling gonadotropin release, 

are known to contain significant amounts of GABA (gamma-aminobutyric acid). 

Pharmacologic, electrophysiologic and anatomic studies show GABA is involved 

in the control of LH release and recent evidence in both the MPOA and the 

arcuate nucleus suggests these GABA neurons may be estrogen-sensitive targets 

in a neuroendocrine loop controlling ovulation. In an immunocytochemical 

electron microscopic study, we examined the effects of ovariectomy and 

estrogen treatment on the ultrastructure of these GABA neurons. We found no 

significant difference in the cellular morphology of the GABA neurons from 

either region under the two experimental conditions, but in the MPOA under 

both conditions, previously unreported glutamic acid decarboxylase(GAD)-GAD 

axosomatic synapses and whorl body formation were observed. These results are 

discussed within the context of the technical difficulties imposed by the 

labeling methodology used in this study and speculations on the functional 

role of the GAD-GAD synapses in the MPOA are offered. 





ACKNOWLEDGEMENTS 

I would like to thank Csaba Leranth,Neil MacLusky and Frederick Naftolin for 
making this project possible and for their guidance and encouragement 
throughout; Marya Shanaborough for her invaluable technical expertise and 
unending patience;and Joji Matsumoto for his cheerful willingness to always 
help with a problem. To my friends and family who offered support and 
understanding, I am especially grateful. 





TABLE of CONTENTS 

INTRODUCTION 1 

ESTROGEN'S EFFECT ON THE BRAIN 

Studies of Neuroendocrine Function 
The Role of GABA in the Control of 

Gonadotropin Release 
3H-Estradiol Binding Studies 
Receptor Studies 
Celllular Mechanism of Action 
Morpologic Studies 

SUMMARY 

METHODS and MATERIALS 25 

RESULTS 27 

FIGURES 32 

DISCUSSION 48 

BIBLIOGRAPHY 53 





1 

INTRODUCTION 

It has been wel1-documented that estrogen binds to and affects the brain both 

structurally and functionally in physiologic and pathologic ways. The keen 

interest with which these effects have been studied is, for the most part, a 

result of the important role they are known to play in all stages of 

development from sexual differentiation of the brain through 

initiation of puberty to the control of sexual function in the mature 

organism. Perhaps the most studied estrogen-CNS interactions have been those 

involved in the control of gonadotropin release. Here, specific areas of the 

brain involved in the positive and negative feedback of estrogen have been 

localized anatomically and the neurotransmitters involved are gradually being 

defined. One substance strongly implicated in the neuronal circuitry 

controlling GnRH release is GABA (gamma-aminobutyric acid). From this 

laboratory, evidence based on light and electron microscopic studies suggests 

that GAD-immunoreactive perikarya in two areas of the brain well-known to be 

involved in the control of gonadotropin release--the arcuate nucleus and the 

medial preoptic area (MPOA)--are estrogen-responsive. The purpose of this 

study is to describe in the rat brain, the morphologic effects ovariectomy and 

high dose estrogen treatment have on GABA neurons in these two 

estrogen-sensitive areas. It is our hope that this information together with 

that collected from electrophysiologic and biochemical studies under similar 

conditions, may help to formulate for a given neuron population specific 

structural and functional correlates of estrogen's effect on neural tissue, 

and perhaps help in deciphering GABA's role in both the positive and negative 

feedback estrogen exerts on gonadotropin release. 
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ESTROGEN'S EFFECT ON THE BRAIN--Studies of Neuroendocrine Function 

There is ample evidence that estrogen can both stimulate (Everett'48;Shirley 

et.al.'68;Ferin et.al.'69;Labsetwar'70;and Naftolin'72) and suppress 

(Ramirez&McCann'63;Brown-Grant'71;Gay&Midgley'69) gonadotropin release from 

the pituitary. Evidence for the localization of this effect was first 

suggested by Hohlweg and Junkmann ('32) when they postulated the existence of 

a 'sex center' in the hypothalamus after noticing that castration cells did 

not appear in transplanted pituitaries after ovariectomy. Other investigators 

had supported the concept of a neural control over other anterior pituitary 

hormones (Selye'34;F.H.A. Marshall'42) and the anatomical basis for this 

functional connection had been established earlier by Popa and Fielding 

('30;'33),who first described the anatomical detail of the hypophyseal portal 

blood supply, but because they assumed a blood flow from hypohysis to 

hypothalamus were unaware of its functional significance. Not until Green and 

Harris (’49) provided a direct visualization of the portal vessels in a living 

rat, was the blood flow shown to go from hypothalamus to hypophysis, 

supporting Harris's concept of a neurovascular control of the pars distal is 

and the necessity of portal blood flow to pituitary function (Harris'47). In 

subsequent studies Harris demonstrated the existence of this neural control by 

inducing ovulation with direct brain stimulation (for review see Harris'55) 

and the humoral nature by showing that animals made acyclic by removal of the 

pituitary gland could recover ovarian function if the pituitary was 

transplanted back into the sella turcica and revascularized 

(Harris&Jacobsen'52). 

Localization of this control to the hypothalamus and suggestions of this 

area's role as the 'final common pathway' from the CNS to the pituitary was 
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demonstrated by implantation, lesion and electrical stimulation studies in its 

various areas. The estrogen sensitivity of the MBH (medial basal hypothalamus) 

was demonstrated first by crude implantation experiments showing that estrous 

cycles returned when median eminence extracts where infused into pituitaries 

transplanted to various areas in the animal's body 

(Nikitovitch-Winer'62;Campbel1'64). Halasz et.al. ('65) transplanted 

pituitary fragments into this area and found that within a certain region, 

these fragments retained their normal cytological characteristics and ovarian 

cycles were maintained. This crescent-shaped hypothalamic region that could 

maintain the pituitary cells was named the 1hypophysiotrophic area' (HTA). 

Subsequent work using estrogen implants in this area and monitoring either 

ovarian atrophy (FIerko&Szentagothai'57) or pituitary function 

(Lisk'60,163;Davidson&Sawyer'61;Kanematra&Sawyer'64;Ramirez et.al.'64;Chowers 

&McCann'67;and Martini et.al.'68) demonstrated that increased levels of 

estrogen produced a decrease in gonadotropin secretion and lesioning this area 

(Bogdanov157;FIerko&Bardos161;Bishop'71k172a,72b;Everett&Tyer177) or local 

electrical stimulation to it (Markee152;Gal1 o'76)inhibited LH release and 

produced ovarian atrophy. 

Confounding results were reported by some investigators who found increases in 

LH with estrogen implants into the MBH 

(Palka'66;Weick&Davidson'70;Billard&McDonald'73) but these data, in general, 

were attributed to the implanted steroid being carried by the hypophyseal 

portal system to the pituitary from the MBH and exerting a direct effect on 

the pituitary (Bogdanov'63). However, some discrepancies were not so easily 

explained and it soon became apparent that another area within the 

hypothalamus may be involved in gonadotropin secretion. Halasz pursued this 
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notion and, using a hypothalamic deafferentation technique, isolated the MBH 

from the rest of the brain by a knife cut that left in place only its 

connection to the pituitary. He found that though the ovaries were maintained 

in a nonatrophic state, ovulation did not occur (Halasz&Pupp'65). 

Anterior cuts placed just caudal to the optic chiasm also induced persistant 

estrus, but when cuts were made rostral to the preoptic area, cyclic ovulation 

could be maintained (Halsaz&Gorski'67;Koves&Halasz170). As expected, lesions 

in this rostral hypothalamic-preoptic area blocked ovulation, but did not 

produce ovarian atrophy (Hillarp'49;Flerko&Bardos'60)and electrical 

stimulation of this area was able to induce ovulation in previously acyclic 

rats 

(Everett161;Terasawa&Sawyer'69;KawakamiSTerasawa'70;Cramer&Barraclough171;Kalr 

a et.al.'71;Dyer'73;Turgeon&Barraclough'73;Everett176;C1emens176). A number of 

studies showing that high circulating levels of estrogen produced an enhanced 

responsiveness or firing rate of the neurons in the MPOA 

(Bueno&Pfaff'76;Cross&Dyer'72;Yagi173;Dufy176)supported the concept of an 

activation or positive feedback by ovarian steroids to this area. 

Thus, the inhibitory effects estrogen has on the arcuate nucleus in regulating 

tonic release of gonadotropin secretion and its stimulatory effect on the MPOA 

in controlling the phasic release have been well-established in the rat. 

(This is probably not true in the primate as evidence in rhesus monkeys 

currently suggests that the MBH may work autonomously in controlling ovulation 

--for review see Knobil'78). This gross anatomical localization of areas 

involved in gonadotropin secretion in the rat brain has helped to define the 

arcuate and MPOA as functionally sensitive to estrogen and has led the way for 
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research into the neurotransmitters and neuropeptides which may be involved in 

estrogen's feedback control. 

ESTROGEN'S EFFECT ON THE BRAIN--The Role of GABA in the Control of 

Gonadotropin Release 

The gradual identification of various neuroregulatory messengers involved in 

neuroendocrine functions has been underway ever since the existence of neural 

control of the anterior pituitary was first postulated. Identifying the 

substances that influence endocrine function has been done mainly by 

pharmacologic manipulation of known CNS neurotransmitters and by mapping their 

distribution in areas of the brain, in particular the hypothalamus, that are 

known to affect pituitary responses. This has been done extensively for the 

biogenic amines and has led to the suggestion of dopamine as a prolactin 

(releasing) inhibitory factor (for review see Leong'83) and norepinephrine as 

a stimulator of LHRH release (for review see Meites&Sonntag'81). More 

recently, a possible involvement of GABA, a recognized inhibitory 

neurotransmitter in the CNS (Baxter&Roberts'60;Schmidt'71;Storm-Mathisen'74) 

has emerged and anatomical as well as physiologic investigations are underway 

to decipher its actual role in controlling gonadotopin release. 

The anatomical evidence that provides the basis for the GABAergic control of 

anterior pituitary function in the hypothalamus is much more scarce than for 

either the monoaminergic or dopaminergic systems. GABA and its biosynthetic 

enzyme, GAD (glutamic acid decarboxylase) are reported to be concentrated in 

the hypothalamus (Fahn'76); hypothalamic slices preferentially take up GABA 

(Hokfelt'70); hypothalamic synaptosomes release it after electrical 

stimulation (Edwardson172). Within the median eminence, 3H-GABA is taken up 
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by both neuronal cell bodies and their processes (Makara'75) and concentrated 

in the external layer of the median eminence (Tappaz'80). A 

GAD-immunoreactive density is prominent over both the medial and lateral part 

of the median eminence external layer (Tappaz'83) and according to studies 

combining deafferentiation with biochemical mapping, the source of this GABA 

is probably from neurons within the arcuate nucleus or the VMN 

(Tappaz'77;Wallas&Funnum'78). The possibility that GABA is secreted into the 

hypophyseal portal system and directly affects the anterior pituitary is 

supported by studies that show GABA terminals on the pericapi11 ary space of 

these vessels (Tappaz'83) and the presence of GABA without GAD activity in the 

anterior pituitary (Oertal'82;Vincent'82) suggesting it is of hypothalamic 

origin (Racagni'79). Schally suggests GABA as having significant prolactin 

(releasing) inhibitory activity both in vivo and in vitro (Schally'77) and, in 

general, GABA's direct effect on the anterior pituitary has been most strongly 

implicated in the control of prolactin release (Casanueva'81). 

Outside of the median eminence, GAD activity has been shown in highest 

concentrations in the lateral hypothalamus (especially those areas traversed 

by the rostral median forebrain bundle), the VMN and MPOA (Fonnum'77), with 

somewhat less activity in the arcuate (Tappaz et.al76;Tappaz'77;Perez 

et.al.'81;Mansky'82;Kimura'75). The source of this GAD activity, at least in 

the MBH is thought to be intrinsic though some input to the arcuate and VMN 

from the lateral and posterior hypothalamus is possible (Brownstein 

et.al.'76;Tappaz&Brownstein'77). The source of the GAD activity in the MPOA 

has not been studied but possibilities include: mesencephalic reticular 

formation input from the mamillary peduncle via the MFB; hippocampal input via 
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the pre-commissural fornix; and perhaps, amygdaloid input to the lateral 

preoptic area from the stria terminal is (Brodal'81). 

To correctly interpret these studies, one must be aware that problems remain 

in assuming that levels of GABA or GAD activity has functional significance. 

For example, Tappaz states that in measuring 3H-GABA in neural tissues, the 

artifact incurred by the ability of the glial elements to readily take up and 

sequester GABA must be eliminated (Tappaz et.al.'80). He does this by 

measuring only initial uptake as the glial mechanisms are much slower and take 

significantly longer to accumulate the labeled GABA. In addition, in earlier 

studies, he questioned GABA levels as any indicator of its concentration in 

various hypothalamic nuclei since within minutes after a rat is sacrificed, 

GABA accumulates very rapidly due to its metabolizing enzymes 

(GABA-transaminase and succinic-semialdehyde dehydrogenase) denaturing much 

more quickly than GAD, its synthetic enzyme (Tappaz et.al.'77). This has led 

to erroneous reporting of GABA levels throughout the brain, but has also been 

used by some (Mansky'82) as a way of measuring GABA turnover and correlating 

this with LH levels in the MPOA. It is also important to recall that in 

cerebral glucose oxidative metabolism, GABA (via the GABA shunt) plays a 

critical role in providing a defnse mechanism against hypoxic conditions 

(Wood'67) and may, in fact, vary in amount depending on the physiologic state 

of the organism. Therefore as Brownstein notes, in evaluating this literature 

it is not possible to determine to what extent GABA exists in the tissue as a 

neurotransmitter or as a result of intermediary metabolism (Brownstein177) 

and conclusions drawn from it should be done so cautiously. 

Measuring GAD activity has similar drawbacks and artifactual problems should 

be considered. A significant problem until recently was mapping GABAergic 

l 
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fibers since a specific antibody to GAD was not available, making it difficult 

to preferentially label only GABA terminals. Oertel et.al. (81) have helped 

to eliminate this problem by developing a very specific anti-serum to rat 

brain GAD using anion exchange chromatography and a polyvalent anti-serum, 

raised from partially purified GAD, to 'trap' GAD. With this GAD antibody, a 

more accurate picture of GAD activity in discrete areas of the hypothalamushas 

emerged. But quantifying GAD activity and correlating it to functional 

activity is still questioned by some since enzyme activity levels (TH and DBH) 

have been shown to be poor indicators of dopamine levels and could, likewise, 

be poor indicators for GABA levels (Kreiger&Wuttke'80). For example, GAD 

activity could represent neuronal or glial synthesis since both are known to 

occur in some parts of the CNS (Csillik'70), or, even if localized only to the 

neurons,be a function of neuronal synthetic rates and not neuronal numbers. 

Kravitz's classic studies in the crustacean nervous system have showm that 

inhibitory fibers are capable of producing GABA at about eleven times the rate 

of excitatory fibers (Kravitz et.al.'68), and indeed, they may contain over 

one hundred times as much GAD as excitatory fibers. What does high GAD 

activity in the MPOA then mean--a few inhibitory fibers or many excitatory 

ones? Clearly, the meaning of GAD activity in the CNS remains to be defined. 

The physiologic relevance of GAD activity within the hypothalamus and the role 

it plays in controlling LH release also remain quite vague. The plethora of 

GABAergic endings surrounding unlabeled neurons, especially in the MPOA, 

suggests that a great many neurons, including the LHRH neurons, may be under 

GABAergic control but the evidence as to what this control may be is sketchy. 

GABA in other brain areas has a predominently inhibitory effect (Schmidt171) 

and in the hypothalamus, iontophoretic application of GABA inhibits firing of 





cells (Curtis&Johnston'74). In addition, the demonstration of a recurrent 

picrotoxin-sensitive inhibitory loop which controls the firing of 

tubero-infundibular neurons has prompted the speculation that neurosecretory 

cells, such as the LHRH neurons, may have a Renshaw-cel1 - type GABAergic 

inhibitory neuron (Renaud176;Yagi&Sawaki175). The existence of local 

GABAergic cells in the hypothalamus as shown by deafferentiation studies 

(Tappaz&Brownstein'77) argues for this possibility. Unfortunately, the 

results of studies on the effects that GABAergic drugs have on LH release have 

been equivocal. A number of studies, for the most part from the same 

laboratory, report the ability of intraventricularly injected GABA to 

stimulate LH release (Vijayan&McCann'78a;'78b;McCann et.al.'81;McCann 

et.al.'84;0ndo'74) an action blocked by bicuculline, a GABA blocker, but 

unaffected by dopamine blockers (Vijayan&McCann'79). In addition, they report 

an elevation of LHRH in the suprachiasmatic-preoptic region after 

intraventricular GABA injection accompanied by an elevation in LH, and suggest 

the action of GABA may be via a direct efffect on rostral LHRH neurons 

(McCann et.al.'82). Conversely, other investigators attribute this 

stimulatory effect to a permissive effect of pentobarbital on the GABA-induced 

secretion of LH in anesthetized rats and maintain that in free-moving rats, 

GABA, in fact, has no direct effect on LH release (Pass&Ondo'77). However, 

studies show that when LH levels are high under conditions of low-circulating 

estrogen, GAD activity in the hypothalamus is reduced (Lamberts 

et.al.'83;McGinnis'80;Gordon'77; Wallis&Luttge'80; Early&Leonard'78), 

supporting an inhibitory GABA effect. 

Present speculation as to how GABA exerts this purported inhibitory effect 

centers around an indirect effect on the LHRH neurons in the MPOA via 
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pre-synaptic inhibition of the norepinephrine input to these cells (Lamberts 

et.al.'83) which is known to stimulate LHRH release (Vijayan&McCann'78a). 

Anatomical evidence supports this scnema--LHRH and NE terminals do synapse in 

this area (Jennes182)--and pharmacologic evidence shows that GABA produces a 

decrease in both LH and norepinephrine levels in the MPOA (Wuttke et.al.'81). 

But, as Tappaz notes, if GABAergic cells within the hypothalamus directly or 

indirectly participate in the physiological regulation of pituitary function, 

they must be expected to be targets of circulating estrogen (Tappaz '84). 

Preliminary evidence in this regard shows that in the MPOA, GABA neurons do 

concentrate 3H-estradiol (Sar et.al.'83) and GABA neurons in the arcuate are 

estrogen-responsive (Leranth et-al.185). What remains is to more precisely 

define the relationship of GABAeric synapses to the monoaminergic axons in the 

MPOA as well as the relationship of the monaminergic input to the LHRH 

neurons. 

ESTROGEN'S EFFECT ON THE BRAIN--3H-Estradiol Binding Studies 

If, in fact, GABA neurons are key estrogen-responsive neurons in both the 

arcuate and the MPOA, by what cellular mechanism does estrogen affect these 

neurons? Is it a 'typical' steroid and act at the gene level or does it work 

differently in an excitable cell and exert its effect at the membrane level 

inducing electrophysiologic instead of biochemical changes? To define 

estrogen's effect on neurons, early researchers first sought to map, within 

the brain the neurons that actually bind estrogen; to correlate this 

anatomical distribution with functionally-responsive areas; and, to localize 

within these areas, those neurons in which subsequent cellular effects then 

might be studied. 
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Initial studies of the distribution of estrogen in the brain used cell 

fractionation techniques to measure labeled estrogen in carefully dissected 

areas of the brain. Anterior pituitary tissue had very high levels of 

radioactivity, comparable to those found in the uterus and vagina and the 

anterior and mediobasal hypothalamus showed significantly higher uptake than 

either cerebral or cerebellar tissue 

(Eisenfeld&Axelrod'65,166;Kato&Vi11ee'67a,'67b;McGuire&Lisk168;Luttge&Whalen'7 

2). Subsequent studies using finer dissections and more extensive brain 

sampling revealed estrogen binding in the MPOA and limbic system in addition 

to the anterior pituitary and hypothalamus (McEwen&Pfaff'70;McEwen et.al.'75) 

and significant binding in the septum and midbrain but no apprecialbe estrogen 

in the cerebral cortex. McEwen showed preinjection of nonradioactive estrogen 

inhibited uptake in the areas of highest estrogen (anterior pituitary, MBH, 

MPOA, and limbic system) and described these structures showing both high 

levels of estrogen and good binding site competition effects as 'a 

limbic-preoptic-hypothalamic group of structures'(McEwen&Pfaff’70). 

Cell fractionation studies provided estimates of the regional distribution of 

estrogen, but more anatomical detail could be gained by using an approach 

which could show within each brain region, the specific neurons to which 

estrogen was binding. Autoradiographic localization of systemically injected 

tritiated estrogen concentrated in specific brain areas provided this 

anatomical detail. Using this technique, Pfaff localized estrogen-binding to 

neurons within the MBH, MPOA, amygdala, hippocampus, ventral medial nucleus of 

the hypothalamus, pre-piriform cortex and septum (Pfaff'68a,'68b). But 

controversy arose over this methodology with some investigators claiming it 

introduced significant diffusion artifacts and declaring his results erroneous 
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(Stumpf&Sar'70). Modifying this technique, Pfaff repeated his early work but 

used unembedded, unfixed frozen sections and produced similar results 

(Pfaff'73). Stumpf, using a technique based on dry-mounting of freeze-dried 

sections designed to eliminate diffusion artifacts, produced an 

estrogen-binding map very similar to Pfaff and, noting that the distribution 

of these neurons followed known terminations of the stria terminalis, offered 

this as support for the concept of an 

endocrine-amygdaloid-hypothalamic-hypophyseal axis (Stumpf'68). 

In general, there is good agreement among most autoradiographic studies 

showing estrogen in a limbic-hypothalamic distribution which correlates well 

with the regional distribution of estrogen concentration shown by 

scintillation counting of dissected brain regions and functional localization 

of neuroendocrine function in the brain. This apparent congruity of hormone 

localization and known neuroendocrine function suggests autoradiographic 

studies are relevant to defining the 'sex center' of the brain and have 

continued to be a useful experimental tool. Current work using 

autoradiography in combination with other labeling techniques has further 

character!-zed the distribution of these estrophilic neurons within each of the 

above anatomical loci and their relationship to 

neurotransmitters(Sar&Stumpf'81;Sar'84'Grant et.al.'77) and to releasing 

factors (Shi vers'83). This has been especially useful in suggesting possible 

functional interactions steroids and neurotransmitters may have in controlling 

reproductive function. 
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ESTROGEN’S EFFECT ON THE BRAIN--Receptor Studies 

Estrogen-sensitive cells in the brain have been localized with respect to the 

putative receptor sites as discussed above, making it possible to study in the 

particular cell groups involved in neuroendocrine responses, the specific 

cellular changes that occur under estrogen's influence and to define those 

necessary for estrogen to affect a neural response. This study of the 

cellular and subcellular mechanism of estrogen in the brain is founded in the 

work that had been done in the uterus where it is known that estrogen binds to 

a receptor that is recovered in the soluble fraction of the cytoplasm 

following tissue homogenization and is subsequently bound in the nucleus, 

where it alters the pattern of gene expression 

(Weishons,et.al.'84;King,et.al.’84). This estrogen receptor may also be found 

in the plasma membrane fraction as has been recently suggested but its 

functional significance is still questionable. The existence in neural tissue 

of a similar highly specific, limited capacity binding system for estrogen was 

first demonstrated by a number of workers using ovariectomized and 

estrogen-treated rats (Eisenfeld&Axelrod'65,'66;Kato&Vi11e'67;Luttge172). 

Preferential uptake by the anterior pituitary, hypothalamus, preoptic area and 

limbic system was a constant feature in all of these studies but investigators 

questioned whether these receptors represented a physiological phenomenon or 

an artifact of treatment. McGuire et.al. ('69) were the first to demonstrate 

this preferential accumulation of labeled estrogen in the intact rat and also 

suggested that this binding changed with varying titers of estrogen. The 

question of changing hypothalamic receptor binding during different phases of 

the estrus cycle was addressed by a number of studies some suggesting there 

was no change and such data were a result of methodological error. 
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(Whalen'69), but most concluding that estrogen binding by the hypothalamus 

does vary with the circulating estrogen titers, increasing during estrus with 

low circulating steroid levels and decreasing during proestrus when estrogen 

levels are at their highest (Kato'70;Luttge'72;Ginsburg175;Vertes et.al.'77). 

This response, the opposite of that seen in the anterior pituitary and uterus, 

could be explained by either increased occupation of receptors in the 

hypothalamus by the endogenous hormone or a decrease in synthesis of receptors 

by the hypothalamus in response to increasing estrogen levels (Vertes'77) and, 

as Eisenfeld speculates, may control the level of a neuron's response to 

estrogen during the estrous cycle (Eisenfeld'69). 

Subsequent receptor studies using more refined isolation techniques further 

characterized the biochemical properties of the receptor protein (Kahwango169; 

Verte'73) including its binding character!’sties (Davies'75;McEwen'79) such 

that, to date, brain estrogen receptors are seen as 'highly stereospecfic, 

with very little cross-talking occurring and resembling very closely those 

found in other target tissues of the body' (McEwen'79). 

Controversies, however, still remain concerning the specifics of this receptor 

system. It is well-known that effects the androgens have on the CNS, at 

least in the developing rodent, depend on their prior aromatization to 

estrogen (McEwen‘74). These aromatizing enzymes are found throughout the 

brain regions that have estrogen receptor sites, including the hypothalamus 

and MPOA , but according to Krey et.al. only one-half of the neural estrogen 

receptor sites bind this estrogen, suggesting the existence of subsets of 

estrogen receptor systems in estrogen-sensitive neurons of the brain (Krey 

et.al.'80). In addition, the involvement of another steroid transformation, 

the formation of catechol estrogen (2- or 4-hydroxylation of estradiol) may be 
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involved in brain-estrogen interactions. Cuatrecasas suggests they may act at 

the membrane of the neuron by actually fitting into the catecholamine receptor 

and acting either as a catecholamine or blocking the action of the 

catecholamines (Cuatrecasas '81). Others have speculated an effect on the 

intracel1ular receptor, but both in vivo (Jel1inick'81) and in 

vitro(Merriaml80) studies have shown that the degree of binding of these 

metabolites to intracel1ular estrogen receptors is significantly less than 

estradiol, though in situ formation of these compounds makes it possible that 

their local concentrations may be high enough to cause an effect 

(Fishman'82,'75). Of note when considering the extent to which estrogen 

metabolites are involved in the cellular action of estrogen, are the intial 

receptor studies wherein most investigators reported that a majority of the 

labeled hormone was recovered bound to the receptor in an unmetabolized form 

(Kato&Vi11e'67a;Michales165,McEwen179;Zigmond'70)arguing against a prior 

metabolism of estrogen in neural target tissue. Finally, the existence of 

progestin receptors in some estrogen-sensitive areas including the arcuate and 

MPOA (Sar'73), has led to the speculation that perhaps estrogen-induced 

progestin receptors are responsible for some of estrogen's effects, e.g. 

induction of sexual receptivity (Davies'79). However,because not all 

estrogen-sensitive neurons display this progestin receptor induction, 

including those of the amygdala (MacLusky'80), it is difficult to implicate 

this in the general schema of estrogen's cellular mechanism of action. 
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ESTROGEN'S EFFECT ON THE BRAIN--Cel1ular Mechanism of Action 

Events in the neuron after estrogen binds to its receptor, either at the 

cytoplasmic or plasma membrane level, are obscure, but speculation centers 

around two mechanims: lldirect action on the membrane, or 2)indirect action 

at the gene level as has been wel1-documented in the uterus 

(Katzenel1enbogen&Gorski175). Direct effects of estrogen on neural tissue 

have not been extensively examined, but studies of other steroids have shown 

them capable of neuromodulation by affecting ATPase activity and, thereby, 

modifying membrane potentials in neuroendocrine cells (Sc hade'71). The 

studies previously cited involving the changing electrophysiologic activity of 

MPOA neurons under varying estrogen levels suggest a direct effect of estrogen 

on neuronal activity though in situ studies such as this do not allow one to 

differentiate if the effect is related to the direct actions of estrogen at 

the monitoring site or to its influence on other brain areas that then affect 

this site. As McEwen discusses, in evaluating indirect versus direct effects 

of a hormone, one must consider latency and duration e.g. direct actions 

usually have short latency and brief duration and indirect just the opposite 

(McEwen'81) and protocols using electrophysiologic recordings during estrus 

cycles or estrogen treatment make it difficult to evaluate this temporal 

function. Kelly et.al. circumvented this problem by applying estrogen 

iontophoretically while monitoring cell firing in the MPOA and found an 

immediate decrease in neuronal firing, suggesting a direct, membrane action of 

estrogen (Kelly et.al.'78), by mechanisms currently unknown. 

A much larger body of evidence has been gathered for the indirect mechanism of 

estrogen involving the genome. Early investigations by Lisk ('63) and Ifft 

('64) showed that nucleolar size in neurons in the rat hypothalamus, including 
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the arcuate, is responsive to the amount of estrogen circulating in the system 

and though their data imply opposite effects on the hypothalamus, they both 

conclude that such structural changes may suggest that estrogen is affecting 

the nuclear constituents of neural tissue in some way. Subsequent receptor 

studies showing the labeled hormone-receptor complex translocating to the 

nucleus (Peck'79) and cell fractionation 

(McEwen&Pfaff170;Zigmond&McEwen'70;McEwen175) and autoradiographic studies 

(Stumpf'68;'70) demonstrating the labeled hormone bound by cell nuclei in the 

hypothalamus and the preoptic area led to the idea the estrogen works by 

activation (though transient) of an RNA polymerase (Peck'79). In this way it 

induces transcription of new RNA (Belajev et.al.'67;Foreman'77) and 

translation of new proteins (Litteria173). Most investigators agree with this 

schema but conclusions as to the functional role of the newly synthesized 

proteins in either neuroendocrine function (Schally'69) or sexual behavior 

(Hugh'74) remain quite speculative. It is known only that oxidative activity 

(Moguilevsky'65) and some enzyme activities (Zolvik'66;Luine'74;Luine 

et.al.’75) vary with changing circulating estrogen levels, but specific 

enzymes are not known though obvious candidates include those involved in 

synthesis and degradation of neurotransmitters (Luine175;Anton-Tay 

et.al.'68;Stefano et.al.167;Lichtensteiger'69;Gudelsk177;Donoso167;Fuxe 

et.al.'67;Fuxe et.al.'72) and releasing factors, especially LHRH 

(Palkovits'74). Obviously, a number of biochemical effects of estrogen on 

neurons have been described, but definitive conclusions concerning 

cause-and-effeet relationships between specific biochemical changes and 

estrogen-induced alterations in neural function in the CNS currently do not 

exist. 
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ESTROGEN'S EFFECT ON THE BRAIN--Morphologic Studies 

Assigning biochemical causes to the morphologic effects estrogen has on 

neurons is a difficult task at best, but studying the morphologic changes 

estrogen can induce in neurons, in both physiologic and pathologic states may 

help to localize where within the cellular machinery estrogen is having its 

effect and perhaps offer insight into the long-held speculations concerning 

the plasticity of the adult brain. 

Initial studies that implicated estrogen in affecting CNS tissue 

ultrastructure were done in developing rat brains in an effort to show the 

factors that ultimately determine the sexual maturation of the rat brain (more 

specifically, the hypothalamus). Dorner and Staudt ('68;'69) found effects of 

neonatal castration or neonatal androgenization on nuclear sizes in 

hypothalamic preoptic anterior areas and the ventromedial nucleus of the rat. 

More recently, Toran-Allerand ('76;'80) has shown that estradiol can enhance 

the outgrowth of neurites from newborn mouse hypothalamic and preoptic area 

explants in vivo which is consistent with older reports that estrogen 

administration to young rats in vivo markedly stimulates myelinization and 

functional maturation of the brain (Heim&Timiras'63;Curry&Hein'66). But 

perhaps the most striking evidence for steroid-induced structural changes in 

the developing CNS comes from the work of Raisman and Field ('71;'73) who 

demonstrated that the distribution of synapses in the preoptic area is 

sexually dimorphic in rats (males having a higher proportion of synapses on 

dendritic shafts than on dendritic spines) and that neonatal castration of 

males results in a female-type pattern of distribution in this area. An 

effect of sex steroids on synaptogenesis was also suggested by Matsumoto and 

Arai ('76A;'76b) who found that treatment of female rats with estradiol during 
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the first thirty days of life resulted in twice the number of axodendritic 

synapses in the arcuate nucleus compared to oil-treated control though the 

steroid treatment did not seem to alter the rate of formation of axosomatic 

synapses in the arcuate suggesting that only particular axon systems are 

susceptible to the hormonal effect. MacLusky et. al. ('81) speculating as to 

the role synaptogenesis plays in development state "Several lines of evidence 

suggest that the survival of neurons may to some extent be dependent on the 

formation of synaptic contacts, cells that form from only a limited number of 

synaptic connections being preferentially eliminated during CNS 

maturation...Gonadal steroids could alter this process by selectively 

stabilizing some connections or enhancing the role of degradation of others 

(or both)." 

In addition to the strong evidence for morphologic effects of gonadal steroid 

treatment on the developing CNS, there is a growing body of evidence that 

suggests this effect may not be limited to early development. Arai et.al. 

report that if the MBH is deafferentiated in adulthood resulting in 

degeneration of some presynaptic elements, administration of estrogen will 

stimulate the formation of axodendritic synapses, an effect not seen in the 

normal adult (Arai et.al.*78). Naftolin supports the idea of synaptogenesis 

in the hypothalamus and raises the possibility that this steroid effect may be 

focused on growth cones in the hypothalamus, such as those found in the PVM 

that are cytologically identical to those commonly seen in developing prenatal 

or neonatal nervous tissue (Naftolin&Brawer177). Pathologic effects reported 

on synapses of adult neurons, when estrogen is introduced in pharmacologic 

amounts suggest that it can also behave as a neurotoxic pathogen. In a series 

of studies using large doses of administered estrogen, Brawer describes the 

development of acyclicity and demonstrable (by light and electron miscroscopy) 
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lesions and gliosis in the arcuate nucleus of the adult male and female rat 

(Brawer&Sonnenschein175;Brawer et.al.178;Brawer et.al.'80). This effect is 

predominently glial with an increased number of microglia and astrocytes with 

inclusions while the neurons demonstrated no real changes from controls and 

only a mild axonal degeneration of the neuropil. Brawer postulates this 

response may represent a functional chemical deafferentiation of the MPOA from 

the MBH producing acyclicity and multicystic ovaries and suggests it as the 

basis for age-related hypothalamic failure (Brawer et.al.'80). 

Though some believe the influence of estrogen on both the mature brain and the 

developing brain is predominantly at the synaptic level (Naftolin&Brawer176), 

as these studies seem to indicate, most believe that plasticity of the adult 

brain remains a questionable issue. Studies have shown it possible to promote 

a functional plasticity in a damaged nervous system through a variety of 

electrical, biochemical and surgical techniques (Freed et.al.'85) while others 

have declared that, at least in primates, there is no real evidence for 

post-developmental neurogenesis (Rakic'85), though this does not rule-out 

synaptogenesis. It is probably best to conclude that in the adult, the 

evidence to date suggests that steroid hormones exert an 'activational' and 

not an 'organizational' effect; they exert profound but transitory effects and 

activate or inhibit the function of existing neural circuits without making 

fundamental changes in the neuronal circuitry (Gorski'79). 

To establish this activational effect of estrogen on neurons, investigators 

have looked for ultrastructural evidence but instead have discovered cellular 

changes whose functional significance remains quite speculative. An early 

study by Lisk and Newton ('63) shows that estrogen implanted in the arcuate 

nucleus of female adult rats results in a decrease in the size of the nucleoli 





of the neurons in this nucleus and produces a dramatic ovarian atrophy which 

they speculate is a result of decreased synthetic activity by the arcuate in 

response to the increased estrogen. Conversely, Ifft ('64) shows a decrease 

in nucleoli size in neurons of the arcuate in castrated animals and , more 

recently, Zimmerman ('82) shows an increase in the nuclear area of these 

neurons in the mouse describing the effect as a 'functional nuclear edema', a 

result of increased cell permeability which occurs with the activation of the 

nuclear metabolism by sex steroids (McEwen et.al.'78). Studies of the 

neuronal cytoplasmic ultrastructure have yielded similarly conflicting 

results. Zambrano and DeRobertis, looking at the effects of castration, found 

the arcuate nucleus as well as the supraoptic and paraventricular ('68b) to 

show signs they ascribed to hyperactivity: increased numbers of ribosomes 

organized into polysomes; dilated cisternae of endoplasmic reticulum; a 

well-developed nucleolus; and, increased numbers of granulated vesicles in the 

surrounding neuropil. This correlates well with a later study, where 

granulated vesicle content in arcuate neuron terminal endings was measured at 

different stages of the estrus cycle demonstrating that at the end of 

proestrus and especially during estrus the system has the lowest content of 

granulated vesicles, with a considerable increase in the number beginning at 

proestrus (Zambrano'69). Citing previous studies which correlate granulated 

vesicles and catecholamine content in the arcuate (Jaim-Etcheverry'68), 

Zambrano suggests that this cyclic change in the number of granulated vesicles 

supports the notion that catecholamines may play a role in the control of 

gonadotropin secretion and estrogen may be affecting their synthesis. Looking 

at his data, one can question the significance of the difference in vesicle 

content among the four time periods and the statistical analysis he uses to 

determine this, as well as his assumption that these types of vesicles contain 
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primarily catecholamines. Moreover, he ignores the possibility that they could 

contain other substances such as releasing factors or both releasing factors 

and neurotransmitter. Such work is illustrative of the inherent difficulty 

one has in drawing conclusions about cellular function from ul trastructural 

changes in cellular constituents whose function has not been fully 

characterized. This is even more clearly illustrated in the following 

studies. 

Knowing that the neurons of the arcuate nucleus projected to the pericapi11 ary 

space and may function as neurosecretory cells similar to the supraoptic or 

paraventricular nuclei, Brawer et.al. sought to characterize more fully the 

ultrastructure of these neurons. Using both normal and castrated male rats, 

they discovered an increased occurrence of whorl bodies, previously described 

endoplasmic reticulum formations (Palay and Palade'55) in castrated animals 

(Brawer171,'72). King and Williams thought these formations to be dependent 

on circulating steroid levels and studied their rate of occurrence at various 

stages of the estrous cycle and in ovariectomized animals (King et.al.'74). 

They, too, concluded that low plasma steroid levels induced the formation of 

these whorls and speculated that perhaps they represent a hypersynthetic 

activity involved in LHRH production in these neurons. In fact, Naik, in an 

immunocytochemical electron microscopic study of the arcuate, found whorl 

bodies in labeled LHRH neurons (Naik'75) though the presence of LHRH neurons 

in the arcuate has been questioned by many investigators as has the ability of 

these neurons to bind estradiol (Shivers et.al.'83). Many other investigators 

have described the increased incidence of these formations in castrated 

animals, male (Price et.al.'76;Ford et.al.'73;Ford et.al.'74) and female 

(Cohen&Pfaff'81) and in a multiplicity of other organs in both pathologic and 

physiologic states (for review see King et.al.'74). But their functional 
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significance still remains obscure. Possibilities range from a response to 

toxic insult (for review see Steiner et.al.'63) to a center of hypersynthetic 

activity (King et.al.'74) with a very recent study postulating their 

occurrence as a response to decreased cytoplamic concentrations of calcium 

(Kallenbach'84). Until the functional nature of these organelles is more 

clearly established, their presence or absence in varying hormonal states 

provides little help in elucidating the role of various hypothalamic neurons 

in neuroendocrine function. 

The presence of other cytoplasmic organelles has been described to be 

hormonally-sensitive also, the most notable being the nematosomes (Anzil 

et.al.'73;Hindelang-Gerner et.al.'74). Like the whorl bodies, these are not 

found exclusively in neurons, but unlike them, castration has no effect on 

their incidence (Santolaya173) and instead, recent reports suggest an increase 

in their number correlates with increased steroid levels (King 

et.al.174;Brawer'71; Leranth et.al.’85). Do they represent a storage or 

transit form of readily available material piled up in perikaryon or moving 

along processes prior to being used (Anzil'73) or is their increased presence 

in perikaryon a result of colchicine-treatment which blocks their normal 

migration into axons where they transport ribosomal material to be utilized at 

synaptic terminals(Hindelang-Gertner'74)? As with the whorl bodies, the 

precise role, if any, nematosomes play in the activational effects of 

estrogen on neural tissue must await further characterization of their 

biochemical functions within the cell. 

SUMMARY 

There is a large body of evidence for induction of both functional and 

structural changes by estrogen in the adult rat brain but the relationship 
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between the structural and biochemical effects of estrogen on neural tissue 

and the eventual neuroendocrine effects are still not completely defined. Is 

estrogen acting by changing thresholds for neuroendocrine responses or by 

grossly changing the course of neural pathways? The idea that steroids change 

the essential structure of the nervous system is questionable and it is 

probably more correct to assume, as was proposed even by the earliest 

investigators, that the effects of steroids would be subtle rather than gross 

(Phoenix'59). In this respect, narrowing studies of estrogen's effects to a 

specific neuronal population such as the GABA neurons, seems an appropriate 

approach in attempting to find the functional and structural correlates of its 

action in the CNS. 
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METHODS AND MATERIALS 

Six female Sprague-Dawley rats (200-220 g. Charles River, Wilmington, MA; CD 

(SD) BR strain) were used in these experiments. The animals were kept under 

standard laboratory conditions: 24 C, 12 h light-dark period, with food and 

water ad libitum. Rats were divided into two treatment groups of three 

animals each: animals in Group I were bilaterally ovariectomized and 

immediately received a single dose of estradiol valerate (EV; 2 mg. in 200 ul 

of sesame oil, s.c.), 21 days before sacrifice; Group II rats were 

ovariectomized 21 days before sacrifice and received no estrogen. Both Groups 

I and II received 80 ug of colchicine (dissolved in 20 ul saline) into the 

lateral ventricle 24h prior to sacrifice. 

Animals were perfused under ether anesthesia with 50 ml of saline, followed by 

200 ml of fixative containing 4% paraformaldehyde, 0.08% glutaraldehyde and 

150 ml. saturated picric acid in 1000 ml. 0.1 M phosphate buffer, pH 7.35 (PB) 

(SomogyiSTakagi'82). After rapid removal of the brains, the MBH and the 

anterior hypothalamus, including the MP0A, were dissected out and postfixed 

for 24h at 4 C in glutaraldehyde-free fixative. Coronal sections (40um) were 

cut on a Vibratome (Lancer, St.Louis,M0) and washed for 24h at 4 C in several 

changes of PB. The sections were transferred to a vial containing 0.5 ml PB 

with 10% normal rabbit serum to saturate non-specific protein binding sites. 

The anti-GAD antibody used was raised in sheep against GAD purified from rat 

brain symaptosomes, and has been previously characterized (Oertel et.al.'81). 

For immunostaining, Sternberger's peroxidase-anti-peroxidase (PAP) technique 

(Sternberger et.al.'70) was used according to a previously described protocol 
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(Leranth&Feher'83). Incubation times and dilutions were as follows: anti-GAD 

1:1500, 24h at 4 C; anti-sheep immuno-gamma-globulin (Cappel Laboratories, 

Cochranvi11e, PA) 1:40 dilution, 1.5 h at 20 C; sheep PAP (Cappel 

Laboratories) 1:1000 dilition, 1.5 h at 20 C. All dilutions were made in PB 

containing 1% normal rabbit serum and 0.1% NaN3. The tissue-bound peroxidase 

was visualized by using 0.17% 3,3' diaminobenzidine with 0.002% H202 in 

Tris-HCl buffer (0.05 M, pH 7.6 for 7 min. at 20 C). The sections were then 

post-osmicated, dehydrated and embedded in EM-BED-812 between a glass cover 

slip and aluminum foil to keep them flat. After 24 h polymerization, the 

aluminum foil was removed from the 'sandwich' and the sections were fixed on 

an araldite block. Ultrathin sections were cut from the outer surface (2-3um) 

of the 40um Vibrotome sections and were counter-stained for 30 sec. with lead 

citrate prior to the electron microscopic analysis of the stained profiles. 
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RESULTS 

ARCUATE NUCLEUS 

Fine Structure 

Tissue preservation using intracardiac perfusion appeared very good throughout 

the hypothalamic region with easy cytological differentiation of neuronal and 

glial elements. All sections were taken from an area of the arcuate nucleus 

adjacent to the ependymal layer near the median eminence (Fig.l). The same 

ultrastructural features cited by other investigators (Brawer'71;Santoloya'73) 

are observed in this study with no differences noted between experimental 

groups. The nuclei of the labeled and unlabeled arcuate neurons are 

ellipsoidal or round and usually display either shallow or very deep 

indentations. Usually each neuron contains one prominent nucleolus, the 

cytology of which is exactly as described for neuron nuclei in general (Peters 

et.al.'71). The cytoplasm of the unlabeled neurons show no remakarble 

features with Golgi bodies (1-2) scattered in the cytoplasm close to the 

nucleus and granular endoplasmic reticulum, diffuse and loosely arranged 

throughout the periphery of the cell. Other structures in these neurons are 

identical to those described in standard texts, e.g. mitochondria, lysosomes, 

multivesicular bodies and neurotubules. Glial elements are unremarkable, 

showing no signs of gliosis. The nucleus of the oligodendrocyte is oval, 

contains more chromatin than a neuronal nucleus and has a characteriStic 

clumping of the chromatin around the nuclear envelope with nuclear pores 

between the clumps. Astrocytes, seen less frequently, have cytoplasm which is 

electron-lucent and relatively free of organelles. The neuropil is 

characteristic for the sporadic appearance of myelin figures (Fig.2), a term 
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applied to dense osmiophilic pools of phospholipid which typically appear in 

glutaraldehyde-fixed specimens as dark lamellae in compact spirals 

(Fawcett&Susumo158) and probably represent artifacts of fixation. In 

addition, an occasional tanycyte process is seen running through the field 

(Fig.2) from the adjacent ependymal layer. 

GAD-Postive Neuronal Perikaryon 

The poor penetration of immunoreagents allowed a reliable evaluation of 

GAD-positive profiles only in the most superficial few micrometers of the 

Vibratome sections. This necessitated observation of numerous ultrathin 

sections in order to study a reasonable number of labeled neurons. Only 3-4 

labeled neurons were visible in a 50um x 50um section. GAD-positive neurons 

in both experimental groups appeared essentially similar, except for a 

slightly increased synthetic activity in neurons from the castrated group as 

seen by occasional areas of extensive RER stacking (Fig.3A,B). GAD-positive 

neurons in both groups had a charaacteristic 1 cl over-shaped1 nucleus (Fig.4). 

Axo-somatic synapses with GAD-positive terminals (Fig.5) and terminals 

containing large, clear vesicles (Fig.6) are seen in both groups. Nematosomes 

are quite prevalent in neurons from both groups, but in the estrogen-treated 

group more than one nematosome (either cytoplasmic or nuclear) per neuron was 

more likely to occur. 

GAP-Positive Axons Terminals 

The numerous immunoreactive dots visible at the light-microscopic level 

(Fig.l) can be identified, in the ultrastructural analysis, as labeled axon 

terminals. Labeled axons are much more numerous than labeled soma, usually 

comprising about 25% of the total axonal population of a section. Typical 
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synapses are found between GAD-positive endings and unlabeled perikaryon or 

dendrites and labeled neurons and dendrites. No synapses are seen between 

labeled axons. 

Whorl Bodies 

Whorl bodies as shown in Fig.7 are found only in estrogen-treated rats, 

contrary to previous accounts (Brawer'71) and only in unlabeled neurons, 

though the neurons in which these formations are found may be beyond the reach 

of the immunoreagent and, therefore, may, in fact, be GABA neurons. A total 

of three whorl bodies are found in approximately 150 (50um x 50um) sections 

viewed, and all consist of smooth endoplasmic reticulum and contain no 

vesicles or mitochondria. 

MPOA 

Fine Structure 

As in the arcuate nucleus, tissue preservation was very good throughout the 

MPOA. Sections were taken from an area of the MPOA as indicated in Fig.8(A,B) 

where most GAD activity appeared by light microscopy and where the LHRH 

neurons are known to be located. There is no difference in the cytology of 

this area between the two experimental groups and both show characteristies 

similar to that previously described in detail (Prince&Jones-Witters'74). The 

nuclei of the unlabeled neurons have a variety of shapes, but are, for the 

most part, oval or elliptical with some indentations. In one or two sections, 

rare fusiform neurons are seen, probably representing the LHRH neurons. The 

unlabeled neurons contain the usual cytoplasmic organelles in normal amounts 

including a granular endoplasmic reticulum, more frequently perinuclear, and a 

singular Golgi apparatus. Glial cells are as described in the arcuate nucleus 
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with character!Stic clumping of the chromatin around the nuclear envelope. As 

in the arcuate, the neuropil is remarkable only for occasional extracel1ular 

myelin figures. 

GAP-Positive Neuronal Perikaryon 

Again, poor penetration of the immunoreagent limited evaluation of the 

GAD-positive neurons in the MPOA. Labeled neurons are very scarce with an 

average of 0-1 per (50um x 50um) section viewed and appearing the same in both 

experimental groups, showing no differences in degree of neuronal synthetic 

activity and having numerous axo-somatic synapses with both GAD-positive 

terminals and terminals containing dense-core and large, clear vesicles 

(Fig.9). GAD-positive neurons in the MPOA in both experimental groups show 

many more axo-somatic synapses (3-5/GAD-positive profile) than those of the 

arcuate nucleus. Nematosomes are seen in labeled and unlabeled (Fig.10) 

neurons in equal proportions, with more than one per neuron seen very rarely. 

There is no difference in the number of nematosomes per section viewed between 

experimental groups. The nuclei of the labeled neurons show the 

characteristic indentations as seen in the arcuate (Fig.4). 

GAP-Positive Axon Terminals 

A very high density of imrnunoreactive dots is present at the light microscopic 

level (Fig.8A,B) and is identified as axon terminals at the ultrastructural 

level. Labeled axon terminals are more numerous than in the arcuate nucleus, 

comprising approximate^ 30-35%. of the total axonal population and synapse 

predominantly on GAD-positive and unlabeled somas. No GAD-GAD synapses 

between axons are seen. 
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Whorl Bodies 

One whorl body as shown in Fig.11 is present, found after viewing 

approximately 200 (50um x 50um) sections. This is present in the 

estrogen-treated group in an unlabeled neuron, but as in the arcuate, at a 

level wnere the GAu lace! is lost. The whorl body consists of smooth 

endoplasmic reticulum and numerous vesicles of electron-dense material at its 

center. No mitochondria are seen within the whorl body. 

RESULTS--Addendum 

AMYGADALA 

GAD-Positive Neuronal Perikaryon and Axon Terminals 

Ultrathin sections from the corticomedial nucleus of the amygadala show 

numerous GAD-positive neuronal profiles with numerous GAD-positive axosomatic 

synapses (Fig.12). Myelin figures are presently in large numbers throughout 

the neuropil; no whorl bodies or nematosomes are seen in 75 (50um x 50um) 

sections viewed. 
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FIGURES 

Fig. 1: Arcuate nucleus; estrogen-treated rat: 40um section stained for GAD; 

_A: Demonstrating area of GAD-positive estrogen-sensitive neurons (arrow). 

(Magnification xlO). J3: Demonstrating GAD-positive neuronal profile (arrow). 

(Magnification x40). 

Fig.2: Arcuate nucleus; estrogen-treated rat: Neuropil with tanycyte process 

(T) running through field; (m)myelin figures. (Magnification xl2,000). 

Fig.3: Arcuate nucleus; ovariectomized rat: A: Unlabeled neuron with 

extensive rough endoplasmic reticulum (arrow). (Magnification x3,000). B_: 

Extensive stacking of rough endoplasmic reticulum. (Magnification xl5,000). 

Fig.4: Arcuate nucleus; ovariectomized rat: GAD-positive neuron with 

characterteristic 'clover-shaped' nucleus. (Magnification x9,Q00). 

Fig.5: Arcuate nucleus; ovariectomized rat: GAD-GAD axo-somatic synapse 

(arrows); (a)axon; (s)soma; (Magnification x34,Q00). 

Fig.6: Arcuate nucleus; ovariectomized rat: Clear vesicle axon terminal (a) 

making synapse (arrow) with GAD-positive soma (s). (Magnification x42,000). 

Fig.7: Arcuate nucleus; estrogen-treated rat: Whorl body in cytoplasm of 

unlabeled neuron. (Magnification xl2,000). 

Fig.8: MPOA; estrogen-treated rat: 40um section stained for GAD; A: Area 

from which ultrathin sections were taken (arrow). (Magnification xlO). B_: 

Dark dots representing GAD-positive axon terminals (arrow). (Magnification 

x40). 
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Fig.9: MPOA; estrogen-treated rat: GAD-GAD axo-somatic synapse (arrow); 

clear vesicle (c), dense-core vesicle (d), and, both clear and dense-core 

vesicle (b) axon terminals making synapses with labeled soma (s). 

(Magnification x 9,000). 

Fig.10): MPOA; estrogen-treated rat: Unlabeled neuron with nematosome (n) 

(Magnification xl8,000). 

Fig.11: MPOA; estrogen-treated rat: Whorl body in unlabeled meuron with 

electron-dense material in center. (Magnification x7,000). 

Fig.12: Amygdala; estrogen-treated rat: A: GAD-GAD axo-somatic synapse 

(arrow). (Magnification xl2,000). B: GAD-GAD axo-somatic synapse (arrow) 

(Magnification x36,000). 
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Figure 2. 
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Figure 3-A. 
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Figure 3-B 
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Figure 5 
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DISCUSSION 

Anatomical, biochemical and electrophysiologic studies reviewed previously 

argue overwhelmingly for an affect by estrogen on gonadotropin release in two 

regions of the brain known to control it--the arcuate nucleus and the MPOA. 

Further, the evidence for GABA as a neurotransmitter affecting this release 

and GABA neurons in either or both of these areas as targets of estrogen in 

this feedback control is gradually growing. This study sought to assess the 

morphologic effects of estrogen on these neurons with the hope this might 

provide clues to the role GABA plays in the release of LH. Clearly the data 

from this study reveal no such effects. The overall fine structure of the 

arcuate and the MPOA did not differ significantly between the two experimental 

groups and cellular morphology of the GABA neurons showed no change under 

varying circulating estrogen levels. Further, neither whorl bodies nor 

nematosomes showed significant changes in numbers under the two conditions, 

contrary to what is known from the literature (Brawer et.al.'71;Leranth 

et.al.'85a; King et.al.'74). Technical difficulties rather than physiologic 

phenomena are probably responsible for this data and will be considered 

briefly before proceeding from what was not found to the significance of what 

was found in this investigation. 

Three major problems in this study made the collection of reliable data very 

difficult. First, using immunocytochemical methods with electron microscopy 

in investigations of cellular ultrastructure presents the investigator with a 

difficult compromise: tissue preservation vs. antibody penetration. The 

nature of this study made it critical to discern even the most subtle 

ultrastructural changes and necessitated weighing the decision heavily in 

favor of preservation over penetration. Unfortunately, this limited our 
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investigation to the top 2-3um of a Vibratome section and greatly reduced the 

number of actual labeled parikarya that were studied. This resulted in 

numbers of whorl bodies and nematosomes far to small from which to derive any 

accurate, statistically significant conclusions. Thus, comparing numbers of 

these organelles in experimental groups (ovariectomy vs. estrogen treatment) 

from one region or in one experimental group (e.g.ovariectomy) from both 

regions is meaningless, i.e. finding whorl bodies in only the estrogen-treated 

animals is may well be a sampling error. Some investigators have circumvented 

this problem by matching labeled neuronal profiles from the superficial layers 

of the section with the unlabeled profile in deeper cuts (Leranth et.al.'85a). 

This allows a number of planes of section to be examined for each labeled 

neuron, increasing the probability of finding whorl bodies, nematosomes or 

other ultrastructural changes of significance. Alternatively, if readily 

recognizable cellular features such as whorl bodies or nematosomes are used as 

markers of a neuron's response to estrogen, one may be able to decrease the 

quality of the tissue fixation as these organelles can be easily seen even in 

less wel1-preserved sections, and allow increased penetration of the 

immunoreagent used to label the GABA neurons. Under these conditions, one may 

be able to derive larger numbers of whorl bodies and to make possible studies 

from which more accurate conclusions can be drawn. Of interest in this regard 

would be a comparison of numbers of whorl bodies in the arcuate vs. the MPOA 

in ovariectomized animals since these two regions are known to have opposite 

effects on LH release and, therefore, may show opposite changes in numbers of 

whorl bodies. Such studies may help in determining if whorl bodies do, 

indeed, positively label the neurons in which they are found as 

gonadotropin-control1ing cells. 





50 

The second problem involved actually localizing the GABA neurons within the 

estrogen-sensitive regions. In the arcuate nucleus, this is not difficult as 

previous studies from this laboratory (Leranth et.al.'85a) found 

estrogen-responsive GABA neurons in the area adjacent to the ependymal cells 

as noted in Fig.l(arrow). In the MPOA, much less information is available. 

Previous studies by Sar et.al. ('83) have localized GABA neurons that 

concentrated tritiated-estradiol to the MPOA, but their exact location within 

this region has not been documented. In effect, this necessitated random 

sampling from various parts of this region in hopes of finding evidence of 

ultrastructural effects (e.g.whorl bodies) and in actuality, it may have 

resulted in missing the estrogen-sensitive area completely. The presence of 

one whorl body in the area of the MPOA indicated in Fig.2(arrow) suggests this 

may be the most worthwhile area for future studies to investigate. Also, LHRH 

neurons can be found here (Jennes et.al.'83) and, if as suggested, the GABA 

neurons are involved in controlling norepinephrine activity to them, a 

juxtaposition of these two neuronal populations would seem appropriate. 

Finally, the paucity of GABA neurons in the MPOA presented a problem both 

unexpected and insoluble. Investigators have suggested that though 

GAD-activity is extremely high in the MPOA, this is probably the result of 

GABA fibers from neurons in more rostral suprachiasmatic or septal nuclei 

traversing or impinging on this area (Leranth, personal communication). If 

this is true, one's sampling size is naturally restricted, underscoring the 

importance of future studies to maximize the labeling and ultrastructural 

analysis of those GABA neurons that are present. Even under these conditions, 

one may still be restricted to descriptive rather than quantitative studies. 
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Despite these problems, significant morphologic findings were gleaned from 

this study, of which the GAD-GAD axosomative synapses in the MPOA are clearly 

the most interesting. In the arcuate, GAD-GAD axosomatic synapses had been 

previously reported (Leranth et.al.185) with the likely source of the GABA 

terminals coming from within the MBH (Tappaz&Brownstein'77). It is known that 

the MPOA has a very high concentration of GAD-activity (Fonnum'77) but its 

source has not been determined. Are these GABA terminals part of a population 

of GABA interneurons intrinsic to this area or are they from outside sources 

in the midbrain, hippocampus or more rostral areas including the 

suprachiasmatic or septal nuclei? Or, more importantly, do they represent 

input from the GABAergic system in the arcuate and affect the tonic control of 

LH release? Hypothalamic deafferentiation studies including total MBH cuts, 

as well as selective anterior (both rostral and caudal to the MPOA), posterior 

and lateral cuts would be especially helpful in defining the source of the 

GABAergic input to the GABA neurons of the MPOA. 

Defining the source of the GABAergic input to the GABA neurons in the MPOA is 

an important step in constructing a workable schema as to GABA's role in the 

control of LH release. A local source from within the MPOA may suggest 

inhibitory interneurons involved in a neuronal loop which integrates different 

input from various origins and transmits the resulting signal as an inhibitory 

input to the neurosecretory cells (Tappaz et.al.'83). The concept of the MPOA 

GABA neurons as key integrators is supported by the unusually large number of 

synapses found on their soma (see Fig.9). However, if the source is from the 

MBH, speculations may center around an interaction between the GABAergic 

system of the arcuate and MPOA. A short, local recurrent picrotoxin-sensitive 

inhibitory loop thought to control the firing of the tubero-infundibular 
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neurons has been reported (Renaud'76). Perhaps collaterals from these neurons 

invade the MPOA 

to coordinate the tonic release of the LHRH neurons found there? Finally, the 

GAD-GAD axosomatic synapses may represent GABAergic elements from a remote 

location involved in neuroendocrine feedback loops impinging on key GABA 

integrator neurons and affecting LHRH release in this way. This would explain 

the numerous effects on various endocrine parameters seen with central 

pharmacological manipulation of GABAergic transmission. 

Having deciphered the input to and the output from these GABA neurons one can 

then more clearly examine how they may fit into the neuronal circuitry that 

controls LH release. Do they act, as many have speculated (Mansky 

et.al.'82;Lamberts et.al.'83), as pre-synaptic inhibitors to norepinephrine? 

Morphologic evidence from this study (Fig 9) and others (Mansky 

et.al.'82;Vijayan&McCann'79) showing GABA terminals juxtaposed with terminals 

of clear or dense-core vesicles would argue for GABA as a local 

neuromodulator. Or do they act directly on the neurosecretory neurons in the 

MPOA as McCann et.al. have proposed (McCann et.al.'82). Leranth et.al. ('85b) 

have shown recently through double-labeling techniques that the GAD-positive 

terminals in the MPOA do, in fact, synapse on the LHRH neurons there. These 

double-labeling techniques are making possible studies examining the 

inter-relationship of the GABA, dopamine, norepinephrine, and LHRH neurons in 

the control of LH release and will undoubtedly play a vital part in unraveling 

the increasingly more intriguing mystery of how the brain controls ovulation. 
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